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We investigate kink-antikink scattering in the λϕ4 model in the presence of an additional scalar field, ψ ,
that is in its quantum vacuum and interacts with ϕ via a ξϕ2ψ2 term where ξ is the coupling. The final state
of such a scattering is either a bound state with eventual annihilation or a reflection of the kink-antikink
pair. Without the ψ field, the outcome is known to depend fractally on the initial velocity of the kink-
antikink pair. In the quantum vacuum of the ψ field, the fractal dependence gets modified and disappears
above a critical interaction strength, ξ ≈ 0.1.

DOI: 10.1103/PhysRevD.107.116017

I. INTRODUCTION

The interactions and scattering of topological defects has
been an important area of research with applications to
condensed matter systems [1–12] and cosmology [13–16].
Since topological defects are solutions to classical equations
of motion, most analyses have considered classical scatter-
ing. This has led to important results such as the universality
of vortex reconnections [17] and fractal behavior in the
scattering of λϕ4 kinks in 1þ 1 dimensions [18–26].
Applications of kink-antikink scattering [27] include the
formation of abnormal nuclei [28,29], domain walls in
crystals [30,31], folding of protein chains [32,33], and
molecular dynamics [34,35].
We are interested in examining how quantum effects

modify kink scattering. The inclusion of quantum effects
presents some challenges as defects are described as
classical objects, while other excitations of interest are
quantum in nature. As a result, one has to couple classical
and quantum degrees of freedom and to include the
quantum backreaction on the classical degrees of freedom.
Fortunately much work has been done in this area and now
there is a convenient framework called the “classical-
quantum correspondence” (CQC) in which certain

quantum systems can be solved in terms of a classical
system of equations [36–39]. Quantum backreaction on
classical systems is in general difficult to resolve satisfac-
torily and is also mired in interpretations of quantum
mechanics. However, the semiclassical approximation
offers a path forward and we utilize it in this work.
There are only two outcomes possible in the scattering of

a kink and an antikink in the λϕ4 model: (1) the formation
of a bound state (“bion”) and eventual annihilation, and
(2) the kink and the antikink reflect and escape to infinity.
However, detailed analysis [20,21,25] shows that which of
these outcomes occurs depends sensitively on the initial
scattering velocity, although at a coarse level, low initial
velocity kinks annihilate and high initial velocity kinks
reflect. For intermediate velocities, either outcome can
result depending on the precise value of the initial velocity:
there are windows of low initial velocities for which the
kink-antikink reflect off each other instead of annihilating
and there is a “fractal” structure in the space of initial
velocities.1 The explanation of this nontrivial dependence
involves the resonant energy transfer mechanism among
the internal modes (the zero mode and the shape mode)
of the kink and antikink. Recent analyses in which the
classical field dynamics is truncated to just the kink
translation and shape modes shows good agreement with
the full field evolution [41,42]. Quantum effects in topo-
logically nontrivial kink backgrounds have received sig-
nificant attention in the past [43,44] and more recently
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1This is an abuse of the word “fractal” since that generally
involves some self-similarity. The structure here is similar to the
stability bands in solutions of the Mathieu equation [40].
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in [45–47]. Here we are interested in quantum effects in the
zero topological charge sector as we have a background of
both a kink and an antikink.
The minimal scheme to study quantum effects during

kink-antikink scattering is to include quantum fluctuations
of the ϕ field of the λϕ4 model itself. In other words, we
only have one scalar field ϕ that is decomposed into a
classical kink-antikink background (ϕc) and quantum
excitations on top of this background (ϕ̂),

ϕ ¼ ϕc þ ϕ̂: ð1Þ

A straightforward analysis of this system, however, runs
into trouble—we find that ϕc → 0 with time. The difficulty
can be traced to the use of the semiclassical approximation
in a double well potential since the wave functional is not
Gaussian and, in fact, may be bimodal. It is possible that
some of the problems we encountered may be due to the
use of a finite lattice. The full resolution of the difficulties is
not clear to us. Hence we study quantum effects of the
vacuum of a second scalar field ψ on kink-antikink
scattering of the classical field ϕ. The main result of our
analysis is the change in the fractal structure of the
scattering as a function of the interaction strength between
ϕ and ψ .
In Sec. II we setup the model and discuss the known

results for the classical scattering of kink-antikink in the
λϕ4 model. We include the quantum field in Sec. III and we
describe the CQC. Finally in Sec. IV we solve the entire
system, including backreaction. Our results are summa-
rized in Sec. V. We discuss the main conclusions along with
the importance and future prospects related to this work in
Sec. VI. We work in natural units, i.e., ℏ ¼ c ¼ 1.

