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We revisit the calculation of chiral anomalies for global and gauge symmetries in the framework of the
covariant derivative expansion (CDE). Due to the presence of UV divergences, the result is an ambiguous
quantity that depends on the regularization procedure and the renormalization scheme. We introduce a class
of regulators that facilitate a straightforward evaluation of the anomaly exclusively in d ¼ 4 spacetime
dimensions using the CDE methodology. We derive a master formula for the anomaly that integrates
various known results into a unified framework.
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I. INTRODUCTION

It iswell known that symmetries of the classical action can
be broken by quantum effects. This so-called anomaly has
far-reaching consequences, from explaining the neutral pion
decay to providing critical consistency checks on gauge
theories with chiral fermions. Well-established techniques
exist for computing anomalies both using Feynman dia-
grams, and also directly from the path integral. They can be
computed for global and gauged symmetries, Abelian and
non-Abelian groups, and take “consistent” and/or “covar-
iant” forms. The results generally depend on the choice of
regulator, and consist of a relevant piece that reflects the IR
properties of the theory, and an irrelevant piece that can be
absorbed by varying the renormalization scheme.1

In this paper, we revisit the calculation of chiral
anomalies from the path integral using an approach known
as the covariant derivative expansion (CDE). This
allows us to derive a unified framework that incorporates
various types of anomalies into one master formula. The
CDE was originally invented in the mid-1980s [17–19] to
facilitate one-loop calculations of correlation functions
purely in terms of functional traces, avoiding the intro-
duction of Feynman diagrams. In recent years, the method
has been applied in a variety of new settings, which
has led to significant theoretical developments. These
include the discovery of a variation on the framework,
“simplified CDE” [20,21], the incorporation of the
method of regions [22], organizing schemes using dia-
grammatic frameworks [23,24], as well as techniques
that yield effective actions that include all orders in the
fields [25]. With these developments, the power and
efficiency of CDE has been demonstrated for connecting
the UV with the IR, i.e., computing low-energy effective
field theories (EFTs) from integrating out heavy states in a
perturbative UV model; see e.g., Ref. [26] for a review.
We now know how to use CDE to perform matching
calculations across a mass threshold, as well as to extract
the renormalization group evolution equations for the EFT
couplings. The CDE has become such a well-developed
tool that there now exist packages which automate these
calculations [27–29].
The practical success of CDE in connecting UV and IR

descriptions of quantum field theories motivates applying it
to compute the chiral anomaly. The approach taken here
will be to work exclusively in d ¼ 4 spacetime dimensions,
which allows us to avoid any of the complications that arise
when attempting to define Weyl fermions in dimensional
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1There is of course a vast literature on the anomaly, including
the excellent reviews Refs. [1,2]. The story began with its
discovery in 1969 by Adler [3] and by Bell and Jackiw [4]. It
was soon after understood to be one-loop exact [5] and more
comprehensively investigated in Ref. [6]. Anomaly cancellation
in the Standard Model was established in Ref. [7]. The con-
nection between the anomaly and the topological winding
number of the gauge field was discovered in Refs. [8–11]. Of
great importance to the approach taken here is Fujikawa’s
derivation of the anomaly from the noninvariance of the path
integral measure [12–16].
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regularization.2 In this paper, we generalize the classic
Fujikawa approach by expressing the anomaly as a func-
tional trace, which must be regularized to be well-defined.
We introduce a novel regularization prescription, with a set
of regulators parametrized by a set of numbers collectively
denoted by β, which one can choose based on which
symmetries one wishes to preserve. We emphasize that our
regularization yields unambiguous evaluation results once
the values of β are specified. We derive a master formula for
the chiral anomaly using CDE, whose explicit forms are
given by Eqs. (4.15) and (4.17). This master formula
encodes a variety of known results for anomaly calcula-
tions. In particular, we examine all possible combinations
of continuous symmetry groups, and show in each case
how our master formula reproduces the known (relevant)
anomaly results, as well as the anomaly cancellation
conditions. This establishes that the CDE can accommodate
this important effect in perturbative quantum field theory,
and sets the stage for its applications to EFT matching
across anomalous thresholds.
The rest of this paper is organized as follows. We first

review the functional formalism in Sec. II, with an
emphasis on the definition of the chiral anomaly and its
connections to the fermionic path integral measure and the
anomalous Ward identities. In Sec. III, we isolate the
functional trace that encodes the anomalies and introduce
our novel regularization prescription to make it well-
defined. We discuss the relation between our regulator
and some similar approaches in the literature, and also a
sufficient condition for it to be consistent with the Wess-
Zumino condition. In Sec. IV, we carry out the CDE
evaluation to obtain our master formula for the anomaly.
We then demonstrate in Sec. V that this master formula
reproduces various known results regarding chiral anoma-
lies by examining all possible combinations of continuous
symmetry groups. Some future directions are discussed in
Sec. VI. A technical clarification regarding CDE mani-
pulations is provided in Appendix A.

II. ANOMALIES IN THE FUNCTIONAL
FORMALISM

In this section, we briefly review the well-known func-
tional formalism for anomalies, which also serves the
purpose of introducing our notation. Much of this section
is drawn from the review article by Bilal [2]. Our discussion
here crucially relies on the famous connection between
anomalies and the path integral measure first discovered by
Fujikawa [12].

A. Defining the anomaly

We begin with the definition of the anomaly. Consider a
general gauge theory coupled to a set of left-handed Weyl
fermions collectively denoted by χ,

L ¼ −
1

4g2
Fa
μνFaμν þ χ†σ̄μPμχ; ð2:1Þ

where we have defined the Hermitian covariant derivative

Pμ ≡ iDμ ¼ i∂μ þ Gμ ¼ i∂μ þGa
μta; ð2:2Þ

where ta are the (Hermitian) gauge group generators. The
gauge field strength is given by

Fμν ¼ Fa
μνta ¼ −i½PμPν� ¼ ð∂μGνÞ − ð∂νGμÞ − i½GμGν�:

ð2:3Þ

The kinetic term for the gauge fields in Eq. (2.1) should be
read as a sum over terms normalized with different gauge
couplings in the case of a product gauge group.
A gauge transformation can be parametrized by the

matrix

Uα ¼ eiα ¼ eiα
ata ; ð2:4Þ

where the transformation parameters αa ¼ αaðxÞ are func-
tions of spacetime. Under Eq. (2.4), the building blocks of
our theory transform as

χ → χα ¼ Uαχ; ð2:5aÞ

χ† → χ†α ¼ χ†U†
α; ð2:5bÞ

Pμ → Pμ
α ¼ UαPμU†

α; ð2:5cÞ

Gμ → Gμ
α ¼ UαGμU†

α þ Uαði∂μU†
αÞ: ð2:5dÞ

We will use δα to denote the first-order (in α) gauge
variation; for example,

δαGμ ≡ ðGμ
α − GμÞjOðαÞ ¼ Dμα ¼ ∂

μα − i½Gμ; α�: ð2:6Þ

The Lagrangian in Eq. (2.1) defines an action that is
gauge invariant at the classical level. However, quantum
effects can spoil gauge invariance. If this happens, we say
that the theory has an anomaly.
To define the anomaly, we consider the bosonic effective

action W½G�, computed from the path integral by integrat-
ing out the fermions, while treating the gauge field as a
classical background,

eiW½G� ≡
Z

DχDχ†eiSf ½χ;χ†;G�; ð2:7Þ

2It is well-known that handling the γ5 matrix in d ≠ 4
spacetime dimensions is a nontrivial task [30–33]. See
Refs. [34,35] for recent CDE calculations of anomalies with
dimensional regularization.
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where Sf ≡ R
d4xχ†σ̄μPμχ is the fermion bilinear part of the

classical action. If we would also like to treat the gauge
field Gμ as a dynamical quantum field by performing its
path integral,Z

DGDχDχ†ei
R

d4xL ¼
Z

DGe
ið− 1

4g2

R
d4xFa

μνFaμνþW½G�Þ;

ð2:8Þ

we need W½G� to be gauge invariant (upon regularization
and renormalization). Gauge invariance of the classical
action Sf does not guarantee that of W½G�, since quantum
effects (due to the fermionic path integral measure) can
break gauge invariance.
The anomaly functional A½α�, which we also simply

refer to as the anomaly, can be defined by taking the
gauge variation of the bosonic effective action W½G�,3

A½α�≡
Z

d4xαaðxÞAaðxÞ≡ δαW½G�: ð2:9Þ

If A½α� ¼ 0, the theory is anomaly-free and the path
integral in Eq. (2.8) yields a well-behaved quantum
theory. If A½α� ≠ 0 but is equal to the gauge variation
of a local action, A½α� ¼ δαð−

R
d4xLctÞ, it is called an

irrelevant anomaly and can be removed by renormaliza-
tion, i.e., by adding local counterterms Lct to the
Lagrangian (see e.g., Ref. [36] for a systematic study
of such counterterms); in this case the (renormalized)
quantum theory is also well-behaved. On the other hand, a
nonzero A½α� that cannot be written as the gauge variation
of a local action, called a relevant anomaly, implies that
the gauge theory is not well-defined at the quantum level;
in this case, the anomaly is an IR effect and cannot be
removed by renormalization.
The definition Eq. (2.9) we adopt here is known

as the consistent anomaly, in the sense that it should—if
properly regularized—satisfy the Wess-Zumino consis-
tency condition [37],

δα1A½α2� − δα2A½α1� ¼ A½−i½α1;α2��; ð2:10Þ

which is a direct consequence of the Lie algebra,

ðδα1δα2 − δα2δα1ÞW½G� ¼ δ−i½α1;α2�W½G�: ð2:11Þ

The Wess-Zumino consistency condition is also equivalent
to the statement that the anomaly is Becchi-Rouet-Stora-
Tyutin (BRST)-closed when α is replaced by the ghost field
ω ¼ ωata,

A½ω� ¼ δBRSTW½G� ⇒ δBRSTA½ω� ¼ 0; ð2:12Þ

which follows from the nilpotency of the BRST
transformation, δ2BRST ¼ 0. However, since the bosonic
effective action W½G� is not a local functional of the
gauge field Gμ, the fact that A½ω� ¼ δBRSTW½G� does not
mean that the anomaly is BRST-exact on the space of
local functionals. Anomalies that are BRST-exact
on this space can be absorbed by local counterterms,
A½ω� ¼ δBRSTð−

R
d4xLctÞ, and are the irrelevant anoma-

lies, while the relevant anomalies are given by nontrivial
BRST cohomology classes (closed but not exact) on
this space.
Finally, we note that while we have focused on gauge

symmetries in the discussion above, anomalies of global
symmetries can be treated in the same framework by
artificially gauging all the (classical) global symmetries of
interest. Concretely, we introduce auxiliary gauge fields
for all the global symmetries as part of Gμ, and take Uα to
also include local transformations associated with the
global symmetry generators. Then A½α� as defined above
will also contain anomalies of the global symmetries, and
a nonzero value of A½α� implies that the classical global
symmetry cannot be gauged in the quantum theory. In
what follows, we will assume this artificial gauging has
been done for all the classical global symmetries of
interest, and will not distinguish between global and
gauge symmetries.

B. Connection to the path integral measure

As explained above, the classical action Sf in Eq. (2.7) is
gauge invariant, so the only possible source of the anomaly
is the path integral measure over the fermionic fields.
Specifically, performing the transformation in Eq. (2.5)
changes the measure by a Jacobian factor,

DχαDχ†α ¼ J −1
α DχDχ†: ð2:13Þ

Therefore, we have

eiW½Gα� ¼
Z

DχDχ†eiSf ½χ;χ†;Gα� ¼
Z

DχαDχ†αeiSf ½χα;χ
†
α;Gα�

¼
Z

J −1
α DχDχ†eiSf ½χ;χ†;G�

¼ eiW½G�
R
J −1

α DχDχ†eiSf ½χ;χ†;G�R
DχDχ†eiSf ½χ;χ†;G�

¼ eiW½G�hJ −1
α iG:

ð2:14Þ

In the first line, we just relabeled the dummy integration
variables, χ → χα; in the second line, we used Eq. (2.13)
and the gauge invariance of the classical action Sf ; in
the last line, we multiplied and divided the expression
by eiW½G� ¼ R

DχDχ†eiSf ½χ;χ†;G�. Taking the logarithm of

3Note that in such variations, we restrict to the set of αðxÞ that
fall off fast enough at infinity such that one can always use
integration by parts [see e.g., Eq. (2.17) below]. In particular, a
constant αðxÞ does not belong to this set.
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Eq. (2.14), we arrive at a relation between the Jacobian
factor4 and the anomaly,

−i log hJ −1
α iG ¼ W½Gα� −W½G� ¼ A½α� þOðα2Þ: ð2:15Þ

We see that when the quantum expectation value of the
Jacobian factor is trivial, there is no anomaly

hJ −1
α iG ¼ 1 ⇒ A½α� ¼ 0; ð2:16Þ

while anomalies are associated with the quantum breaking
of classical symmetries.

