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The problem of spontaneous vacuum decay in low-energy collisions of heavy nuclei is considered
beyond the scope of the monopole approximation. The time-dependent Dirac equation is solved in a
rotating coordinate system with z-axis directed along the internuclear line and the origin placed at the center
of mass. The probabilities of electron-positron pair creation and the positron energy spectra are calculated
in the approximation neglecting the rotational coupling. The two-center potential is expanded over
spherical harmonics and the convergence with respect to the number of terms in this expansion is studied.
The results show that taking into account the two-center potential instead of its spherically symmetric part
preserves all the signatures of the transition to the supercritical regime that have been found in the
framework of the monopole approximation and even enhances some of them.
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I. INTRODUCTION

Quantum electrodynamics (QED) in the presence of
superstrong electromagnetic fields predicts a number of
nonlinear and nonperturbative effects such as light-by-light
scattering, vacuum birefringence, and production of elec-
tron-positron pairs (see, e.g., reviews [1–4]). Experimental
observation of these effects is complicated by extremely
high requirements on the field strength needed for their
manifestation. One of the ways to attain such fields relies
on ever evolving laser technologies. Although laser facili-
ties in the near future might meet requirements for some of
the effects, vacuum pair production is still far from being
experimentally accessible. An alternative approach sug-
gests to use heavy nuclei as a source of strong electric field.
In a pioneering work [5] it was shown that the 1s level of

a hydrogenlike ion with an extended nucleus continuously
goes down with increasing nuclear charge until at a certain
value Zcr it reaches the border of the negative-energy
continuum. It raised the question of what happens to a
bound state when it joins the positron continuum. In works
of Soviet and German physicists [6,7] it was conjectured
that the diving of an initially empty bound state into the
negative-energy continuum can result in spontaneous

reconstruction of the QED vacuum accompanied with
creation of electron-positron pairs (for details see, e.g.,
Refs. [8–16]). A realistic scenario for observation of this
process can be realized in low-energy collision of two
heavy nuclei with the total charge exceeding the critical
value Z1 þ Z2 > Zcr [6]. When during such collisions the
nuclei get sufficiently close to each other, 1sσ state of the
quasimolecule, formed by them, enters the negative-energy
continuum as a resonance. As a result, if 1sσ state was
unoccupied, an additional hole enters the lower continuum.
Initially localized near the nuclei, this hole can escape to
infinity as a free positron, and the initially neutral vacuum
becomes charged. This process is known as the sponta-
neous vacuum decay.
Spontaneous vacuum decay in heavy-ion collisions was

a subject of intense theoretical and experimental inves-
tigations (see, e.g., reviews [17–22] and references therein).
The first theoretical calculations of pair creation in the
supercritical collisions were carried out in the static
approximation, according to which the pair-creation prob-
ability is proportional to the time integral of the resonance
width ΓðRÞ taken along the nuclear trajectory RðtÞ [23–25].
Within this approximation, the total probability of sponta-
neous pair creation, associated with the resonance decay,
energy spectra of the emitted positrons as well as their
angular distributions were obtained. In Ref. [25], a cor-
rection for the nonadiabaticity of the tunneling process was
also considered. However, the static approach does not take
into account the dynamical pair creation induced by the
time-dependent potential of the moving nuclei. It turns out

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 116014 (2023)

2470-0010=2023=107(11)=116014(8) 116014-1 Published by the American Physical Society

https://orcid.org/0000-0003-0730-5213
https://orcid.org/0000-0002-2769-6891
https://orcid.org/0000-0001-8452-639X
https://orcid.org/0000-0002-2509-2904
https://orcid.org/0009-0000-0854-422X
https://orcid.org/0000-0003-0708-2427
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.116014&domain=pdf&date_stamp=2023-06-15
https://doi.org/10.1103/PhysRevD.107.116014
https://doi.org/10.1103/PhysRevD.107.116014
https://doi.org/10.1103/PhysRevD.107.116014
https://doi.org/10.1103/PhysRevD.107.116014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