II. DYNAMICS OF THE CLASSICAL
BACKGROUND

We consider a real classical scalar field ϕ in 1þ 1

dimensions in the λϕ4 theory. The Lagrangian density for
the system is

Lϕ ¼ 1

2
_ϕ2 −

1

2
ϕ02 −

λ

4
ðϕ2 − η2Þ2; ð2Þ

where, λ and η are parameters of the theory. The λϕ4

potential has two minima corresponding to ϕ ¼ �η. The
Lagrangian density in Eq. (2) is invariant under the trans-
formation, ϕ → −ϕ and hence has a reflectional Z2

symmetry.2 The dynamics of the field ϕ has been well-
studied in the literature [20,21,43] and is given by the
equation of motion,

ϕ̈ − ϕ00 þ λðϕ2 − η2Þϕ ¼ 0 ð3Þ

By suitable rescalings, the parameters λ and η can be
eliminated from the equation of motion, effectively setting
λ ¼ 1 and η ¼ 1. From the Lagrangian density in Eq. (2)
the conserved energy of the classical background configu-
ration (Eϕ) is given by,

Eϕ ¼
Z

dx

�
1

2
_ϕ2 þ 1

2
ϕ02 þ λ

4
ðϕ2 − η2Þ2

�
: ð4Þ

The equation of motion admit kink (and antikink) solutions
ϕ0KðK̄Þðt; xÞ. One can easily Lorentz boost these solutions
to obtain,

ϕ0KðK̄Þðt; xÞ ¼ �η tanh
�
η

ffiffiffi
λ

2

r
γðx − vtÞ

�
; ð5Þ

where, the sign in front corresponds to the kink (antikink)
solution which moves in the positive x direction with a
constant velocity v and with Lorentz factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

The total energy of such a configuration is given by,

E0KðK̄Þ ¼
2

ffiffiffi
2

p

3
γ

ffiffiffi
λ

p
η3: ð6Þ

We are interested in scattering a kink and an antikink.
Unlike in the integrable sine-Gordon model, the λϕ4 model
does not have a closed form solution in which both a kink
and an antikink are present. However, assuming that the
kink-antikink start out far enough from each other the
interaction energy between them is minimal and we can
construct a field configuration of the following form,

ϕKK̄ðt; xÞ ¼ η

�
tanh

�
η

ffiffiffi
λ

2

r
γðxþ ΔÞ

�

− tanh

�
η

ffiffiffi
λ

2

r
γðx − ΔÞ

�
þ 1

�
; ð7Þ

where, the kink and the antikink are initially displaced by a
distance, Δ ¼ vint0, where t0 is negative (and is set to −100
in our simulations).3 The kink collision occurs at t ¼ 0. The
above configuration has a kink and an antikink moving
toward each other with an initial velocity vin. When the
kink and the antikink get close and start to interact, the
above configuration is no longer appropriate. One then
needs to solve the equation of motion in Eq. (3), with initial
conditions specified by Eq. (7) to get the dynamics of the
field ϕ. The kink-antikink pair collides, and either forms a
bound state (which is also called a bion) that eventually
decays into radiation or are reflected and travel away from

2The kinks (or antikinks) of this model are hence also known
as Z2 kinks (or antikinks). 3The unit of time is ð ffiffiffi

λ
p

ηÞ−1, and is set to 1.
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each other. This outcome depends on the initial velocity vin
and the nonintegrability of the λϕ4 model makes it difficult
to intuit about this dependence. Hence numerical simu-
lations need to be used, the details of which are discussed in
Appendix A.

