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We evaluate the collisional energy loss of a energetic fermion with mass M propagating through a hot
QED plasma with temperature T, including mass corrections, that is, keeping the mass m of the fermion
constituents of the plasma, assuming m ≪ T ≪ M. We use the bare theory to compute the contribution of
hard momentum transfer collisions, and the Braaten-Pisarski resummed theory, amended with small mass
corrections, for the contribution of low momentum transfer collisions, and compute the mass corrections at
leading logarithmic accuracy in the regime where the energy of the heavy fermion obeys E ≪ M2=T. We
use dimensional regularization to regulate all possible divergences in the computation. If the fermion mass
is of order of the soft scale eT, where e is the gauge coupling constant, the mass corrections are of the same
order as pure perturbative corrections, while they can be substantial for larger values ofm. We also evaluate
the impact of this correction for a QCD plasma.
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I. INTRODUCTION

Jet energy loss is a prominent probe for characterizing
the properties of matter in heavy-ion collision experiments.
Theoretical predictions for the energy loss of an energetic
parton produced in the early stages of the collision, which
subsequently interacts with the constituents of the produced
quark-gluon plasma, can provide invaluable guidance for
extracting properties of the system from experimental data
(for recent reviews see, e.g., [1–4]).
The first estimate of the collisional energy loss of a

heavy fermion in a quark-gluon plasma was made by
Bjorken more than 40 years ago [5]. A naive computation
of this quantity is affected by logarithmic infrared (IR)
divergences associated to collisions with low momentum
transfer. A good estimate could be done by choosing
physical reasonable cutoffs for the momentum transfer.
A much more detailed full computation was then carried
out by Braaten and Thoma (BT), first for QED [6] and then

also for QCD [7]. These authors showed how to deal with
these divergences consistently, by separating the energy
loss computation into two parts, one that would consider
high values (or hard) of momentum transfer, or the order of
the temperature T, and the other with low values (or soft) of
momentum transfer, of order eT, where e is the gauge
coupling constant. The last should be treated using the hard
thermal loop resummed photon propagators, according to
the Braaten-Pisarski resummation program [8,9]. In the
original BT treatment, these two contributions were com-
puted by including an artificial cutoff in momentum
transfer to split the two momentum transfer regions, such
that when the two contributions are added, the cutoff
dependence disappears. The computation by Braaten and
Thoma was later on reviewed by Peigne and Peshier [10],
correcting the computation for ultrarelativistic fermions,
and further discussing the QCD energy loss in [11]. These
authors stressed that the cutoff separating the two different
regions should be implemented differently than in Ref. [6].
Even if the relevant computations of collisional energy

loss are more than 30 years old, there have not been
attempts so far to evaluate how they are perturbatively
corrected, see [12] for the status of perturbation theory for
QCD plasmas, for example. Only recently for QED the
perturbative correction to the hard thermal loops (HTL)
associated to the photon degrees of freedom has been
computed. The perturbative correction arises from both the
so called power corrections of the HTL [13–15], and also
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from two-loop diagrams [16–18]. It has also been noted
that the HTLs might be also corrected by effects associated
to the (small) mass of the fermions in the plasma [19]. If the
mass is of order ∼eT, then these mass corrections should be
equally important as the genuine perturbative correc-
tions [19].
In this article we evaluate how the collisional energy loss

is modified by a small fermion mass of the QED plasma
constituents at leading logarithmic accuracy. We will thus
concentrate only in the t-channel photon exchange dia-
gram, as the s and u-channel diagrams (Compton scatter-
ing) are subleading in the regime we are considering. We
will assume that there is a good separation of scales, such
that eT ≪ m ≪ T, as if m ∼ eT our results should be
corrected by including genuine perturbative corrections.
We will also comment on how the computation should be
carried if the fermion mass gets close to T. While we
provide all the ingredients for such a computation, we will
not address such a case here, as it requires a more detailed
analysis.
We will use dimensional regularization (DR) to separate

the high (or hard) and low (or soft) momentum transfers
parts of the computation. DR is a regularization respectful
with gauge invariance. With its use we avoid the ambi-
guities of how a cutoff is implemented. DR was used in
Ref. [20] to recover the leading logarithmic behavior of
Ref. [6]. In this paper we also show that the finite term can
be recovered using DR, reproducing the same result than
the original one in Ref. [6].
As we will see, the inclusion of a small fermion mass is

nontrivial, as new infrared divergences arise in intermediate
steps in the computation. Those divergences can only be
treated consistently with the use of dimensional regulari-
zation. This was already apparent in the computation of the
small mass corrections to the HTL, see Ref. [19], as if the
IR is regulated with a cutoff one generates a correction to
the photon polarization tensor that violates gauge invari-
ance. Even if IR divergences arise in the intermediate steps
of the mass corrections to the HTL, the final result is finite,
as there is a subtle cancellation of divergences [19]. We
witness a similar cancellation of the IR divergences
associated to the small mass expansion in the hard part
of collisional energy loss. After this regularization, only the
IR divergence associated to the low momentum transfer
remains, which is canceled with the ultraviolet (UV)
divergence to the soft part, yielding a finite result.
We have organized this paper in a way very similar to

Ref. [6], where the computation was carried out with the
use a cutoff, emphasizing the points where our treatment is
different, and including the corresponding mass correc-
tions. The hard contribution to the collisional energy loss is
given in Sec. II. We provide two different computations of

the soft contribution, the first in Sec. III, which is based on
writing the collisional energy loss as a function of the heavy
fermion damping rate, the second one in Sec. IV, based on
writing the scattering rate of the collision, using resummed
propagators. We present our final results in Sec. V, where
we evaluate the relevance of the mass corrections in the
QED collisional energy loss, and comment on the same
effect for the QCD plasma. We show in Appendix A some
details of the computation of the hard sector, and in
Appendix B, the integral needed for the computation of
soft momentum transfer. We provide in Appendix C the
form of the polarization tensor that would be needed for the
computation for a generic fermion mass m.
We denote four momenta with capital letters,

Kμ ¼ ðk; kÞ, and denote with boldface letters 3 dimensional
vectors. Natural units ℏ ¼ kB ¼ c ¼ 1 and metric con-
ventions gμν ¼ diagðþ1;−1;−1;−1Þ are used throughout
this manuscript.

II. HARD CONTRIBUTION TO THE
COLLISIONAL ENERGY LOSS

The hard contribution to the energy loss from the process
e−μ → e−μ is depicted diagrammatically in Fig. 1(a). The
diagram with positrons gives exactly the same result, which
accounts for a global factor of 2. We use the following
notation for the kinematic variables. The four momentum
of the heavy fermion of mass M is Pμ ¼ ðE; pÞ, and Kμ ¼
ðEk; kÞ is the four momentum of the plasma constituents,
with mass m. We denote with Q ¼ P − P0 ¼ ðω; qÞ ¼
ðE − E0; p − p0Þ the momentum of the virtual photon,
where we use primed variables for the outgoing particles
in the collision.
Our starting expression for the computation of the hard

contribution to the energy loss in d spatial dimensions is

FIG. 1. A highly energetic and massive fermion (μ) scatters
with the electrons/positrons (e−=eþ) of the medium by the
exchange of a virtual photon (γ). The diagrams with positrons
eþ should also be considered (reversing the electron line).
(a) Hard contribution. (b) Soft contribution, with the blob
representing the resummed propagator.

