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We present a new approach, the Topograph, which reconstructs underlying physics processes, including
the intermediary particles, by leveraging underlying priors from the nature of particle physics decays and
the flexibility of message passing graph neural networks. The Topograph not only solves the combinatoric
assignment of observed final state objects, associating them to their original mother particles, but directly
predicts the properties of intermediate particles in hard scatter processes and their subsequent decays. In
comparison to standard combinatoric approaches or modern approaches using graph neural networks,
which scale exponentially or quadratically, the complexity of Topographs scales linearly with the number
of reconstructed objects. We apply Topographs to top quark pair production in the all hadronic decay
channel, where we outperform the standard approach and match the performance of the state-of-the-art
machine learning technique.
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I. INTRODUCTION

At the Large Hadron Collider (LHC) at CERN, beams of
protons are collided together at incredibly high energies to
probe the underlying nature of the universe. From the
objects recorded by the detectors on the LHC, the under-
lying physics processes in the collisions are attempted to be
reconstructed.
In processes with a high multiplicity of objects, recon-

structing intermediate particles, such as the two top quarks
and W bosons in top quark pair production, is a crucial
and challenging component in analyses [1–17]. This is of
particular interest when measuring the mass of an inter-
mediary particle, or its kinematic properties as part of a
cross section measurement.
In this work we introduce Topographs, a new machine

learning approach for reconstructing the full hypothesized
decay chain fromobservedobjects. It leverages state-of-the-art
machine learning (ML) with underlying priors from particle
physics, through the nature of particle decays, to reconstruct
underlying physics processes including the intermediary
particles. The computational complexity of Topographs scales

linearly with object multiplicity, whereas alternative methods
scale quadratically [18,19] or exponentially [20,21].
We apply Topographs to reconstruct the underlying

processes in the production of top quark pairs in the all
hadronic decay channel. However, the architecture can be
applied to any particle physics process and is not limited to
event level reconstruction.

II. MOTIVATION

In the case of top quark pair production, with each top
quark decaying hadronically t → Wb → qq0b, each quark
is expected to initiate a shower in the detector which is
reconstructed as a jet, resulting in six jets. The number of
combinations to match the reconstructed jets to quarks from
the top quark pair system is computationally intractable and
grows exponentially with additional jets reconstructed in
the final state, even when taking underlying symmetries
into account. Solving the combinatorics of this system is a
key challenge in the measurement of the top quark and tt̄
pair, and one which is often computationally limited. The
combinatorics can be restricted by looking at event topol-
ogies where the high momentum of the top quarks results in
all three quarks being reconstructed in a single large radius
jet, however this restricts the phase space to such topologies
which represent only a small fraction of all events.

III. CURRENT APPROACHES

In top quark physics kinematic event reconstruction forms
a key part of many measurements. The χ2 method [4] and
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the kinematic likelihood fitter (KLFitter) [20] have been
employed in a large number of analyses [1–14]. In both
approaches, all combinatorics of jet matching to final state
quarks and gluons (partons) in the tt̄ final state are testedwith
kinematic constraints based on the masses of the recon-
structedW bosons and top quarks asminimization criteria. In
the case of KLFitter these are used in conjunction with
transfer functions and the particle decay widths.
Although good performance can be achieved with such

an approach, as the number of jets in an event increases, as
well as the multiplicity of final state objects to be
reconstructed, the number of combinations increases expo-
nentially. For example, in an all hadronic top quark pair
event with six jets, there are 720 potential combinations.
This is reduced to 90 by exploiting underlying symmetries.
However, for events with seven jets the combinations
increase to 630, and for eight jets they increase further
to 2520. Furthermore, as the exact values of the mass of
the top quark andW boson are used to test the likelihood of
a combination, this leads to a biased estimator which
focuses on assigning jets which together are closest to
the hypothesized particles mass, rather than exploiting all
the information about the pairs or triplets of objects. It also
assumes that in all cases the top quarks and W bosons are
on shell.
Building on the previous combinatoric approaches,

simple approaches using machine learning (ML) have been
developed. Instead of finding the most probable assignment
using just the masses of intermediary particles, machine
learning discriminants are used to identify correct assign-
ments, exploiting more information from the event [21].
Nonetheless, these approaches still suffer from the same
problems as the KLFitter and χ2 methods, with each
combination needing to be tested to identify the most
likely.
Another approach which uses more information from the

event is the matrix element method (MEM) [15,21–23].
The MEM not only attempts to match objects to the final
state objects in an event, but directly assesses the likelihood
of observing an event given the matrix element for a
process. This can be evaluated for each potential combi-
nation with the highest resulting probability chosen as the
correct assignment. However, it is extremely slow and
computationally intensive. To calculate the likelihood of an
event, an integral over the whole phase space of possible
final state particle momenta must be performed. It is also
reliant on a transfer function, which is used to convert the
jets, charged leptons and missing transverse momentum
recorded by the detector to the partons, charged leptons and
neutrinos before any hadronization and detector effects. As
there is no accurate function to model this, it is at best an
approximation optimized by hand. Normalizing flows
present a solution to the computational challenge and
approximate functions [24], however do not yet address
the combinatoric solving.

A. State of the art

The state of the art machine learning approach uses
attention transformers [19,25,26] to identify the indices of
final state objects coming from intermediate particles. In
this approach no graph structure is used and only the
permutation invariant collection of objects is considered.
The complexity of the approach can be reduced by taking
into account the symmetries, as performed in Refs. [19,26]
(SPA-Net), corresponding to removing potential solutions
in the combinatoric approaches, which leads to an overall
complexity of OðN2Þ.
Graph neural networks (GNNs) [27,28] are also

employed in High energy physics to associate objects to
a common origin, for example in secondary vertex
reconstruction [18] and could similarly be applied to
combinatoric solving at the event level. These approaches
have fully connected graphs with NðN − 1Þ edges.
In addition to their reduced computational complexity in

comparison to traditional approaches, both attention and
GNN approaches also demonstrate reduction in biases
towards particle masses, as often seen in the combinatoric
approaches. However, in both GNNs and SPA-Net the target
is to identify the two triplets of objects which correspond to
the decay of each top quark, neglecting the structure of the
decay, and the properties of the intermediary particles.
Other approaches employ physics inspired layers in

order to assign parton labels [29] or try to predict the
properties of intermediate particles directly [30].