A. Resonance structures in classical λϕ4

kink-antikink scattering

If a bion does not form, the kink and antikink reflect back
with a definite final velocity vfin. If a bion does form and
the kink-antikink annihilate, we define vfin ¼ 0. The ratio
of the final velocity of the kinks to the initial velocity
(vfin=vin) depends on the initial velocity (vin) and is shown
in Fig. 1, a result that has been obtained and discussed
extensively in Refs. [20,25]. We present it here using our
numerical calculations as a benchmark and most impor-
tantly to compare with the evolution when quantum back-
reaction is included. Similar to prior literature, we notice
the fractal structures in the plot, which indicate certain
initial velocities for which the kink and the antikink reflect
and other windows of initial velocity in which the kinks
annihilate. The annihilation windows start out being broad
but become thinner as the initial velocity increases. Finally
from vin ∼ 0.26 the windows cease to form and we have
reflection for all vin ≳ 0.26. In Ref. [25] the authors
extended the initial velocities to vin ¼ 0.9 but did not
see any bound state formation post vin ∼ 0.26.
This fractal structure has been extensively studied and

well understood in the literature. The kinks (or antikinks) in
the λϕ4 model have two distinct excitation eigenmodes.
One of them corresponds to translations of the kink, known
as the zero mode, and the other to the internal vibrations of
the kink (or antikink) known as the shape mode [43,44]. In
addition, there is a continuum of radiative modes on the
kink background.

When the kink and the antikink collide the kinetic energy
is redistributed between these modes and some of it is
radiated. In cases, where the kinetic energy is reduced to an
extent where the kink-antikink do not have enough energy
left, leads to the formation of a bound state, whereas if the
decrease is not enough, they separate and reflect off each
other. However, in some cases there is a resonant energy
transfer where the shape mode returns some of the kinetic
energy to the zero mode leading the kink and the antikink
to separate and not form a bound state. This accounts
for the windows we see in Fig. 1. It may be worthwhile
to note here given infinite precision, one would find
infinite number of subsequent narrower windows for
vin ≲ 0.26 [25].

III. DYNAMICS OF THE QUANTUM FIELD
WITHOUT BACKREACTION

We now focus on the dynamics of the quantum field. It is
evident that since the quantum field is coupled to the
classical background, the nonadiabatic dynamics of the
background will lead to particle production of the quantum
field. We will use the well-studied ‘classical-quantum
correspondence (CQC) [36–39,48,49] technique to address
this problem.
The full Lagrangian density for the background ϕ

coupled to a quantum field ψ in 1þ 1 dimensions is
given by,

L ¼ Lϕ þ
1

2
ð∂μψÞ2 −

1

2
μ2ψ2 −

ξ

2
ϕ2ψ2; ð8Þ

where, μ is the mass of the quantum field, ξ is the coupling
strength, and Lϕ is defined in Eq. (2). The truncated
Lagrangian density from Eq. (8) for the quantum field ψ
can be written as,

Lψ ¼ 1

2
_ψ2 −

1

2
ψ 02 −

1

2
μ2ψ2 −

ξ

2
ϕ2ψ2; ð9Þ

where, the time-dependent background ϕðt; xÞ is given by
Eq. (3) if we ignore the backreaction of the quantum field
on the classical background. Taking a closer look at the
above equation it is evident that the Lagrangian density
represents a free scalar field with a space- and time-
dependent mass-squared M2ðt; xÞ,

M2ðt; xÞ ¼ μ2 þ ξϕ2ðt; xÞ: ð10Þ

The faster this term changes the more particle production
occurs for the quantum field. Just like for the classical
background, we require numerical simulations for having a
quantitative understanding of the dynamics of the quantum
field. We now turn to doing that.
To begin with, the spatial dimension x is discretized on a

circular lattice of length L. We consider N evenly spaced

0.15 0.20 0.25 0.30 0.35 0.40 vin0.0

0.2

0.4

0.6

0.8

1.0
vfin vin

FIG. 1. The ratio of the final velocity to the initial velocity
(vfin=vin) to the initial velocity (vin). Note that vfin ¼ 0 denotes
the formation of a bound state. The curves interpolate between
the actual data points. The parameters used are λ ¼ 1, η ¼ 1,
L ¼ 100, N ¼ 500, and t0 ¼ −100.
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points on the lattice, leading to a lattice spacing of
a ¼ L=N. The discretized field values are defined as,
ϕi ¼ ϕðt;−L=2þ iaÞ and ψ i ¼ ψðt;−L=2þ iaÞ, where,
i ¼ 1; 2;…; N. The discretized Lagrangian will now be,