COMADRAN, MANUEL, and CARIGNANO PHYS. REV. D 107, 116016 (2023)

116016-2



−
dE
dx

���� ¼ 1

E

Z
ddp0

ð2πÞd2E0

Z
ddk

ð2πÞd2Ek
nFðEkÞ

Z
ddk0

ð2πÞd2E0
k

½1 − nFðE0
kÞ�

× ð2πÞdþ1δdþ1ðPþ K − P0 − K0ÞE − E0

v
1

2

X
spins

jMj2; ð1Þ

whereM is the matrix element associated to the tree-level Feynman diagram. The matrix element is averaged over the spin
of the incoming heavy fermion (μ), and the sum runs over the spins of the involved particles in the process. In Feynman
gauge, squaring the amplitude and performing the sum over spins gives

1

2

X
spins

jMj2 ¼ 16e4ν6−2d

t2
E2

�
2ðEk − v · kÞðE0

k − v · k0Þ þ d − 1

2

t2

4E2
þm2 þM2

2E2
t

�
; ð2Þ

where v ¼ p=E is the velocity of the heavy fermion and t ¼ Q2. Here ν is the renormalization scale that naturally enters in
the computation, as in changing the spatial dimensions from 3 to d the gauge coupling constant is modified from e2 to
e2ν3−d. Let us stress that no approximation has been used in order to derive the last expression, and we can recover the result
for the amplitude squared given in Ref. [10] taking the ultrarelativistic limit for the electrons/positrons of the plasma. Using
the delta function in Eq. (1) we can integrate over p0, which yields

−
dE
dx

����
hard

¼ 8πe4ν6−2d

v

Z
ddk
ð2πÞd nFðEkÞ

Z
ddk0

ð2πÞd ½1 − nFðE0
kÞ�

1

2E0 δðωþ Ek − E0
kÞ

×
E

EkE0
k

ω

t2

�
2ðEk − v · kÞðE0

k − v · k0Þ þ d − 1

2

t2

4E2
þm2 þM2

2E2
t

�
: ð3Þ

It is convenient to rewrite the remaining delta function of
energy conservation in terms of the energy and momentum
of the virtual photon

1

2E0 δðωþ Ek − E0
kÞ ¼

1

2E
δðω − v · q − t=ð2EÞÞ: ð4Þ

As discussed in Refs. [9,10], in the Pauli-blocking factor
1 − nFðE0

kÞ of Eq. (3), nFðE0
kÞ can be dropped if the energy

of the plasma constituents is assumed to be of the order
of the temperature, i.e., E0

k ∼ T. Indeed, in this regime
t=ð2EÞ ∼ T2=E is suppressed inside the delta function of
Eq. (4) and then the corresponding term in the integrand is
odd under the interchange of k and k0, while the measure is
even, hence it integrates to zero. Introducing a mass m for
the constituents of the plasma does not change any of these
assumptions, as long as we do not allow the mass to be
higher than the temperature.

Introducing the following identity

1 ¼
Z

ddqδdðqþ k − k0Þ
Z

dωδðωþ Ek − E0
kÞ; ð5Þ

in Eq. (3) we can perform the integration over k0 using the
delta function. The remaining delta function of energy
conservation in Eq. (5) can also be written in terms of ω and
q using the relation

1

2Ekþq
δðωþ Ek − EkþqÞ ¼ δðtþ 2ωEk − 2k · qÞ: ð6Þ

Applying all these changes we can cast the hard contribu-
tion to the energy loss in terms of the energy and
momentum transfer variables

−
dE
dx

����
hard

¼ 8πe4ν6−2d

v

Z
ddk
ð2πÞd

nFðEkÞ
Ek

Z
ddq
ð2πÞd

Z
dωδðtþ 2ωEk − 2k · qÞδðω − v · q − t=ð2EÞÞ

×
ω

t2

�
2ðEk − v · kÞðEkþq − v · k − ωÞ þ ðEk − v · kÞ t

E
þ d − 1

2

t2

4E2
þm2 þM2

2E2
t

�
: ð7Þ

If the plasma is macroscopically isotropic, the energy loss should not depend on the particular direction of the velocity of the
heavy fermion. Thus, it is common to average [6] the last expression over the directions of v. The required formulas in d
spatial dimensions are
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1

Sd

Z
dΩdδðω̃ − v · qÞ ¼ 1

Ld

�
1 −

ω̃2

v2q2

�ðd−3Þ=2 1

vq
Θðv2q2 − ω̃2Þ; ð8aÞ

1

Sd

Z
dΩdviδðω̃ − v · qÞ ¼ 1

Ld

�
1 −

ω̃2

v2q2

�ðd−3Þ=2 1

vq
Θðv2q2 − ω̃2Þ ω̃

q
q̂i; ð8bÞ

1

Sd

Z
dΩdvivjδðω̃ − v · qÞ ¼ 1

Ld

�
1 −

ω̃2

v2q2

�ðd−3Þ=2 1

vq
Θðv2q2 − ω̃2Þ

�
v2q2 − ω̃2

ðd − 1Þq2 δ
ij þ dω̃2 − v2q2

ðd − 1Þq2 q̂iq̂j
�
; ð8cÞ

where ΘðxÞ is the Heaviside step function, we define ω̃ ¼ ω − t=ð2EÞ and use the notation Sd ¼
R
dΩd ¼ 2πd=2=Γðd=2Þ

for the surface of a d-sphere and Ld ¼ Γðd−1
2
Þ ffiffiffi

π
p

=Γðd
2
Þ.

After the average over the directions of v, we can further simplify Eq. (7) introducing the explicit form of the measures in
d dimensions and using the remaining delta function to perform the integration over the angle θk;q ≡ θ. The result may be
written as

Z
1

−1
dðcos θÞðsin θÞd−3δðtþ 2ωEk − 2kq cos θÞ

¼ 1

2kq
Θ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq − kÞ2 þm2

q
≤ jωþ Ekj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ kÞ2 þm2

q ��
1 −

�
t

2kq
þ ωEk

kq

	
2
�ðd−3Þ=2

: ð9Þ

Performing these changes, the hard contribution to the energy loss reads

−
dE
dx

����
hard

¼ 2e4ν6−2d

v2
Cd

Z
∞

0

dkkd−2
nFðEkÞ
Ek

Z
∞

0

dqqd−5

×
Z

dωωΘ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq − kÞ2 þm2

q
≤ jωþ Ekj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ kÞ2 þm2

q �
Θðv2q2 − ω̃2Þ

×
q2

t2

�
2E2

k − 2
Ekω̃

q2
ðtþ 2ωEkÞ þ

2

d − 1

�
v2q2 − ω̃2

q2
k2 þ dω̃2 − v2q2

4q4
ðtþ 2ωEkÞ2

	

þ
�
Ek − ω̃

tþ 2ωEk

2q2

�
t
E
þ d − 1

2

t2

4E2
þm2 þM2

2E2
t

�
×Kdðω; q; kÞ: ð10Þ

Here we collected the numerical factors and functions arising from the d dimensional integration measures in

Cd ¼
23−d

Γ


d−1
2

�
2ð2πÞd

; ð11Þ

and

Kdðω; q; kÞ ¼
�
1 −

ω̃2

v2q2

�ðd−3Þ
2

×

�
1 −

�
t

2kq
þ ωEk

kq

	
2
�ðd−3Þ

2

; ð12Þ

respectively. The theta functions in Eq. (10) affect the integration boundaries of the energy and momentum transfer
integrals. Let us discuss how introducing a mass m for the plasma constituents modifies the boundaries given in Ref. [10].
From the theta functionΘðv2q2 − ω̃2Þwe get the boundaries for the energy transfer ω�ðqÞ ¼ E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ q2 ∓ 2Evq

p
, then

taking into account −q ≤ ω−ðqÞ ≤ ωþðqÞ ≤ q it can be shown that
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Θ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq − kÞ2 þm2

q
≤ jωþ Ekj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ kÞ2 þm2

q �
Θðω− ≤ ω ≤ ωþÞ

¼ Θð0 ≤ q ≤ qinÞΘðω− ≤ ω ≤ ωþÞ þ Θðqin ≤ q ≤ qmaxÞΘðωmin ≤ ω ≤ ωþÞ: ð13Þ

Being ωminðqÞ ¼ −Ek þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − kÞ2 þm2

p
. In addition, the limits of integration for the momentum transfer qin and qmax are

obtained solving the equations

jω−ðqinÞ þ Ekj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqin − kÞ2 þm2

q
and jωþðqmaxÞ þ Ekj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqmax − kÞ2 þm2

q
; ð14Þ

which gives

qin ¼
2E2ðk − vEkÞ þ 2EEkðk − vEkÞ
E2ð1 − v2Þ þ 2EðEk − vkÞ þm2

and qmax ¼
2E2ðkþ vEkÞ − 2EEkðk − vEkÞ
E2ð1 − v2Þ þ 2EðEk þ vkÞ þm2

; ð15Þ

respectively. Thus, according to Eq. (13), the integration over energy and momentum transfer is separated into two regions

