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Employing the functional renormalization group approach at next-to-leading order of the derivative
expansion, we refine our earlier findings for the location of the Yang-Lee edge singularity in classic OðNÞ
universality classes. For the universality classes of interest to QCD, in three dimensions, we found

jzcj=R1=γ
χ ¼ 1.612ð9Þ; 1.597ð3Þ for N ¼ 2, 4 correspondingly. We also established jzcj ¼ 2.04ð8Þ; 1.69ð3Þ

for N ¼ 2, 4 albeit with greater systematic error.
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I. INTRODUCTION

Because of the divergence of the correlation length near a
second-order phase transition, the dynamics of the system
becomes independent of the microscopic details and
reflects only the grand properties—the dimensionality
and global symmetries. This allows one to collect systems
of varied microscopic origin into a limited number of
universality classes. By studying one member of such a
class, the emergent universal behavior allows one to
establish the properties of many different systems regard-
less of their microscopic complexity.
Thus, it is not surprising that, for the most ubiquitous

classic universality classes of OðNÞ systems, many uni-
versal properties (such as critical exponents, critical uni-
versal amplitudes, and critical equations of state) are known
with extreme precision; see, e.g., Refs. [1–5], and refer-
ences therein. One notable exception is the universal
location of the Yang-Lee edge singularity, which was only

recently determined in Refs. [6,7]. In this paper, we
continue to refine these results.
Lee and Yang demonstrated an intimate connection

between the analytical structure of the equation of state
and the phase structure [8,9]. Specifically, in the symmetric
phase, the Lee-Yang theorem states that the equations of
state of OðNÞ-symmetric ϕ4 theories have a branch cut at
purely imaginary values of the magnetic field h. The cut
terminates at two branch points—the Yang-Lee edge
singularities. A second-order (first-order) phase transition
at t ∝ T − Tc ¼ 0 occurs when the singularities pinch
(cross) the real h axis. In the broken phase, the singularities
are also known as spinodals; see Fig. 1. Remarkably, the
edge singularities can be seen as critical points themselves.
As illustrated in Fig. 1, variation of only one parameter h
allows one to tune the system to these critical points. In
contrast, the conventional Wilson-Fisher critical point
requires tuning two parameters t and h. This not only
signifies the greater ontological importance of the Yang-
Lee edge (YLE) singularity, but also determines the number
of independent critical exponents. At the Wilson-Fisher
critical point, there are two relevant perturbations and, thus,
two independent critical exponents. At the YLE, it follows
that there is only one independent critical exponent
σYLE ¼ 1=δYLE. It determines the scaling of the magneti-
zationM ∼Mc þ ðh − hcÞσYLE , whereMc and hc are purely
imaginary. The numerical value of the edge critical expo-
nent in three dimensions (and for any N of the underlying
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universality class) has been determined by a variety of
methods; see, e.g., Refs. [10–13].
An interesting property of the YLE critical point is that it

is characterized by a ϕ3 theory, and, consequently, its upper
critical dimension is 6 [14]. Therefore, the conventional ε
expansion near four dimensions applied to study the
Wilson-Fisher critical point of the underlying universality
class has only limited predictive power for locating the
YLE singularity. We come back to this in more detail in
Sec. III B.
The numerical calculations in this paper are performed

using the functional renormalization group (FRG)
approach; see Ref. [15] for a review. We extend the results
of our previous work (see Refs. [6,7]) significantly. First,
we improve the truncation scheme going to the (truncated)
first-order derivative expansion and including the depend-
ence of the wave-function renormalizations on the field for
N > 1. In our original study [6], the calculations were
performed in the so-called local potential approximation
(LPA0), which assumes a field-independent wave-function
renormalization, while in Ref. [7] we investigated only the
Ising universality class N ¼ 1. Second, we accounted for
the residual dependence on the regulator by performing a
minimal sensitivity analysis [16], which was motivated by
minimizing the sensitivity to nonphysical parameters in
conventional perturbation theory with different renormal-
ization schemes [17].
The paper is organized as follows. We start by defining a

required set of universal quantities, functions, and nonuni-
versal metric factors in Sec. II. We then review analytical
results for the location of the YLE singularity in Sec. III:
the large-N limit and for the number of spatial dimensions

close to 4. For the number of components N ≠ 1, we
discuss the behavior of the singularity near two dimensions.
In Sec. IV, we turn to FRG calculations where we extract
the location of the singularity for various N in three spatial
dimensions. We end with conclusions in Sec. V.