C. Connection to Ward identities

The connection between the anomaly and the Ward
identities can be made by noting

δαW½G� ¼
Z

d4x½δαGa
μðxÞ�

δW
δGa

μðxÞ
¼
Z

d4xðDμαÞa
δW

δGa
μðxÞ

¼ −
Z

d4xαaðxÞ
�
Dμ

δW
δGμðxÞ

�
a
: ð2:17Þ

Comparing this to Eq. (2.9), we get

�
Dμ

δW
δGμðxÞ

�
a
¼ −AaðxÞ: ð2:18Þ

Meanwhile, since Ga
μ acts as a source for the fermion

current Jaμ ¼ χ†σ̄μtaχ, we have

δW
δGa

μðxÞ
¼ hJaμiG: ð2:19Þ

Together, these imply

ðDμhJμiGÞa ¼ −AaðxÞ; ð2:20Þ

i.e., the fermion current is covariant up to the anomaly. The
BRST symmetry that is critical to the quantization of gauge
theory requires ðDμhJμiGÞa ¼ 0. This makes the connec-
tion between anomaly cancellation and consistency of
gauge theory precise.
We can use Eq. (2.20), or equivalently Eq. (2.18), as a

generating functional for the Ward identities. First, let us
explicitly write out the left-hand side of Eq. (2.18),

∂μ

�
δW
δGa

μ

�
þ fabcGb

μ
δW
δGc

μ
¼ −AaðxÞ: ð2:21Þ

Now taking the kth functional derivative, we get

∂μ

�
δkþ1W

δGa
μδG

b1
μ1 � � � δGbk

μk

�����
G¼0

þ
Xk
i¼1

fabic
δkW

δGb1
μ1 � � � δGc

μi � � � δGbk
μk

����
G¼0

¼ −
δkAaðxÞ

δGb1
μ1 � � � δGbk

μk

����
G¼0

: ð2:22Þ

These are the anomalous Ward identities, and are often
written in terms of the connected correlation functions of
the fermion currents,

∂μhJμ;aJμ1;b1 � � � Jμk;bkiconn

þ
Xk
i¼1

fabichJμ1;b1 � � � Jμi;c � � � Jμkbkiconn

¼ −
δkAaðxÞ

δGb1
μ1 � � � δGbk

μk

����
G¼0

: ð2:23Þ

We see that a Gk term in AaðxÞ corresponds to a mismatch
between the (kþ 1)-point and k-point correlation functions
of the fermion currents. Equation (2.23) is sometimes taken
as a definition of the anomaly in renormalized perturbation
theory. In the case of an irrelevant anomaly, one can add
local counterterms which give additional contributions to
the left-hand side of Eq. (2.22) and correspond to choosing
a different renormalization scheme for the current corre-
lators in Eq. (2.23). A relevant anomaly, on the other hand,
constitutes a genuine violation of the classical Ward
identities that cannot be remedied by renormalization. It
is also worth noting that Eq. (2.23) can be used to prove that
AaðxÞ truncates at a finite power of the gauge field Gμ.

III. REGULARIZING THE ANOMALY

The definition in Eq. (2.9) does not fully specify the
value of the anomaly, because (the gauge variation of)
the bosonic effective actionW½G� is not well-defined in the
absence of a regulator. In this section, we introduce our
regularization prescription. Then the CDE evaluation of the
regularized anomaly will be presented in Sec. IV.
Before discussing the case of anomalies, we first review

the basic idea of regularization and illustrate the role of
regularization prescriptions in Sec. III A using some simple
toy series. (Experts can safely skip this subsection.) Then in
Sec. III B, we introduce our regularization prescription for
the anomaly, motivated by its convenience for evaluating
the functional trace using CDE. Specifically, we will be
working in strictly d ¼ 4 spacetime dimensions, i.e., we

4We note that sometimes in the literature, hJ −1
α iG is simply

written as J −1
α ðGÞ or just J −1

α . This might give an impression
that it does not depend on the details of the action Sf . Throughout
this paper, we manifestly write it as an expectation value hJ −1

α iG
to emphasize that it is a quantum expectation value and a priori
may depend on what interactions are included in the action.
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will not be using dimensional regularization. Instead, we
will insert a damping factor into the functional trace, in a
similar spirit to heat kernel regularization. In fact, we will
introduce a class of such damping factors parametrized by a
set of numbers β; different choices of these β parameters
correspond to different regularization schemes and will
lead to different results. In Sec. III C, we comment on the
connection between our regularization prescription and
some familiar approaches in the literature. In particular,
we will see that both the heat kernel and Pauli-Villars
regulators can be viewed as specific incarnations of our
approach. Finally, we check our regularization prescription
against the Wess-Zumino consistency condition in
Sec. III D, and show how it may be satisfied or violated
depending on the choice of β values.

A. What is regularization?

In this subsection, we illustrate the role of regularization
with some simple toy series. In particular, we demonstrate
how different regularization prescriptions correspond to
different definitions for a nonconverging series and hence
generically lead to different results upon evaluation. We
will also clarify the allowed manipulations for a non-
converging series.
When we encounter a series that is not convergent, its

sum does not have a well-defined value. However, it is
often useful to promote such a series into a “function
series”, where the summands are functions; these functions
must reproduce the original series term by term when their
argument takes a particular value (or limit). Then we can
define the sum through analytic continuation: we first sum
the function series inside its convergence region to obtain
an analytic function, and then take the limit corresponding
to the original series to define the value of the latter. This
regularization procedure leads to a regulated (finite) series.
Let us explain how this works using a simple example.

Consider the series

s1 ¼
X∞
k¼0

2k ¼ 1þ 2þ 4þ 8þ � � � : ð3:1Þ

Clearly, this is a nonconverging series. However, we could
associate it with the function series

s1 ⇔

�X∞
k¼0

xk
�����

x¼2

⟶
regularization 1

1 − x

����
x¼2

¼ −1: ð3:2Þ

This function series converges to f1ðxÞ ¼ 1
1−x within the

disk jxj < 1, but not at x ¼ 2. But we can take f1ðx ¼ 2Þ as
the definition for the sum s1. This is what we mean by a
regulated series. Another example is the famous zeta
function regularization originally used by Euler; the
diverging series

s2 ¼
X∞
k¼1

k ¼ 1þ 2þ 3þ 4þ � � � ð3:3Þ

can be regularized as

s2 ⇔

�X∞
k¼1

1

ks

�����
s¼−1
⟶
regularization

ζðsÞjs¼−1 ¼ −
1

12
:

ð3:4Þ
As mentioned above, when we promote a nonconverging

series into a function series, we require that the function
series reproduces the original series term by term when
evaluated at a certain point. Clearly, this does not uniquely
specify the choice: given a nonconverging series, one can
usually promote it intomany different function series. These
correspond to different regularization schemes and serve as
different definitions of the sum of the original series. To see
this concretely, let us consider the following toy series

s0 ¼
X∞
k¼0

ð−1Þk ¼ 1 − 1þ 1 − 1þ 1 − 1þ � � � : ð3:5Þ

To regularize this series, we could choose to promote it to
any of the following set of function series parametrized by a
number β,

fβðτÞ ¼ τ0 − τ1þβ þ τ2 − τ3þβ þ τ4 − τ5þβ þ � � � : ð3:6Þ

Then we have

s0 ⇔ fβðτÞjτ→1⟶
regularization 1 − τ1þβ

1 − τ2

����
τ→1

¼ 1þ β

2
: ð3:7Þ

We see that with different values for β, the original non-
converging series s0 can be defined/regularized to take
different values.
If we are going to regularize a nonconverging series with

a function series that is absolutely convergent (in its
convergence region), then one can shuffle and/or group
terms in the latter without changing its analytic continu-
ation. Alternatively, one could shuffle and/or group terms
first in the original nonconverging series, and then regu-
larize the new expression with an absolutely convergent
function series. This second way will lead to the same result
upon evaluation, and it is sometimes more convenient
because the series is easier to massage before promoting it
into a function series. However, when we shuffle and/or
group terms in the original nonconverging series to go from
one expression to another, we have to remember that none
of these expressions is well-defined yet, so it is not
appropriate to say that they are equal (“¼”). Instead, they
are just “equivalent” in the sense that they would be equal if
one were to regularize them with the same absolutely
convergent function series (with the same shuffling and/or
grouping of terms). In this paper, we use the symbol “≃” to
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denote this equivalence relation between nonconverging
series [see equations below starting from Eq. (3.14)].
Let us take the same toy series example s0 to illustrate

this point, as well as the use of the “≃”notation. Since the
function series Eq. (3.6) is absolutely convergent within the
disk jτj < 1, we can group its terms to get another series,

fβðτÞ⟶
group terms

f̃βðτÞ≡
X∞
k¼0

ðτ2k − τ2kþ1þβÞ

⟶
analytic continuation 1 − τ1þβ

1 − τ2
; ð3:8Þ

which has the same analytic continuation. Alternatively,
one could first group terms in the original nonconverging
series,

s0 ≃ s̃0 ≡
X∞
k¼0

ð1 − 1Þ ¼ 0þ 0þ 0þ � � � : ð3:9Þ

Note that we have used the “≃” sign here between s0 and
s̃0. The new series s̃0 is a converging series and does have a
default definition, so a regularization for s̃0 is not man-
datory. However, one could still use the function series
f̃βðτÞ to regularize it, because

ðτ2k − τ2kþ1þβÞ
���
τ¼1

¼ 0 ð3:10Þ

would also reproduce the series s̃0 term by term. With this
regularization, one would then get the same evaluation
result 1þβ

2
as in Eq. (3.7). Our use of the “≃” sign here is

emphasizing this: s0 and s̃0 are equal only when we use the
same regularization prescription for them (although one of
them has a different default definition in the absence of
regularization).

We note in particular that performing cyclic permuta-
tions inside a trace is a typical type of shuffling and/or
grouping of terms,

trðABÞ ¼
X
i

�X
a

AiaBai

�
; ð3:11aÞ

trðBAÞ ¼
X
a

�X
i

BaiAia

�
¼

X
a

�X
i

AiaBai

�
: ð3:11bÞ

The two traces are related by a change of summation order.
When the matrices A and B are infinite dimensional, such
as in the case of functional traces, each trace is a sum over a
(double) series. If the series is not convergent and needs
regularization to be well-defined, then it is not appropriate
to claim that the two traces are equal, as we have just
explained. Instead, we should use the “≃” sign

trðABÞ ≃ trðBAÞ; ð3:12Þ

to emphasize that they would be equal when we use the
same absolutely convergent function series to regu-
late them.