IV. THE TOPOGRAPH

The use of GNNs in high energy physics applica-
tions [31–44] is a recent development which is gaining
in popularity. However, graphs have also long been used to
describe underlying processes occurring in particle physics
in the form of Feynman diagrams.
In a Feynman diagram, the vertices (nodes) represent the

interactions between particles and the edges represent the
particles themselves. This representation can equally be
converted into a node-and-edge graph by representing the
particles as nodes, and defining edges based on the vertices.
An example of the Feynman diagram and one such graph
for top quark pair production is shown in Fig. 1. In current
graph based approaches this physical inspired graph
representation is not exploited, and instead fully connected
graphs are constructed from all objects recorded by the
detector.
We introduce a new method, called the Topograph,

which builds upon the structure seen in Fig. 1(b) to define
neural networks which can be used to predict the correct
edges from final state particles and the properties of
intermediate particles.
First, the intermediate particles in a chosen physics

process are injected into the graph. Then, instead of
connecting all objects to one another, they are instead
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connected to all of their potential mother particles. From this
newgraph, instead of identifying the edges based on a shared
origin, true edges are identified as being between a mother
and daughter particle, and the result is the reconstruction of
the Feynman diagram as depicted in Fig. 1.
Second, as the intermediate particles are now represented

by their own nodes, during training the kinematic proper-
ties of the injected nodes are predicted as auxiliary tasks
with dedicated regression networks for each particle type.
Edges in GNNs are not only used to identify connections
but also to propagate information. By utilizing the edges
of the Topograph as message passing layers to update the
properties of the injected nodes, properties of the interme-
diary particles are extracted from the graph and regression
networks can predict their kinematic properties. This is
advantageous both through improvements in the edge
classification, but also from the additional extracted
information.
One leading advantage of Topographs over fully con-

nected GNNs can be seen in Fig. 2, showing the simple
case of identifying the jets from the decay of a single top
quark. In comparison to the fully connected GNN, which

has NðN − 1Þ edges, the Topograph only requires OðNÞ,
which scales linearly with the number of intermediary
particles; in this case there are 2N edges. For cases where
N > M þ 1, where M is the number of intermediary
particles, there are always fewer edges associated to
reconstructed objects in a Topograph than a fully connected
GNN.
Furthermore, having a handle on the underlying kin-

ematics of the intermediary particles with auxiliary tasks
should improve the resolution and accuracy of current
differential measurements, which are often a function of
intermediate particle kinematics. These properties could
also be used in a likelihood test of the process, as is done in
the MEM, instead of only using objects recorded by the
detector.
With Topographs, complex underlying physics processes

can be injected as priors by changing the injected particles
and their potential connections. This enables additional

FIG. 2. Comparison of the edges in (a) fully connected GNNs
and (b) Topographs, when identifying the three jets j which
originate from a top quark decay. The blue nodes in (b) represent
the injected nodes, a key component of the Topograph, for both
the top quark (t) andW boson (W). The true edges, which identify
jets which (a) originate from the same top quark or (b) reconstruct
the decay chain, are green. All false edges in the graphs are
dashed red lines. The predefined connection between t and theW
boson is blue.

FIG. 1. Two graph representations of top pair production, with
one top decaying semileptonically and the other hadronically.
The production mechanism in (a) is shown to be gluon fusion
however in (b) it is represented by the hashed circle. Time flows
from left to right in both graphs.
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information to be included when designing and training the
networks over standard approaches.

A. Building blocks

Although the Topograph could be visualized as one large
graph with injected nodes and edges, we break them down
into a simple set of building blocks. The core building
block of the Topograph is the particle block. It includes the
edge definitions between an input set of particles, or nodes,
and the target mother particle. In addition, it contains the
regression network used to predict the kinematic properties
of the injected mother particle. If a Topograph is visualized
as a Feynman diagram of a process, a particle block is the
subcomponent which determines the correct connections to
recreate a single vertex alongside the properties of the
incoming particle. The basic representation of a particle
block for a mother particleM is depicted in Fig. 3 alongside
a representative Feynman diagram vertex. The injected
mother particleM can be initialized with random values, or
using information extracted from all potential daughter
particles. Its properties are learned from message passing
layers between itself and the input particles.
Any hypothesized process can be described by combin-

ing multiple particle blocks into a single network, con-
necting them to the input particles and to one another.
Edges between objects and particle blocks can also be

predefined, for example between the particle blocks for aW
boson and a top quark, as shown in Fig. 4.

B. Assembling a neural network with Topographs

For many processes, there will be more than one
reconstructed object type or final state particle in the
chosen process. To address this a set of neural networks
ϕp, one for each particle type p, can be incorporated into
the Topograph model as a series of particle embedding
networks. Furthermore, in order to maximize initial infor-
mation exchange before the Topograph it may be beneficial
to include a normal message passing layer before the
Topograph. Options for this layer include attention trans-
formers and standard message passing GNN layers.
Furthermore, in complex processes it is possible to define
which edges are to be predicted and which are fixed. For
example, two leptons in the production of a Z boson in
association with two top quarks could be set to originate
from the Z boson, or one from each W boson.

V. SOLVING COMBINATORICS IN tt̄ EVENTS

For an initial application and for direct comparison with
other state-of-the-art methods we apply Topographs to top
quark pair production with both tops decaying hadroni-
cally. We compare the performance of our method to a

FIG. 3. The particle block for a given mother particle M. All
input particles are connected to the mother particle by an edge; for
illustrative purposes the true edges are shown in green and the
false edges are represented by dashed red lines. The trapezoid
Mreg is the regression network which predicts the kinematic
properties of M. The inset is the notation used to represent the
whole particle block. This is shown alongside the Feynman
diagram representing the process, with time running from bottom
to top.