Lψ ;disc ¼ a
XN
i¼1

�
1

2
_ψ2
i þ

1

2
ψ i

�
ψ iþ1 − 2ψ i þ ψ i−1

a2

�

−
1

2
μ2ψ2

i −
ξ

2
ϕ2
iψ

2
i

�
: ð11Þ

Note that we have performed a spatial integration by parts
in writing the gradient term above. Let us now switch
to a more compact matrix notation, where we can define
a column vector for the discretized ψ field as, ψ ¼
ðψ1;ψ2;…;ψNÞT . In this notation, the discretized
Lagrangian (Lψ;disc) is,

Lψ;disc ¼
a
2
_ψT _ψ −

a
2
ψTΩ2ψ; ð12Þ

where Ω2 is an N × N matrix defined as,

½Ω2�ij ¼
8<
:

þ2=a2 þM2ðt; xÞ; i ¼ j

−1=a2; i ¼ j� 1 ðmod NÞ
0; otherwise;

ð13Þ

where,M2ðt; xÞ is defined in Eq. (10) and we now replace ϕ
by the discretized value of ϕ at a point i, ϕi. The conjugate
momentum π can be calculated from Eq. (12) which allows
us to define the discretized Hamiltonian (Hψ;disc) as,

Hψ;disc ¼
a
2
πTπ þ a

2
ψTΩ2ψ: ð14Þ

We now move on to quantizing the theory. This is achieved
in the Heisenberg picture by promoting the discretized
field value ψ i to an operator ψ̂ i at the lattice point i.
Following [36,37], we introduce the complex time-depen-
dent matrix Z. The elements of Z, Zij satisfy the following
relation,

ψ̂ i ¼ Z�
ijâjðt0Þ þ Zijâ

†
jðt0Þ; ð15Þ

where, we assume that the background is static for any time
t ≤ t0. The complete dynamics of ψ̂ i is given by,

Z̈þΩ2Z ¼ 0; ð16Þ

with the specific initial conditions,

Zðt0Þ ¼ −
iffiffiffiffiffiffi
2a

p Ωðt0Þ−1=2; _Zðt0Þ ¼
1ffiffiffiffiffiffi
2a

p Ωðt0Þ1=2:

ð17Þ

The above initial conditions come with a small caveat. The
initial vacuum for the quantum field is chosen around a
static background that is given by the initial conditions, but
the background is not static and has some time dependence
due to the initial velocities of the kinks. This leads to some
unwanted but small excitations in the ψ field, which are
radiated out even before the kinks have collided. This gives
a small error ≲0.1% of the total energy in the initial
conditions for the range of initial velocities vin we have
investigated.

IV. DYNAMICS WITH BACKREACTION

We now focus on the main aspect of this work—the
dynamics of the classical background coupled to the
quantum field including backreaction. In this scenario,
the dynamics of the classical background ϕ also gets a
contribution from the ψ field,

ϕ̈ − ϕ00 þ ½λðϕ2 − η2Þ þ ξψ2�ϕ ¼ 0: ð18Þ

To take the effects of the quantum field ψ into account we
can use the semiclassical approximation in which ψ2 is
replaced by h0jψ̂2j0i≡ hψ̂2i, where the expectation value is
calculated in the vacuum state of the quantum field ψ̂ .
(States do not evolve in the Heisenberg picture.) The
background equation can now be written as,

ϕ̈ − ϕ00 þ ½−m2
b þ λϕ2 þ ξhψ̂2i�ϕ ¼ 0: ð19Þ

where m2
b ≡ λη2. The parameters in (19) should be thought

of as bare parameters that will get renormalized due to the
quantum field ψ̂ . We only need to consider “mass renorm-
alization” to the order we are working in and we can write,

ϕ̈ − ϕ00 þ ½−m2 þ λϕ2 þ ξðhψ̂2i − hψ̂2iϕ¼ηÞ�ϕ ¼ 0: ð20Þ

where the subscript ϕ ¼ η implies that the expectation
value is to be taken in the ground state of ψ̂ in the trivial
background ϕ ¼ η. Now m2 is the physical mass parameter
and is related to m2

b by

m2 ¼ m2
b − ξhψ̂2iϕ¼η: ð21Þ

In its discretized form Eq. (20) is,

ϕ̈i −
1

a2
ðϕiþ1 − 2ϕi þϕi−1Þ

þ
�
−m2 þ λϕ2

i þ ξ
XN
j¼1

ðjZijj2 − jZijj2ϕ¼ηÞ
�
ϕi ¼ 0: ð22Þ

where we have used [37],
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hψ̂2
i i ¼

XN
j¼1

jZijj2: ð23Þ

Thus, Eq. (22) has to be solved for ϕi with initial
conditions,

ϕiðt0Þ ¼ ϕKK̄ðt0;−L=2þ iaÞ;
_ϕiðt0Þ ¼ _ϕKK̄ðt0;−L=2þ iaÞ; ð24Þ

where, as before, i ¼ 1; 2;…; N and ϕKK̄ðt; xÞ is given
by Eq. (7).
The complete backreacted dynamics is given by Eqs. (22)

and (16), with initial conditions given by Eqs. (24) and (17).