that the supercritical resonance has a rather long lifetime,
compared to the duration of the supercritical regime τcr. For
example, in collisions of uranium nuclei at the energies
near the Coulomb barrier (when the nuclei touch each
other) the resonance lifetime is about two orders of
magnitude larger than τcr. This makes the probability of
spontaneous pair creation quite small. Moreover, the addi-
tional width Γdyn ∼ ℏ=τcr, caused by the uncertainty prin-
ciple, prevents appearance of narrow resonance structures
in the energy distribution of the emitted positrons, predicted
in the static approximation. Therefore, in order to verify
the possibility to observe the signal from the vacuum
decay, one needs to take into account the dynamical pair
production.
Both the spontaneous and the dynamical mechanisms

were investigated by the Frankfurt group (see, e.g.,
[26–28]). From the obtained results it was eventually
concluded that experimental observation of spontaneous
vacuum decay is possible only if the colliding nuclei would
stick to each other for some time due to nuclear forces
[21,22]. However, since no evidence of such sticking have
been registered to date, this scenario also does not seem
promising.
In view of the upcoming experimental facilities in

Germany (GSI/FAIR) [29,30], China (HIAF) [31], and
Russia (NICA) [32] the interest to this problem was
renewed. New investigations concerned both static and
dynamic aspects of spontaneous positron emission. The
properties of the supercritical resonance were addressed for
spherically symmetric [33–36]1 and nonsymmetric [37–39]
field configurations. The behavior of the vacuum polari-
zation energy for supercticical Coulomb fields was exam-
ined in a series of papers, see, e.g., [40,41] and references
therein. Dynamic consideration of pair creation in heavy-
nuclei collisions was targeted in the framework of the
monopole approximation [42–44] and beyond [45–47].
Relativistic semiclassical approach was applied to the
vacuum instability problem in Ref. [48].
Recently there was proposed a new way to see the signs

indicating the transition to the supercritical regime, where
spontaneous electron-positron pair creation becomes pos-
sible [49,50]. The method suggests to consider collisions
along trajectories corresponding to different energies but
having the same distance of the closest approach, Rmin.
As the parameters that define the specific trajectory, it is
convenient to use Rmin and the ratio η ¼ E=E0 ∈ ½1;∞Þ of
the collision energy E to the energy of the head-on collision
with the same Rmin. The idea behind this is the opposite
dependence of the dynamic and spontaneous contributions
to the pair-creation probability on the nuclear velocity,
characterized here by the parameter η. Indeed, it is clear that

the contribution of the spontaneous mechanism is deter-
mined by the time τcr the nuclei spend in the region
Rmin ≤ RðtÞ < Rcr, where RðtÞ is the internuclear distance
and Rcr is the distance at which the 1sσ state of the
quasimolecule reaches the negative-energy continuum,
i.e., E1sσðRcrÞ ¼ −mec2 with me being the electron mass.
This time monotonically decreases with the increase of
collision energy, i.e., η, and so does the contribution of the
spontaneous mechanism. On the contrary, the dynamical
pair production should increase with the increase of η.
Therefore, the raise of the pair-creation probability with
η → 1 is to be attributed to the transition to the supercritical
regime and activation of the spontaneous mechanism. More
details are to be found in Ref. [50].
By employing the aforementioned approach, the detailed