FIG. 4. Particle block of a top quark t. A particle block for the
W is nested within the t block. A connection between the W
boson and the top quark is predefined (shown in blue). This is
shown alongside the corresponding Feynman diagram.
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benchmark non-ML approach used in many top quark
analyses, the χ2 method, and the state-of-the-art ML
approach, SPA-Net [26]. All models are trained and
evaluated on the same dataset.
20 million tt̄ events with a center of mass energy

ffiffiffi

s
p ¼

13 TeV are simulated using MadGraph5_aMC@NLO [45]
(v3.1.0), with decays of top quarks andW bosons modeled
with MadSpin [46], with both W bosons decaying to two
quarks.1 The parton shower and hadronization is performed
with PYTHIA [48] (v8.243). The detector response is
simulated using DELPHES [49] (v3.4.2) with a parametriza-
tion similar to the response of the ATLAS detector. Jet
clustering is performed using the anti-kt algorithm [50]
with a radius parameter R ¼ 0.4 using the FastJet [51]
package. Jets originating from b quarks (b jets) are
identified with a simple binary discriminant corresponding
to an inclusive 70% signal efficiency.
For training, events with at least six jets are selected,

keeping up to 16 jets per event as ordered by their
transverse momentum. Truth matching of jets to the partons
in the hard scatter is performed using a cone of ΔR < 0.4.
Events with partons matched to multiple jets, or jets
matched to multiple partons, are discarded. Events are
further required to have zero reconstructed leptons, though
no requirement on the number of b jets. Finally, events are
required to be fully reconstructable, where jets are matched
to all six partons of the tt̄ decay. After these requirements
there are 1,340,000 training events and 71,000 validation
events.
An additional 298,000 events are reserved for evaluating

the final performance. These also contain events where not
all partons have a jet matched to them. In 76,000 of these
events it is possible to associate a jet to all six partons. After
requiring at least two b jets in the event, there are 147,000
events of which 44,000 are fully reconstructable.
As inputs for both ML models the four momentum

ðpx; py; pz; EÞ together with a Boolean flag showing
whether the jet was b tagged or not are used. The three
momenta are normalized subtracting the mean and dividing
by the standard deviation. The energy is normalized in the
sameway after applying the logarithm. No normalization or
transformation is applied to the b-tagging flag. As both
models represent the single jets as nodes, additional
information per jet can easily be added for both models
as additional node features.

A. Topograph implementation

Before the particle blocks for the two top quarks, two
fully connected message-passing graph layers are used to
provide an information exchange between the jets in the
event and update the jet features. From these updated
jets, the W nodes are initialized using attention weighted

pooling. Two different networks are used to obtain two sets
of attention weights, one for each of the W nodes. The top
nodes are initialized in the same way from the jets but with
the corresponding W node concatenated to the pooled jet
information. The regression targets of theW and top nodes
are the truth level properties of the particles. In both cases
the three momentum ðpx; py; pzÞ is chosen as the regres-
sion target. In our dataset the truth mass is fixed to the
Monte Carlo mass values. The network structure is shown
in Fig. 5.
Within both the information exchange and Topograph

blocks, message passing is bidirectional with a separate
edge for each direction. Shared weights are used for
calculating the attention pooling weights for each category
of edge, defined by the sending and receiving particle type.
Edge features are formed by concatenating the features of
the sending node and the receiving node. Edge features are
persistent between updates, and after the first iteration the
current values are concatenated to the new features.
Four message passing steps in the Topograph update the

jets, edges and injected W and top nodes. After the final
message passing step, the properties of the W bosons and
top quarks and particle matching scores are extracted.
There are four matching scores for each jet, from which
six jets are assigned to the six partons. The scores are
calculated by passing the edge properties of the jet to theW
and top node through a classification network to determine
if it is a true edge.

FIG. 5. Topograph network for the tt̄ process comprising two t
blocks. The jets are passed through an information exchange
layer, using a fully connected graph message passible layer. All
jets are connected to all possible mother particles, as shown by
the dashed edges. The information exchange comprises multiple
message passing graph layers and the node updates with the
Topograph are performed N times before the edge values are used
for parton assignment and the properties for the top quarks andW
bosons are extracted.

1The dataset is available at https://zenodo.org/record/7737248
[47].
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1. Loss function

The loss function is calculated from both the edge
classification task and the regression tasks. Edges are
classified as true if a jet originated from the b quark, in
the case of the top nodes, or one of the two quarks from the
decay of the W boson, for the W nodes. Here, binary cross
entropy is used for the loss function, and it is weighted
using the number of true and false edges across the dataset
in order to improve convergence during training. For each
regression task, the mean absolute error function is used
between the predicted values of the node and the true values
of the top quark or W boson.
Since it is not possible for the network to determine

which top node corresponds to the top quark or the antitop
quark, a symmetrized version of the losses is calculated in
which the loss is calculated for both possible cases. The
loss is then defined as the minimum of the two. Since theW
boson nodes are directly connected to the top nodes, the
loss terms for the W bosons are included in the loss
calculation without need for additional symmetrization.
The full loss is given by

Lsymm¼minðLðt1;tÞþLðW1;WþÞþLðt2; t̄ÞþLðW2;W−Þ;
Lðt1; t̄ÞþLðW1;W−ÞþLðt2;tÞþLðW2;WþÞÞ;

where Lðpi; pÞ corresponds to the combined edge classi-
fication loss and regression loss for each of the injected
particles pi ∈ t1, t2, W1, and W2, with respect to the truth
particle p ∈ t, t̄, Wþ, W−.

2. Parton assignment

Several options could be tested for assigning jets to the
partons for the edge score. For this initial study a simple
iterative approach is chosen. First, the edge with the highest
score is labeled as a true edge, with the jet assigned to this
parton. Next all edges connected to the corresponding jet
and parton are removed, and the next highest edge is
chosen. In the all hadronic tt̄ case, there is one parton per
top quark, corresponding to the b quarks in the decay, and
two per W boson. This assignment procedure is repeated
until all six partons are assigned, and results in a solution
where neither a jet or parton can be assigned to multiple
targets.