A. Energy

The conserved total energy of the system (E) is given by,

E ¼ Eϕ þ EðRÞ
ψ ; ð25Þ

where, Eϕ is the energy in the classical background and

EðRÞ
ψ is the renormalized energy in the quantum field. The

total energy in the classical background can be defined as,

Eϕ ¼ a
XN
i¼1

ρϕ;i ¼ a
XN
i¼1

�
1

2
_ϕ2
i þ

1

4a2
ððϕiþ1 − ϕiÞ2Þ

þ ðϕi − ϕi−1Þ2 þ
λ

4
ðϕ2

i − η2Þ2
�
: ð26Þ

The energy in the quantum field is,

Eψ ≡ h0jĤψ ;discj0i ¼
a
2
Tr
�
_Z† _Zþ Z†Ω2Z

�
: ð27Þ

The discretized energy density in ψ̂ can be defined as,

ρψ ;i ¼
XN
j¼1

�
1

2
j _Zijj2 þ

1

4a2

n
jZiþ1;j − Zijj2

þ jZij − Zi−1;jj2
o
þ 1

2

n
μ2 þ ξϕ2

i

o
jZijj2

�
: ð28Þ

Similar to the renormalized mass defined in (21), the
renormalized energy density in the quantum field may
be defined as,

ρðRÞψ ;i ¼ ρψ ;i − ρψ ;ijϕ¼η; ð29Þ

where, we subtract the energy density of the quantum
field in the trivial vacuum (ϕ ¼ η) from the energy density.
Hence, the renormalized total energy in the quantum
field is,

EðRÞ
ψ ¼ Eψ − Eψ jϕ¼η: ð30Þ

B. Initial structure of the vacuum

The initial vacuum structure of the quantum field can be
visualized from Fig. 2. In the figure, we show the initial

renormalized energy density of ψ , [ρðRÞψ ;i ðt ¼ t0; xÞ]. The
figure also shows the background ϕ at the initial time
ϕKK̄ðt ¼ t0; xÞ [see Eq. (24)]. In the trivial vacuum, ϕ ¼ η,
the renormalized energy density in ψ vanishes, as in Fig. 2
at the boundaries of the lattice. However, at the position of
the kink and the antikink, there is a big dip in the energy
density of ψ that depends on the parameters of the model.
The dips are the ground state of ψ in this particular (kink-
antikink) background. As the background changes, that is,
as the kink-antikink move, the dips move along with them.
This will be evident in Sec. VAwhere we study dynamics
of the background.

V. RESULTS

Our numerical methods and checks are described in
Appendix A and B.

A. Quantum kink-antikink scattering
with backreaction

In Fig. 3 we show the energy density in the back-
ground field ϕ—the expression in rectangular brackets in
Eq. (26)—as a function of time (vertical axis). The top
panels compare the classical evolution (ξ ¼ 0) for
vin ¼ 0.21, when a bion forms, and for vin ¼ 0.30, when
the kinks reflect. The bottom two panels show the corre-
sponding evolution for (ξ ¼ 0.05). The bion is now tighter;
the reflected kinks have smaller velocity. The behavior is
expected since the kinks in the ξ ≠ 0 case excite the
quantum vacuum of ψ̂ , produce particles, and lose energy
during the evolution. The energy in ψ̂ must come from the
kinetic energy of the kinks which results in a tighter bion
for vin ¼ 0.21 and for slower reflected kinks for vin ¼ 0.30.
In the case vin ¼ 0.21, where the final state is a bound state,