II. SCALING EQUATION, CRITICAL
AMPLITUDES, AND EXPONENTS

Consider a system near a critical point with two relevant
parameters t and h introduced in such a way as to detune
the system from criticality which occurs at t ¼ h ¼ 0. We
will refer to t as the temperature. Its defining property is
that nonzero values of t do not explicitly break any
symmetries of the system. However, a nonzero t may lead
to a spontaneous symmetry breaking for either positive or
negative t. Conventionally, we assign positive values of t to
when the spontaneous symmetry breaking is not possible—
in other words, t > 0 defines the symmetric phase of the
system. In contrast to t, nonzero values of h, to which we
will refer as the external magnetic field, break the sym-
metry explicitly. We quantify the system’s response to t and
h by measuring the order parameter, to which we also will
refer as magnetization M.
The renormalization group analysis (see, e.g., Ref. [18])

demonstrates that the equations of state describing the
dependence of the magnetization on the parameters t and h
has a homogeneous form and can be written as

h ¼ Mδfðx≡ tM−1=βÞ; ð1Þ

where β and δ are universal critical exponents and fðxÞ is a
universal scaling function.
In general, the parameters t and h are related to the

physical parameters of the system through two nonuniver-
sal proportionality coefficients, also called metric factors.
The metric factors are usually chosen in such a way as to
satisfy two normalization conditions for the function f:

fð0Þ ¼ 1; ð2Þ

fð−1Þ ¼ 0: ð3Þ

The above form of the scaling equation of state was
suggested by Widom [19]. One of its advantages is that
it can be straightforwardly derived using the ε expansion.
Its disadvantage is that it leads to an implicit dependence of
M on t and h. An alternative form

Mðt; hÞ ¼ h1=δfGðz ¼ t=h1=ΔÞ ð4Þ

solves this issue. Here, we have introduced the so-called
gap critical exponentΔ ¼ βδ. The function fG is a function
of one variable; it encodes most of the critical statics. It has
to satisfy the normalization conditions

FIG. 1. Analytic structure of the universal phase diagram for
N ¼ 1. Only branch points are displayed; the cuts are omitted for
the clarity of the figure. To draw this figure, we used h ¼ ðt=zcÞβδ
with the realistic critical exponents and the location of the
singularity obtained jzcj from Ref. [7] complemented by the
value of Rχ ¼ 1.72 from Ref. [2]. For the mean-field equation of
state and for the large-N limit in d ¼ 3, the spinodals are located
on the real h axis due to integer values of 2βδ. Only positive
values for real values of h are shown.
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fGð0Þ ¼ 1; ð5Þ

lim
z→−∞

fGðzÞ → ð−zÞβ ð6Þ

to be consistent with the Widom scaling. As we alluded to
before, the set of the normalization conditions requires the
redefinition of the nonuniversal parameters t and h.
Generically, near a critical point we have

M ¼ Bcĥ
1=δ; t̂ ¼ 0; ð7Þ

M ¼ Bð−t̂Þβ; Ĥ ¼ 0; and t̂ < 0: ð8Þ

The normalization conditions require us to define t and h in
such a way as to absorb the prefactors B and Bc:

M ¼ h1=δ; t ¼ 0; ð9Þ

M ¼ ð−tÞβ; h ¼ 0; and t < 0: ð10Þ

In Sec. IV, we formulate the FRG approach to locating
the YLE singularity. As it is our primary objective, our
truncation method is optimized to perform simulations in
the symmetric phase. Calculations in the broken phase are
possible in a different truncation scheme; however, we want
to extract all required quantities within one scheme to avoid
introducing systematic errors by mixing different trunca-
tions in the simulations. We thus strive to avoid the broken
phase. This motivates us to introduce another universal
quantity

ζ ¼ z

R1=γ
χ

; ð11Þ

where the universal ratio Rχ is defined by the limit

Rχ ¼ lim
z→∞

fGðzÞzγ ð12Þ

and γ is the critical exponent connected to δ and β through
the scaling relation:

γ ¼ Δ − β: ð13Þ

The asymptotic behavior of the function fGðzÞ at large
argument has a simple physical origin: The magnetization
has to be a linear function of h in the symmetric phase
t > 0. From Eq. (4) follows that the scaling function fGðzÞ
therefore has to go like z−ðΔ−βÞ ¼ z−γ, leading to the
identity Eq. (13). Note that working in the symmetric
phase allows us to directly extract the critical exponent γ
through the scaling for the magnetic susceptibility:

χðt̂; ĥ ¼ 0Þ ¼ ∂M

∂ĥ
¼ Cþt̂−γ: ð14Þ

Using this expression, it is straightforward to show that

Rχ ¼
CþBδ−1

Bδ
c

ð15Þ

and that the introduced ζ is independent of the amplitude B:

ζ ¼
�
Bc

Cþ

�
1=γ t̂

Ĥ1=Δ ; ð16Þ

thus explicitly demonstrating that, in order to extract the
location of the YLE singularity in ζ, we do not need to
perform simulations in the broken phase.
We stress that ζ and z are related through a universal

number Rχ and universal critical exponent γ. On one hand,
Rχ can be computed in the FRG approach1 but would
require probing the broken phase and, thus, switching the
FRG truncation scheme used in this paper. The associated
systematic error is difficult to assess. On the other hand, for
applications to lattice QCD, jzcj is often considered. We,
thus, will provide a separate set of results for jzcj using Rχ

obtained in Ref. [20].
Finally, for the purpose of the next sections, we also

introduce the anomalous dimension critical exponent η. It
describes the power law dependence of the static correla-
tion function on the distance at the critical point. In d spatial
dimensions,