B. Anomaly as a regulated functional trace

Let us now turn to the case of interest in this paper, the
anomaly functional A½α� defined in Eq. (2.9). First, we
would like to isolate the functional trace that encodes the
anomalies. We start with the definition of W½Gα�, Eq. (2.7)
with Gμ replaced by Gμ

α according to Eq. (2.5d). It can be
formally written as a functional determinant,

eiW½Gα� ¼
Z

DχDχ†eiSf ½χ;χ†;Gα� ¼ det ðUασ̄
μPμU

†
αÞ: ð3:13Þ

Taking the logarithm and expanding in α, we get

W½Gα� ¼ −i log det ðUασ̄
μPμU

†
αÞ

≃ −i log det ðσ̄μPμ þ iασ̄μPμ − σ̄μPμiαÞ þOðα2Þ

≃ −i log det ðσ̄μPμÞ − i log det

�
1þ 1

σ̄νPν
ðiασ̄μPμ − σ̄μPμiαÞ

�
þOðα2Þ

≃W½G� − iTr log

�
1þ 1

σ̄νPν
ðiασ̄μPμ − σ̄μPμiαÞ

�
þOðα2Þ

≃W½G� þ Tr

�
1

σ̄νPν
ðασ̄μPμ − σ̄μPμαÞ

�
þOðα2Þ: ð3:14Þ

According to the definition in Eq. (2.9), the leading-order contribution to the differenceW½Gα� −W½G� gives the anomaly.
Therefore, we obtain

A½α� ≃ Tr

�
1

σ̄νPν
ðασ̄μPμ − σ̄μPμαÞ

�
: ð3:15Þ
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At this point, we have formally written the anomaly as a
functional trace. However, we emphasize that the func-
tional trace in Eq. (3.15) is the sum of a series that is not
convergent, so it does not have a definite value and requires
regularization to become well-defined. As elaborated in
Sec. III A, different regularization prescriptions can yield
different results upon evaluation. In fact, the same is true
for the expression in each line of Eq. (3.14). Therefore, we
have used the notation “≃” to emphasize that these
expressions are not exactly equal “¼” unless they are
regularized in the same way.
One may also attempt to perform a cyclic permutation

within the functional trace in Eq. (3.15), so the two terms
appear to cancel. However, as explained in Sec. III A, such
a cyclic permutation amounts to shuffling and/or grouping
terms in the original nonconverging series to obtain a new
series,

A½α� ≃ Tr ¼ 0þ 0þ 0þ � � � : ð3:16Þ

Although this new series is zero term by term, which is
convergent and hence has a default definition without a
regulator, this does not contradict the statement that regu-
larization prescriptions exist that yield a nonzerovalue for this
series. As emphasized by the “≃” sign, the two expressions
above would only be equal under the same regularization
prescription. The default definition of the right-hand side
(which gives zero) corresponds to one particular choice of
regularization (a trivial one), so its evaluation result would not
be equal to that of the left-hand side if a different regulari-
zation prescription is chosen for the latter.
To motivate our regulator, let us first check what

would happen if we go ahead and evaluate the functional
trace in Eq. (3.15) with CDE. Focusing on the first term,
we have

Tr

�
1

σ̄νPν
ασ̄μPμ

�
≃
Z

d4x
Z

d4q
ð2πÞ4 tr

�
1

σ̄νðqν þ PνÞ
ασ̄μðqμ þ PμÞ

�

≃
Z

d4x
Z

d4q
ð2πÞ4 tr

�X∞
k¼0

�
−
σλqλ
q2

σ̄τPτ

�
k σνqν
q2

ασ̄μðqμ þ PμÞ
�

≃
Z

d4x
Z

d4q
ð2πÞ4 tr

�X∞
k¼0

�
−
=q
q2
=P

�
k =q
q2

αð=qþ =PÞ 1 − γ5

2

�

≃
Z

d4x
Z

d4q
ð2πÞ4 tr

�X∞
k¼0

�
−
=q
q2

P̂β

�
k =q
q2

αð=qþ P̂βÞ
1 − γ5

2

�

≃
Z

d4x
Z

d4q
ð2πÞ4 tr

�
1

=qþ P̂β

αð=qþ P̂βÞ
1 − γ5

2

�

≃ Tr

�
1

P̂β

αP̂β
1 − γ5

2

�
: ð3:17Þ

The first line above simply follows from the definition of
the functional trace.5 To obtain the second line, we have
performed a Taylor expansion in terms of the Hermitian
covariant derivative Pμ, an operation called the covariant
derivative expansion (CDE) in the literature.6 To get the

third line, we used the following identity between Pauli
matrices and the Dirac gamma matrices,

tr½ðσμ1 σ̄ν1Þ � � � ðσμk σ̄νkÞ� ¼ tr

�
ðγμ1γν1Þ � � � ðγμkγνkÞ 1 − γ5

2

�
:

ð3:18Þ
Starting from the fourth line of (3.17), we have introduced
the β-modified covariant derivative,7

P̂β ≡ i=∂þ =G

�
1 − γ5

2
þ β

1þ γ5

2

�

≡ i=∂þ
X
a

=Gata
�
1 − γ5

2
þ βa

1þ γ5

2

�
: ð3:19Þ

5See Eq. (A12) for a more detailed explanation of the shift
Pμ → qμ þ Pμ. We note that the internal traces “tr” from here
on in the main text are actually what we denote by “trx” in
Appendix A. See Appendix A 1, especially the discussion around
Eq. (A18) for a careful clarification on this notation.

6More precisely, the operation here is called “simplified
CDE” [20], in which one makes a Taylor expansion directly
in terms of the “open” covariant derivatives. This is different from
the “original CDE” [17–19] where one inserts additional factors
to “close” the covariant derivatives (i.e., put them into commu-
tators) before performing the Taylor expansion. See the discus-
sion around Eq. (A28) for an elaboration on open vs closed
derivatives in functional operators, and Appendix B of Ref. [21]
for a detailed discussion on simplified vs original CDE.

7Note that when β ≠ 1, the operator P̂β is not gauge covariant.
This is the reason why we will not always get a covariant
anomaly; see discussion in Sec. III D for more details.
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Finally, in the last line of Eq. (3.17), we rewrote the result
as a functional trace. Note that we take the βa parameters to
be degenerate within each simple gauge group sector so that
βata (no sum over a) satisfy the same Lie algebra as ta.
Here and in what follows, we explicitly write out the
summation over adjoint indices when the presence of βa
results in more than two identical adjoint indices in an
expression.
The identity in Eq. (3.18) has allowed us to convert the

two-component expression [left-hand side of Eq. (3.17)]
into a four-component expression (last line in Eq. (3.17)
with an insertion of the projector operator 1−γ5

2
. The same

procedure goes through when both terms in Eq. (3.15) are
present, so we have

A½α� ≃ Tr

�
1

P̂β

ðαP̂β − P̂βαÞ
1 − γ5

2

�
: ð3:20Þ

At this stage, it seems that the β parameters could take
arbitrary values without affecting the value of the expres-

sion, because it comes with the factor 1þγ5

2
which will get

annihilated by the projector 1−γ5
2

at the end of the
expression. However, we stress that this β-parametrized
functional trace is still the sum of a nonconverging series,
so we need to introduce a regulator to make it well-
defined. As we will see below, once we regulate this
expression, different β’s will define different values for the
functional trace.
Motivated by the form of the expression in Eq. (3.20), we

choose to insert a damping factor to define the regularized
anomaly,

AΛ
β ½α�≡ Tr

�
f

�
−
P̂2
β

Λ2

�
1

P̂β

ðαP̂β − P̂βαÞ
1 − γ5

2

�
; ð3:21Þ

where the function fðuÞ satisfies the following conditions,

fð0Þ¼ 1; fðþ∞Þ¼ 0;
Z

∞

0

dufðuÞ well-defined;

ð3:22aÞ

un
dnf
dun

����
u¼0

¼ un
dnf
dun

����
u→þ∞

¼ 0 for n ≥ 1: ð3:22bÞ

Typical examples of such functions are

fðuÞ ¼ e−u; and fðuÞ ¼ 2

ð1þ uÞð2þ uÞ : ð3:23Þ

The renormalized anomaly is then given by

Aβ½α�≡ lim
Λ→∞

�
AΛ

β ½α� þ δα

Z
d4xLΛ

ct

�
; ð3:24Þ

where LΛ
ct is the local counterterm Lagrangian. Note in

particular that the regularized anomaly AΛ
β ½α� generically

contains an OðΛ2Þ piece that is irrelevant for β values
satisfying the Wess-Zumino consistency condition, in
which case we should include operators with appropriate
OðΛ2Þ coefficients in LΛ

ct to obtain a finite result for the
renormalized anomaly Aβ½α�. LΛ

ct can also contain OðΛ0Þ
counterterms, and their coefficients specify the renormal-
ization scheme.
Having included the damping factor fð−P̂2

β=Λ2Þ, the
functional trace AΛ

β ½α� is now the sum of an absolutely
convergent series. So at this point one is free to manipulate
this expression, e.g., perform cyclic permutations while
maintaining a genuine “¼” sign. Our regularization
prescription Eq. (3.21) is designed to facilitate the
evaluation with CDE. In particular, the damping
factor inserted commutes with the β-modified covariant
derivative,

�
f

�
−
P̂2
β

Λ2

��
P̂β ¼ 0: ð3:25Þ

Also note from the definition of P̂β in Eq. (3.19) that it
anticommutes with γ5,

P̂βγ
5 ¼ −γ5P̂β: ð3:26Þ

Making use of these identities, we can simplify
Eq. (3.21) to

AΛ
β ½α� ¼ Tr

�
f

�
−
P̂2
β

Λ2

�
αγ5

�
; ð3:27Þ

from which it is clear that the evaluation result will depend
on the parameters β.
One interpretation of this regulator is that the β

parameters determine the combination of background
fields that are turned on when computing the anomaly.
This effectively forces the path integral measureDχDχ† to
be organized according to the eigenmodes of the oper-
ator P̂β.

8

We will proceed with the evaluation ofAΛ
β ½α� in Sec. IV,

after the next two subsections which discuss how
our prescription connects to other familiar regularization
approaches, and how the Wess-Zumino consistency con-
dition is satisfied or violated by different choices of β.

8We leave implicit possible analytic continuations needed to
make P̂β a Hermitian operator that has a well-defined eigenvalue
problem.
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C. Connection to other regularization prescriptions

Let us make a few comments on the connection between
our regularization prescription Eq. (3.21) and some
approaches that often appear in the literature, in particular,
heat kernel regularization and Pauli-Villars regularization.
Regularizing Eq. (3.20) with a heat kernel regulator, one

obtains

AHK
β ≡ Tr

�
eP̂

2
β=Λ

2 1

P̂β

ðαP̂β − P̂βαÞ
1 − γ5

2

�
: ð3:28Þ

Comparing with Eq. (3.21), we see that the heat
kernel regularization amounts to choosing the damping
function to be

Heat kernel∶ fðuÞ ¼ e−u: ð3:29Þ

Alternatively, regularizing Eq. (3.20) with one Pauli-
Villars field, one obtains

APV;1
β ≡ Tr

��
1

P̂β

−
1

P̂β − Λ

�
ðαP̂β − P̂βαÞ

1 − γ5

2

�

¼ Tr

�
−Λ

P̂βðP̂β − ΛÞ ðαP̂β − P̂βαÞÞ
1 − γ5

2

�
¼ Tr

�
−Λ

P̂β − Λ
αγ5

�

¼ Tr

�
−Λ2

P̂2
β − Λ2

αγ5
�
¼ Tr

�
−Λ2

P̂2
β − Λ2

1

P̂β

ðαP̂β − P̂βαÞ
1 − γ5

2

�
: ð3:30Þ

Comparing with Eq. (3.21), we see that this amounts to
choosing the damping function to be

Pauli-Villars with one regulator field∶ fðuÞ ¼ 1

1þ u
:

ð3:31Þ

Note that this damping factor does not satisfy all the
conditions listed in Eq. (3.22), and hence would not
regulate all the divergences. This motivates considering
Pauli-Villars regularization with three regulator fields, for
which one obtains the regularized anomaly as

APV;3
β ≡ Tr

��
1

P̂β

−
1

P̂β −M1

þ 1

P̂β −M2

−
1

P̂β −M3

�
ðαP̂β − P̂βαÞ

1 − γ5

2

�

¼ Tr

�−ðM1 −M2 þM3ÞP̂2
β þ 2M1M3P̂β −M1M2M3

ðP̂β −M1ÞðP̂β −M2ÞðP̂β −M3Þ
αγ5

�

¼ Tr

�
M2

1M
2
3ð2P̂2

β −M2
2Þ

ðP̂2
β −M2

1ÞðP̂2
β −M2

2ÞðP̂2
β −M2

3Þ
αγ5

�
; ð3:32Þ

where we have assumed the relation M2
1 −M2

2 þM2
3 ¼ 0.

If we now take

M2
1 ¼ M2

3 ¼ Λ2; and M2
2 ¼ 2Λ2; ð3:33Þ

this simplifies to

APV;3
β ¼Tr

�
2Λ4

ðP̂2
β−Λ2ÞðP̂2

β−2Λ2Þ
1

P̂β

ðαP̂β− P̂βαÞ
1− γ5

2

�
:

ð3:34Þ

Comparing with Eq. (3.21), we see that this amounts to
choosing the damping function to be

Pauli-Villars with three regulator fields∶

fðuÞ ¼ 2

ð1þ uÞð2þ uÞ : ð3:35Þ

This damping function does satisfy all the conditions listed
in Eq. (3.22), and will successfully regularize all the
divergences.