Z
∞

0

dq
Z

ωþðqÞ

ω−ðqÞ
dωΘ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − kÞ2 þm2

q
≤ jωþ Ekj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ kÞ2 þm2

q �

→
Z

qin

0

dq
Z

ωþðqÞ

ω−ðqÞ
dωþ

Z
qmax

qin

dq
Z

ωþðqÞ

ωminðqÞ
dω: ð16Þ

Now we re-express ω̃ ¼ ω − t=ð2EÞ in Eq. (10) and organize all terms in inverse powers of E. Then the hard contribution to
the energy loss may be written as

−
dE
dx

����
hard

¼ 2e4ν6−2d

v2
Cd

Z
∞

0

dkkd−2
nFðEkÞ
Ek

�Z
qin

0

dqqd−5
Z

ωþðqÞ

ω−ðqÞ
dωωþ

Z
qmax

qin

dqqd−5
Z

ωþðqÞ

ωminðqÞ
dωω

�

×

�
3ω2 − v2q2

4q2
þ 3EkðEk þ ωÞ

q2
þ
�
m2q2

t2
þ EkðEk þ ωÞ

t
þ q2

2t

	
ð1 − v2Þ þm2

t

−
ω½12EkðEk þ ωÞ þ 3ω2 − q2�

4q2E
−
ωm2

tE
þ 4EkðEk þ ωÞð3ω2 − q2Þ þ 3ðω4 þ q4Þ − 2ω2q2

16q2E2
þm2

4

ω2 þ q2

tE2

−
d − 3

2

�
1

4
þm2q2

t2
þ EkðEk þ ωÞ

t

	�
ω2 − v2q2

q2
þ t2

4q2E2
−

ωt
q2E

�
þ d − 3

2

q2

4E2

�
×Kdðω; q; kÞ: ð17Þ

We expanded the terms inside the curly brackets of Eq. (10)
for d → 3, keeping only pieces proportional to d − 3, as
they are needed for the computation of the finite pieces of
the energy loss. Let us recall which assumptions are
necessary to extract the leading order pieces to the energy
loss, which are of order ∼e4T2, for a detailed discussion see
Ref. [10]. In thermal equilibrium, the energy of most
plasma constituents is of the order of temperature, i.e.,
Ek ∼ T. In addition, we assume that the energy of the
incoming heavy fermion is much larger than the temper-
ature. This gives the hierarchy Ek ∼ T ≪ E. Furthermore,
the integration boundaries for the momentum transfer can
be simplified in the limit E ≪ M2=T as

qin ≈ 2
k − vEk

1 − v2
; and qmax ≈ 2

kþ vEk

1 − v2
: ð18Þ

Consequently, the momentum transfer is much smaller than
the energy of the heavy fermion q ∼ E2=ðM2=TÞ ≪ E, so
we can assume that it is of the order of the temperature
q ∼ T ≪ E. In addition, in the region 0 ≤ q ≤ qin the
integration boundaries for the energy transfer can be
approximated as ω�ðqÞ ≈�vq, so we conclude that the
energy transfer is also of the order of the temperature
ω ∼ T. Now it can be easily seen that the terms which are
not suppressed by powers of E in Eq. (17) are of order e4T2

while all other terms are of order e4T3=E and e4T4=E2 so
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they can be ignored in the regime T ≪ E. Taking this into account and moving to the dimensionless variable x ¼ ω=q, we
reach to

−
dE
dx

����
hard

¼ 2e4ν6−2d

v2
Cd

Z
∞

0

dkkd−2
nFðEkÞ
Ek

�Z
2
k−vEk
1−v2

0

dqqd−5
Z

v

−v
dxxþ

Z
qmax

2
k−vEk
1−v2

dqqd−5
Z

xþðqÞ

xminðqÞ
dxx

�

×

�
ðE2

k þ qxEkÞ
�
3þ 1 − v2

x2 − 1

�
þm2

x2 − v2

ðx2 − 1Þ2 þ q2
�
3x2 − v2

4
þ 1 − v2

2ðx2 − 1Þ
�

−
d − 3

2

�
ðE2

k þ qxEkÞ
x2 − v2

x2 − 1
þm2

x2 − v2

ðx2 − 1Þ2 þ
q2

4
ðx2 − v2Þ

	�
×Kdðx; q; kÞ: ð19Þ

The momentum transfer integrals in the integration region 0 ≤ q ≤ qin contain an IR divergence, while in the region
qin ≤ q ≤ qmax the momentum transfer integrals are finite. We focus now on the dominant IR divergent region, and use DR
to regularize possible divergences. The terms ∼qd−4 in the integrand of Eq. (19) yield the relevant IR divergent integral in
momentum transfer, which we evaluate (see Appendix A)

ν3−d
Z

2
k−vEk
1−v2

0

dqqd−4
�
1 −

�
qðx2 − 1Þ

2k
þ xEk

k

	
2
�ðd−3Þ

2 ¼ 1

d − 3

�
2
k − vEk

ð1 − v2Þν
�

d−3
�
1 −

x2E2
k

k2

�ðd−3Þ
2 þOðd − 3Þ: ð20Þ

The momentum transfer integral for the terms ∼qd−5 in Eq. (19) is free of divergences, but is necessary to reproduce the
finite pieces of Ref. [6] as well as the mass corrections to the pole computed in this manuscript. The required momentum
transfer integral is

ν3−d
Z

2
k−vEk
1−v2

0

dqqd−5
�
1 −

�
qðx2 − 1Þ

2k
þ xEk

k

	
2
�ðd−3Þ

2

¼
�
1 −

x2E2
k

k2

�ðd−3Þ
2

�
2
k − vEk

ð1 − v2Þν
�

d−3
�

1

d − 4

�
2
k − vEk

1 − v2

�
þ x

Ek

2k2
1 − x2

1 − x2E2
k=k

2
þOðd − 3Þ

�
: ð21Þ

Then, the first term inside the curly brackets above does not contribute to the pole, as it would vanish due to antisymmetry in
x, while the second term does not and thus must be taken into account.1 The remaining terms, those ∼qd−3 of Eq. (19) are
not necessary for the evaluation of the hard contribution in the region 0 < q < qin. We give more details on this last
statement and the computation of the momentum transfer integrals in Appendix A. Using Eqs. (20) and (21) we may write
the hard contribution to the energy loss as

−
dE
dx

����
hard

≈
2e4ν3−d

v2
Cd

Z
∞

0

dkkd−2nFðEkÞ
Z

v

−v
dxð1 − x2=v2Þðd−3Þ=2ð1 − x2E2

k=k
2Þðd−3Þ=2

×
1

d − 3

�
2
k − vEk

ð1 − v2Þν
�

d−3
�
3x2 þ x2ð1 − v2Þ

x2 − 1
þ d − 3

2

�
E2
k

k2
1 − x2

1 − x2E2
k=k

2

�
3x2 þ x2ð1 − v2Þ

x2 − 1

�

þm2

k2
1 − x2

1 − x2E2
k=k

2

x2ðx2 − v2Þ
ðx2 − 1Þ2 −

x2ðx2 − v2Þ
x2 − 1

	
þO½ðd − 3Þ2�

�
: ð22Þ

Let us recall that we have not yet made any assumption for the mass m of the constituents of the plasma. Hence, the above
expression may be valid for arbitrary massm as long as it does not surpass the plasma temperature. Though, in this work we
assume that the mass of the plasma constituents is smaller than the temperature of the thermal bathm ≪ T, which allows us
to expand Eq. (22) for small m. Performing such expansion produces new pieces, some of them potentially divergent for
k → 0. This is the reason why we kept explicit Oðd − 3Þ pieces in the integrand of Eq. (22), since those pieces, after
expanding for small mass m produce IR divergent terms, i.e., ∼1=ðd − 3Þ, thus giving a contribution to the pole. Note
however, that if we computed the k integrals in Eq. (22) for a generic mass m, all Oðd − 3Þ pieces would yield only finite
contributions, because in this scenario the k integrals are free of divergences (the mass m acts as a lower cut-off). That