GðjxjÞ ∼ jxj−ðd−2þηÞ: ð17Þ

The anomalous dimension satisfies the following scaling
relation [18]:

2 − η ¼ d
δ − 1

δþ 1
: ð18Þ

III. ANALYTICAL RESULTS FOR LOCATION OF
YANG-LEE EDGE SINGULARITY

We remind the reader that the Yang-Lee edge singular-
ities are branch points of the function fGðzÞ in the
symmetric phase t > 0. They can be determined by finding
zeros of the inverse magnetic field susceptibility. Most
generally, the Lee-Yang theorem [8,9] implies that they
have to be located on the imaginary h axis. Thus, the
argument of the singularity zc (and its complex conjugate)
is fully determined by the critical exponents of the under-
lying OðNÞ universality class:

zc ¼ jzcjei π2Δ: ð19Þ

Note that the argument of ζc coincides with that of zc.

1Precision calculations were performed in a state of the art
study in Ref. [20].
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As far as the absolute value of the location of the YLE
singularity jzcj is concerned, OðNÞ universality classes with
N > 1 do not enjoy many (neither exact nor approximate)
analytical results. Notable exceptions are the N → ∞ limit
and the theory near four dimensions. We detail both
analytical results below.

A. N → ∞ limit

The large-N scaling equation of state can be readily
computed; for a review, see Ref. [21], where the Widom
scaling relation and critical exponents were derived:

f ¼ ð1þ xÞ2=ðd−2Þ ð20Þ

and

δ ¼ dþ 2

d − 2
; β ¼ 1

2
: ð21Þ

The function f defines the value of γ ¼ 2=ðd − 2Þ at
asymptotically large values of x and Rχ ¼ 1 following
Eq. (12). To find the position of the YLE singularity, it is
convenient to consider the inverse magnetic field suscep-
tibility χ−1 ¼ ∂h

∂M jt. Its zeros define the values of x at the
YLE, xc. In terms of the function fðxÞ, we have

βδfðxcÞ − xcf0ðxcÞ ¼ 0: ð22Þ

This leads to

xc ¼ −
dþ 2

d − 2
; ð23Þ

fc ¼
�

4

2 − d

� 2
d−2
: ð24Þ

Now we can proceed with finding zc. For this, we express
zc in terms of x and f:

zc ¼
tc

h1=βδc

¼ xc
f1=βδc

; ð25Þ

leading to

jzcj ¼
dþ 2

2
8

dþ2

ðd − 2Þ2−d2þd: ð26Þ

At large N, Rχ ¼ 1; thus, jζcj ¼ jzcj. To compare to the
result of the next section, we perform the expansion near
four dimensions d ¼ 4 − ε:

jzcj ≈ jzMF
c j

�
1 −

ln 2
9

ε

�
; ð27Þ

where we introduced zMF
c as the value of zc at the upper

critical dimension of the OðNÞ universality classes d ¼ 4

and the corresponding absolute value jzMF
c j ¼ 3

22=3
.

Near the lower critical dimension d ¼ 2þ ε̃, we obtain

jzcj ≈ 1þ 1

4

�
1 − ln

ε̃

4

�
ε̃: ð28Þ

B. The ε expansion

Although theN → ∞ limit provides an analytic result for
any d in the range 2 < d < 4, it is not well suited to
describe phenomenologically relevant universality classes.
Specifically, for finite temperature QCD, we are interested
in the Ising universality class N ¼ 1 and the Heisenberg
model with N ¼ 2 (due to lattice discretization artifacts;
see, e.g., Ref. [22]) and N ¼ 4. There is another analytic
limit in which one can perform the calculation—near the
upper critical dimension d ¼ 4 − ε. As we document
below, as far as the position of the YLE singularity is
concerned, the utility of this approach is somewhat
restricted, and it cannot be systematically improved to
yield a reliable result in three dimensions. However, it
provides some useful information on the location of the
YLE singularity near four dimensions. It is also not limited
to N → ∞. Moreover, it serves an estimate of the value of
N at which one can apply a large-N approximation for the
purpose of locating the YLE singularity.
In the conventional ε expansion (see, e.g., Ref. [18]),

near the upper critical dimension d ¼ 4 − ε, the critical
exponents are

γ ¼ 1þ N þ 2

2ðN þ 8Þ εþOðε2Þ; ð29Þ

βδ ¼ 3

2
þ 1

2

�
1 −

9

N þ 8

�
εþOðε2Þ: ð30Þ

The same method yields the universal amplitude ratio (see
Ref. [23])

Rχ ¼ 1þ 3

2ðN þ 8Þ ln
�
27

4

�
εþOðε2Þ: ð31Þ

Note that, in the large-N limit, this is consistent with the
previous subsection, Rχ ¼ 1.
To the linear order in ε [24], the scaling function f has

the following form:
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fðxÞ ¼ 1þ xþ ε
ðN − 1Þðxþ 1Þ lnðxþ 1Þ þ 9ðxþ 3Þ lnðxþ 3Þ − 9 ln 3þ 3x ln 4

27

2ðN þ 8Þ þOðε2Þ: ð32Þ

We now turn to the location of the YLE singularity. At
the leading-order ε expansion, we obtain xð0Þc ¼ −3 for the
solution of Eq. (22). For our purpose, the exact expression
for x̂ðεÞ is of no importance as will be demonstrated below.