D. Consistency with the Wess-Zumino condition

Since we have adopted the definition of anomaly as the
gauge variation of the bosonic effective action,
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A½α�≡ δαW½G� ¼ ðW½Gα� −W½G�ÞjOðαÞ; ð3:36Þ

we expect it to satisfy the Wess-Zumino consistency
condition, as reviewed in Sec. II A. However, an implicit
assumption behind this expectation is that there is a well-
defined W½G�. Importantly, our regularization prescription
presented in Sec. III B is directly applied to δαW½G�, instead
of W½G�. In this case, the Wess-Zumino consistency
condition may not be satisfied, because generic β values
may not correspond to applying the same (or “consistent”)
regularization prescription to W½Gα� and W½G�. In this
subsection, we check the Wess-Zumino consistency con-
dition for the regularized anomaly AΛ

β ½α� at the level of
Eq. (3.27), and give a partial but general answer to the
question of what β values lead to a Wess-Zumino consistent
anomaly,

δα1A
Λ
β ½α2� − δα2A

Λ
β ½α1�¼? AΛ

β ½−i½α1α2��: ð3:37Þ

We will revisit this question in Sec. V after evaluating
Eq. (3.27) in Sec. IV.
Using the expression ofAΛ

β ½α� in Eq. (3.27), we can write
the first term in Eq. (3.37) as (it is understood that we will
be dropping terms of order Oðα21; α22Þ throughout this
subsection)

δα1A
Λ
β ½α2� ¼ Tr

�
f

�
−
P̂2
β½α1�
Λ2

�
γ5α2

�
−Tr

�
f

�
−
P̂2
β

Λ2

�
γ5α2

�
;

ð3:38Þ

where P̂β½α1� denotes the gauge transformation of P̂β,

P̂β½α1�≡ i=∂þ =Gα1

�
1 − γ5

2
þ β

1þ γ5

2

�
¼ i=∂þ ½Uα1=GU

†
α1 þUα1ði=∂U†

α1Þ�

×

�
1 − γ5

2
þ β

1þ γ5

2

�
: ð3:39Þ

We note that when β ¼ 1, Eq. (3.38) is quite easy to
calculate because P̂β¼1 ¼ =P transforms covariantly and so
does the damping factor,

P̂β¼1½α1� ¼ Uα1P̂β¼1U
†
α1

⇒ f

�
−
P̂2
β¼1½α1�
Λ2

�
¼ Uα1f

�
−
P̂2
β¼1

Λ2

�
U†

α1 : ð3:40Þ

This leads us to the so-called covariant anomaly that
satisfies

δα1A
Λ
β¼1½α2� ¼ Tr

�
f

�
−
P̂2
β¼1

Λ2

�
γ5ðU†

α1α2Uα1 − α2Þ
�

¼ AΛ
β¼1½−i½α1α2��: ð3:41Þ

We see that this covariant anomaly generically would not
satisfy the Wess-Zumino consistency condition; it is off by
a factor of two compared to Eq. (3.37),

δα1A
Λ
β¼1½α2� − δα2A

Λ
β¼1½α1� ¼ 2AΛ

β¼1½−i½α1α2��
≠ AΛ

β¼1½−i½α1α2��: ð3:42Þ

The only exceptions are when the anomaly itself vanishes
AΛ

β¼1½α� ¼ 0 (once summed over fermion species) or when
the two gauge transformations under consideration com-
mute, ½α1α2� ¼ 0. In these cases, the Wess-Zumino con-
sistency condition itself is trivial, and the covariant
anomaly is also a consistent anomaly.
For general β values, P̂β does not transform covariantly,

and calculating Eq. (3.38) is more tedious. It is useful to
write P̂β in terms of its chirality components,

P̂β ¼ =P
1 − γ5

2
þ =Pβ

1þ γ5

2
; ð3:43Þ

with

=P ¼ i=∂þ =G ¼ i=∂þ
X
a

=Gata; ð3:44aÞ

=Pβ ≡ i=∂þ β=G ¼ i=∂þ
X
a

βa=Gata: ð3:44bÞ

The left-handed component is gauge covariant, but the
right-handed component transforms in a complicated man-
ner for general β values. To proceed, let us rewrite
Eq. (3.39) also in terms of its chirality components,

P̂β → P̂β½α1� ¼ =Lα1

1 − γ5

2
þ =Rα1

1þ γ5

2
; ð3:45Þ

with

=P → =Lα1 ≡Uα1=PU
†
α1 ; ð3:46aÞ

=Pβ → =Rα1 ≡ i=∂þ β½Uα1=GU
†
α1 þ Uα1ði=∂U†

α1Þ�: ð3:46bÞ

To check the Wess-Zumino consistency condition
Eq. (3.37), we can Taylor expand the damping factors in
Eq. (3.38) and examine a general kth power term therein.
We have
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Tr

��
P̂2
β½α1�

�
k
γ5α2

�
¼ Tr

��
ð=Rα1=Lα1Þk

1 − γ5

2
þ ð=Lα1=Rα1Þk

1þ γ5

2

�
γ5α2

�

¼ Tr

�
1þ γ5

2
ð=PU†

α1=Rα1Uα1Þk−1=PU†
α1 ½=Rα1α2�Uα1

�
; ð3:47aÞ

Tr½ðP̂2
βÞkγ5α2� ¼ Tr

�
1þ γ5

2
ð=P=PβÞk−1=P½=Pβα2�

�
: ð3:47bÞ

The difference between Eqs. (3.47a) and (3.47b) comes
from two sources:

U†
α1=Rα1Uα1 ¼ =Pβ þ ð=Rα1 − =PβÞ þ i½=Pβα1�; ð3:48aÞ

U†
α1 ½=Rα1α2�Uα1 ¼ ½=Pβα2� þ ½=Rα1 − =Pβα2� − i½α1; ½=Pβα2��:

ð3:48bÞ
One could go ahead with the calculation keeping track of
all these terms for general β values, but the result is not very

illuminating. Instead, let us examine the special case β ¼ 0
here. In this case, the right-handed component does not
transform,

=Rα1 ¼ =Pβ¼0 ¼ i=∂: ð3:49Þ

The middle term of each equation in Eq. (3.48) is therefore
absent, and we have

δα1A
Λ
β¼0½α2� − δα2A

Λ
β¼0½α1� ⊃ Tr½ðP̂2

β½α1�Þkγ5α2� − Tr½ðP̂2
βÞkγ5α2� − ðα1 ↔ α2Þ

¼ Tr

�
1þ γ5

2
½ð=PU†

α1=Rα1Uα1Þk−1 − ð=P=PβÞk−1�=P½=Pβα2�

þ 1þ γ5

2
ð=P=PβÞk−1=P½−iα1; ½=Pβα2��

�
− ðα1 ↔ α2Þ

¼ Tr

�
1þ γ5

2
ð=P=PβÞk−1=P½=Pβ;−i½α1α2��

�
¼ Tr½ðP̂2

βÞkγ5½−iα1α2��: ð3:50Þ

In the step leading to the second to last line, the first term in
the curly brackets gets canceled upon adding the expression
with α1 ↔ α2, while the second term combines with the
latter and we have used the Jacobi identity. Clearly,
summing over all the kth power relations like in
Eq. (3.50) will give us the Wess-Zumino consistency
condition in Eq. (3.37),

δα1A
Λ
β¼0½α2� − δα2A

Λ
β¼0½α1� ¼ AΛ

β¼0½−i½α1α2��: ð3:51Þ

Therefore, we see that in our regularization prescription,
β ¼ 0 (meaning βa ¼ 0, ∀ a) is always one possible choice
to ensure the Wess-Zumino consistency condition for any
symmetry group. However, from the present analysis it is
difficult to tell whether there are other Wess-Zumino
consistent choices. We will revisit this issue in Sec. V
using the BRST version of the Wess-Zumino condition
once we have the evaluation result for AΛ

β ½α�.

IV. MASTER FORMULA FOR THE ANOMALY
FROM CDE

Now we proceed with the evaluation of the regularized
anomaly, starting with Eq. (3.27),

AΛ
β ½α�¼Tr

�
f
�
−
P̂2
β

Λ2

�
αγ5

�

¼
Z

d4x
Z

d4q
ð2πÞ4 tr

�
f

�
−
ð=qþP̂βÞ2

Λ2

�
αγ5

�

¼
Z

d4x
Z

d4k
ð2πÞ4 tr

�
Λ4f

�
−
�
=kþP̂β

Λ

�
2
�
αγ5

�
: ð4:1Þ

Herewehave rescaled the integrationvariablekμ ≡ qμ=Λ, so
that it is easier to keep track of the 1=Λ powers. Eventually,
we are interested in the Λ → ∞ limit, so in what follows
we will be dropping the Oð1=ΛÞ terms that vanish in this
limit. This can be achieved by applying the simplified CDE,
while expanding and truncating the integrand accordingly,
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Λ4f

�
−
�
=kþ P̂β

Λ

�2�

¼ Λ4f

�
−k2 −

1

Λ
ð=kP̂β þ P̂β=kÞ −

1

Λ2
P̂2
β

�

¼ Λ4

�
fu þ f0uzþ

1

2
f00uz2 þ

1

6
f000u z3 þ

1

24
f0000u z4

�
; ð4:2Þ

where we have introduced the following notation for
convenience

u≡ −k2; and z≡ −
1

Λ
ð=kP̂β þ P̂β=kÞ −

1

Λ2
P̂2
β: ð4:3Þ

Plugging this back into Eq. (4.1) and simplifying the
expression, we get

AΛ
β ½α� ¼

Z
d4x

Z
d4k
ð2πÞ4 tr

��
−Λ2f0uP̂2

β þ
1

2
f00uP̂4

β

þ u
24

f000u
	
P̂2
βγμP̂βγ

μP̂β þ P̂βγμP̂βγ
μP̂2

β

þ P̂βγμP̂
2
βγ

μP̂β þ 4P̂4
β


�
αγ5

�
: ð4:4Þ

Note that the terms proportional to fu⁗ can be grouped in
pairs that take the form tr½γμð� � �Þγ5 þ ð� � �Þγμγ5� ¼ 0, so
they all cancel out; the same is true for a subset of the f00u and
f000u terms,which significantly reduces the number of terms in
the result. Performing the loop momentum integral (after a
Wick rotation as usual), we obtain

AΛ
β ½α� ¼

Z
d4x

i
16π2

�
−Λ2

�
ðufuÞj∞0 −

Z
∞

0

dufu

�
tr0

þ1

2
½ðuf0u−fuÞj∞0 �tr1þ

1

12
½ðu2f00u−2uf0uþ2fuÞj∞0 �

× ð2tr1− tr2− tr3Þ
�
: ð4:5Þ

We see that for a general damping functionfðuÞ that satisfies
the conditions in Eq. (3.22), the calculation yields the result,

AΛ
β ½α� ¼

Z
d4x

i
16π2

��
Λ2

Z
∞

0

dufðuÞ
�
tr0

þ 1

6
ðtr1 þ tr2 þ tr3Þ

�
; ð4:6Þ

where

tr0 ≡ tr½P̂2
βγ

5α�; ð4:7aÞ

tr1 ≡ tr½P̂4
βγ

5α�; ð4:7bÞ

tr2 ≡ −
1

2
tr½ðP̂2

βγμP̂βγ
μP̂β þ P̂βγμP̂βγ

μP̂2
βÞγ5α�; ð4:7cÞ

tr3 ≡ −
1

2
tr½P̂βγμP̂

2
βγ

μP̂βγ
5α�: ð4:7dÞ

Eq. (4.6) is our master formula for the regularized anomaly
before evaluation of the Dirac traces.