investigation of the η-dependence of the pair-production
probabilities and positron energy spectra was carried out in
Ref. [50] and later independently confirmed in Ref. [51].
The calculations were conducted within the monopole
approximation, where only spherically symmetric part of
the two-center nuclear potential is taken into account. The
evidence of the transition to the supercritical regime have
been found in both the pair-creation probabilities and
positron spectra. Although it has been shown that the
monopole approximation works rather well for description
of the pair-creation process [45–47], it is important to study
how consideration of the two-center potential would affect
the signs of the transition to the supercritical regime
mentioned above. Also, calculations beyond the monopole
approximations are necessary to get access to other
important aspects of nuclei collisions, e.g., the angular
resolved positron spectra. To this end, in this work we
performed the calculations taking into account higher-order
terms in the decomposition of the nuclear potential over
spherical harmonics. The calculations are performed in the
coordinate system with z-axis directed along the inter-
nuclear line and the origin located at the center of mass. The
rotational-coupling term that appears in the time-dependent
Dirac equation due to the transition to this noninertial
reference frame (see, e.g., Ref. [52]) as well as the magnetic
field of the nuclei were not taken into account. As it was
shown in Refs. [53–56], the influence of these effects on the
total probability and positron energy spectra is negligible. It
should be noted, however, that the rotational and magnetic
terms can have some impact on the positron angular
distributions which are not the subject of study of the
present work.
The relativistic units (ℏ ¼ c ¼ 1) and the Heaviside

charge unit (α ¼ e2=ð4πÞ, e < 0) are used throughout
the paper.

II. THEORY

The calculations are based on the formalism of quantum
electrodynamics with unstable vacuum developed in
Ref. [57]. The nuclei are treated classically as finite-size

1Although we acknowledge calculations of supercritical res-
onances in Refs. [34,36], we disagree with the conclusion made
by the authors about absence of spontaneous pair creation.
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particles moving along the hyperbolic Rutherford trajecto-
ries. The vector part of the 4-potential created by the nuclei
is neglected.
The pair-creation probabilities and positron energy

spectra can be expressed in terms of one-electron transition
amplitudes. To calculate the amplitudes, one has to solve
the time-dependent Dirac equation,

i∂tψ iðr; tÞ ¼ HðtÞψ iðr; tÞ ð1Þ

with

HðtÞ ¼ α · pþ βme þ Vðr; tÞ; ð2Þ

where α, β are the Dirac matrices, the subscript i specifies
the initial condition, and Vðr; tÞ is the total two-center
potential generated by the colliding nuclei,

Vðr; tÞ ¼ VAðjr − RAðtÞjÞ þ VBðjr − RBðtÞjÞ: ð3Þ

Here RA=BðtÞ denotes the nuclear coordinates. In our
calculations we utilize an expansion of the time-dependent
wave function over a finite static basis set fujðrÞgNj¼1:

ψ iðr; tÞ ¼
X
j

ajiðtÞujðrÞ: ð4Þ

The basis set fujðrÞgNj¼1 consists of a number of subsets
fuκjðrÞgnj¼1 containing functions of certain angular sym-
metry described by the angular-momentum–parity quan-
tum number κ. Functions uκj are bispinors with radial parts
represented by B-splines in accordance with the dual
kinetic balance (DKB) approach [58]. Each subset of uκj ,
pertaining to certain κ, is split into two parts. The first part
with 1 ≤ j ≤ n=2 is defined as

uκjðrÞ ¼
1

r

 BjðrÞΩκμðnÞ
1

2me

�
d
dr þ κ

r

�
BjðrÞΩ−κμðnÞ

!
ð5Þ

and the second one with n=2 < j ≤ n reads

uκjðrÞ ¼
1

r

 
1

2me

�
d
dr −

κ
r

�
BjðrÞΩκμðnÞ
BjðrÞΩ−κμðnÞ

!
: ð6Þ

Here BjðrÞ is the jth B-spline, ΩκμðnÞ is the spherical
spinor, and n ¼ r=r. This choice of basis functions is
highly advantageous in the case of symmetric collisions,
where the odd harmonics in the multipole expansion of the
two-center potential,