FIG. 2. The initial renormalized energy density in ψ (solid dark
blue curve) and the initial profile of the kink-antikink background
ϕ (dashed red curve). We note that the kink and the antikink is
dressed with the ψ particles. The main parameters are: vin ¼ 0.21,
ξ¼ 0.05, μ¼ 0.1, λ¼ 1, η¼ 1, L¼ 100, N¼ 500, and t0 ¼−100.
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we see that the kink and the antikink travel toward each
other, collide and get stuck leading to a caterpillar-like
structure in Fig. 3. Each segment of the caterpillar shows
that the kinks separate for a short duration but then come
back and collide again. This repeats for some time and
finally the kink-antikink do not have enough energy to
separate and hence lose their individual identity to form a
bound state (or bion) that decays into radiation. It is
difficult to see the difference between Figs. 3a and 3c,
since in both cases the caterpillar structure exists and
repeated collisions makes it difficult to notice any
differences. To clarify the differences, we plot the value
of the background ϕ at the center of the lattice, ϕðt; x ¼ 0Þ,
in Fig. 4 for vin ¼ 0.21 and for vin ¼ 0.30. In Fig. 5 we
show the time dependence of the energy in the ϕ

background [see Eq. (26)]. Before the collision, the energy
in the background is constant and is given by twice that of
the single kink (or antikink) energy [see Eq. (6)], which is
basically the sum of the individual energies of the kink and
the antikink. For the classical evolution (dashed curves), Eϕ

is the total energy and is conserved. In the presence of the
quantum field, the outcome depends on vin. When a bound
state is formed (solid dark blue curve), the repeated
collisions lead to a cascading drop in Eϕ and the lost
energy goes into radiating ψ particles.
The loss of energy from the kinks to ψ quanta can be

visualized in Fig. 6. The plot shows the time evolution of

the renormalized energy density in ψ , denoted by ρðRÞψ [see
Eqs. (28), (29)]. As we have noted in Fig. 2, there is a

FIG. 3. Density plots showing the time evolution of the energy density (ρϕ;i) in the background [see Eq. (26)]. Top panel: classical
evolution—(a) vin ¼ 0.21where the final state is a bound state, (b) vin ¼ 0.3 to show a case where the kink and the antikink get reflected
postcollision. Bottom panel: evolution including coupling to the quantum field and backreaction—(c) same as (a), (d) same as (b). The
parameters are: ξ ¼ 0.05, μ ¼ 0.1, λ ¼ 1, η ¼ 1, L ¼ 100, N ¼ 500, and t0 ¼ −100 for all the cases. The animations corresponding to
the different cases can be found at [50].
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“cloud” of ψ around the position of the kink. This cloud
perfectly follows the kink and the antikink at early times as
can be seen by comparing Figs. 3 and 6.
The collisions are visible as the segments of the

caterpillar after t ¼ 0. In the vin ¼ 0.21 case, as the kinks
collide, separate and collide again, we see bursts of
radiation that are produced, which then propagate outward
away from the center. By virtue of periodic boundary
conditions, once the radiation reaches the end of the lattice
they wrap around and return back toward the center.
The bursts of radiation in the case of a bound state
formation is what is observed in Fig. 5 (solid dark blue
curve), as a cascading decrease in the total energy in the
background.
When the kink-antikink pair is reflected, as in Fig. 6(b),

there is a burst of ψ radiation at the time of collision seen as
the two yellow bands moving out from the collision point in
the figure. After the collision, the ψ clouds keep moving
with the kink and the antikink but the kink internal modes
are excited and there are some weaker bursts of ψ radiation.
There are the light yellow bands being radiated out as the
kinks move away from each other in Fig. 6(b). The energy
loss appears as the undulating features in the vin ¼ 0.30
curve at late times in Fig. 5. Finally we come to our main
objective of examining how the fractal nature of the
classical scattering shown in Fig. 1 changes when the
kinks scatter in the quantum vacuum of a second field.
The results are presented in Fig. 7. The dashed gray curve
shows the results of the classical scattering and is the same
as presented in Fig. 1. The other curves show the results of
the scattering as we turn up the interaction strength ξ. An
increase in ξ shifts the scattering peaks to higher vin but also
reduces the peak vfin=vin. The critical vin above which there
is no further fractal structure also increases with increasing
ξ. For example, for ξ ¼ 0 the critical vin is ∼0.26 while
for ξ ¼ 0.1 it is ∼0.37. Some of these features can be
qualitatively understood based on our earlier discussion
that the time-dependent background of the scattering kinks
excites ψ radiation and causes the kinks to lose kinetic
energy. This process makes it easier for the kink-antikink to
form a bound state and annihilate and it takes higher initial
velocities for the kinks to reflect. Also, in cases that the
kinks do reflect, the lost energy means that the final
velocities of the kinks will be lower.
We have checked that our results are insensitive to the

choice of lattice spacing, a, and to the size of the simulation
box, L. A comparison of our results for different choices of
a and L is shown in Appendix B.