A. Evaluating the Dirac traces

In order to evaluate the Dirac traces in Eq. (4.7), it is con-
venient to use the chirality decomposition of P̂β in Eq. (3.43),

P̂β ¼ =P
1 − γ5

2
þ =Pβ

1þ γ5

2
; ð4:8Þ

where

=P≡ i=∂þ =G ¼ i=∂þ
X
a

=Gata; ð4:9aÞ

=Pβ ≡ i=∂þ β=G ¼ i=∂þ
X
a

βa=Gata: ð4:9bÞ

We also introduce the notation

Gμ
− ≡ Pμ − Pμ

β ¼ ð1 − βÞGμ ¼
X
a

ð1 − βaÞGaμta: ð4:10Þ

The evaluation of tr0 is straightforward,

tr0¼2trð½PμP
μ
β�αÞ¼−2ið1−βÞtr½ð∂μGμÞα�

¼IBP2ið1−βÞtr½Gμð∂μαÞ�¼2i
X
a

trðtatbÞð1−βaÞGa
μð∂μαbÞ:

ð4:11Þ

Turning to tr1, tr2, tr3, we first note that they can bewritten in
the following form,9

tr1 ¼
1

2
tr½=P=Pβ=P½=Pβ; α�ð1þ γ5Þ�; ð4:12aÞ

tr2 ¼
1

2
tr½ð=P=P2

β þ =P2
β=Pþ =P3Þ½=Pβα�ð1þ γ5Þ

þ =Pβ=P=Pβ½=Pβα�ð1 − γ5Þ�; ð4:12bÞ

tr3 ¼ −4tr½ðPνPμP
μ
β þ Pμ

βPμPνÞ½Pν
βα��; ð4:12cÞ

where we have used γμγνγμ ¼ −2γν, γμγνγργμ ¼ 4ηνρ to
simplify the products of gamma matrices. Upon evaluating
the Dirac traces we can combine terms in the sum of all three
traces such that all Pμ

β factors appear in commutators,

9To arrive at these expressions, we have used cyclic permu-
tation to move Pμ

β to the right in half of the terms. Generally this is
illegal since “tr” is only over the internal space while Pμ

β contains
∂
μ which is a spacetime operator. However, such cyclic permu-
tations are innocuous in CDE calculations of functional traces
that arise from evaluating the path integral at one loop. In fact,
they have been used in many previous functional matching
calculations. We clarify this subtle point in Appendix A.
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X3
i¼1

tri ¼ trf−2ð½3½Pμ
βP

ν
β� þ 2½Pμ

βG
ν
−� − ½Pν

βG
μ
−� þ ½Gμ

−Gν
−�; G−μ� − ½Pβ;μ; ½Pμ

βG
ν
−� − ½Gμ

−Gν
−�� −Gμ

−Gν
−G−μÞ½Pβ;να�

− iεμνρσ½ð2Gμ
−Gν

−Gρ
− þ f3½Pμ

β; P
ν
β� þ 2½Pμ

β; G
ν
−�; Gρ

−gÞ½Pσ
β; α� þ 3½Pμ

β; P
ν
β�½Pρ

β; P
σ
β�α�g: ð4:13Þ

HavingPμ
β in commutators is important because it contains the derivative ∂μ, which as a functional operator is understood to act

on everything to its right. But when it appears in a commutator, its action is local (or “closed”) on the object appearing in the
commutator; for example10

½∂μ; GμðxÞ�ϕðxÞ ¼ ∂
μGμðxÞϕðxÞ −GμðxÞ∂μϕðxÞ ¼ ð∂μGμðxÞÞϕðxÞ: ð4:14Þ

B. The evaluated master formula

Gathering the results in Eqs. (4.11) and (4.13) and substituting in Eqs. (4.9b) and (4.10) for Pμ
β and Gμ

−, we obtain our
evaluated master formula for the regularized anomaly expressed in the matrix notation,

AΛ
β ½α� ¼

Z
d4x

1

16π2
tr

�
−2ð1 − βÞ

�
Λ2

Z
∞

0

dufðuÞ
�
Gμð∂μαÞ

þ 1

3
ð1 − βÞði½ð1þ 4βÞð∂μGνÞ − ð1þ 2βÞð∂νGμÞ − ið1þ 3β2Þ½Gμ; Gν�; Gμ�

þ ð∂2GνÞ þ ið1 − 2βÞ½ð∂μGμÞ; Gν� −Gμð1 − βÞGνð1 − βÞGμÞðDν
βαÞ

−
1

2
εμνρσ

�
1

3
fð1 − βÞGρ; 2ð1þ 2βÞð∂μGνÞ − ið1þ 2β þ 3β2ÞGμGνgðDσ

βαÞ

þ 4½βð∂μGνÞ − iβ2GμGν�½βð∂ρGσÞ − iβ2GρGσ�α
��

; ð4:15Þ

where

ðDμ
βαÞ≡ ð∂μαÞ − iβ½Gμα�: ð4:16Þ

In Eq. (4.15) we have carefully kept the β factors in appropriate places such that each of them is associated with the gauge
field that immediately follows it.
Depending on the application, it is sometimes more convenient to write out the adjoint components of the master formula

in Eq. (4.15), which gives

AΛ
β ½α� ¼

Z
d4x

1

16π2

�
−
X
a;b

trðtatbÞð1 − βaÞ
�
2

�
Λ2

Z
∞

0

dufðuÞ
�
Ga

μð∂μαbÞ

þ 1

3
ffaef½ð1þ 4βaÞð∂μGe

νÞ − ð1þ 2βaÞð∂νGe
μÞ þ ð1þ 3β2aÞfeghGg

μGh
ν �Gfμ

− ð∂2Ga
νÞ þ ð1 − 2βaÞfaefð∂μGe

μÞGf
νgð∂ναb þ βbfbcdGc

να
dÞ
�

−
X
a;b;c;d

trðtatbtctdÞ 1
3
ð1 − βaÞð1 − βbÞð1 − βcÞGa

μGb
νGcμð∂ναd þ βdfdefGe

να
fÞ

−
X
a;b;c

trðfta; tbgtcÞ 1
4
εμνρσ½βaβbðFaμν

lin þ βafadeGdμGeνÞðFbρσ
lin þ βbfbfgGfρGgσÞαc

þ 1

3
ð1 − βbÞð2ð1þ 2βaÞFaμν

lin þ ð1þ 2βa þ 3β2aÞfadeGdμGeνÞGbρð∂σαc þ βcfcfgGfσαgÞ�
�
; ð4:17Þ

where Fμν
lin ≡ ð∂μGνÞ − ð∂νGμÞ is the part of Fμν linear in the gauge fields, and we have used the fact that β takes the same

value within a simple group (only for which fabc may be nonzero).

10The local nature of all derivative operators in the CDE is also the reason why the otherwise illegal cyclic permutation in the internal
trace “tr” in intermediate steps actually leads to the correct result; see Appendix A for a detailed discussion.
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In the next section, we will apply the evaluated master
formula, written in matrix and component forms in
Eqs. (4.15) and (4.17), respectively, to obtain explicit
results for various gauge group sectors. Before delving
into the details, let us first quickly note two special β
choices which directly relate to the discussion in Sec. III D.

(i) If βa ¼ 1 (∀ a), all but the last line in Eq. (4.15)
vanishes, and the result takes a gauge-covariant form,

AΛ
β¼1½α� ¼

Z
d4x

�
−

1

32π2

�
εμνρσtrðFμνFρσαÞ

¼
Z

d4x

�
−

1

64π2

�
trðfta; tbgtcÞ

× εμνρσFaμνFbρσαc: ð4:18Þ

As discussed in Sec. III D, the covariant anomaly
generically would not satisfy the Wess-Zumino con-
sistency condition. However, we also mentioned
some exceptions to this, such as when the anomaly
itself is zero. From the equation above, we see that
this can be achieved by the standard anomaly
cancellation condition trðfta; tbgtcÞ ¼ 0, where we
recall that the internal trace “tr” also sums over the
fermion species.

(ii) If βa ¼ 0 (∀ a), we learned from Sec. III D
that the Wess-Zumino consistency condition should
be satisfied. In this case, Eq. (4.15) indeed repro-
duces the familiar result for the consistent
anomaly,11

AΛ
β¼0½α� ¼

Z
d4x

1

16π2
tr

�
−2

�
Λ2

Z
∞

0

dufðuÞ
�
Gμð∂μαÞ þ

1

3
½ð∂2GνÞ þ i½ð∂μGμÞGν� þ i½FμνGμ� −GμGνGμ�ð∂ναÞ

−
1

6
εμνρσfGρ; 2ð∂μGνÞ − iGμGνgð∂σαÞ

�

¼
Z

d4x

�
1

48π2
εμνρσtr½ð∂μαÞðGνFρσ þ iGνGρGσÞ� − δαLΛ

ct;0

�

¼
Z

d4x

�
1

48π2
trðfta; tbg; tcÞεμνρσð∂μαaÞ½ð∂νGb

ρÞ þ
1

4
fbdeGd

νGe
ρ�Gc

σ − δαLΛ
ct;0

�
; ð4:19Þ

up to an irrelevant anomaly given by the gauge variation of
the following local counterterm,

LΛ
ct;0 ¼

1

16π2

�
Λ2

Z
∞

0

dufðuÞ
�
trðGμGμÞ

þ 1

96π2
tr

�
ð∂μGμÞ2 − 2iFμνGμGν þ

1

2
GμGνGμGν

�
:

ð4:20Þ

The relevant anomaly in Eq. (4.19) is proportional to
trðfta; tbgtcÞ, which depends on the fermion content of
the theory. The symmetries under consideration can be
gauged when there is no relevant anomaly, that is, when the
standard anomaly cancellation condition trðfta; tbgtcÞ ¼ 0
is satisfied.

V. IMPLICATIONS OF THE MASTER FORMULA

In this section, we apply Eqs. (4.15) and (4.17) derived in
the previous section, which are evaluation results of our
master formula Eq. (4.6), to obtain explicit results for the
anomaly in all possible combinations of the continuous
group sectors. We consider in turn a simple non-Abelian
group, semisimple product of non-Abelian sectors, product
of Abelian sectors, and finally the general case of product

of non-Abelian and Abelian sectors. In each case, we aim to
answer the following questions:

(i) What values of the regularization parameters β are
consistent with the Wess-Zumino condition?

(ii) For these Wess-Zumino consistent β choices, what is
the relevant anomaly, and what are the counterterms
associated with the irrelevant anomaly?

(iii) What are the conditions for the relevant anomaly to
vanish (in which case the symmetries under con-
sideration can be gauged in the quantum theory)?

To investigate the first question, we use the BRST form
of the Wess-Zumino consistency condition, which states
that [recall the discussion around Eq. (2.12)] when the
gauge variation parameter α is replaced by the ghost field
ω, the anomaly is BRST-closed,

δBRSTAβ½ω� ¼ 0; ð5:1Þ

where Aβ½ω� is understood as the renormalized anomaly
defined in Eq. (3.24). Since the gauge variation of local
counterterms is always BRST-closed due to the nil-potency
of the BRST transformation, this requires the regularized
anomaly is also BRST-closed,

11For the original diagrammatic derivation, see Ref. [6].
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δBRSTAΛ
β ½ω� ¼ 0: ð5:2Þ

Wewill check this condition up toOð1=ΛÞ terms. To do so,
it is useful to recall that under the BRST transformation,

δBRSTGμ ¼ Dμω ¼ ∂μω − i½Gμ;ω�; ð5:3aÞ

δBRSTFμν ¼ −i½Fμν;ω�; ð5:3bÞ

δBRSTω ¼ iω2; ð5:3cÞ

δBRSTð∂μω − iβ½Gμ;ω�Þ ¼ ið1 − βÞfω; ∂μωg: ð5:3dÞ

In answering the second and third questions, we will see
how the well-known results for anomalies are recovered in
our formalism with specific (Wess-Zumino consistent) β
choices. We will also see that for all the Wess-Zumino
consistent anomalies, the standard anomaly cancellation
condition trðfta; tbgtcÞ ¼ 0 will guarantee that the relevant
anomaly vanishes (which means the symmetries can be
gauged).

A. Simple non-Abelian group

For a simple non-Abelian group, all the β factors are
degenerate, so we omit their adjoint indices and simply
write all of them as β. We can first verify that the OðΛ2Þ
term in Eq. (4.15) is BRST-closed,

δBRSTAΛ
β ½ω�jOðΛ2Þ ¼ −

1

8π2

Z
d4x

�
Λ2

Z
∞

0

dufðuÞ
�
ð1− βÞ

× tr½ð∂μωÞð∂μωÞ þ ifω;Gμð∂μωÞg�
¼ 0: ð5:4Þ

Note that cyclic permutation of a Grassmann odd matrix in
the trace is accompanied by a minus sign if it passes
through an odd number of Grassmann odd matrices,
e.g., tr½ωGμð∂μωÞ� ¼ −tr½Gμð∂μωÞω�.
To derive constraints on β from the Wess-Zumino

consistency condition, we need to consider the OðΛ0Þ
terms. The BRST transformation of these terms is quite

tedious. However, as we will show, it turns out sufficient to
work out just a subset of terms. Let us first note that
AΛ

β ½ω�jOðΛ0Þ contains terms of the form,

ωG∂3; ωG2
∂
2; ωG3

∂; ωG4; ð5:5Þ

whose BRST transformation contains terms of the form,12

ω2G∂3; ω2G2
∂
2; ω2G3

∂; ω2G4: ð5:6Þ

Wewill see that the ω2G4 and ω2G∂3 terms are sufficient to
constrain β.
Theω2G4 terms can only come from BRST transforming

the ωG4 terms in AΛ
β ½ω�. Those ωG4 terms that do not

involve εμνρσ are easily seen to vanish upon cyclic permu-
tation, and we are left with

AΛ
β ½ω�jG4ω¼

Z
d4x

1

24π2
βð1þβþβ2ÞεμνρσtrðGμGνGρGσωÞ

¼
Z

d4x

�
−

1

192π2

�
βð1þβþβ2Þtrðfta;tbgtcÞ

×εμνρσfadefbfgGdμGeνGfρGgσωc: ð5:7Þ

Since δBRSTAΛ
β ½ω�jG4ω2 ¼ 0 requires AΛ

β ½ω�jG4ω ¼ 0, while
ð1þ β þ β2Þ is positive-definite, we see that

δBRSTAΛ
β ½ω�jG4ω2 ¼ 0 ⇒ β ¼ 0 or trðfta; tbgtcÞ ¼ 0:

ð5:8Þ

As discussed around Eq. (4.19), β ¼ 0 reproduces the
standard consistent anomaly, plus an irrelevant piece that is
obviously BRST-closed. The other option is the standard
anomaly cancellation condition trðfta; tbgtcÞ ¼ 0; when
this is true, the terms inAΛ

β that are proportional to εμνρσ all
vanish. In this case, it remains to check whether there are
additional constraints on the value of β from the terms not
involving εμνρσ . To do so, we focus on the ω2G∂3 terms in
δBRSTAΛ

β ½ω�, for which we find, after some simplification
using cyclic permutation and integration by parts,

δBRSTAΛ
β ½ω�jω2G∂3 ¼

Z
d4x

i
48π2

βð1 − βÞtrfð∂2½Gν;ω� − ½ð∂2GνÞ;ω�Þð∂νωÞg

¼
Z

d4x
1

48π2
βð1 − βÞtrðtatbÞfacd½ð∂2GcνÞωd − ∂

2ðGcνωdÞ�ð∂νωbÞ: ð5:9Þ

Here the group theory factor trðtatbÞ ∝ δab is always nonvanishing, sowe see the only other option (besides β ¼ 0) thatmakes
δBRSTAΛ

β ½ω�jω2G∂3 vanish is β ¼ 1, in which case the εμνρσ-independent part of AΛ
β simply vanishes.