Moreover, the first correction x̂ðεÞ to the leading-order xð0Þc

is already nonperturbative (see the Appendix for details).
To the first order in ε,

fc ¼ fðxcÞ ¼ −2þ ε

2ðN þ 8Þ

×

�
−2ðN − 1Þ lnð−2Þ þ 18 ln

�
3

2

��
þ x̂ðεÞ: ð33Þ

Here, x̂ðεÞ is the leading correction to the ε ¼ 0 value of fc.
It seems that the presence of the nonperturbative contri-
bution would prevent us from finding the ε order correction
to the location of the YLE singularity. This is, however, not
the case. Indeed, after expressing z in terms of xc and fc,

zc ¼
tc

h1=βδc

¼ xc
f1=βδc

; ð34Þ

we obtain

zc ≈ zMF
c

�
1þ 27 lnð3

2
Þ − ðN − 1Þðln 2 − 5iπÞ

9ðN þ 8Þ ϵ

�
; ð35Þ

where the terms proportional to x̂ðεÞ cancel. At higher
orders of the ε expansion, this cancellation does not
happen. This prevents us from extracting corrections
beyond the linear order. For the special case of N ¼ 1,
Eq. (35) was previously derived in Ref. [7].
For the absolute value of z, we get

jzcj ≈ jzMF
c j

�
1þ 27 lnð3

2
Þ − ðN − 1Þ ln 2
9ðN þ 8Þ ϵ

�
: ð36Þ

Note that the slope of the function jzcðεÞj is negative for
N < 1þ 27ðln 3ln 2 − 1Þ ≈ 16.8. It demonstrates that, at least as
long as the slope of the d dependence is concerned, to
reproduce the result of N → ∞ limit, one has to consider
rather large values of N ≫ 17. Note that the ε expansion at
any given ε leads to a monotonic dependence of the
location on N. As we demonstrate in Sec. IV I, for the
physical point d ¼ 3 or ε ¼ 1, this dependence is
nonmonotonic.

Using Eq. (31) for the universal ratio Rχ leads to

jζcj ≈ jzMF
c j

�
1 −

2ðN − 1Þ ln 2þ 27 ln 3
18ðN þ 8Þ ϵ

�
: ð37Þ

In theN → ∞ limit, this result reproduces the leading-order
expansion near four dimensions of Sec. III A in d ¼ 4 − ε;
see Eq. (27).

C. Behavior near and at d = 2

For the Ising universality classN ¼ 1, d ¼ 2 and d → 1þ
are analytically treatable.We refer the reader to Refs. [25,26]
for d ¼ 2 and to Ref. [7] for d → 1þ. In the latter reference,
the two-dimensional results were also presented in the same
normalization scheme as in this paper.
The case of d ¼ 2, N ≠ 1 deserves special attention.
(i) N > 2.—The perturbative analysis of the nonlinear

sigma model concludes that the theory near its lower
critical dimension d ¼ 2 has a stable ultraviolet
fixed point for N > 2 with N ¼ 2 corresponding
to Berezinskii-Kosterlitz-Thouless phase transition
[27–29]. Complemented by the scaling relations,
this analysis also reveals the full set of critical
exponents near two dimensions d ¼ 2þ ε̃ [30,31]:

η ¼ ε̃

N − 2
þOðε̃0Þ; ð38Þ

β ¼ N − 1

2ðN − 2Þ þOðε̃Þ: ð39Þ

Using Eq. (18), we can establish that, to the leading
order in ε,

Δ ≈
2

ε̃
; ð40Þ

and, thus, Δ is N independent (and coincides with
the N → ∞ result). This fixes the argument of the
Yang-Lee edge singularity to Argzc ¼ πε̃=4 → 0 at
d → 2þ. By the analogy of the behavior of the Ising
model near its lower critical dimension and the result
of the N → ∞ limit [see Eq. (27)], we conjecture
that, for any N ≥ 2, jζcj ¼ jzcj ¼ 1. We checked by
direct analytic calculations that the location of the
singularity in the nonlinear sigma model for the
Heisenberg model (N ¼ 3; see Ref. [32] for the
equation of state) follows our conjecture.