VI. CONCLUSIONS AND DISCUSSION

While kink-antikink scattering has been thoroughly
investigated in the literature [20,21,25], our focus in this
work has been on quantum effects on the scattering. Even if
the kink-antikink propagate in a quantum vacuum, they
provide a time-dependent background that can produce

(a)

(b)

FIG. 4. Time evolution of the value of the background ϕ at the
center of the lattice ϕðt; x ¼ 0Þ contrasting the classical evolution
(dashed) with the case including quantum backreaction (solid)
for (a) vin ¼ 0.21 (brown and dark blue respectively) and
(b) vin ¼ 0.3 (dark green and purple respectively). The param-
eters used are the same as the ones stated in Fig. 3.

FIG. 5. Time evolution of the total energy in the background ϕ
(Eϕ) for the classical evolution (dashed) and the case including
quantum backreaction (solid) for—(a) vin ¼ 0.21 (brown and
dark blue respectively) and (b) vin ¼ 0.3 (dark green and purple
respectively). The parameters used are the same as the ones stated
in Fig. 3.
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particles and radiation, which in turn depletes the kinetic
energy of the kinks and modifies the scattering outcomes.
The main tool for our analysis was the CQC formalism that
enabled us to conveniently use classical equations of
motion for the quantum fields. We treated quantum back-
reaction on the classical background by employing the
semiclassical approximation. The main result of this work
is summarized in Fig. 7 where we see changes in the fractal
structure of the scattering as the interaction strength (ξ)
between the kinks and the quantum field increases. For
ξ≳ 0.1, the fractal structure disappears and there is simply
annihilation for vin ≲ 0.37 and reflection for vin ≳ 0.37.

In future we hope to return to examining the effect of
quantum fluctuations of the background scalar field itself
on the scattering outcome, as mentioned in the Introduction
[see Eq. (1)]. To obtain a correspondence between our two
field case with ϕ and ψ and the single field case in (1), we
can add the equations of motion for ϕ and ψ and compare
to the equation of motion obtained using (1). The two
equations agree for the special choice of parameters μ2 ¼
−λη2 and ξ ¼ 3λ. Our technique fails for these values
because then the ψ field has a zero mode (corresponding to
the translation mode of the kink). It still might be possible
to consider the two field case in the limit that μ2 → −λη2
and ξ → 3λ and obtain a reasonable approximation to the
single field case. Alternatively, perhaps recent progress in
dealing with systems containing classical and quantum
components will be helpful [51–53].

ACKNOWLEDGMENTS

\We thank Omer Faruk Albayrak, Fabio van Dissel, and
George Zahariade for useful discussions and Evangelos I.
Sfakianakis for comments. M. M. is supported by NSF
Grant No. AST-2108466. M.M. also acknowledges sup-
port from the Institute for Gravitation and the Cosmos
(IGC) Postdoctoral Fellowship. M.M. wishes to thank the
Yukawa Institute for Theoretical Physics (YITP), Kyoto
University for hospitality where a major part of this work
was done. T. V. is supported by the U.S. Department of
Energy, Office of High Energy Physics, under Award
No. DE-SC0019470.

APPENDIX A: NUMERICAL METHODS

We use the Verlet method to solve the coupled differ-
ential equations for this work. In particular, we use the
position Verlet method as follows,

(a) (b)

FIG. 6. Time evolution of the renormalized energy density ρðRÞψ . (a) vin ¼ 0.21 where a bound state is formed and (b) vin ¼ 0.3 where
the kink and the antikink undergo reflection. The parameters are the same as for Fig. 3. The animations corresponding to the different
cases can be found at [50].