B. Reference methods

1. χ 2 implementation

The χ2 score for tt̄ decays used in this work is given by

χ2 ¼ ðmb1q1q2 −mtÞ2
σ2t

þ ðmb2q3q4 −mtÞ2
σ2t

þ ðmq1q2 −mWÞ2
σ2W

þ ðmq3q4 −mWÞ2
σ2W

;

where mbiqjqk is the invariant mass of the jets in the
permutation, mt and mW are the masses of the top quark
andW boson, and σt and σW are the widths of the top quark
and W boson in the dataset. The values for mt and mW
are obtained by taking the mean of the reconstructed
invariant masses in our dataset, while σt and σW are set
to the standard deviation. The calculated values are
mt ¼ 169.8 GeV, mW ¼ 81.0 GeV, σt ¼ 29.0 GeV, and
σW ¼ 18.5 GeV. Jets associated to the b quark of the top
decays are required to be b tagged, while no requirement is
placed on the jets associated to the W boson decays.

2. SPA-Net implementation

The implementation is taken from the GitHub repository.2

The hyperparameters of the model are optimized for the
dataset using fully matched events, with the values in
Ref. [19] using v1.0 resulting in the highest overall
efficiencies. All SPA-Net models are trained for 100
epochs, taking the weights after the epoch with the lowest
loss on the validation set.

C. Partial event trainings

It is also possible to train Topographs on events in which
not all partons from the tt̄ decay are matched to jets. For
these events, the same network is used but the edge
classification and regression loss terms are not considered
for the W boson or top quarks which have partons not able
to be matched to jets. In the case of the b quark from the top
quark decay not being matched to a jet, the LðWi;WþÞ
term is still considered. Where a quark from the W boson
decay is missing, both the top quark and W boson loss
terms are not considered. At least one W boson is required
to be fully reconstructable, with both quarks matched to jets
in the event.
As introduced in Ref. [26], SPA-Net can also be trained

on nonfully reconstructable events, however in comparison
to Topographs this is only at the level of each top quark.
When a b quark from the top quark is missing, the
corresponding W boson is also not considered. For a fairer
comparison with both models trained on the same number
of events, we compare models trained only on fully
reconstructable events. Results for the Topograph and
SPA-Net models trained with partial events are presented
in Appendix A 3.

VI. RESULTS

For the evaluation of the performance only events with at
least two b-tagged jets are considered. This is a common
requirement in physics analysis to reduce the contribution
from the multijet background. This requirement is not
imposed during training as it is found to reduce the

2https://github.com/Alexanders101/SPANet/tree/v1.0.
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performance as a result of the reduction in training
statistics.

A. Jet parton assignment

Although Topographs predict the kinematics of injected
particles, the most important measure of performance is the
association of jets to partons. Efficiencies of reconstructing
the whole event correctly are shown in Table I for varying
jet and b-jet multiplicities. Only events which are fully
reconstructable are considered. Topographs and SPA-Net
show very similar performance across all jet multiplicities,
with subpercent differences in the reconstruction efficien-
cies. Both clearly outperform the χ2 method by around 10%
with larger differences at higher jet multiplicities.
Figures 6 and 7 show the reconstructedW boson and top

quark invariant masses. The distributions are shown sep-
arately for events with the correct and incorrect jet assign-
ments, as well as events which are not possible to be fully
reconstructed due to not all partons being matched to
reconstructed jets (impossible). Events where the correct
triplet is assigned to the top quark but with the incorrect

matching account for 5% of the incorrect events for
Topographs and SPA-Net, and 3% for χ2. All methods
are able to reconstruct candidates closest to the particle
mass, with a broader distribution for events without the
corresponding partons matched to jets in the event.
Normalized and stacked distributions can be found in
Appendix A 6. SPA-Net and Topographs have very similar
distributions showing no difference in potential sculpting of
the mass distributions. The χ2 method has distributions
which are shifted towards slightly higher values compared
to SPA-Net and Topographs.
For events which do not contain all partons in the final

state, it is of interest to see how many of the partons are
correctly matched to jets. In Table II the matching effi-
ciencies of only the partons which are present in the event
are compared for the three approaches. The Topograph
performs slightly better than SPA-Net, with higher effi-
ciencies for correctly matching all available partons or
only one incorrectly matched parton. Both Topographs and
SPA-Net are substantially better than the χ2 at correctly
identifying all available partons. It should be noted that the

TABLE I. Event reconstruction efficiencies (%) for the χ2 method, the SPA-Net model and our Topograph model in different jet and b-
jet multiplicities. The mean and standard deviation are calculated using five trainings, and the best model corresponds to the training
with the highest efficiency for events with at least six jets and exactly two b jets. The highest efficiency is highlighted in bold.

Mean Best

Njets Nb−jets SPA-Net Topograph SPA-Net Topograph χ2

6 2 81.43� 0.03 81.54� 0.12 81.47� 0.31 81.70� 0.31 72.73� 0.36
6 ≥2 79.45� 0.07 79.76� 0.14 79.56� 0.30 79.95� 0.29 70.94� 0.33
7 2 64.47� 0.08 65.46� 0.20 64.69� 0.44 65.90� 0.44 54.28� 0.46
7 ≥2 62.38� 0.12 63.51� 0.25 62.86� 0.40 63.94� 0.40 52.11� 0.41
≥6 2 68.48� 0.06 69.12� 0.19 68.65� 0.25 69.54� 0.25 58.57� 0.26
≥6 ≥2 65.76� 0.08 66.59� 0.22 66.05� 0.23 67.03� 0.22 55.90� 0.24

FIG. 6. Reconstructed W boson invariant mass mW using jets
assigned by the Topograph (solid), SPA-Net (dashed), and the χ2

method (dash-dotted). Events are categorized into correct (green)
and incorrect assignments (orange), with events missing a parton
at reconstruction level labeled as impossible (blue).