Vðr; tÞ ¼
X∞
L¼0

XL
M¼−L

X
α¼A;B

Vα
LMðr;RαðtÞÞYLMðnÞ; ð7Þ

where

Vα
LMðr;RαðtÞÞ ¼

Z
dnY�

LMðnÞVαðjr − RαðtÞjÞ; ð8Þ

cancel out in the center-of-mass frame. Thus, the states
with opposite spatial parity become decoupled and can be
propagated independently. This, in turn, reduces the size of
matrices describing the discretized version of Eq. (1) (see
below) by almost a half, which significantly facilitates the
computations.
When using a finite basis set, the initial Eq. (1) is

transformed to a system of ordinary differential equations:

iS
∂aiðtÞ
∂t

¼ HðtÞaiðtÞ; ð9Þ

where ai ¼ fa1i;…; aNig denotes the array of expansion
coefficients, Sjk ¼ hujjuki is the overlap matrix, and
HjkðtÞ ¼ hujjHðtÞjuki is the Hamiltonian matrix. The set
of equations (9) is subsequently solved with the aid of the
Crank-Nicolson scheme [59]. This scheme imposes the
following relation on the coefficients aiðtÞ taken at adjacent
time steps separated by interval Δt:

�
Sþ iΔt

2
Hðtþ Δt=2Þ

�
aiðtþ ΔtÞ

¼
�
S −

iΔt
2

Hðtþ Δt=2Þ
�
aiðtÞ: ð10Þ

To further simplify the calculations we use the coor-
dinate system, whose z-axis is tied to the internuclear line
and rotates together with it. Meanwhile, the rotational
coupling term—j · ω ( j is the electronic angular momen-
tum andω is the angular velocity vector) that appears in the
Hamiltonian upon the transformation [52] is neglected.
In this coordinate system we can use the eigenfunctions φi
of HðtinÞ ¼ HðtoutÞ as the initial and final states. These
eigenfunctions are found from the matrix version of the
stationary Dirac equation. Using the expansion of φi
similar to Eq. (4) with the coefficients ck, one arrives at
the following generalized eigenvalue problem:

Hc ¼ εSc; ð11Þ

where Hjk ¼ hujjHðtinÞjuki and c ¼ fc1;…; cNg. Solving
Eq. (11) yields a set of eigenvalues εi and eigenvectors ci
(i ¼ 1;…; N) which represent a discretized version of
the HðtinÞ spectrum. The initial conditions for Eq. (9)
are then set as

aiðtinÞ ¼ ci: ð12Þ
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The one-electron transition amplitudes attain the form

Afi ¼ hφfjψ iðtoutÞi
¼ c†fSaiðtoutÞ: ð13Þ

Finally, the mean number of positrons created in the mth
energy state is [18,57]

n̄m ¼
X
εj>−1

jAmjj2: ð14Þ

The calculations of positron energy spectra were per-
formed with the modified Stieltjes procedure [46,60]:

dP
dε

�
εp þ εpþNs−1

2

�

¼ 1

εpþNs−1 − εp

 
n̄p þ n̄pþNs−1

2
þ
XNs−2

i¼1

n̄pþi

!
: ð15Þ

Here Ns determines the number of energy eigenvalues
involved in the calculation of one point in the spectrum.
With Ns ¼ 2 Eq. (15) turns into the regular Stieltjes
formula. We used Ns equal to a multiple of the number
of the utilized κ channels.

III. RESULTS

Following the method described above, we performed
calculations of the pair-creation probabilities and positron
energy spectra for collisions of bare nuclei with various
charge numbers. The nuclei were treated classically as
homogeneously charged spheres of radius Rn¼1.2A1=3 fm,
where A is the atomic mass number. Their motion was
described by the hyperbolic trajectories. As was demon-
strated in Ref. [46], when the rotation of the internuclear
axis is neglected, the dominant contribution to the prob-
ability comes from states with angular momentum projec-
tions jμj ¼ 1

2
. Therefore, only states with μ ¼ 1

2
were

included into the basis set and the results were doubled.
The basis functions (5), (6) were constructed with B-splines
of the 9th order generated on the grid of size Rbox ¼
68.5 r:u: The nodes were distributed polynomially with
ri ¼ Rboxði=ðN − 1ÞÞ4. The initial and final internuclear
distance was taken to be RðtinÞ ¼ RðtoutÞ≡ R0 ¼ 5000 fm.
The number of propagated electron states was reduced by
introducing a cutoff energy εc ¼ 6 r:u: Only states with
energy ε ∈ ð−1; εc� were taken into account in Eq. (14),
providing the relative inaccuracy of the sum on the level
of 10−4.