(ii) −2 < N < 2.—For −2 < N < 2, the nonlinear
sigma model does not have an ultraviolet fixed
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point (at least perturbatively). This, however, does
not exclude the presence of the Ising-like fixed
point. We expect that the behavior of the fractional
N smoothly interpolates between N ¼ 1 and
N ¼ 2þ; for the location of the singularity, it means
that jzcj changes from about 4 at N ¼ 1 to 1 at
N ¼ 2−. This plausible assumption is indirectly
supported by the analytic results on the critical
exponents (see Ref. [33]),2 which behave smoothly
as a function of N in the range from −2 to 2−.
Specifically, the argument of the location for the
singularity

Argzc ¼
π

2βδ
¼ 4πð2 − vÞv

ðvþ 1Þðvþ 3Þ ; ð41Þ

where N ¼ −2 cos 2πv and 1 < v < 2, smoothly tra-
verses through N ¼ 1 (which corresponds to
v ¼ 3=2), where it accepts the two-dimensional
Ising model’s value Argzc ¼ 4π

15
. It then approaches

0 at N ¼ 2− (v ¼ 2), making a continuous connec-
tion to the result of the previous item; see Fig. 2.

(iii) N ¼ −2n, where n ∈ Zþ.—In the absence of the
magnetic field, the theory with a negative even
integer number of components is Gaussian for
arbitrary d. Direct calculations show that γ ¼ 1
and η ¼ 0 and independent of N [37,38]. Using
scaling relations, one thus finds that Δ ¼ dþ2

4
and,

thus, in d ¼ 2, Argjζcj ¼ π
2
.

IV. FUNCTIONAL RENORMALIZATION GROUP

A. Overview of the functional renormalization group

We briefly overview the FRG approach; for a thorough
review, see Refs. [15,39–43]. FRG is a specific field-
theoretical implementation of Wilson’s idea of integrating
over momentum shells which is achieved by the inclusion
of fluctuations ordered by momentum scales. Practically,
this is done through modifying the path integral measure by
adding a masslike termΔSk½φ� suppressing contributions of
momentum modes with p≲ k. Under appropriate condi-
tions on ΔSk½φ�, variation of the scale parameter k will lead
to an equation connecting the UV effective action at the
scale Λ, Γk¼Λ½ϕ� ≈ S½ϕ�, to the full IR effective action at
k ¼ 0, Γk¼0½ϕ� ¼ Γ½ϕ�. The expectation value (or the order
parameter) ϕ is given by ϕðxÞ ¼ hφðxÞi.
In the presence of ΔSk½ϕ�, the partition function reads

Zk½J� ¼
Z

Dφe−ΔS½φ�e−S½φ�þJφ ð42Þ

and, thus, becomes scale dependent. Usually, the following
choice is considered:

ΔSk½φ� ¼
1

2

Z
ddx

Z
ddy

X
i

φiðxÞRkðx; yÞφiðyÞ: ð43Þ

In order to match the symmetry of the system, the masslike
regulator function Rkðx; yÞ is chosen to be invariant under
rotations (including the internal space rotations) and trans-
lations, i.e., Rkðx; yÞ ¼ Rkðx − yÞ. Furthermore, in order to
suppress modes with p≲ k while leaving modes with p≳
k intact, the following must hold for the Fourier transform
of the regulator:

FIG. 2. Argument and the absolute value of the Yang-Lee edge singularity at d ¼ 2þ; the Ising model N ¼ 1 is depicted by the dots.
For −2 < N < 2, the argument of the YLE singularity is defined by the critical exponents of the underlying universality class, which are
known exactly; see Ref. [33]. For N > 2, the nonlinear sigma model predicts the argument of the singularity. There are no exact results
for the location of the singularity in d ¼ 2. ForN ¼ 1, Ref. [26] provides the location with high precision. ForN > 2, we conjecture that
jζcj ¼ 1. We expect to have a continuous connection between the start of the dash-dotted line and jζcj for d ¼ 2.

2See alsoFRGstudies at fractionalN andd ¼ 2 inRefs. [34–36].

JOHNSON, RENNECKE, and SKOKOV PHYS. REV. D 107, 116013 (2023)

116013-6



RkðpÞ ∝ k2 for p ≪ k; ð44Þ

RkðpÞ → 0 for p ≫ k: ð45Þ

RkðpÞ adds a mass of the order of k2 to the low-energy
modes, thereby suppressing their contributions to the path
integral.
The effective action Γk½ϕ� is obtained via a modified

Legendre transform:

Γk½ϕ� ¼ − lnZk½J� þ Jϕ − ΔSk½ϕ�: ð46Þ

The functional Γk½ϕ� satisfies the Wetterich equation
[39,44,45]

∂kΓk½ϕ� ¼
1

2
Tr

�
∂kRk

�
δ2Γk½ϕ�
δϕiδϕj

þ Rk

�
−1
�
; ð47Þ

also known as the flow equation. It prescribes the behavior
of Γk between the classical tree-level action at an initial
scale k ¼ Λ in the ultraviolet, Γk¼Λ ¼ S (an initial con-
dition), and the desired full quantum action at k ¼ 0,
Γk¼0 ¼ Γ. The FRG equation provides a versatile realiza-
tion of the Wilsonian RG and is as such well suited to study
critical physics. Both the scaling function and the critical
exponents have been computed in great detail for OðNÞ
theories for real external fields with the FRG; see, e.g.,
Refs. [34,46–63].
While the flow equation is exact, it defines an infinite

tower of coupled partial differential equations for the
effective action and its functional derivatives. With few
exceptions [like theOðNÞmodel in the large-N limit [64] ],
truncations are, therefore, necessary in practice. There is
often no obvious small parameter which can be used to
define a systematic truncation scheme. Fortunately, this is
not the case for critical physics, where the diverging
correlation length facilitates a systematic expansion about
vanishing momentum. Such a derivative expansion [65] has
been shown to have a finite radius of convergence, and a
systematic error estimate is possible [63,66]. We use the
next-to-leading order of this expansion, i.e., first order in
momentum squared, in this work. This is elaborated in the
next sections.