1Notice that as d → 3 the measure of (19) is symmetric in x in the region 0 < q < qin.
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generic case could be considered if the Braaten-Pisarski resummation program is generalized for generic values of the
fermion mass. We comment on how this should be done in the remaining part of the paper.
Setting m ¼ 0 in Eq. (22) gives the leading order pieces of the hard contribution to the energy loss

−
dE
dx

����
hard

m¼0

≈
2e4ν3−d

v2
Cd

Z
∞

0

dkkd−2nFðkÞ
Z

v

−v
dxð1 − x2=v2Þðd−3Þ=2ð1 − x2Þðd−3Þ=2

×
1

d − 3

�
2k

ð1þ vÞν
�

d−3
�
3x2 þ x2ð1 − v2Þ

x2 − 1
þ ðd − 3Þx2

�
: ð23Þ

All remaining integrals are finite and can be computed analytically, they are given in Appendix A. Using the expressions
derived there we find

−
dE
dx

����
hard

m¼0

≈
e2m2

D;3þ2ϵ

16π

��
1

ϵ
þ ln

4T2

ð1þ vÞ2ν̄2
��

1

v
−
1 − v2

2v2
ln
1þ v
1 − v

�
þ 2v

3
þ PðvÞ

v2

�

þ e2m2
D;3þ2ϵ

8π

�
1

v
−
1 − v2

2v2
ln
1þ v
1 − v

��
1 − γE þ ζ0ð2Þ

ζð2Þ þ ln 2

�
; ð24Þ

where we defined the Debye mass in d dimensions

m2
D;d ≡ 16e2ν3−dFd

Z
∞

0

dk kd−2nFðkÞ; ð25Þ

also ν̄2 ¼ 4πe−γEν2, being γE the Euler-Mascheroni con-
stant and ζðxÞ is the Riemann zeta function. Furthermore,
we conveniently defined the quantity

PðvÞ ¼
Z

v

−v
dx x2

�
1þ 1

2

x2 − v2

x2 − 1

�
ln½ð1 − x2Þð1 − x2=v2Þ�:

ð26Þ

Remarkably, regularizing the momentum transfer integrals
with DR instead of a cutoff, as was done in Refs. [6,10],
produces the same logarithmic dependence in ν̄ that the one
found out with a cutoff q�, but it generates extra finite
pieces that we have partially absorbed in our definition of
m2

D;3þ2ϵ, the function PðvÞ and the term 2v=3. However, the
very same extra pieces with opposite sign are generated in
the soft contribution to the energy loss, and ultimately they
cancel when both contributions are added.

For completeness, we should also include in Eq. (24) the
finite pieces generated in the momentum transfer region
qin < q < qmax. Since the q integrals are finite in that
region, there is no need of regularization and we can
compute them in d ¼ 3, reaching the same result
of Ref. [6].
We turn now our attention in computing small mass, i.e.,

m ≪ T corrections to Eq. (24). The scale of the IR
divergence in momentum transfer of Eq. (22) should be
approximated as

�
2
k − vEk

ð1 − v2Þν
�

d−3
≈
�

2k
ð1þ vÞν

�
d−3

; ð27Þ

as we concentrate in the IR divergent term in momentum
transfer. Using the following small m expansions

nFðEkÞ ¼ nFðkÞ þ
m2

2k
dnF
dk

þOðm4Þ; ð28aÞ

E2
k

k2
1 − x2

1 − x2E2
k=k

2
¼ 1þm2

k2
1

1 − x2
þOðm4Þ; ð28bÞ

ð1 − x2E2
k=k

2Þðd−3Þ=2 ¼ ð1 − x2Þðd−3Þ=2
�
1 −

d − 3

2

m2

k2
x2

1 − x2

�
þOðm4Þ; ð28cÞ

and keeping only terms up to Oðm2Þ in Eq. (22) we find

−
dE
dx

����
hard

m2

≈
2e4m2ν3−d

v2
Cd

Z
∞

0

dkkd−3
Z

v

−v
dxð1 − x2=v2Þðd−3Þ=2ð1 − x2Þðd−3Þ=2 1

d − 3

�
2k

ð1þ vÞν
�

d−3

×

�
1

2

dnF
dk

�
3x2 þ x2ð1 − v2Þ

x2 − 1

�
þ d − 3

2

nFðkÞ
k

�
3x2 þ x2ð1 − v2Þ

x2 − 1
þ x2ðx2 − v2Þ

ðx2 − 1Þ2
�
þO½ðd − 3Þ2�

�
: ð29Þ
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The momentum integral ∼nFðkÞ=k of the above expression
contains an extra IR divergence for low k, which appears
because of the small m expansion. These are the same sort
of IR divergences that appear in the computation of the
smallm corrections to the HTL, which however cancel after
performing the angular integrals, see Ref. [19]. A similar

situation happens now here. After the complete computa-
tion, only the IR divergence associated to the low momen-
tum transfer integral survives. We discuss this issue in
detail in Appendix A, where we derive the relevant IR
energy integral

e4m2ν3−dCd

Z
∞

0

dkkd−4
�

2k
ð1þ vÞν

�
d−3

nFðkÞ ¼
e2

16π

e2m2

2π2

�
1

ϵ
þ
�
−2γEþ 2 lnπþ ln

T2

ν̄2
þ ln

4T2

ð1þ vÞ2ν̄2
�
þOðϵÞ

�
: ð30Þ

The logarithm lnðT2=ν̄2Þ above is canceled when the soft contribution is added (see Sec. IV). Also, we can ignore the finite
pieces inside the parenthesis of the second line, since we are just interested in extracting the leading logarithmic behavior.
Then, plugging the results Eqs. (A8) and (30) into Eq. (29), we note that the pole of the k-integral in Eq. (30) vanishes. In
addition, we see that the remaining necessary integral in energy transfer is

Z
v

−v
dxð1 − x2=v2Þðd−3Þ=2ð1 − x2Þðd−3Þ=2 x

2ðx2 − v2Þ
ðx2 − 1Þ2 ¼ v2

��
3

v
−
v2 − 3

2v2
ln
1þ v
1 − v

�
þOðϵÞ

�
: ð31Þ

Collecting these results we can write down the leading mass correction to the hard contribution

−
dE
dx

����
hard

m2

≈
e2

16π

e2m2

2π2

�
1

ϵ
þ ln

4T2

ð1þ vÞ2ν̄2
��

3

v
−
v2 − 3

2v2
ln
1þ v
1 − v

�
: ð32Þ

We recall here that in this manuscript we computed leading
order mass corrections to the energy loss at logarithmic
accuracy, and we have not included the computation of all
finite pieces, which would require a more involved analy-
sis. For instance, we would need to consider the explicit
O½ðd − 3Þ2� pieces that we have ignored in Eq. (29)
together with the finite pieces generated in the region
qin ≤ q ≤ qmax.

III. SOFT CONTRIBUTION TO THE
COLLISIONAL ENERGY LOSS

In this section we will compute the soft contribution to
the energy loss. We will derive the soft contribution trough
the computation of the damping rate of the heavy fermion
traversing the QED plasma. This requires to compute the
imaginary part of the heavy fermion self-energy, see Fig. 2
and relate the collisional energy-loss to this damping rate,
see for example Ref. [6]. Generalizations in d dimensions
of the energy loss formula for the soft contribution can be
found in Ref. [20]. The final formula appears in terms of the
resummed photon propagators. The mass corrections we
are aiming to compute only enter in the resummed photon
propagators. Our starting expression is in Coulomb gauge
(see Appendix A of Ref. [20])

−
dE
dx

����
soft

¼ e2ν3−d

v2
Fd

Z
∞

0

dqqd−1

×
Z

v

−v
dxð1 − x2=v2Þðd−3Þ=2½1þ nBðqxÞ�

× ðqxÞðρdLðqx; qÞ þ ðv2 − x2ÞρdTðqx; qÞÞ: ð33Þ

Here ρdL=Tðqx; qÞ stand for the longitudinal/transverse HTL
photon spectral functions in d dimensions, respectively,
Fd ¼ 21−dπ−ðdþ1Þ=2=Γðd−1

2
Þ is the constant that arises from

the momentum transfer measure in d dimensions and we
used the dimensionless variable x ¼ q0=q. The longi-
tudinal and transverse spectral functions can be obtained
using their relation with the imaginary part of the
(resummed) longitudinal and transverse retarded propaga-
tors, i.e. ρdL=Tðq0; qÞ ¼ 2ImΔd