12Note that the ω2
∂
4 term from BRST transforming the sole ωG∂3 term in Eq. (4.15) vanishes.
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In summary, we conclude that consistency with theWess-
Zumino condition requires either of the following to be true:

(i) β ¼ 0, in which case the result is given by Eq. (4.19).
This reproduces the standard consistent anomaly plus
an irrelevant piece that is equal to the gauge variation
of the local counterterm given by Eq. (4.20). As
discussed below Eq. (4.19), for the relevant anomaly
to vanish in this case, one needs the standard anomaly
cancellation condition trðfta; tbgtcÞ ¼ 0.

(ii) trðfta; tbgtcÞ ¼ 0 and β ¼ 1, in which case anomaly
cancellation happens and the regularized anomaly
vanishes altogether, AΛ

β ½α� ¼ 0.

B. Product of non-Abelian sectors

For a semisimple product of non-Abelian sectors, the
only additional term inAΛ

β ½α� to consider is the trðtatbtctdÞ
term in Eq. (4.17). Both trðtatbÞ and trðfta; tbgtcÞ vanish
when the generators belonging to more than one simple
sectors are involved, while trðtatbtctdÞ can be nonzero

when two of the four generators belong to one
simple sector and the other two belong to another simple
sector.
Upon imposing the conditions derived in the previous

subsection on each simple non-Abelian sector, we
see that there are only two scenarios. If β ¼ 1 (and
trðfta; tbgtcÞ ¼ 0) for either sector, the aforementioned
cross term in AΛ

β ½α� vanishes because of the ð1 − βaÞð1 −
βbÞð1 − βcÞ factor. If β ¼ 0 for both sectors, the cross term
is contained in the general result Eq. (4.19), specifically the
gauge variation of the OðG4Þ counterterm in Eq. (4.20).
Therefore, no additional constraints arise from the Wess-
Zumino consistency condition beyond those already
derived for each simple sector. The same is true for the
relevant anomaly cancellation condition.

C. Product of Abelian sectors

For an Abelian gauge group, we can set fabc ¼ 0 and
Fμν
lin ¼ Fμν in Eq. (4.17) to obtain

AΛ
β ½α� ¼

Z
d4x

1

16π2

�
−
X
a;b

trðQaQbÞ · ð1 − βaÞ
�
2

�
Λ2

Z
∞

0

dufðuÞ
�
Ga

μ −
1

3
ð∂2Ga

μÞ
�
ð∂μαbÞ

−
X
a;b;c;d

trðQaQbQcQdÞ ·
1

3
ð1 − βaÞð1 − βbÞð1 − βcÞGaμGbνGc

μð∂ναdÞ

−
X
a;b;c

trðQaQbQcÞ ·
1

8
½ð1þ βaÞð1þ βbÞ þ

1

3
ð1 − βaÞð1 − βbÞ�εμνρσFa

μνFb
ρσα

c

�
; ð5:10Þ

where we have written the group generators ta as Qa since they are just charges under the Uð1Þ’s, and “tr” means summing
over all chiral fermions. In the trðQaQbQcÞ term, we have integrated by parts and symmetrized the coefficient between a
and b,

βaβb þ
1

3
ð1þ 2βaÞð1 − βbÞ →

1

4
½ð1þ βaÞð1þ βbÞ þ

1

3
ð1 − βaÞð1 − βbÞ�: ð5:11Þ

Under the BRST transformation, only the gauge fields Ga
μ transform nontrivially while Fa

μν and ωa stay invariant, and we
obtain

δBRSTAΛ
β ½ω�¼

Z
d4x

1

16π2

�X
a;b

trðQaQbÞ ·ðβa−βbÞ
��

Λ2

Z
∞

0

dufðuÞ
�
ð∂μωaÞ−1

6
ð∂2∂μωaÞ

�
ð∂μωbÞ

þ
X
a;b;c;d

trðQaQbQcQdÞ ·
1

6
ð1−βaÞð1−βbÞðβc−βdÞ½GaμGb

μð∂νωcÞð∂νωdÞþ2Ga
μGb

νð∂μωcÞð∂νωdÞ�
�
; ð5:12Þ

where we have used the (anti)symmetry between the

adjoint indices to simplify the expression. From Eq. (5.12)

we see that the Wess-Zumino consistency condition

δBRSTAΛ
β ½ω� ¼ 0 requires the following:

(i) βa ¼ βb for any two Abelian sectors a, b for
which trðQaQbÞ ≠ 0.

(ii) Either βa ¼ βb ¼ βc ¼ βd or at least two of them are
equal to 1 for any group of Abelian sectors for
which trðQaQbQcQdÞ ≠ 0.13

13This applies to groups of two, three and four Abelian sectors
since a, b, c, d do not have to be distinct.
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When these conditions are satisfied, symmetrizing the indices allows one to show that the trðQaQbÞ and trðQaQbQcQdÞ
terms in Eq. (5.10), if nonzero, are equal to the gauge variation of local counterterms, and we have

AΛ
β ½α� ¼

Z
d4x

�
−δαL

ðβÞ
ct −

1

128π2
X
a;b;c

trðQaQbQcÞ½ð1þ βaÞð1þ βbÞ þ
1

3
ð1 − βaÞð1 − βbÞ�εμνρσFa

μνFb
ρσα

c

�
; ð5:13Þ

where

LðβÞ
ct ¼ 1

16π2

�X
a;b

trðQaQbÞð1 − βaÞ
��

Λ2

Z
∞

0

dufðuÞ
�
Ga

μGbμ −
1

6
ð∂2Ga

μÞGbμ

�

þ
X
a;b;c;d

trðQaQbQcQdÞ ·
1

12
ð1 − βaÞð1 − βbÞð1 − βcÞGaμGbνGc

μGd
ν

�
: ð5:14Þ

Therefore, as in the non-Abelian case, a relevant anomaly
may only come from terms with three gauge group
generators. But unlike the non-Abelian case, β values other
than 0 and 1 are allowed. Again, we see that the standard
anomaly cancellation condition trðfta; tbgtcÞ ¼ 0 [i.e.,
trðQaQbQcÞ ¼ 0 in the Abelian case] would guarantee
that the relevant anomaly vanishes.14

1. Uð1ÞV × Uð1ÞA example

Let us apply the results above to the classic example of
two Abelian sectors Uð1ÞV ×Uð1ÞA. The matter content is
assumed to consist of pairs of Weyl fermions with opposite
(identical) charges under Uð1ÞV (Uð1ÞA); the minimal case
is that of two Weyl fermions with ðQV;QAÞ ¼ ð1; 1Þ and
ð−1; 1Þ, respectively. So the potentially nonzero traces are

trðQ2
VÞ; trðQ2

AÞ; ð5:15aÞ

trðQ2
VQAÞ; trðQ3

AÞ; ð5:15bÞ

trðQ4
VÞ; trðQ2

VQ
2
AÞ; trðQ4

AÞ: ð5:15cÞ

The fact that trðQ2
VQ

2
AÞ ≠ 0 implies that to satisfy the Wess-

Zumino consistency condition we must choose

βV ¼ βA or βV ¼ 1 or βA ¼ 1: ð5:16Þ

Assuming one of these is true, we can readily obtain the
anomaly result from Eq. (5.13),

AΛ
β ½α� ¼

Z
d4x

�
−δαL

ðβV ;βAÞ
ct −

1

64π2
trðQ2

VQAÞ
�
ð1þ βVÞð1þ βAÞ þ

1

3
ð1 − βVÞð1 − βAÞ

�
εμνρσF

μν
V Fρσ

A αV

−
1

128π2
trðQ2

VQAÞ
�
ð1þ βVÞ2 þ

1

3
ð1 − βVÞ2

�
εμνρσF

μν
V Fρσ

V αA

−
1

128π2
trðQ3

AÞ
�
ð1þ βAÞ2 þ

1

3
ð1 − βAÞ2

�
εμνρσF

μν
A Fρσ

A αA

�
: ð5:17Þ

As discussed in footnote 14, there is in fact an additional
possible counterterm, εμνρσF

μν
V VρAσ (where V and A denote

gauge fields), whose gauge variation produces a linear
combination of εμνρσF

μν
V Fρσ

A αV and εμνρσF
μν
V Fρσ

V αA upon
integration by parts. We will come back to this point
shortly.

Equation (5.17) reproduces the standard result if we
further demand that Uð1ÞV is not anomalous and is
preserved by renormalization. This means that we should

pick the βV ¼ 1 option in Eq. (5.16) so that LðβV ;βAÞ
ct does

not involveUð1ÞV-breaking operators [see Eq. (5.14)]. This
also rules out the additional counterterm εμνρσF

μν
V VρAσ

discussed above. For Uð1ÞV to be nonanomalous, the
coefficient of the αV term in Eq. (5.17) must vanish, which
requires βA ¼ −1 for βV ¼ 1. We conclude that the
standard result corresponds to the specific scheme choice
in our formalism,

ðβV; βAÞ ¼ ð1;−1Þ; ð5:18Þ

14One may further ask whether the trðQaQbQcÞ terms in
Eq. (5.13) may also be irrelevant. Indeed, there are local
counterterms of the form εμνρσFa

μνGb
ρGc

σ one can write down.
However, there may not be enough such counterterms to absorb
all the anomalies; in particular, if trðQ3

aÞ ≠ 0 for some Abelian
sector a there must be a relevant anomaly, since the counterterm
above vanishes when a ¼ b ¼ c.
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in which case Eq. (5.17) becomes

AΛ
ð1;−1Þ½α� ¼

Z
d4x

�
−δαL

ð1;−1Þ
ct −

1

32π2
εμνρσ

�
trðQ2

VQAÞFμν
V Fρσ

V þ trðQ3
AÞ ·

1

3
Fμν
A Fρσ

A

�
αA

�
; ð5:19Þ

with the following Uð1ÞV-preserving counterterm,

Lð1;−1Þ
ct ¼ 1

16π2

�
trðQ2

AÞ
�
2

�
Λ2

Z
∞

0

dufðuÞ
�
AμAμ −

1

3
ð∂2AμÞAμ

�
þ trðQ4

AÞ ·
2

3
ðAμAμÞ2

�
: ð5:20Þ

It is interesting to note that if we instead choose

ðβV; βAÞ ¼ ð0; 0Þ; ð5:21Þ

which is also Wess-Zumino consistent but does not manifestly preserve Uð1ÞV , we would obtain

AΛ
ð0;0Þ½α� ¼

Z
d4x

�
−δαL

ð0;0Þ
ct −

1

48π2
εμνρσtrðQ2

VQAÞFμν
V Fρσ

A αV

−
1

96π2
εμνρσ

�
trðQ2

VQAÞFμν
V Fρσ

V þ trðQ3
AÞFμν

A Fρσ
A

�
αA

�
: ð5:22Þ

This is in fact related to the standard result Eq. (5.19) by a
counterterm,

AΛ
ð0;0Þ½α� ¼ AΛ

ð1;−1Þ½α� þ δα

Z
d4xðLð1;1Þ

ct − Lð0;0Þ
ct þ ΔLctÞ;

ð5:23Þ

where

ΔLct ¼
1

24π2
εμνρσtrðQ2

VQAÞFμν
V VρAσ: ð5:24Þ

Therefore, ðβV; βAÞ ¼ ð0; 0Þ actually gives the same rel-
evant anomaly as the standard result, although at the cost of
Uð1ÞV-breaking counterterms. Note that it is impossible to
remove both εμνρσF

μν
V Fρσ

A αV and εμνρσF
μν
V Fρσ

V αA using the
counterterm, in agreement with the familiar result that
Uð1ÞV and Uð1ÞA cannot be simultaneously conserved in
the VVA triangle diagram. Also, as discussed in foot-
note 14, there is always a relevant Uð1Þ3A anomaly which
cannot be removed by counterterms.