FIG. 7. Reconstructed top quark invariant mass mtop using jets
assigned by the Topograph (solid), SPA-Net (dashed), and the χ2

method (dash-dotted). Events are categorized into correct (green)
and incorrect assignments (orange), with events missing a parton
at reconstruction level labeled as impossible (blue).
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perfect reconstruction in this case is substantially lower
than the fully reconstructable events in Table I.
In Table III we break down the matching efficiencies of

jets in incorrect events by the truth flavor of the jet. The jet
truth flavor is assigned using ΔR matching to B and C
hadrons. We observe that Topographs and SPA-Net have
similar jet matching efficiencies for all jet flavors.
Topographs have a slightly higher efficiency for b jets,
which correspond to the jets coming from the b quarks in
the top quark decays as well as in matching light jets to the
quarks in theW boson decay. The χ2 method has the largest
efficiency drop for truth flavor c jets. This results from c
jets being misidentified by the b tagging, which in the χ2

method allows them to be matched to the b quarks from the
top decays.
The matching efficiencies of partons in incorrect events

are shown in Table IV. Here we see that the χ2 method
mostly performs worse for matching jets to the quarks in
theW boson decay. Topographs and SPA-Net show similar
behavior, with the slightly better performance in
Topographs for incorrect events evenly distributed across
all partons.

B. Interpreting edge scores

Because of the individual edge scores, the confidence of
the combinatoric assignment from Topographs can be
obtained by aggregating the edge scores. This could be
used to filter events as likely to be incorrect, as well as
identify events for which it is not possible to match jets to
all partons.
In Fig. 8 the product of assigned jet edge scores is used

as an event matching score. There is reasonable separation
between events with a correct assignment and those with
the incorrect and impossible assignments. However, a
shoulder towards higher values is visible for the impossible
events.
In Fig. 9 the impossible events are categorized into the

number of jets which are correctly assigned. It can be seen
that the score is still high for events where there is a single
parton missing, but all remaining partons are correctly
matched to jets. Whether using this score to remove events
will benefit other downstream applications, such as top
quark mass measurements, would need to be tested.

C. Regression performance

Instead of reconstructing the top quark and W boson
kinematics from the matched jets, Topographs are trained to
predict their properties directly. Figure 10 compares the
resolution of the W boson pT and Fig. 11 the top quark pT
from the Topograph regression networks and the invariant
system of the assigned jets. The predictions are shown for
both correct and incorrect jet assignments.
For events with all jets correctly assigned, using the pT

values from the Topograph regression networks leads to a
narrower peak than the reconstructed quantities, demon-
strating a more accurate prediction. They also show a
reduced bias compared to the values reconstructed solely
using the jets. For events with incorrectly assigned jets, no

TABLE II. Percentage of events with at most N incorrectly matched partons using the χ2 method, SPA-Net and Topographs. Events
are categorized based on the number of partons matched to jets at truth level. The highest efficiency is highlighted in bold.

Npartons

matched

Incorrectly matched partons [%]

Model 0 ≤1 ≤2 ≤3 ≤4 ≤5

3 SPA-Net 34.34� 0.65 74.88� 0.59 98.03� 0.19 100.00� 0.00 � � � � � �
Topograph 36.57� 0.66 77.80� 0.57 98.70� 0.15 100.00� 0.00 � � � � � �

χ2 34.30� 0.65 80.12� 0.54 99.05� 0.13 100.00� 0.00 � � � � � �
4 SPA-Net 35.69� 0.28 64.53� 0.28 90.99� 0.17 99.41� 0.04 100.00� 0.00 � � �

Topograph 37.74� 0.28 67.06� 0.27 92.21� 0.16 99.53� 0.04 100.00� 0.00 � � �
χ2 31.01� 0.27 63.84� 0.28 92.19� 0.16 99.73� 0.03 100.00� 0.00 � � �

5 SPA-Net 44.74� 0.19 64.87� 0.18 86.92� 0.13 97.91� 0.05 99.94� 0.01 100.00� 0.00
Topograph 46.57� 0.19 66.88� 0.18 88.58� 0.12 98.45� 0.05 99.96� 0.01 100.00� 0.00

χ2 32.36� 0.18 58.27� 0.19 84.70� 0.14 98.21� 0.05 99.94� 0.01 100.00� 0.00

6 SPA-Net 66.05� 0.23 74.43� 0.21 90.06� 0.14 96.22� 0.09 99.52� 0.03 99.98� 0.01
Topograph 67.03� 0.22 75.71� 0.20 91.33� 0.13 97.03� 0.08 99.70� 0.03 100.00� 0.00

χ2 55.90� 0.24 64.93� 0.23 84.14� 0.17 93.97� 0.11 99.43� 0.04 99.98� 0.01

TABLE III. Efficiencies (%) of correctly associating a jet to its
corresponding parton for the χ2 method, SPA-Net and Topo-
graphs. Jets are categorized into their truth flavor using parton
matching. Only jets coming from the tt̄ decays in events with at
least one incorrect assignment are considered. The highest
efficiency is highlighted in bold.

Correct SPA-Net Topograph χ2

b jets 58.94� 0.29 59.99� 0.29 57.68� 0.25
c jets 55.08� 0.39 55.81� 0.39 50.38� 0.34
Light jets 70.42� 0.22 72.01� 0.22 68.51� 0.20
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difference is observed between the two predictions. This
shows that the Topograph is not learning to guess the pT
from the training data, but instead is using the associated
jets. Accurate reconstruction of the intermediate particles
has a strong dependence on whether the model has
correctly assigned jets to partons. There are no biases

observed using either method for the top quark and W
boson, and there is very little difference for reconstruction
of the top quark η and ϕ coordinates. However, reconstruct-
ing theW boson η and ϕ coordinates using the assigned jets
performs better than the prediction from the network. In all
cases, the Topograph is trained to predict the momentum
components px, py, pz rather than pT; η;ϕ.