L=Tðq0 þ i0þ; qÞ [21]. Note
that this definition of the spectral function differs by a
factor ð−2πÞ to the one used in Ref. [6]. In terms of the
longitudinal/transverse retarded polarization tensors ΠL=R

d
in d dimensions one can write

ρLd ðq0;qÞ¼−
2ImΠL

d ðq0;qÞ
½q2−ReΠL

d ðq0;qÞ�2þ½ImΠL
d ðq0;qÞ�2

; ð34aÞ
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ρTdðq0; qÞ ¼ −
2ImΠT

dðq0; qÞ
½q20 − q2 − ReΠT

dðq0; qÞ�2 þ ½ImΠT
dðq0; qÞ�2

: ð34bÞ

To be able to compute mass corrections to the soft contribution of the energy loss, we will need the mass corrections to the
HTL polarization tensor, which were computed in Ref. [19]. In the presence of a small mass m ≪ T, the longitudinal and
transverse components of the retarded polarization read

ΠL
3þ2ϵðq0; qÞ ¼ −m2

D;3þ2ϵ

�
1 −

x
2
ln
xþ 1

x − 1

�
−
m2e2

2π2
1

x2 − 1
þOðϵÞ; ð35aÞ

ΠT
3þ2ϵðq0; qÞ ¼ m2

D;3þ2ϵ

x2

2

�
1 −

�
1 −

1

x2

�
x
2
ln
xþ 1

x − 1

�
−
m2e2

2π2
x
2
ln
xþ 1

x − 1
þOðϵÞ; ð35bÞ

where x ¼ ðq0 þ i0þÞ=q, and m2
D;3þ2ϵ is the Debye mass in d ¼ 3þ 2ϵ dimensions defined in Eq. (25). As discussed in

Ref. [19], when the mass of the fermionic particles obeys eT ≪ m ≪ T the mass corrections are dominant in comparison to
the perturbative corrections. Then, the longitudinal and transverse spectral function including mass corrections read

ρL3þ2ϵðqx; qÞ ¼ 2π
ð1þ ϵÞm2

D;3þ2ϵxΘð1 − x2Þð1 − x2Þϵ
2


q2 þm2

DQ1ðxÞ − m2e2

2π2
1

1−x2

�
2 þ π2x2

2
m4

D

þOðϵÞ; ð36Þ

and

ρT3þ2ϵðqx; qÞ ¼
2π

1 − x2



m2

D;3þ2ϵ − m2e2

π2
1

1−x2

�
xΘð1 − x2Þð1 − x2Þϵ


2q2 þm2
DQ2ðxÞ − m2e2

2π2
Q3ðxÞ

�
2 þ π2x2

4



m2

D − m2e2

π2
1

1−x2

�
2
þOðϵÞ: ð37Þ

respectively. We kept the Debye mass in d ¼ 3þ 2ϵ dimensions of the numerators unexpanded for small ϵ in the spectral
functions for convenience. Furthermore, we did not includeOðϵÞ pieces arising from the denominator, since those pieces do
not generate UV divergences when expanded for small ϵ, and thus vanish in the limit ϵ → 0. Lastly, we also did not include
OðϵÞ pieces coming from the mass corrections to the HTL, although they would be needed in order to determine the mass
correction to the soft contribution of the energy loss beyond logarithmic accuracy. We also introduced, to shorten the
notation, the functions

Q1ðxÞ ¼ 1 −
x
2
ln

���� xþ 1

x − 1

����; Q2ðxÞ ¼
1

1 − x2
−Q1ðxÞ; Q3ðxÞ ¼

x
x2 − 1

ln

���� xþ 1

x − 1

����: ð38Þ

Due to the symmetries of the integrand, we can replace 1þ nBðqxÞ in Eq. (33) by its even part, which is just 1=2. The
spectral functions should also be expanded for small mass m, however, the pieces generated are subleading corrections, so
we can ignore them. Taking these remarks into account, we plug the spectral functions of Eqs. (36) and (37) in Eq. (33)
reaching to

−
dE
dx

����
soft

¼ πe2ν−2ϵ

v2
F3þ2ϵ

Z
∞

0

dqq3þ2ϵ

Z
v

−v
dxx2ð1 − x2=v2Þϵð1 − x2Þϵ

×

� ð1þ ϵÞm2
D;3þ2ϵ

2ðq2 þm2
DQ1ðxÞÞ2 þ π2x2m4

D=2
þ v2 − x2

1 − x2
ðm2

D;3þ2ϵ − ðe2m2=π2Þ=ð1 − x2ÞÞ
ð2q2 þm2

DQ2ðxÞÞ2 þ π2x2m4
D=4

þOðϵÞ
�
: ð39Þ

The theta function Θð1 − x2Þ in the spectral functions does not affect the limits of integration for the energy transfer, since
v < 1. Furthermore, the momentum transfer integral contains an UV divergence for q ≫ eT, which we regularize using
DR. All remaining integrals are finite and can be computed analytically, they are given in Appendix B. Hence, the leading
order term of the soft contribution is
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−
dE
dx

����
soft

m¼0

¼ e2m2
D;3þ2ϵ

16π

��
−
1

ϵ
þ ln

ν̄2

m2
D

��
1

v
−
1 − v2

2v2
ln
1þ v
1 − v

�
−
2v
3
−

1

v2
ðPðvÞ þ AsoftðvÞÞ

�
: ð40Þ

The extra finite pieces coming from the Debye mass in d ¼ 3þ 2ϵ dimensions, the function PðvÞ given in Eq. (26) and the
term −2v=3 cancel exactly with those computed in the hard contribution. The function AsoftðvÞ reads

AsoftðvÞ ¼
Z

v

−v
dx x2

�
1

2
ln
�
Q1ðxÞ2 þ

π2x2

4

�
þ 1

4

v2 − x2

1 − x2
ln
�
Q2ðxÞ
4

2

þ π2x2

16

�

þ 2Q1ðxÞ
πx

arccos

�
Q1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q1ðxÞ2 þ π2x2=4
p

�
þ v2 − x2

1 − x2
Q2ðxÞ
πx

arccos

�
Q2ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2ðxÞ2 þ π2x2=4
p

��
: ð41Þ

Focusing now on the mass dependent part of Eq. (39) and computing the relevant integral in energy transfer [see Eq. (31)]
we arrive to the final result for the mass correction to the soft contribution of the energy loss

−
dE
dx

����
soft

m2

≈
e2

16π

e2m2

2π2

�
−
1

ϵ
þ ln

ν̄2

m2
D

��
3

v
−
v2 − 3

2v2
ln
1þ v
1 − v

�
: ð42Þ

IV. ALTERNATIVE COMPUTATION OF THE SOFT CONTRIBUTION

In this section we will provide an alternative way of computing the soft contribution to the energy loss. We will perform
the computation starting from the general expression of the energy loss, given in Eq. (1), but using the amplitude of diagram
Fig. 1(b). The amplitude can be constructed following QED Feynman rules but replacing bare propagators by HTL
resummed propagators in Coulomb gauge. Then, squaring the amplitude and performing the sum over spins of the involved
particles in the process we find

1

2

X
spins

jMj2 ¼ 8e4ν6−2dE2

�
jΔd

LðQÞj2ðE0=Eþ v0 · vþM2=E2ÞðE0
kEk þ k0 · kþm2Þ

þ 2Re½Δd
LðQÞΔd

TðQÞ��½ðv0 · k0⊥;q̂ÞEk þ ðv0 · k⊥;q̂ÞE0
k þ ðv · k0⊥;q̂ÞEk þ ðv · k⊥;q̂ÞE0

k�

þ 2jΔd
TðQÞj2

�
ðv0 · k0⊥;q̂Þðv · k⊥;q̂Þ þ ðv0 · k⊥;q̂Þðv · k0⊥;q̂Þ þ ðv0⊥;q̂ · v⊥;q̂ÞðE0

kEk − k0 · k −m2Þ

−
d − 1

2
ðE0=E − v0 · v −M2=E2ÞðE0

kEk − k0 · k −m2Þ þ ðk0⊥;q̂ · k⊥;q̂ÞðE0=E − v0 · v −M2=E2Þ
	�

; ð43Þ

where v ¼ p=E is the velocity of the heavy fermion and we also defined k⊥;q̂ ¼ −Pij
⊥;q̂k

i and v⊥;q̂ ¼ −Pij
⊥;q̂v

i, being

Pij
⊥;q̂ ¼ −ðδij − q̂iq̂jÞminus the transverse projector to q̂ ¼ q=q. We used primed variables for the outgoing particles. In the

above expression, Δd
L=TðQÞ denote the longitudinal and transverse components of HTL resumed propagators in d

dimensions respectively, assuming that the fermions in the plasma have mass m. In order to simplify the expression for the
amplitude we make use of the exact kinematic relation