A. Pair-creation probabilities

First, we studied the dependence of the pair-creation
probability on the number of the κ channels included in the

expansion (4) of the time-dependent wave function. For this
purpose we considered collisions of bare uranium nuclei at
the energy of 6.218 MeV=u. Table I contains the total pair-
creation probability Pt and the contributions of the ground
(Pg) and all bound states (Pb) obtained for several impact
parameters in the range from 0 to 30 fm. For comparison
the values calculated in Ref. [46] are also presented. The
table shows a rather fast convergence of the total proba-
bility with respect to the number of the κ channels. For
example, the basis with jκjmax ¼ 3 already provides a
deviation from the converged results of less than 1%.
Thus, in further calculation only functions with jκj ≤ 3
were included in the basis.
Henceforth we consider the total pair-creation proba-

bility and denote it with P omitting the subscript. It was
shown in Refs. [49,50] that in the scope of the monopole
approximation the pair-creation probability as a function of
η increases as η → 1, when Rmin and Zt ¼ Z1 þ Z2 enter
deeply enough into the supercritical domain of collision
parameters. This increase can serve as an indication of the
transition to the supercritical regime. In this work we
studied how the dependence of the probability P on η
changes when higher-order terms in the potential decom-
position are brought into consideration. For Rmin¼17.5 fm,
the results obtained in the basis with jκjmax ¼ 3 for
symmetric collisions of bare nuclei with subcritical
(Z ¼ 84) and supercritical (Z ¼ 88; 92; 96) charge num-
bers are displayed in Fig. 1 in comparison with the
monopole-approximation results. The comparison shows
that the effects associated with higher-order terms some-
what enhance the manifestation of the increase of P as
η → 1 for supercritical charge numbers. For instance, in the
case of the U92þ‐U92þ collisions, the probability obtained
with jκjmax ¼ 3 exhibits a shallow minimum near η ¼ 1,
which is absent in the monopole approximation.
The influence of the nonmonopole terms becomes

more apparent when considering the derivative of the
pair-creation probability with respect to the parameter η,
dP=dη, at η ¼ 1. Figure 2 represents the contributions of
odd ðP ¼ −1Þ and even ðP ¼ 1Þ states to dP=dηjη¼1 as
functions of Z. As can be seen from Fig. 2, the deviation
from the monopole results is hardly visible until the
corresponding channel becomes supercritical, which hap-
pens at Z ≈ 87.3 forP ¼ 1 and Z ≈ 94.8 forP ¼ −1. In the
supercritical region the values of dP=dη obtained with
jκjmax ¼ 3 lie lower than the monopole ones. This behavior
of dP=dη aligns with the findings of Refs. [38,39],
where the supercritical-resonance parameters were exam-
ined beyond the monopole approximation. According to
Refs. [38,39], inclusion of higher-order terms in the
potential decomposition results in about 20% increase
in the resonance width of U183þ

2 quasimolecule at the
internuclear distance of 16 fm. Furthermore, this increase
in width turns out to be larger for larger internuclear
separations. Note that supercritical resonance width is
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exclusively due to the spontaneous pair creation while in
collisions of heavy nuclei both spontaneous and dynamic
mechanisms contribute to the total pair-creation probability.
As seen in Table I, the overall increase in the pair-creation
probability for head-on collisions of uranium nuclei at
the energy of 6.218 MeV=u (which corresponds to the

internuclear distance of 16.47 fm) amounts to approxi-
mately 5%. This may indicate that the relative contribution
of the spontaneous mechanism to the total pair production
became larger, although the electron-positron pairs are
predominately created by the dynamic mechanism. As a
result one may observe an enhancement of the signal
indicating the transition to the supercritical regime found
in dP=dη, namely the sign change from positive to

TABLE I. Dependence of the pair creation probability on jκjmax for collisions of bare uranium nuclei at the energy of 6.218 MeV=u.
Pt is the total pair-creation probability, Pg and Pb are the contributions of the ground and all bound states, respectively. The entries with
jκjmax ¼ 1 correspond to the monopole approximation.