D. Product of Abelian and non-Abelian sectors

Finally, we consider the cross terms in AΛ
β ½α� between

Abelian and non-Abelian sectors. These include the
trðfta; tbgtcÞ terms in Eq. (4.17) with two of the adjoint
indices in the same non-Abelian sector and the third index
in an Uð1Þ sector, and the trðtatbtctdÞ terms with two of the

adjoint indices in the same non-Abelian sector and the other
two in either one or two Uð1Þ sectors. So in what follows
we focus on a theory with one simple non-Abelian sector
and up to two Uð1Þ sectors, which we call Uð1ÞA and
Uð1ÞB. To ease the presentation we reserve the notationGμ,
Fμν, α, ta that we have been using in the general calculation
for the non-Abelian sector here, while denoting the
corresponding objects in the Uð1Þ sectors by Aμ, Fμν

A ,
αA, QA and Bμ, Fμν

B , αB, QB. We use βNA to represent the
common β parameter associated with all the non-Abelian
generators, and use βA, βB for the β parameters of the Uð1Þ
sectors.
From the discussion in Sec. VA we know that the only

values of βNA consistent with the Wess-Zumino condition
in the non-Abelian sector are 1 and 0. Let us first consider
the simpler βNA ¼ 1 case. Here the trðtatbQAQBÞ terms are
all multiplied by ð1 − βNAÞ and vanish, while for the
trðtatbQAÞ terms we have [switching to matrix notation
and following Eq. (4.15)]

AΛ
β ½α� ⊃

Z
d4x

�
−

1

32π2

�
εμνρσtr½FμνFρσαA

þ 2βAFμνFρσ
A αþ 2ð1 − βAÞFμνAρðDσαÞ�

¼
Z

d4x

�
−

1

32π2

�
εμνρσtr½FμνFρσαA

þ ð1þ βAÞFμνFρσ
A α�: ð5:25Þ
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To arrive at the last equation we have integrated by parts and
used the Bianchi identity εμνρσðDσFμνÞ ¼ 0. Performing
the BRST transformation, we find

δBRSTAΛ
β ½ω� ⊃

Z
d4x

i
32π2

ð1þ βAÞεμνρσtrðFμνFρσ
A ω2Þ:

ð5:26Þ

So for these cross terms in the anomaly to be consistent with
the Wess-Zumino condition, we must have

βA ¼ −1 or trðtatbQAÞ ¼ 0 ðβNA ¼ 1 caseÞ: ð5:27Þ

As a result, Eq. (5.25) either vanishes due to trðtatbQAÞ ¼ 0,

in which case there is no crossed anomaly, or only the
FμνFρσαA term survives; the latter cannot be obtained as a
local counterterm variation and is therefore a relevant
anomaly. In fact, we have just recovered the non-Abelian
generalization of the Uð1ÞV ×Uð1ÞA example in the pre-
vious subsection [cf. Eq. (5.19)]; swapping Uð1ÞV for a
nonanomalous non-Abelian sector [recall that βNA ¼ 1

requires trðfta; tbgtcÞ ¼ 0] leads to the same crossed
anomaly with a chiral Uð1Þ.
Next we consider the other option, βNA ¼ 0, for the non-

Abelian sector. In this case, both the trðtatbQAÞ and
trðtatbQAQBÞ terms can be nonzero. After some algebra
we can organize the trðtatbQAÞ terms into the follow-
ing form:

AΛ
β ½α� ⊃

Z
d4x

�
−

1

96π2

�
εμνρσtr

�
FμνFρσαA þ iGμGνFρσαA þ 2GμGνGρGσαA

þ 3

2
ð1þ βAÞFμν

linF
ρσ
A α − ð1 − βAÞFμνAρð∂σαÞ

�
: ð5:28Þ

Among the five terms, three (first, third, and fourth) are
actually BRST invariant. Overall, we find Eq. (5.28) has the
following BRST transformation:

δBRSTAΛ
β ½ω� ⊃

Z
d4x

�
−

1

96π2

�
βAεμνρσtr½Fμνð∂ρωÞð∂σωAÞ�:

ð5:29Þ

For this to vanish, we need

βA ¼ 0 or trðtatbQAÞ ¼ 0 ðβNA ¼ 0 caseÞ: ð5:30Þ

So the crossed anomaly in Eq. (5.28) either vanishes due to
trðtatbQAÞ ¼ 0 or is contained in the general β ¼ 0 formula
Eq. (4.19) as a relevant anomaly.
Meanwhile, for the trðtatbQAQBÞ terms, we find

AΛ
β ½α� ⊃

Z
d4x

�
−

1

48π2

�
trfð1 − βAÞðfGμ; GνgAμ þ GμGμAνÞð∂ναBÞ þ ð1 − βBÞðfGμ; GνgBμ þ GμGμBνÞð∂ναAÞ

þ 2ð1 − βAÞð1 − βBÞ½ðAμBν þ AνBμÞGμ þ AμBμGν�ð∂ναÞg; ð5:31Þ

which transforms under BRST as

δBRSTAΛ
β ½ω� ⊃

Z
d4x

1

48π2
trfðβA − βBÞ½2GμGνð∂μωAÞ þ GμGμð∂νωAÞ�ð∂νωBÞ

− 2ð1 − βAÞβB½Gμð∂νωÞAμ þ Gνð∂μωÞAμ þ Gμð∂μωÞAν�ð∂νωBÞ
− 2ð1 − βBÞβA½Gμð∂νωÞBμ þ Gνð∂μωÞBμ þGμð∂μωÞBν�ð∂νωAÞg: ð5:32Þ

For this to vanish, we need

βA ¼ βB ¼ ð0 or 1Þ or trðtatbQAQBÞ ¼ 0 ðβNA ¼ 0 caseÞ: ð5:33Þ

So the crossed anomaly in Eq. (5.31) either vanishes due to trðtatbQAQBÞ ¼ 0 or βA ¼ βB ¼ 1, or is contained in the
general β ¼ 0 formula Eq. (4.19) as an irrelevant anomaly.
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For both cases discussed above, βNA ¼ 1 and βNA ¼ 0,
the relevant part of the crossed anomaly is proportional to
trðtatbQAÞ, so the anomaly cancellation condition is con-
tained in the standard one, trðfta; tbgtcÞ ¼ 0.

VI. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we introduced a novel regularization
prescription to calculate chiral anomalies for global and
gauge symmetries using CDE. The calculation was per-
formed in d ¼ 4 spacetime dimensions, thereby avoiding
any of the subtleties that arise when computing chiral
anomalies using dimensional regularization. The master
formula obtained in this framework integrates various
known results regarding anomalies.
In a companion paper [38], we will extend the formalism

developed here to incorporate the effects of higher dimen-
sional operators into the anomaly calculation. This has an
immediate application to the Standard Model effective field
theory (SMEFT). Recently, arguments that the SMEFT is
not anomalous were provided in Refs. [39,40]. In Ref. [38],
we will give an explicit proof using CDE that SMEFT is
nonanomalous when including operators with general
scalar, vector, and tensor couplings to fermion bilinears.
In future work, we would like to apply this formalism to

compute the EFTs that emerge when integrating out
fermions with chiral couplings (for example, integrating
out the top quark in the Standard Model). This is well-
known to produce an EFT with a Wess-Zumino-Witten
term [37,41,42]. It should be possible to extend the
calculations presented here to reproduce this result in a
new way. This will require understanding the interplay of
the method presented here and the results for other func-
tional traces that are evaluated using dimensional regulari-
zation, since the functional EFT matching framework relies
on the method of regions, which is implemented in
dimensional regularization. At least for one-loop calcula-
tions, the use of different regulators may not cause any
particular difficulties. Once this is understood, functional
methods for one-loop matching will be a complete frame-
work for integrating out any heavy particles with spins 0,
1=2, and 1.
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APPENDIX A: COMMENTS ON CYCLIC
PERMUTATION

In this appendix, we clarify a subtle point in performing
CDE calculations, i.e., when (and why) we are allowed to
perform cyclic permutations on the argument of a func-
tional trace “Trð� � �Þ”, and a lowercase trace “trð� � �Þ”which
is only over the internal indices.
We begin by recalling that a functional operator O is a

matrix that acts on both the functional vector space jxi and
some internal vector space. The latter is typically finite
dimensional, which we can label by a discrete index i. We
can then write out the concrete relation between the
functional trace “Tr” and the internal trace “tr”:

TrðOÞ ¼
Z

d4xhxjtrðOÞjxi ¼
Z

d4xhxjOiijxi: ðA1Þ

Clearly, the functional trace “Tr” sums over all the indices
of the matrixO, and therefore it is always safe to perform a
cyclic permutation,

TrðOAOBÞ ¼
Z

d4xd4yhxjOA
ijjyihyjOB

jijxi

¼
Z

d4yd4xhyjOB
jijxihxjOA

ijjyi ¼ TrðOBOAÞ:

ðA2Þ

On the other hand, the internal trace “tr” only sums over a
subset of indices for the matrix O, and therefore it is
generically illegal to make cyclic permutations inside “tr”
alone:

trðOAOBÞ ≠ trðOBOAÞ
⇔ hxjtrðOAOBÞjyi ≠ hxjtrðOBOAÞjyi: ðA3Þ

Note that after taking the internal trace, the object
trðOAOBÞ is still a matrix acting on the functional space
spanned by jxi. So when we check whether the two objects
trðOAOBÞ and trðOBOAÞ are equal, it is a comparison of
two matrices where one needs to compare entry by entry, as
indicated by the right-hand expression of Eq. (A3).
Generically, they are not equal and making cyclic permu-
tations inside “tr” alone is not allowed.
However, in many practical calculations of functional

traces, the evaluation results (after carrying out the loop
integrals) are local actionlike expressions that generically
have the form [see e.g., Eqs. (4.6) and (4.7)]

Trð� � �Þ ¼
Z

d4xtrxðOAOBOC � � �Þ; ðA4Þ

where the reason for using a slightly different notation
“trxð� � �Þ” will become clear shortly. When handling
expressions like Eq. (A4), we do sometimes make cyclic
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permutations to simplify the calculation,

Sometimeswe take∶
Z

d4xtrxðOAOBÞ¼
Z

d4xtrxðOBOAÞ:

ðA5Þ

This has been used extensively in Sec. IV, as well as for
many functional matching calculations with CDE in the
literature. The purpose of this appendix is to clarify when
and why Eq. (A5) could hold. The explanation has two
important aspects:

(i) There is a slight abuse of notation “tr” in expressions
like Eq. (4.6) and (4.7). As emphasized by using a
different notation “trx” above, the traces in Eq. (A4)
and (A5) are not precisely the same objects as the
traces in Eq. (A3)—the latter are matrices acting on
the functional space jxi, while the former are
actually elements of those matrices.

(ii) Equation (A5) does not hold for generic operators
OA, OB. However, if both OAOB and OBOA are
diagonal functional operators in the position basis
jxi, namely if they satisfy

trðOAOBÞjxi ¼ tABðxÞjxi; ðA6aÞ

trðOBOAÞjxi ¼ tBAðxÞjxi: ðA6bÞ

for some ordinary functions tABðxÞ and tBAðxÞ, then
Eq. (A5) holds.

In what follows, we elaborate on these two aspects in turn.