B. First-order derivative expansion

In order to solve the flow equation (47) numerically, we
will consider a constant field configuration around small
momentum. The latter is required only to extract equations
for the wave-function renormalization. Specifically, we use
the following ansatz for the scale-dependent effective
action:

Γk ¼
Z

ddx

�
1

2
ZkðρÞ∂μϕa∂μϕa þ

1

4
YkðρÞ∂μρ∂μρþUkðρÞ

�
;

ð48Þ

where ρ ¼ 1
2
ϕaϕ

a. The above expression contains all
possible terms up to ∂μ∂

μ in the derivative expansion.
This approximation is appropriate for describing long-
wavelength excitations in the critical region.
Consider small deviations around the homogeneous field

background, chosen to be nonzero for the i ¼ 1 field
component

ϕiðxÞ ¼ ϕδi;1 þ φiðxÞ; ð49Þ

then the wave-function renormalizations for transverse and
radial modes are, respectively,

Z⊥
k ðρÞ ¼ ZkðρÞ ¼ lim

p→0

∂

∂p2

δΓk

δðφ2ðpÞφ2ð−pÞÞ
����
φa¼0

; ð50Þ

Zk
kðρÞ ¼ ZkðρÞ þ ρYkðρÞ ¼ lim

p→0

∂

∂p2

δΓk

δðφ1ðpÞφ1ð−pÞÞ
����
φa¼0

:

ð51Þ

C. Flow equations for the next-to-leading order
in the derivative expansion

The flow equations for the potential can be obtained by
substituting the truncation Eqs. (48) to (47) evaluated for a
constant field configuration

∂tUkðρÞ ¼
1

2

Z
d̄dq∂tRkðq2Þ½Gk

k þ ðN − 1ÞG⊥
k �; ð52Þ

where

G⊥
k ¼ 1

Z⊥
k ðϕÞq2 þ U0

kðϕÞ=ϕþ Rkðq2Þ
¼ 1

Z⊥
k ðρÞq2 þ U0

kðρÞ þ Rkðq2Þ
; ð53Þ

Gk
k ¼

1

Zk
kðϕÞq2 þ U00

kðϕÞ þ Rkðq2Þ
¼ 1

Zk
kðρÞq2 þ U0

kðρÞ þ 2ρU00
kðρÞ þ Rkðq2Þ

: ð54Þ

For the integral measure, here and below, we use

Z
d̄dq≡

Z
ddq
ð2πÞd : ð55Þ
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Introducing the tilde differential operator (see Ref. [15])

e∂t ¼
Z

ddl∂tRkðl2Þ
δ

δRkðl2Þ
ð56Þ

allows us to write the equations in a succinct diagrammatic manner:

ð57Þ

and

ð58Þ

In the diagrams, the internal lines represent the scale-dependent Green functions for the transverse (solid line) and radial
(dashed line) modes. The vertices describing interaction relevant for the above flow equations are

ð59Þ
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ð60Þ

ð61Þ

ð62Þ

ð63Þ
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Using these vertices and applying the tilde derivative on the resulting expressions, one can easily derive the flow equations

for Γð2Þ;k
k ðpÞ and Γð2Þ;⊥

k ðpÞ:

∂tΓ
ð2Þ;k
k ðpÞ ¼

Z
d̄dq∂tRkðq2Þ

�
½GkðqÞ�2

�
−
1

2
Γð4Þ
kk ðp;−p; qÞ þ ½Γð3Þ

kk ðp; qÞ�2Gkðpþ qÞ
�

þ ðN − 1Þ½G⊥ðqÞ�2
�
−
1

2
Γð4Þ
k⊥ðp;−p; qÞ þ ½Γð3Þ

k⊥ð−ðpþ qÞ; qÞ�2G⊥ðpþ qÞ
��

ð64Þ

and

∂tΓ
ð2Þ;⊥
k ðpÞ ¼

Z
d̄dq∂tRkðq2Þ

�
½GkðqÞ�2

�
−
1

2
Γð4Þ
k⊥ðp;−p; qÞ þ ½Γð3Þ

k⊥ðp;−ðpþ qÞÞ�2G⊥ðpþ qÞ
�

þ ½G⊥ðqÞ�2
�
−
1

2
ðN − 1ÞΓð4Þ

⊥⊥ðp;−p; qÞ þ ½Γð3Þ
k⊥ð−ðpþ qÞ; qÞ�2Gkðpþ qÞ

��
: ð65Þ

Finally, by taking the derivative of ∂tΓ
ð2Þ;k
k ðpÞ and ∂tΓð2Þ;⊥

k ðpÞ with respect to p2 and evaluating at zero p2, we arrive to the
flow equations for the wave-function renormalizations:

∂tZkðϕÞ ¼
Z

d̄dq∂tRkðq2Þ
�
G2

k

�
γ2k

�
G0

k þ 2G00
k
q2

d

�
þ 2γkZ0

kðϕÞ
�
Gk þ 2G0

k
q2

d

�
þ ðZ0

kðϕÞÞ2Gk
q2

d
−
1

2
Z00
kðϕÞ

�

þ ðN − 1ÞG2⊥
�
γ2⊥

�
G0⊥ þ 2G00⊥

q2

d

�
þ 4γ⊥Z0⊥ðϕÞG0⊥

q2

d
þ ðZ0⊥ðϕÞÞ2G⊥

q2

d

þ 2
ZkðϕÞ − Z⊥ðϕÞ

ϕ
γ⊥G⊥ −

1

2

�
1

ϕ
Z0
kðϕÞ −

2

ϕ2
ðZk − Z⊥Þ

���
; ð66Þ

∂tZ⊥
k ðϕÞ ¼

Z
d̄dq∂tRkðq2Þ

�
G2

k

�
γ̄2⊥

�
G0⊥ þ 2G00⊥

q2

d

�
þ 2γ̄⊥Z0⊥ðϕÞ

�
G⊥ þ 2G0⊥

q2

d

�

þ ðZ0⊥ðϕÞÞ2G⊥
q2

d
−
1

2
Z00⊥ðϕÞ

�
þ G2⊥

�
γ̄2⊥

�
G0

k þ 2G00
k
q2

d

�
þ 4γ̄⊥

�
Zk − Z⊥

ϕ
− Z0⊥ðϕÞ

�
G0

k
q2

d

þ
�
2
Zk − Z⊥

ϕ
− Z0⊥ðϕÞ

�
2

Gk
q2

d
þ 2

Zk − Z⊥
ϕ

γ̄⊥
�
Gk þ 2G0

k
q2

d

�
−
Zk − Z⊥

ϕ2
−
1

2
ðN − 1Þ 1

ϕ
Z0⊥ðϕÞ

��
; ð67Þ

where we introduced shorthand notations for

γk ¼ q2Z0
kðϕÞ þ Uð3ÞðϕÞ; ð68Þ

γ⊥ ¼ q2Z0⊥ðϕÞ þ
∂

∂ϕ

�
1

ϕ
U0ðϕÞ

�
; ð69Þ

γ̄k ¼ q2
Zk − Z⊥

ϕ
þ Uð3ÞðϕÞ; ð70Þ

γ̄⊥ ¼ q2
Zk − Z⊥

ϕ
þ ∂

∂ϕ

�
1

ϕ
U0ðϕÞ

�
; ð71Þ

as well as to simplify the expression we denoted G0 ¼ ∂G
∂q2 and G

00 ¼ ∂
2G

ð∂q2Þ2. In order to obtain Eqs. (66) and (67), we applied
the identity

Z
ddqðp · qÞ2fðq2Þ ¼ p2

d

Z
ddqq2fðq2Þ ð72Þ
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and used the expansion

fððpþ qÞ2Þ ¼ fðq2Þ þ ðp2 þ 2p · qÞf0ðq2Þ þ 2ðp · qÞ2f00ðq2Þ þOðp3Þ: ð73Þ

In this paper, we consider the so-called strict derivative expansion. The logic behind this approximation is
straightforward; see Ref. [63]. Below, we rephrase it for the truncation of interest. At the ∂

2 order, the momentum-
dependent contributions of the order of q4 to Γð4Þðp; q; qÞ are neglected; this justifies neglecting similar terms originating
from the square of three-field vertex, ðΓð3Þðp; qÞÞ2. Dropping the corresponding terms, we end up with