VII. CONCLUSION

In this work we have introduced Topographs, a novel
approach for solving the combinatorics and reconstructing
the topology of a particle physics process from final state
objects reconstructed by a detector. The performance
matches the current state-of-the-art technique using sym-
metry preserving attention transformers, and surpasses the
standard approach commonly used in analyses, with a
computational complexity which scales only linearly with
increasing final state object multiplicity.
The edge scores from Topographs can be combined into

discriminants to assign a confidence to the jet-parton
assignments, which could be useful in downstream appli-
cations. Furthermore, the additional regression tasks
included in Topographs demonstrate good predictive power
with similar accuracy but reduced bias compared to using
only the jets assigned to intermediate particles. However, in
both cases there remains room for improvement.
There are several other areas open for further optimization.

Because of the message passing layers used to define the
Topograph, it was found that fully connected graph layers
between all jets for information exchange lead to faster
convergence whilst training, and also resulted in requiring
fewer learnable parameters in the model. This causes the
complexity of the network in this work to scale quadratically
with thenumber of jets, andnot linearly as canbe achievedby
only using the particle blocks in Topographs. By moving to
other architectures such as transformer encoders with cross
attention, the need for information exchange layers could be
mitigated. Alternative approaches for assigning jets to
partons based on the edge scores could also improve the
overall performance.
Applications of Topographs are not limited to the case

study presented in this paper, and due to their modular

TABLE IV. Efficiencies (%) of correctly associating a jet to the corresponding parton for events with at least one incorrect assignment
for the χ2 method, SPA-Net and Topographs. Top quarks are classified by the momentum of the corresponding b quark. The quarks from
the W boson decays are ordered by their pT. The highest efficiency is highlighted in bold.

Correctly identified SPA-Net Topograph χ2

Top quark (leading b) b-quark 61.83� 0.40 62.94� 0.40 59.17� 0.35
Leading quark (W) 67.79� 0.38 68.92� 0.39 61.80� 0.35

Subleading quark (W) 63.22� 0.40 64.70� 0.40 65.09� 0.34

Top quark (subleading b) b-quark 56.05� 0.41 57.03� 0.41 56.20� 0.36
Leading quark (W) 67.49� 0.38 68.22� 0.39 61.30� 0.35

Subleading quark (W) 66.41� 0.39 68.31� 0.39 65.94� 0.34

FIG. 8. Event matching score for events with the correct
assignment (green), incorrect assignment (orange), and non-
fully-reconstructable events (impossible, blue).

FIG. 9. Event matching score for non-fully-reconstructable
events, categorized by the number of correctly assigned jets.
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nature Topographs can be generalized to almost all particle
physics processes. Their applications are also not limited to
matching final state objects to an underlying physics
process, but could also find use in jet identification,
reconstructing displaced vertices from heavy flavor hadron
decays or using the constituents in large radius jets in
boosted topologies.
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APPENDIX

1. Hyperparameters

Table V shows the hyperparameters used for the training
of the Topograph models presented in this paper. The
models were trained using TensorFlow v2.10 [52].

2. Example Topograph

A complete Topograph network is shown in Fig. 12 for
reconstruction of tt̄W in events containing exactly one
lepton, one neutrino and multiple jets. For the production
of a top quark pair in association with aW boson (tt̄W), two
top quark blocks and oneW block are connected to the input
particles, but not to one another. The Topograph network is
trained to identify the edges of the true daughter particles of
each particle in the process, and predicts the kinematics of the
two top quarks and the three W bosons. As Topographs are
defined to represent an underlying physics process, it is also a
choice whether to predefine whether the lepton and neutrino
originate from a W boson coming from a top decay, or the
additionalW boson. Figure 13 shows a Topograph where the
lepton is required to come from a top decay.

3. Comparisons with partial event trainings

Instead of training using only complete events, both the
Topograph and SPA-Net models can be trained including
partial events, that is, events where some partons are not
able to be matched to reconstructed jets. In the training
events, for Topographs at least one W boson and for SPA-
Net at least one top quark are required to be fully
reconstructable. For these models the efficiencies of fully
reconstructable events change slightly, with Topographs
having a slight reduction in efficiencies and SPA-Net a
slight increase, as shown in Table VI. However, for most

selections, the efficiencies are still within the uncertainties
of models trained only on fully reconstructable events.
Table VII shows the parton matching efficiencies for events
categorized based on how many partons can be matched to
reconstructed jets. Here the benefit of training on partial
events can be seen, with both Topographs and SPA-Net
having higher efficiencies of correctly matching jets to the
all available partons.

4. Impact of systematic variations

For applications in high energy physics, it is crucial that
any new approach is not sensitive to changes under

TABLE V. Hyperparameters used for the training of Topographs.

Hyperparameter Value

Optimizer AdamW
Epochs 100
n original message passing 2
n topograph updates 4
lr schedule Cosine annealing
Initial learning rate 0.001
Decay steps Two epochs
Batch size 256
Pooling Attention
W initialization Attention pooling
Top initialization Attention pooling
Attention units [32, 32, 1]
Activation Gelu
Normalization Layer norm
Regression units [64, 64, 3]
Edge classification units [128, 128, 128, 1]
Graph processing units [256, 256, 64]
Persistent edges True
Classification loss Weighted binary cross entropy
Regression loss Mean absolute error

FIG. 10. Resolution of the reconstructed pT of the W boson
from the Topograph, comparing the prediction from the invariant
system of the assigned jets (solid line) and the Topograph
regression network (dashed line) for correct assigned events
(green) and incorrect assigned events (orange).
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systematic variations. In particular with machine learning
approaches, it would be problematic if methods were
sensitive to underlying and nonphysical effects arising
from the simulated samples on which they were trained.

Other sources of variation come from differences in the
calibration or reconstruction of physics objects between
simulation and data.
To test the dependence on the simulated samples used to

train the Topograph, we evaluate the best performing model
trained on the nominal MadGraph data on an alternative inde-
pendent dataset. This alternative sample consisting of all-
hadronic tt̄ events simulates both the hard interactions and
parton shower are with PYTHIA8 (v8.307), using the Monash
tuned set of parameters [53] at leading order accuracy.
To test the dependence on reconstruction effects, we

apply a shift or Gaussian smearing to the energy of
reconstructed jets in the events.
The absolute change in performance arising from

the systematic variations is summarized in Table VIII.