1. Internal trace notation

First, it is clear from Eq. (A4) that trxðOÞ must be an
ordinary function of the variable x (similar to a
Lagrangian), such that the integral in Eq. (A4) would yield
a local actionlike result. So trxðOÞ cannot be a matrix on the

functional space jxi. Instead, it should be interpreted as an
element of that matrix.
Second, we emphasize that trxðOÞ is not the following

matrix element that one might naively expect,

trxðOÞ ≠ hxjtrðOÞjxi: ðA7Þ

If the above were true, then performing the integral in
Eq. (A5) would give us the functional traceZ

d4xhxjtrðOAOBÞjxi ¼ TrðOAOBÞ; ðA8Þ

in which cyclic permutation would not be a problem at all,
as explained around Eq. (A2). But it is clear that Eq. (A5) is
not supposed to yield TrðOAOBÞ. The correct matrix
element is

trxðOÞ ¼
Z

d4yhxjtrðOÞjyi: ðA9Þ

To understand this subtle point, we need to remind
ourselves how we usually obtain expressions like
Eq. (A4) and hence terms like trxðOÞ from the CDE
evaluation. Usually, we start with a functional trace like
Eq. (4.1) and calculate it using momentum eigenstates,

Tr½fði∂̂μ; Uðx̂ÞÞ� ¼
Z

d4q
ð2πÞ4 hqjtr½fði∂̂μ; Uðx̂ÞÞ�jqi: ðA10Þ

Using the fact

jqi ¼
Z

d4xjxihxjqi ¼
Z

d4xe−iqxjxi ¼
Z

d4xe−iqx̂jxi;

ðA11Þ

we can rewrite Eq. (A10) as

Tr½fði∂̂μ; Uðx̂ÞÞ� ¼
Z

d4xd4y
Z

d4q
ð2πÞ4 hxje

iqx̂tr½fði∂̂μ; Uðx̂ÞÞ�e−iqx̂jyi

¼
Z

d4xd4y
Z

d4q
ð2πÞ4 hxjtr½fðqμ þ i∂̂μ; Uðx̂ÞÞ�jyi

¼
Z

d4x

�Z
d4yhxj

Z
d4q
ð2πÞ4 tr½fðqμ þ i∂̂μ; Uðx̂ÞÞ�jyi

�

¼
Z

d4x

�Z
d4yhxjtrðOfÞjyi

�
; ðA12Þ

where Of is defined implicitly by the last equation. As
indicated in the last line, one way of understanding the
“simplified CDE” is that one Taylor expands the function
“f” above and performs the momentum loop integral over

qμ to obtain a set of functional operators of the form trðOfÞ.
This is precisely what we did in deriving Eqs. (4.6) and
(4.7) from Eq. (4.1). Now comparing Eq. (A12) with
Eq. (A4), we see that the notation “trx” is actually denoting
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the quantity inside the curly brackets in Eq. (A12). There-
fore, we have carefully derived the relation in Eq. (A9).
Let us recall that the definition of the “functional vector

space” is the collection of all the functions ϕðxÞ [usually
satisfying certain constraints, such as kϕk2 < ∞ (under
box normalization)], where each function corresponds to a
vector jϕi,

ϕðxÞ ¼ hxjϕi: ðA13Þ

It thus provides us with a linear algebra language for the
differential operations. Specifically, the process of a differ-
ential operator f̂ acting on a function ϕðxÞ to yield a new
function ðf̂ϕÞðxÞ can be written as the action of a matrix in
this linear space,

ðf̂ϕÞðxÞ¼hxjf̂ϕi¼hxjf̂jϕi¼
Z

d4yhxjf̂jyihyjϕi: ðA14Þ

The key to this dictionary are the matrix elements hxjf̂jyi
for various differential operators. When f̂ is an ordinary
function such as f̂ ¼ GμðxÞ, its matrix is diagonal in the jxi
basis,

hxjGμjyi ¼ GμðxÞδ4ðx − yÞ; ðA15aÞ

GμðxÞϕðxÞ ¼
Z

d4yhxjGμjyihyjϕi

¼
Z

d4y½GμðxÞδ4ðx − yÞ�ϕðyÞ: ðA15bÞ

When f̂ ¼ ∂μ is a derivative, we have

hxj∂μjyi ¼
∂

∂xμ
δ4ðx − yÞ; ðA16aÞ

∂μϕðxÞ ¼
Z

d4yhxj∂μjyihyjϕi

¼ ∂

∂xμ

Z
d4yδ4ðx − yÞϕðyÞ: ðA16bÞ

General differential operators, like f̂ðib∂μ; Uðx̂ÞÞ in
Eq. (A12), are built from the two kinds of operators
discussed above.
We note in particular that the constant unity function “1”

corresponds to a vector j1i that satisfies

j1i ¼
Z

d4yjyihyj1i ¼
Z

d4yjyi: ðA17Þ

Therefore, the relation in Eq. (A9) can be rewritten as

trxðOÞ ¼ hxjtrðOÞj1i ¼ ðtrðOÞ1ÞðxÞ; ðA18Þ

where the last expression follows from the differential
operation language in Eq. (A14)—we are simply taking the
differential operator trðOÞ, acting it on the constant unity
function 1, and then evaluating the resulting function at
point x.15 When the function being acted on is the constant
unity function 1, we often suppress it. We also often
suppress the explicit “(x)” when talking about a function.
Doing both for the last expression in Eq. (A18) leads to our
abuse of the notation “tr” in the main text.
From Eq. (A18), it is immediately clear that

trxðAB � � �C∂μÞ ¼ 0; ðA19aÞ

trxð∂μAB � � �CÞ is a total derivative: ðA19bÞ

With these, we can see a quick counterexample to Eq. (A5),

trxðA∂μBμÞ ¼ trx½Að∂μBμÞ þ ABμ
∂μ� ¼ trx½Að∂μBμÞ�;

ðA20aÞ

trxðBμA∂μÞ ¼ 0: ðA20bÞ

Clearly, the two lines are related by a cyclic permutation of
Bμ, but they are generically not equal.

2. Conditions for cyclic permutations in internal traces

After clarifying the meaning of “trxð� � �Þ”, namely the
relation in Eq. (A9), we see that Eq. (A5) does not always
hold. However, if both expressions inside the trace before
and after the cyclic permutation are diagonal operators in
the position basis jxi, i.e., if Eq. (A6) is true, then Eq. (A5)
would hold.
To see this, we first note that if

trðOAOBÞjxi ¼ tABðxÞjxi; ðA21Þ

then we simply have

trxðOAOBÞ ¼
Z

d4yhxjtrðOAOBÞjyi

¼
Z

d4ytABðyÞδ4ðx − yÞ ¼ tABðxÞ: ðA22Þ

Therefore, it is linked with the functional trace as

15See e.g., Sec. 2.2 of Ref. [43] and Appendix B.2.2 of
Ref. [21] for clarifications of this point.
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TrðOAOBÞ ¼
Z

d4x
Z

d4q
ð2πÞ4 hxjqihqjtrðO

AOBÞjxi

¼
Z

d4xtABðxÞ
Z

d4q
ð2πÞ4 hxjqihqjxi

¼
Z

d4xtrxðOAOBÞ
Z

d4q
ð2πÞ4 ; ðA23Þ

where
R d4q

ð2πÞ4 ¼ hxjxi is just a normalization factor. Making

use of this relation between trxð� � �Þ and Trð� � �Þ, one could
take advantage of Eq. (A2) to perform a cyclic permutation,

Z
d4xtrxðOAOBÞ

Z
d4q
ð2πÞ4 ¼ TrðOAOBÞ

¼ TrðOBOAÞ

¼
Z

d4xtrxðOBOAÞ
Z

d4q
ð2πÞ4 :

ðA24Þ

Canceling the normalization factor gives us Eq. (A5).
Note that one can generalize Eq. (A5) to the sum of

multiple terms,

OAOB → OA
1O

B
1 þ � � � þOA

nOB
n : ðA25Þ

In this case, for the steps in Eq. (A24) to be valid, one only
needs the sum to be diagonal in the position basis jxi,
namely we haveZ

d4xtrxðOA
1O

B
1 þ � � � þOA

nOB
n Þ

¼
Z

d4xtrxðOB
1O

A
1 þ � � � þOB

nOA
nÞ; ðA26Þ

provided that

trðOA
1O

B
1 þ � � � þOA

nOB
n Þjxi ¼ tABðxÞjxi; ðA27aÞ

trðOB
1O

A
1 þ � � � þOB

nOA
nÞjxi ¼ tBAðxÞjxi: ðA27bÞ

An operator O being diagonal in the position basis jxi is
equivalent to the statement that all the derivatives in O are
closed. For example, consider the following differential
operator:

O ¼ A∂μBC ¼ Að∂μBÞCþ AB∂μC

¼ Að∂μBÞCþ ABð∂μCÞ þ ABC∂μ; ðA28Þ

where A, B, C are diagonal in the jxi basis. The
decomposition in the first line follows from the product
rule of the derivative, where the parentheses in the first
term has the usual interpretation—it indicates that ∂μ only

acts on B but not anything to the right of B. [In fact, this
notation was already used in Eq. (A20a).] In this case, we
say that the derivative is closed on B. In contrast, the
second term in the first line has an open derivative that acts
on everything to its right. One can further use the product
rule to obtain the decomposition in the second line, where
a term with the derivative closed on C appears, and there is
an additional term with an open derivative. Clearly,
terms with closed derivatives, such as Að∂μBÞC and
ABð∂μCÞ are diagonal operators in the jxi basis, while
terms with open derivatives such as ABC∂μ are not; see
e.g., Eq. (A16a).
When evaluating a functional trace with simplified

CDE, the initial set of operators in the trace trxð� � �Þ
emerge from evaluating an expression of the form [see
Eq. (A12)],

Z
d4q
ð2πÞ4 tr½fðqμ þ i∂̂μ; Uðx̂ÞÞ� ¼ trðOfÞ: ðA29Þ

The operator trðOfÞ derived from such an expression, i.e.,
upon expanding ”f” and carrying out the loop momentum
integral, is guaranteed to be diagonal in the position basis
jxi, because it is known that one could use the trick of
“original CDE” to close all of the derivatives in it (see e.g.,
Appendix B.2.3 of Ref. [21]). However, since Of is a sum
of terms, if we perform an arbitrary cyclic permutation on
each term

trðOfÞ ¼ trðOA
1O

B
1 þ � � � þOA

nOB
n Þ

→ trðOB
1O

A
1 þ � � � þOB

nOA
nÞ; ðA30Þ

it is not guaranteed that the operator is still diagonal in the
jxi basis, thus invalidating the operation. Only a subset of
cyclic permutations that satisfy the condition in Eq. (A27)
are “legal.”
Nonetheless, in practical calculations, a very efficient

prescription to ensure that we are only performing legal
cyclic permutations is to stipulate that terms with open
derivatives should not be evaluated—one must keep track
of all such terms, and make sure that they get canceled
upon summing the terms obtained after the cyclic permu-
tations. If they do not get fully canceled, then it is a sign
that an illegal cyclic permutation had been carried out.
In this case, one needs to make further cyclic permutations
until the derivatives are all closed. In summary, insisting
that all derivatives must be closed in the end is an efficient
way to make sure that we are carrying out legal
cyclic permutations. The calculations in Sec. IV of the
main text (as well as in many other functional matching
calculations with CDE in the literature) are done in such a
manner.

ANOMALIES FROM THE COVARIANT DERIVATIVE EXPANSION PHYS. REV. D 107, 116015 (2023)

116015-23



Let us look at a quick example of this,

trx½ð∂μAÞBμ� ¼ trx½∂μABμ − A∂μBμ�
→ trx½∂μABμ − BμA∂μ� ¼ trx½ð∂μABμÞ þ ABμ

∂μ − BμA∂μ�
→ trx½Bμ

∂μA − BμA∂μ� ¼ trx½Bμð∂μAÞ�: ðA31Þ

In the first line, we started with an operator ð∂μAÞBμ in
which the derivative is closed. We made a cyclic permu-
tation of the second term to arrive at the second line, where
the derivatives are not fully closed, because the last two
terms in the second expression both have open derivatives
and they do not cancel each other. If we were to stop here
and evaluate the second line, then following Eq. (A19)
these terms are zero and total derivatives that would not
feed into the final result,

Z
d4xtrx½ð∂μABμÞ þ ABμ

∂μ − BμA∂μ� ¼ 0: ðA32Þ

This clearly would not agree with the evaluation of the left-
hand side of the first line. The reason is that the second line
was obtained by an illegal cyclic permutation. Now, if we
insist that the second line of Eq. (A31) should not be
evaluated since it has open derivatives, then we are forced
to make further cyclic permutations such that all the
derivatives can be closed upon summing the terms. The
third line is an example of such a further cyclic permuta-
tion. As soon as the derivatives are all closed, we can carry
out the evaluation. This prescription guarantees that only
legal cyclic permutations would be performed, and we can
see that the result obtained in the third line does agree with
the expression we started with in the first line.
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