FIG. 7. The ratio of the final velocity to the initial velocity
(vfin=vin) post-collision to the initial velocity (vin). Note that
vfin ¼ 0 denotes the formation of a bound state. The dashed gray
line shows the classical evolution (ξ ¼ 0), whereas the solid lines
denote the evolution including quantum backreaction for differ-
ent values of ξ: ξ ¼ 0.03 (orange), ξ ¼ 0.05 (purple), ξ ¼ 0.08
(dark green), and ξ ¼ 0.1 (red). The actual data points are also
shown. The other parameters used are: μ ¼ 0.1, λ ¼ 1, η ¼ 1,
L ¼ 100, N ¼ 500, and t0 ¼ −100.
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xnþ1=2 ¼ xn þ
1

2
dt _xn;

_xnþ1 ¼ _xn þ dt ẍðxnþ1=2Þ;

xnþ1 ¼ xnþ1=2 þ
1

2
dt _xnþ1: ðA1Þ

Although fairly simple, this method is efficient, fast, and
gives us accurate results for the current problem. More
advanced numerical techniques may be used but given the
OðN2Þ complexity of the problem, the requirements of fine
spatial and temporal resolution to capture the details of the
dynamics, and the necessity to evolve the system for
long durations, the current numerical scheme is ideal.
We have also verified our benchmark results using a more
advanced numerical technique—the explicit Crank-
Nicholson method with two iterations, and found no
significant difference in the evolution and observable
quantities. All the results presented are simulated on a
circular lattice of physical length L ¼ 100 which is
sampled using N ¼ 500 points. This implies a spatial
resolution a ¼ L=N ¼ 0.2. We use a temporal spacing
proportional to a, dt ¼ a=5. A smaller a would indeed
improve the resolution and help us to capture the dynamics
even better, but with the current lattice spacing we have a
total energy nonconservation due to numerical errors, over
the entire duration of time evolution of the order of 0.2%.
We have also checked that our results are fairly independent
of the UV (a ¼ L=N) and IR (L) cutoffs. We start the
evolution at the initial time, t0 ¼ −100. The collisions
happen around t ∼ 0. The periodic boundary conditions
make it necessary to ensure that the finite lattice size does
not significantly interfere with our results. Owing to our use
of periodic boundary conditions, the radiation propagating
outward from the center eventually comes back. Hence, we

only evolve the dynamics for one light crossing time,
t ¼ L ¼ 100, such that our results are not affected by
radiation that re-enters the collision region.
For all the results form here on we assume, λ ¼ 1 and

η ¼ 1. We choose μ ¼ 0.1m. This in the regime where
μ < m, which is required since m is the mass of the
classical background which we expect to be larger than
the mass of the quantum field. The two main parameters
that we vary are the initial velocity, vin, and the interaction
strength, ξ. The initial incoming velocity of the kink-
antikink configuration vin is varied between 0.15 and 0.4.
We do not consider lower velocities since for such low
velocities the final state is fixed to be a bound state and no
resonance structures are present, and in this work we are
interested in studying quantum modifications to the reso-
nance structures. We do not consider vin > 0.4 since kinks
with high initial velocities get reflected. We vary ξ in the
range [0, 0.1].

APPENDIX B: ANALYSIS OF THE QUALITY
OF NUMERICS

The choice of time-step (dt) should not affect our results
in any considerable way. This is shown in Fig. 8. The
energy in the background does not show any difference on
using a smaller time step (dt ¼ a=10, dashed red curve)
than what is used for this work (dt ¼ a=5, solid blue
curve). The total energy nonconservation for the time step
we use (dt ¼ a=5, solid purple curve) is of the order of
∼0.2% over the entire time of evolution. This is more than
sufficient for the current work. The accuracy of energy
conservation increases even more if we take a smaller dt
(¼ a=10, solid orange curve), which is to be expected.
One of the main physical observables we are interested

in is the energy (Eϕ) in the background field ϕ and the total

(a) (b)

FIG. 8. (a) Time-evolution of the background energy (Eϕ) for different values of dt. The two curves overlap and are not distinctly
visible. (b) Time-evolution of the renormalized total energy E for different values of dt. The plots illustrate the independence of our
results to the choice of time step. The other parameters considered are: vin ¼ 0.21, ξ ¼ 0.5, μ ¼ 0.1, λ ¼ 1, η ¼ 1, t0 ¼ −100, L ¼ 100,
and N ¼ 500. The collision happens at t ¼ 0.
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energy (E) (as discussed in Sec. IVA). As one might expect, these observables should not depend on the discretization
scales—the spacing of the lattice (a) and the physical size of the lattice (L). In Fig. 9 we show such is the case, where
decreasing the lattice spacing or increasing the physical size of the box has no effect on Eϕ.
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