Impact parameter (fm)

jκjmax 0 5 10 15 20 25 30

Pg 1 1.04 × 10−2 8.80 × 10−3 6.02 × 10−3 3.84 × 10−3 2.41 × 10−3 1.51 × 10−3 9.50 × 10−4

3 1.09 × 10−2 9.24 × 10−3 6.41 × 10−3 4.15 × 10−3 2.64 × 10−3 1.68 × 10−3 1.07 × 10−3

5 1.11 × 10−2 9.46 × 10−3 6.58 × 10−3 4.27 × 10−3 2.73 × 10−3 1.74 × 10−3 1.11 × 10−3

7 1.10 × 10−2 9.34 × 10−3 6.50 × 10−3 4.23 × 10−3 2.70 × 10−3 1.73 × 10−3 1.11 × 10−3

9 1.08 × 10−2 9.24 × 10−3 6.42 × 10−3 4.18 × 10−3 2.67 × 10−3 1.71 × 10−3 1.10 × 10−3

11 1.08 × 10−2 9.19 × 10−3 6.39 × 10−3 4.16 × 10−3 2.66 × 10−3 1.70 × 10−3 1.09 × 10−3

Ref. [46] 1.09 × 10−2 9.30 × 10−3 6.47 × 10−3 4.21 × 10−3 2.73 × 10−3 1.72 × 10−3 1.11 × 10−3

Pb 1 1.25 × 10−2 1.05 × 10−2 7.03 × 10−3 4.39 × 10−3 2.70 × 10−3 1.66 × 10−3 1.03 × 10−3

3 1.32 × 10−2 1.12 × 10−2 7.63 × 10−3 4.85 × 10−3 3.03 × 10−3 1.89 × 10−3 1.19 × 10−3

5 1.32 × 10−2 1.11 × 10−2 7.62 × 10−3 4.86 × 10−3 3.05 × 10−3 1.91 × 10−3 1.21 × 10−3

7 1.31 × 10−2 1.11 × 10−2 7.59 × 10−3 4.84 × 10−3 3.04 × 10−3 1.91 × 10−3 1.21 × 10−3

9 1.31 × 10−2 1.11 × 10−2 7.58 × 10−3 4.83 × 10−3 3.03 × 10−3 1.90 × 10−3 1.21 × 10−3

11 1.31 × 10−2 1.11 × 10−2 7.58 × 10−3 4.83 × 10−3 3.03 × 10−3 1.90 × 10−3 1.20 × 10−3

Ref. [46] 1.32 × 10−2 1.12 × 10−2 7.64 × 10−3 4.87 × 10−3 3.07 × 10−3 1.93 × 10−3 1.23 × 10−3

Pt 1 1.29 × 10−2 1.08 × 10−2 7.26 × 10−3 4.51 × 10−3 2.75 × 10−3 1.69 × 10−3 1.04 × 10−3

3 1.36 × 10−2 1.15 × 10−2 7.83 × 10−3 4.95 × 10−3 3.08 × 10−3 1.92 × 10−3 1.20 × 10−3

5 1.36 × 10−2 1.15 × 10−2 7.81 × 10−3 4.96 × 10−3 3.10 × 10−3 1.94 × 10−3 1.22 × 10−3

7 1.35 × 10−2 1.14 × 10−2 7.79 × 10−3 4.95 × 10−3 3.09 × 10−3 1.94 × 10−3 1.22 × 10−3

9 1.35 × 10−2 1.14 × 10−2 7.78 × 10−3 4.94 × 10−3 3.09 × 10−3 1.93 × 10−3 1.22 × 10−3