FIG. 11. Resolution of the reconstructed pT of the top quark
from the Topograph, comparing the prediction from the invariant
system of the assigned jets (solid line) and the Topograph
regression network (dashed line) for correct assigned events
(green) and incorrect assigned events (orange).

FIG. 12. Topograph network for the tt̄W process comprising
two t blocks and a W block. The input particles are first passed
through an embedding network ϕ unique to each type of particle;
either a jet j, lepton l, or neutrino ν. Embedded particles are then
passed through an (optional) information exchange layer. All
particles are connected to all possible mother particles, as shown
by the dashed edges.

FIG. 13. Topograph network for the tt̄W process comprising
two t blocks and a W block where the l and ν are predefined to
connect to the W in one top block.

TABLE VI. Event reconstruction efficiencies (%) for the χ2

method, the SPA-Net model and our Topographmodel in different
jet and b-jet multiplicities. Both models were trained on complete
and partial events. The highest efficiency is highlighted in bold.

Njets Nb−jets SPA-Net Topograph χ2

6 2 81.03� 0.32 80.77� 0.32 72.73� 0.36
6 ≥2 79.11� 0.30 78.93� 0.30 70.94� 0.33
7 2 65.35� 0.44 65.18� 0.44 54.28� 0.46
7 ≥2 63.40� 0.40 63.13� 0.40 52.11� 0.41
≥6 2 68.93� 0.25 68.75� 0.25 58.57� 0.26
≥6 ≥2 66.33� 0.23 66.21� 0.23 55.90� 0.24
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The impact is compared for Topographs, SPA-Net, and χ2.
Evaluating on the alternative sample results in a slightly
reduced overall efficiency for all three approaches. This
effects Topographs and SPA-Net slightly more than χ2,
however, the overall gain in performance remains similar.
Both Topographs and SPA-Net are robust under systematic
shifts or reduced jet energy resolution, whereas the χ2

method suffers from a substantial drop in efficiency,
especially at higher jet multiplicities.

5. Studying edge scores

Figure 14 shows the distribution of edge scores of the
jets to the W helper node which is decided to be the Wþ
based on the loss. Figure 14(a) includes all jets in the
event. The distribution for the jets which originate from
the Wþ peak at one, whereas the distributions of all other
jet types peak at zero. A small peak at one can be seen
for the b jets originating from the top quark. To
investigate this peak, the scores of the b jets from both

the top and the antitop quark are shown in Fig. 14(b).
They are further split based on their b-tagging score. The
small peak at one originates from b jets from the top
quark which are not b tagged. Furthermore, the impact of
the b tagging on the score can be seen. The b jets from
the antitop quark which are not b tagged have on average
higher scores than the b jets from the top quark which
are b tagged. This could point to the b-tagging result
being more important for the association to the W nodes
than kinematics.
Figure 15 shows the same distributions but to the

top helper node which is decided to be the top quark.
Again, good separation of the true edges from the false
edges can be seen. Considering only b jets and splitting
them based on their b-tagging score, it can be seen that the
b-tagged jets originating from the antitop quark have
on average lower scores than the non-b-tagged jets
originating from the top quark. So, the b-tagging decision
is not as important for the association to the top helper
nodes.

TABLE VII. Percentage of events with at most N incorrectly matched partons using the χ2 method, SPA-Net and Topographs. The
SPA-Net model was trained on complete and partial events. Events are categorized based on the number of partons matched to jets at
truth level. The highest efficiency is highlighted in bold.

Npartons

matched

Incorrectly matched partons [%]

Model 0 ≤1 ≤2 ≤3 ≤4 ≤5

3 SPA-Net 36.68� 0.66 76.94� 0.57 98.55� 0.16 100.00� 0.00 � � � � � �
Topograph 37.27� 0.66 77.89� 0.57 98.77� 0.15 100.00� 0.00 � � � � � �

χ2 34.30� 0.65 80.12� 0.54 99.05� 0.13 100.00� 0.00 � � � � � �
4 SPA-Net 37.78� 0.28 66.29� 0.28 91.78� 0.16 99.46� 0.04 100.00� 0.00 � � �

Topograph 38.08� 0.28 67.53� 0.27 92.57� 0.15 99.62� 0.04 100.00� 0.00 � � �
χ2 31.01� 0.27 63.84� 0.28 92.19� 0.16 99.73� 0.03 100.00� 0.00 � � �

5 SPA-Net 48.14� 0.19 67.24� 0.18 88.18� 0.12 98.14� 0.05 99.95� 0.01 100.00� 0.00
Topograph 48.22� 0.19 69.27� 0.18 89.52� 0.12 98.68� 0.04 99.96� 0.01 100.00� 0.00

χ2 32.36� 0.18 58.27� 0.19 84.70� 0.14 98.21� 0.05 99.94� 0.01 100.00� 0.00

6 SPA-Net 66.33� 0.23 74.38� 0.21 89.86� 0.14 96.18� 0.09 99.54� 0.03 100.00� 0.00
Topograph 66.20� 0.23 74.87� 0.21 91.11� 0.14 97.04� 0.08 99.73� 0.02 100.00� 0.00

χ2 55.90� 0.24 64.93� 0.23 84.14� 0.17 93.97� 0.11 99.43� 0.04 99.98� 0.01

TABLE VIII. Difference in reconstruction efficiencies when evaluating the different methods on systematic variations. The difference
is taken with respect to Table I. The systematic variations include evaluating on a dataset produced with a Pythia for the matrix element
generation and the parton shower, evaluating on the nominal dataset scaling all jet energies by 2.5%, and evaluating on the nominal
dataset smearing all jet energies by 5%.