M2

E2
¼ E0

E
− v0 · vþm2

E2
−
E0
kEk − k0 · k

E2
: ð44Þ

Since the amplitude squared in Eq. (43) is invariant under the interchange of k ↔ k0, we can antisymmetrize the thermal
distribution functions [9], i.e., replacing nFðEkÞ½1 − nFðE0

kÞ� by ½nFðEkÞ − nFðE0
kÞ�=2. Then we move to the transfer

momentum variables, as we did in Sec. II for the hard contribution. Eventually, we reach the following expression for the
soft contribution to the energy loss
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−
dE
dx

����
soft

¼ 4πe4ν6−2d

v

Z
ddk
ð2πÞd

Z
ddq
ð2πÞd

Z
dωω

nFðEkÞ − nFðEk þ ωÞ
Ek

δðtþ 2ωEk − 2k · qÞδðω − v · q − t=ð2EÞÞ

×

�
jΔd

LðQÞj2
�
1 −

ω

E
−
ωEk − k · q

2E2

�
ð2E2

k þ ωEk þ k · qÞ þ 2Re½Δd
LðQÞΔd

TðQÞ��ðv · k⊥;q̂Þð2Ek þ ωÞ

þ jΔd
TðQÞj2

�
2ðv · k⊥;q̂Þ2 þ v2⊥;q̂ðωEk − k · qÞ þ

�
ωEk − k · q

E2

��
k2⊥;q̂ −

d − 1

2
ðωEk − k · qÞ

�	�
: ð45Þ

Now we introduce the average over velocities v in d dimensions using Eqs. (8a)–(8c). We note that the piece that mixes the
longitudinal and transverse component of the propagator vanishes in this process because it is transverse to q. In addition,
we eliminate all suppressed pieces in E since we will work in the regime T ≪ E. The integral over the angle θ≡ θk;q is the
same as that of the hard contribution, given in Eq. (9). Then, moving to the dimensionless variable x ¼ ω=qwe can cast the
soft contribution as

−
dE
dx

����
soft

¼ 2e4ν6−2d

v2
Cd

Z
∞

0

dkkd−2
Z

∞

0

dqqd−1
Z

dxx
nFðEkÞ − nFðEk þ qxÞ

Ek

× Θ
�
1 −

�
qðx2 − 1Þ

2k
þ xEk

k

	
2
�
Θðv2 − x2Þ

�
jΔd

Lðqx; qÞj2
�
E2
k þ qxEk þ

q2

4
ðx2 − 1Þ

�

þ jΔd
Tðqx; qÞj2

1

d − 1
ðv2 − x2Þ

�
k2 − x2Ekðqxþ EkÞ þ qxEk þ

q2

4
ðx2 − 1Þð3 − x2Þ

��
×Kdðx; q; kÞ: ð46Þ

In the above expression, the momentum transfer is soft q ∼ eT and the momentum of the plasma constituents is hard k ∼ T,
which allows us to perform several approximations. The thermal distribution function can be expanded for q ≪ Ek

nFðEk þ qxÞ ¼ nFðEkÞ þ qx
dnFðEkÞ
dEk

þOðq2Þ: ð47Þ

In addition, the theta function in the second line can be simplified

Θ
�
1 −

�
qðx2 − 1Þ

2k
þ xEk

k

	
2
�
≈ Θ

�
1 −

x2E2
k

k2

�
: ð48Þ

Moreover, the function Kdðx; q; kÞ must be expanded for q ≪ Ek in order to be consistent with the HTL approximation

Kdðx; q; kÞ ¼ ð1 − x2=v2Þðd−3Þ=2ð1 − x2E2
k=k

2Þðd−3Þ=2
�
1þ d − 3

2

xEk

k2
1 − x2

1 − x2E2
k=k

2
qþOðq2Þ

�
: ð49Þ

Finally, we note that the terms ∼qnjΔd
L=Tðqx; qÞj2 for n > 3 can be ignored, as they would contribute at higher order in the

coupling constant. Thus, the leading order pieces of the soft contribution to the energy loss are

−
dE
dx

����
soft

¼ 2e4ν6−2d

v2
Cd

Z
∞

0

dkkd−2
�
−

1

Ek

dnFðEkÞ
dEk

�Z
∞

0

dqqd
Z

dxx2ð1 − x2=v2Þðd−3Þ=2ð1 − x2E2
k=k

2Þðd−3Þ=2

× Θð1 − x2E2
k=k

2ÞΘðv2 − x2Þ
�
jΔd

Lðqx; qÞj2E2
k þ jΔd

Tðqx; qÞj2
v2 − x2

d − 1
ðk2 − x2E2

kÞ
�
: ð50Þ

Explicit expressions for Δd
L=T are known for m ¼ 0. In Appendix C we comment how the polarization tensors needed to

build these propagators should be computed for a generic value of the fermion mass. However, for a small fermion mass,
and at the order of accuracy we are going to compute, we will only need the resummed propagators at m ¼ 0.
Let us remark that the above expression may be valid for a generic mass m, as long as it does not surpass the plasma

temperature. From Eq. (50) we can reconstruct exactly Eq. (39) in a very few steps. Setting m ¼ 0 and integrating by parts
the distribution function, we easily arrive to
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−
dE
dx

����
soft

m¼0

¼ πe2ν3−d

v2
m2

D;dFd

Z
∞

0

dqqd
Z

v

−v
dxx2ð1 − x2=v2Þðd−3Þ=2ð1 − x2Þðd−3Þ=2

×

�
1

2
jΔd

Lðqx; qÞj2
d − 1

2
þ 1

4
jΔd

Tðqx; qÞj2ðv2 − x2Þð1 − x2Þ
�
; ð51Þ

where we used the relation between the numerical constants defined through this manuscript Cd ¼ 2πF2
d and m

2
D;d denotes

the Debye mass squared in d dimensions defined in Eq. (25). What remains to be done is to insert the definition of the
thermal HTL resummed propagators in d ¼ 3þ 2ϵ dimensions. They may be written as

jΔ3þ2ϵ
L ðqx; qÞj2 ¼ 1

ðq2 þm2
DQ1ðxÞÞ2 þ π2m4

Dx
2=2

þOðϵÞ; ð52aÞ

jΔ3þ2ϵ
T ðqx; qÞj2 ¼ 1

ðx2 − 1Þ2
1

ðq2 þm2
DQ2ðxÞ=2Þ2 þ π2m4

Dx
2=16

þOðϵÞ: ð52bÞ

When writing the longitudinal and transverse components of the propagators above, we did not include OðϵÞ pieces, since
they do not give rise to new UV divergences, and thus vanish in the limit ϵ → 0. We also did not include small mass
corrections to the propagators, for the same reasons that we discarded the mass corrections in the denominators of the
spectral functions [Eqs. (36) and (37)]. Setting d ¼ 3þ 2ϵ everywhere and inserting the expression for the propagators of
Eqs. (52a) and (52b) in Eq. (51) we get exactly Eq. (39) for m ¼ 0.
Now we show how to reproduce the remaining ∼m2 term in Eq. (39) from the more general expression Eq. (50). In the

regime m ≪ T ≪ M, the energy transferred to the plasma constituents is determined by Θðx2 − v2Þ rather than
Θð1 − x2k2=E2

kÞ, as in this scenario the velocity of the heavy fermion is always smaller compared to the velocity of
the fermionic particles in the plasma. Then, expanding Eq. (50) for smallm and keeping only pieces ofOðm2Þ, we note that
many pieces vanish after integrating by parts the thermal distribution functions, and the only nonvanishing piece is