11 1.35 × 10−2 1.14 × 10−2 7.78 × 10−3 4.94 × 10−3 3.09 × 10−3 1.93 × 10−3 1.22 × 10−3

Ref. [46] 1.38 × 10−2 1.16 × 10−2 8.01 × 10−3 5.15 × 10−3 3.46 × 10−3 2.14 × 10−3 1.42 × 10−3

FIG. 1. Total pair-creation probability as a function of η with
Rmin ¼ 17.5 fm. Solid blue lines depict results obtained with
jκjmax ¼ 3, dashed orange curves correspond to the monopole-
approximation results.

FIG. 2. Derivative of the pair-creation probability dP=dη at
η ¼ 1 as a function of Z ¼ Z1 ¼ Z2.
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negative. Another factor that can play a role is the extended
duration of the supercritical regime, τcr, due to the increase
in the critical internuclear distance Rcr.

B. Positron spectra

Another signature of the transition to the supercritical
regime found in Ref. [50] concerns the η-dependence of the

maximum of the positron energy spectra obtained in
collisions with fixed Rmin. It was shown in Ref. [50] in
the monopole approximation that in the case of subcritical
collisions the spectra corresponding to larger η possess
higher peak values, whereas for supercritical collisions the
dependence is inverted and peak values decrease with
increasing η. In this work we examined whether this
behavior remains valid beyond the monopole approxima-
tion. At first, we regarded collisions of bare uranium nuclei
at the energy of 6.218 MeV=u. The positron spectra
calculated for the head-on collision in the framework of
the monopole approximation and beyond it are depicted in
Fig. 3. The spectrum obtained in the basis with jκjmax ¼ 3 is
in perfect agreement with the one given in Ref. [46]. The
inclusion of higher-order harmonics in the calculations
leads to the raise of the spectrum near the peak leaving the
tail almost unchanged.
After that, we studied the dependence of the positron

spectra on η for symmetric collisions with a fixed distance
of the closest approach, Rmin. In Fig. 4 we present the
spectra obtained for collisions of nuclei with charge
numbers Z ¼ 84, 88, 92, 96, Rmin ¼ 17.5 fm, and η ¼ 1,
1.1, 1.2. The results show that once the total charge number
2Z exceeds the critical value, the order of the curves near
the peak gets reversed. In full accordance with Ref. [50],
the subcritical collisions yield higher peak values of the

FIG. 3. Energy spectra of the positrons emitted in head-on
U92þ‐U92þ collisions with energy E ¼ 6.218 MeV=u. Maltsev
et al. refers to [46].

FIG. 4. Positron spectra for the symmetric collisions with Z ¼ Z1 ¼ Z2 ¼ 84–96 at Rmin ¼ 17.5 fm and η ¼ E=E0 ¼ 1, 1.1, 1.2.
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positron spectrum for larger η, while in the case of the
supercritical collisions the opposite relation between the
peak hight and η is established. The same behavior of
the spectra with respect to η is found when the supercritical
domain of the collision parameters is approached from a
different direction, namely when Z is fixed and Rmin is
decreasing.

IV. CONCLUSION

We have examined the possibility to access QED in
supercritical Coulomb field that can be attained in low-
energy collisions of heavy nuclei. The procedure for
solving the time-dependent Dirac equation, previously
restricted to the monopole approximation, was extended
to take into account higher-order terms in the decompo-
sition of the two-center nuclear potential over spherical
harmonics. Using this modified procedure, we performed
calculations of the pair-creation probabilities and positron

energy spectra for collisions of bare nuclei. The results
obtained for collisions with a fixed distance of the closest
approach exhibit the same signatures of the transition to the
supercritical regime as in the monopole approximation
[49,50]. Inclusion of nonmonopole terms into considera-
tion enhances the manifestation of the signatures found in
the behavior of the pair-creation probability as a function of
the parameter η ¼ E=E0 near η ¼ 1.
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