PYTHIA Jet scale Jet resolution

Njets Nb−jets SPA-Net Topograph χ2 SPA-Net Topograph χ2 SPA-Net Topograph χ2

6 2 −2.13 −2.00 −0.94 þ0.04 �0.00 −2.82 þ0.08 �0.00 −12.79
6 ≥2 −2.28 −2.13 −1.33 þ0.07 þ0.03 −3.63 þ0.04 þ0.01 −14.30
7 2 −2.04 −2.14 −1.66 �0.00 �0.00 −12.30 −0.05 −0.06 −21.52
7 ≥2 −2.36 −2.37 −1.62 −0.02 þ0.04 −12.69 −0.10 −0.07 −21.63
≥6 2 −1.64 −1.53 −0.72 þ0.04 þ0.01 −8.23 þ0.02 þ0.02 −17.18
≥6 ≥2 −1.86 −1.89 −0.94 þ0.06 þ0.05 −9.02 −0.01 þ0.03 −17.96
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This reliance on the b-tagging result is not unexpected.
With a b-tagging efficiency of 70%, around 30% of the b
jets will not be tagged as a b jet, leaving a large contribution
of true edges to the top helper nodes which are not b
tagged. The observed mis-tag efficiency is around 5%.
Therefore, only a small fraction of the true edges to the W
helper nodes is b tagged.
Figures 16 and 17 show the same plots for the W− and

antitop. No qualitative differences can be observed to the
plots for the Wþ and the top.

6. Additional figures

Figures 18 and 19 show the regression results for the
η and ϕ coordinate. The difference between the value of
the predicted η or ϕ and the true parton property is

shown. For the predicted properties, the parton is either
reconstructed from the jets that the model associates to
the parton or the regression result is taken. “Correct”
and “incorrect” events are shown in separate distribu-
tions. For incorrect events an additional prediction is
shown by taking the true jets to reconstruct the parton
properties. For correct events, the regression has for
both quantities a wider distribution than the model
association. For incorrect events, the regression and
the model association perform worse, however using
the true jets also has a worse resolution for these events.
Especially for the W boson, the regression and the
model association have a worse performance. However,
for the top quark incorrect labeled events can still
contain the correct three jets but with a wrong

(a) (b)

FIG. 14. Edge scores of jets to the helper node representing the Wþ. The decision which W node is the Wþ is taken by choosing the
minimum of the loss under both hypotheses. Part (a) shows all jets, while (b) only shows the b jets from the two tops. They are further
split into whether the jet was tagged as a b jet or not. No requirement is placed on the number of b tags.

(a) (b)

FIG. 15. Edge scores of jets to the helper node representing the t. The decision which t node is the t is taken by choosing the minimum
of the loss under both hypotheses. Part (a) shows all jets, while (b) only shows the b jets from the two tops. They are further split into
whether the jet was tagged as a b jet or not. No requirement is placed on the number of b tags.
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(a) (b)

FIG. 16. Edge scores of jets to the helper node representing the W−. The decision which W node is the W− is taken by choosing the
minimum of the loss under both hypotheses. Part (a) shows all jets, while (b) only shows the b jets from the two tops. They are further
split into whether the jet was tagged as a b jet or not. No requirement is placed on the number of b tags.

(a) (b)

FIG. 17. Edge scores of jets to the helper node representing the t̄. The decision which t node is the t̄ is taken by choosing the minimum
of the loss under both hypotheses. Part (a) shows all jets, while (b) only shows the b jets from the two tops. They are further split into
whether the jet was tagged as a b jet or not. No requirement is placed on the number of b tags.

(a) (b)

FIG. 18. Resolution of the reconstructed W boson η and ϕ coordinates from the Topograph, comparing the prediction from the
invariant system of the assigned jets (solid line) and the Topograph regression network (dashed line) for correct assigned events (green)
and incorrect assigned events (orange).

EHRKE, RAINE, ZOCH, GUTH, and GOLLING PHYS. REV. D 107, 116019 (2023)

116019-14



assignment by switching one of the W jets with
the b jet.
Figure 20 shows the distribution of the reconstructed

W mass split into correct, incorrect, and “impossible”

events as stacked histograms as an alternative represen-
tation compared to Fig. 6. Similarly, Fig. 21 is an
alternative representation of Fig. 7 showing the recon-
structed top quark mass.

(a) (b)

FIG. 19. Resolution of the reconstructed top quark η and ϕ coordinates from the Topograph, comparing the prediction from the
invariant system of the assigned jets (solid line) and the Topograph regression network (dashed line) for correct assigned events (green)
and incorrect assigned events (orange).

(a) (b) (c)

FIG. 20. Stacked distributions of the reconstructed mW using (a) Topographs, (b) SPA-Net, and (c) χ2. The single histograms split the
candidates into correct, incorrect, and impossible candidates.

(a) (b) (c)

FIG. 21. Stacked distributions of the reconstructedmtop using (a) Topographs, (b) SPA-Net, and (c) χ2. The single histograms split the
candidates into correct, incorrect, and impossible candidates.
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Figures 22 and 23 show the same distributions for the reconstructed W and top quark mass, respectively, but every
distribution is normalized to unity.
Figure 24 shows the same distributions but with the different models combined in single plots.

(a) (b) (c)

FIG. 22. Normalized distributions of the reconstructed mW using (a) Topographs, (b) SPA-Net, and (c) χ2. The single histograms split
the candidates into correct, incorrect, and impossible candidates.

(a) (b) (c)(a) (b) (c)

FIG. 23. Normalized distributions of the reconstructedmtop using (a) Topographs, (b) SPA-Net, and (c) χ2. The single histograms split
the candidates into correct, incorrect, and impossible candidates.

(a) (b)

FIG. 24. Distributions of the reconstructed (a)mW and (b)mtop. Each histogram is normalized to an area of one. The solid lines show the
distributions for the Topograph, the dashed lines show the distributions for the SPA-Net, and the dash-dotted lines show the distributions for
the χ2 method. The different colors show the different types of events based on the assignment of the model: correct, incorrect, impossible.
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