−
dE
dx

����
soft

m2

¼ −
4πe4m2ν6−2d

v2
F2
d

Z
∞

0

dkkd−3
�
−
dnF
dk

�

×
Z

∞

0

dqqd
Z

v

−v
dxx2ð1 − x2=v2Þðd−3Þ=2ð1 − x2Þðd−3Þ=2 1

d − 1
jΔd

Tðx; qÞj2ðv2 − x2Þ: ð53Þ

Now the k integral can be evaluated, yielding to

16e2m2ν3−d
Fd

d − 1

Z
∞

0

dkkd−3
�
−
dnF
dk

�
¼ e2m2

π2

�
1þ

�
−1 − 2γE − 2 ln 2þ 2 ln π þ ln

T2

ν̄2

�
ϵþOðϵ2Þ

�
ð54Þ

The finite pieces ∼ϵ in the second line can be ignored at the order we are working and, as we pointed below Eq. (30), the
logarithms lnðT2=ν̄2Þ cancel when the hard and soft contribution are added. Thus, we may write Eq. (53) as

−
dE
dx

����
soft

m2

¼ πe2ν−2ϵ

v2
F3þ2ϵ

Z
∞

0

dqq3þ2ϵ

Z
v

−v
dxx2ð1 − x2=v2Þϵð1 − x2ÞϵΘð1 − x2Þ

×
1

4

v2 − x2

ð1 − x2Þ2
ð−e2m2=π2Þ

ðq2 þm2
DQ2ðxÞ=2Þ2 þ π2m4

Dx
2=16

: ð55Þ

This is the same expression we found for the mass correction of the soft sector in Eq. (39), as expected.

V. RESULTS AND DISCUSSION

The final expression of the collisional energy loss is obtained after adding the hard and soft contributions. Then, the poles
1=ϵ and the dependence on the renormalization scale ν cancel out. Form ¼ 0we reach to the same expression first found by
Braaten and Thoma [6] in the regime E ≪ M2=T
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−
dE
dx

����
BT

¼ e2m2
D

8π

�
1

v
−
1 − v2

2v2
ln
1þ v
1 − v

�

×

�
ln

E
M

þ ln
1

e
þ AðvÞ

�
: ð56Þ

The extra finite pieces generated in the computation of the
hard and soft contributions using DR also cancel out, so
that the function AðvÞ is the same as that using a cutoff for
the computation. Note that Eq. (56) is not valid for neither
the v → 0 or v → 1 limits, because of the kinematical
constraints used in the evaluation of the momentum
integrals. In particular, we assumed that the velocity of
the heavy fermion is always smaller than that of the plasma
constituents. Taking into account those limits can be done
after a proper modification of the kinematical constraints,
see Refs. [6,10]. Further, in the case v → 1 Compton
scattering also contributes at the same order as the one
here computed [22].
The fermion mass correction to the above result is also

obtained after adding the corresponding hard and soft
contributions we computed. Then, the pole and the depend-
ence on the renormalization scale also cancel out, and to
leading logarithmic accuracy we obtain for m ≪ T ≪ M

−
dE
dx

����¼−
dE
dx

����
BT

þe4m2

16π3

�
3

v
−
v2−3

2v2
ln
1þv
1−v

�
ln

�
1

e

�
: ð57Þ

We have not computed mass corrections beyond logarithmic
accuracy, as most likely the genuine perturbative corrections

to the energy loss are more relevant in the regime where our
assumptions are valid.
We have represented in Fig. 3 the value of the collisional

energy loss for different values of the fermion mass, so as to
estimate how relevant its effect could be. We note that the
effects of a fermion mass seem to be quite relevant already
for values of m ¼ 0.3T. It might thus seem interesting to
evaluate also the energy loss for values of the fermion mass
close to T, where our approximations are not valid. Note
that the assumption m ≪ T allows us to compute the
collisional energy loss analytically, which is always a good
initial step to assess the effect we are considering. We have
provided all the ingredients to carry out the computation for
values ofm getting close to T, but we defer the careful study
of that case for future projects, as it requires a much more
detailed analysis. The main difficulty for such a computa-
tion is the evaluation of the soft sector, as one should
generalize the Braaten-Pisarski resummation program in the
presence of massive fermions. The explicit form of the
photon polarization tensor needed in that case to construct
the resummed propagators is given in Appendix C.
Although our computation was initially performed for a

QED plasma, it can be extended to QCD. In fact, retaining
mass fermion corrections in QCD can be fully justified, and
it was our ultimate motivation. For instance, in the context
of heavy ion collisions, it may be reasonable to disregard
the masses of up and down quarks, but neglecting the mass
of the strange quark may not be such a good approximation.
The contribution of the mass effects in QCD can be
obtained from the corresponding QED calculation at
logarithmic accuracy by simple substitution, while further
corrections would be needed beyond this accuracy. Note
that the mass corrections to the HTL gluon polarization
tensor are the same as those of the photon polarization in
QED, only some color and flavor factors have to be taken
into account. Similarly, in the evaluation of the scattering
matrix element of a heavy quark with a light quark in the t-
channel, the one that is IR sensitive, only some color and
flavor factors are to be considered. At leading logarithmic
accuracy the corrections associated to a massive quark to
the QCD collisional energy loss are also given by the QED
result, replacing e2 by g2, the strong coupling constant, and
taking into account the factor 2=3. More explicitly

g4m2

24π3

�
3

v
−
v2 − 3

2v2
ln
1þ v
1 − v

�
ln

�
1

g

�
: ð58Þ

We have evaluated the impact of including the strange
quark mass corrections to the collisional energy loss of a
charm and bottom quark (see Figs. 2 and 3 of Ref. [7]),
when T ¼ 250 MeV, and assuming that the strong fine
structure constant is αs ¼ 0.2. Taking the strange quark
mass as m ¼ 100 MeV, so m ¼ 0.4T, we note that in this
case the mass corrections are in the 1 to 2 percent level. The
effect is certainly not as large as in QED because of two

FIG. 3. Values of the collisional energy loss in QED for the
different values of the mass of the fermion constituents of the
plasma. The black line corresponds to the massless case, the red
dashed line form ¼ 0.1T, the blue dashed line form ¼ 0.2T, and
the orange dot-dashed line m ¼ 0.3T.

FIG. 2. One loop heavy fermion (μ) self-energy, dominated by
an exchange of a virtual (resummed) photon (γ).
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reasons. First, the gauge coupling constant is larger in QCD, and second, the contribution of one parton, no matter whether it
is massless or massive, can never be too big as compared to the contribution associated to all partons. In any case, the mass
effects here discussed are there and we have provided the tools to assess them.

ACKNOWLEDGMENTS

We thank Joan Soto for useful discussions. This work was supported by Ministerio de Ciencia, Investigación y
Universidades (Spain) under the Project No. PID2019–110165GB-I00 (MCI/AEI/FEDER, UE), by Generalitat de
Catalunya by the Project No. 2021-SGR-171 (Catalonia). This work was also partly supported by the Spanish program
Unidad de Excelencia Maria de Maeztu CEX2020-001058-M, financed by No. MCIN/AEI/10.13039/501100011033.

APPENDIX A: INTEGRALS OF THE HARD CONTRIBUTION

When computing the hard contribution to the energy loss, we encounter three types of momentum transfer integrals in the
region 0 < q < qin, see Eq. (19). When computed in d ¼ 3þ 2ϵ, all of them give rise to Appell F1 hypergeometric
functions, due to the particular dependence on momentum transfer q of the function Kdðx; q; kÞ defined in Eq. (12).
Explicitly, we compute the general formula

ν3−d
Z

L

0

dqqd−n
�
1 −

�
qðx2 − 1Þ

2k
þ xEk

k

	
2
�ðd−3Þ

2 ¼ Ld−nþ1

d − nþ 1

�
1 −

x2E2
k

k2

�ðd−3Þ
2

× F1

�
1þ d − n;−

d − 3

2
;−

d − 3

2
; d − nþ 2;

1 − x2

kþ xEk
L;−

1 − x2

k − xEk
L

�
; ðA1Þ

where L≡ 2ðk − vEkÞ=ð1 − v2Þ and F1ða; b1; b2; c; z1; z2Þ is the so called Appell hypergeometric function of the first kind.
For n ¼ 5, 4, 3 we obtain the required integrals for the evaluation of the hard contribution. The above results can be
simplified expressing F1 by its infinite series representation

F1ða; b1; b2; c; z1; z2Þ ¼
X∞
m¼0

X∞
n¼0

ðaÞmþnðb1Þmðb2Þn
m!n!ðcÞmþn

zm1 z
n
2; ðA2Þ

where ðαÞn ¼ Γðnþ αÞ=ΓðαÞ is a Pochhammer symbol, and realizing that in d ¼ 3þ 2ϵ only the first terms of the series
are non-vanishing. Following this procedure, we obtain Eqs. (20) and (21) setting n ¼ 5 and n ¼ 4 in Eq. (A1) respectively.
As stated in Sec. II the last case n ¼ 3 is not necessary for the evaluation of the hard contribution. In order to see it, we use
Eq. (A2) to write the Appell function as

F1

�
d − 2;−

d − 3

2
;−

d − 3

2
; d − 1;

k − vEk

kþ xEk

1 − x2

1 − v2
;
k − vEk

k − xEk

1 − x2

1 − v2

�
¼ 1þOðd − 3Þ: ðA3Þ

Note that Eq. (A1) is finite in three spatial dimensions when n ¼ 3. Then, since in d ¼ 3 the measure of Eq. (19) is even in
x, the corresponding terms vanish due to antisymmetry in x. Let us now write the results needed for the evaluation of the
hard contribution at m ¼ 0, i.e., Eq. (23). The integral in energy transfer gives

Z
v

−v
dxð1 − x2=v2Þðd−3Þ=2ð1 − x2Þðd−3Þ=2

�
3x2 þ x2ð1 − v2Þ

x2 − 1
þ ðd − 3Þx2

�

¼ 2v2
��

1

v
þ v2 − 1

2v2
ln
1þ v
1 − v

�
þ ϵ

2v
3
þ ϵ

PðvÞ
v2

þOðϵ2Þ
�
; ðA4Þ

where PðvÞ was previously defined in Eq. (26). The result for the k integral may be written as

2e4ν3−dCd

Z
∞

0

dk kd−2
�

2k
ð1þ vÞν

�
d−3

nFðkÞ ¼
e2m2

D;3þ2ϵ

16π

�
1þ

�
1þ γE þ ζ0ð2Þ

ζð2Þ þ ln 2þ 1

2
ln

4T2

ð1þ vÞ2ν̄2
	
2ϵþOðϵ2Þ

�
:

ðA5Þ
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When writing the above result, we used the Debye mass in
d ¼ 3þ 2ϵ dimensions defined in Eq. (25). Multiplying the
series Eq. (A4) by Eq. (A5) we eventually reach the result
for the hard contribution to the energy loss at m ¼ 0,
i.e., Eq. (24).

Let us now discuss how to properly regularize the
momentum integrals for the mass corrections of the hard
contribution, i.e., the k integrals of Eq. (29). Explicitly,
moving to the dimensionless variable y ¼ k=T and setting
d ¼ 3þ 2ϵ, the IR integral to evaluate is

e4m2C3þ2ϵ

�
T
ν

�
2ϵ
Z

∞

0

dy y−1þ2ϵ

�
2T

ð1þ vÞν y
�

2ϵ

nFðyÞ: ðA6Þ

In DR, the small parameter ϵ acts as a regulator of the divergence, playing a similar role as a cutoff would do. In order to
properly regularize Eq. (A6) we must distinguish the regulator of the IR divergence in momentum transfer from the
regulator of the IR divergence in k, that we denote as ϵk. So, instead of Eq. (A6) we need to evaluate

e4m2C3þ2ϵ

�
T
ν

�
2ϵ
Z

∞

0

dy y−1þ2ϵk

�
2T

ð1þ vÞν y
�

2ϵ

nFðyÞ

¼ e4m2C3þ2ϵ

�
T
ν

�
2ϵ
�

2T
ð1þ vÞν

�
2ϵ

ð1 − 21−2ϵ−2ϵkÞΓð2ϵþ 2ϵkÞζð2ϵþ 2ϵkÞ: ðA7Þ

Taking the limit ϵk → 0 above and then expanding for ϵ → 0 we get Eq. (30). In this way, the piece that was initially IR
divergent in k also has a contribution to the pole in ϵ, i.e., the regulator of the IR divergence in momentum transfer.
Applying the same procedure we can compute the other necessary integral in momentum of Eq. (29), which gives

e4m2ν3−dCd

Z
∞

0

dk kd−3
�

2k
ð1þ vÞν

�
d−3 1

2

dnF
dk

¼ e2

16π

e2m2

2π2

�
−1 −

�
−2γE þ 2 ln π þ ln

T2

ν̄2
þ ln

4T2

ð1þ vÞ2ν̄2
�
ϵþOðϵ2Þ

�
:

ðA8Þ

Although the result of the above integral is finite,
intermediate steps in the computation require the evalu-
ation of an IR divergent integral so that the same
method for regularizing Eq. (30) must be used. If we
do not distinguish between the regulators of the different

divergences when evaluating the momentum integrals of
the mass corrections, we would be unable to cancel the IR
divergence in momentum transfer of the hard contribution
with the UV divergence in momentum transfer of the soft
contribution.

APPENDIX B: INTEGRALS OF THE SOFT CONTRIBUTION

The logarithmic ultraviolet divergence encountered in the soft region of the computation can be computed using DR
regularization. One only needs to evaluate in d ¼ 3þ 2ϵ [20]

ν3−d
Z

∞

0

dq
qd

ðq2 þm2
DaÞ2 þm4

Db
2
¼ −

1

2

�
1

ϵ
− ln

�
ν2

m2
D

�
þ 1

2
lnða2 þ b2Þ þ a

b
arccos

�
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

��
þOðϵÞ: ðB1Þ

APPENDIX C: HTL POLARIZATION TENSOR FOR GENERIC FERMION MASS m

We have previously mentioned that Eqs. (22) and (50) should be valid for the evaluation of the hard and soft contribution
to the energy loss respectively, if the fermions in the plasma have mass m, which is assumed to be at most of order T.
However, the computation of the soft contribution with generic mass demands that the HTL resummation technique has to
be done assuming massive fermions. We give here the expressions of the HTL polarization tensors in such a case. These can
be evaluated, for example, in the real time formalism of thermal field theory, following the same steps as in Ref. [14] but
with massive particles. After carrying out the integral in frequency one then arrives to the expression
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ΠμνðLÞ ¼ e2ν3−d
Z

ddq
ð2πÞd

1 − 2nFðEqÞ
Eq

�
2Eqvμvν − vμLν − vνLμ þ gμνðv · LÞ
v · L − L2=2Eq þ isgnðEq − l0Þ0þ

−
2Eqṽμṽν þ ṽμLν þ ṽνLμ − gμνðṽ · LÞ
ṽ · Lþ L2=2Eq þ isgnðEq þ l0Þ0þ

�
: ðC1Þ

Here L ¼ ðl0; lÞ is the external photon momentum, vμ ¼ ð1; q=EqÞ and ṽμ ¼ ð1;−q=EqÞ are the velocity of the massive

fermions and antifermions, respectively, with Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
and sgnðxÞ is the sign function. Under the assumption that

external momenta obeys L ≪ Q, after a change of variables to express the antiparticle contribution as the particle one, it is
possible to approximate the expression to find

ΠμνðLÞ ≈ 2e2ν3−d
Z

ddq
ð2πÞd

1 − 2nFðEqÞ
Eq

�
gμν −

vμLν þ vνLμ

v · L
þ L2vμvν

ðv · LÞ2
�
: ðC2Þ

Note that in the limit m ¼ 0, one reproduces the correct well-known limit for the HTL. This final result is the one that one
would obtain from classical transport theory. Unfortunately, there is not a simple analytical expression of the polarization
tensor for a generic valuem. The generalization of the Braaten-Pisarski resummation program in this case would most likely
to be implemented numerically.
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