∂tZkðϕÞ ¼
Z

d̄dq∂tRkðq2Þ
�
G2

k

�
γ0kð2γk − γ0kÞ

�
G0

k þ 2G00
k
q2

d

�
þ 2γ0kZ

0
kðϕÞ

�
Gk þ 2G0

k
q2

d

�
−
1

2
Z00
kðϕÞ

�

þ ðN − 1ÞG2⊥
�
γ0⊥ð2γ⊥ − γ0⊥Þ

�
G0⊥ þ 2G00⊥

q2

d

�
þ 4γ0⊥Z0⊥ðϕÞG0⊥

q2

d

þ 2
ZkðϕÞ − Z⊥ðϕÞ

ϕ
γ0⊥G⊥ −

1

2

�
1

ϕ
Z0
kðϕÞ −

2

ϕ2
ðZk − Z⊥Þ

���
; ð74Þ

∂tZ⊥
k ðϕÞ ¼

Z
d̄dq∂tRkðq2Þ

�
G2

k

�
γ̄0⊥ð2γ̄⊥ − γ̄0⊥Þ

�
G0⊥ þ 2G00⊥

q2

d

�
þ 2γ̄0⊥Z0⊥ðϕÞ

�
G⊥ þ 2G0⊥

q2

d

�
−
1

2
Z00⊥ðϕÞ

�

þ G2⊥
�
γ̄0⊥ð2γ̄⊥ − γ̄0⊥Þ

�
G0

k þ 2G00
k
q2

d

�
þ 4γ̄0⊥

�
Zk − Z⊥

ϕ
− Z0⊥ðϕÞ

�
G0

k
q2

d

þ 2
Zk − Z⊥

ϕ
γ̄0⊥

�
Gk þ 2G0

k
q2

d

�
−
Zk − Z⊥

ϕ2
−
1

2
ðN − 1Þ 1

ϕ
Z0⊥ðϕÞ

��
; ð75Þ

where γ0i ¼ γiðq ¼ 0Þ.

The final forms of equations used for the flows of the
expansion functions Uk, Z⊥

k , and Zjj
k in Eqs. (52), (74), and

(75), while written above in terms of the fields ϕ, are
reexpressed in terms of ρ when probing the Wilson-Fisher
point. In this form, the regularity of the flows at ρ ¼ 0
becomes apparent. With that said, the expressions in terms
of ϕ are also necessary to probe the Yang-Lee edge
singularity, as will be discussed.

D. Regulator and wave-function renormalization

There are many different choices for the function RkðpÞ.
In this work, we consider the Litim regulator [67]

Rkðq2Þ ¼ aZk
kðk2 − q2Þθðk2 − q2Þ: ð76Þ

Here, a is a parameter to be varied and optimized under the
principle of minimal sensitivity [16]; we come back to it in
Sec. IV F. We note that we included the radial wave-
function renormalization at a given field background ϕ0,

Zk
k ¼ Zk

kðϕ ¼ ϕ0Þ, in the regulator. In this, we deviate from
the conventional way when Z⊥ðkÞ is introduced in the
regulator. Our choice is shaped by the problem we are
solving: At the YLE, it is expected that the transverse
degrees of freedom decouple (the YLE is at a finite

imaginary value of the magnetic field; see Fig. 1), while
the radial mode is massless and, thus, dominant. It is

convenient to explicitly separate Zk
k from the field-depen-

dent Zk
kðϕÞ. Moreover, we also normalize Z⊥

k ðϕÞ by the
same factor, that is,

Zi
kðϕÞ ¼ Zk

kz
i
kðϕÞ; ð77Þ

where i ¼ ⊥; k. From the definition of Zk
k, it follows that

zkkðϕ0Þ ¼ 1. At the same time, z⊥k ðϕ0Þ ≠ 1, in general.
To simplify the equation, it is also convenient to

introduce the “renormalized” field

ϕr ¼
ffiffiffiffiffi
Zk
k

q
ϕ: ð78Þ

This enables us to rewrite the Green functions in the
following form:

G−1
k ðq2Þ ¼ Zk

k½zkkðϕrÞq2 þU00ðϕrÞ þ aðk2 − q2Þθðk2 − q2Þ�
ð79Þ

and
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G−1⊥ ðq2Þ ¼ Zk
k½z⊥k ðϕrÞq2 þ U0ðϕrÞ=ϕr

þ aðk2 − q2Þθðk2 − q2Þ�: ð80Þ

At the fixed points, the anomalous dimension is related
to the wave-function normalization through

∂tZ
k
k ¼ −ηkZ

k
k: ð81Þ

The anomalous dimension for the transverse component can
be defined analogously, but it is not required for our needs.
Note that

Z⊥
k ðϕÞ ¼ Zk

kðϕÞ −
ϕ2

2
YkðϕÞ; ð82Þ

and, by analogy to Eq. (77), it is convenient to introduce

ykðϕÞ ¼
YkðϕÞ
Zk
k

: ð83Þ

E. Truncation: Notation and methodology

Equation (47) is a differential (in k) and functional-
differential (in the field space) equation. Its solution is not
known. Without introducing a truncation scheme, this
equation cannot be treated numerically.
We, thus, perform a Taylor series expansion of the

functions zðnÞk ðϕÞ, yðnÞk ðϕÞ, and UðϕÞ about a scale-depen-
dent expansion point. In the vicinity of the Wilson-Fisher
point, it is convenient to perform an expansion in terms of
the “renormalized” field ρr ¼ ϕ2

r=2; see Eq. (78). To
simplify the notation, we omit the subscript and imply
ρr → ρ unless indicated explicitly. We have

zkðρÞ ¼ 1þ
XNZ

n¼1

1

n!
znðρ − ρ0;kÞn; ð84Þ

yðρÞ ¼
XNY

n¼0

1

n!
ynðρ − ρ0;kÞn; ð85Þ

UðρÞ ¼
XNU

n¼0

1

n!
unðρ − ρ0;kÞn: ð86Þ

In order to find the location of the YLE singularity, we also
will perform the expansion in ϕ, that is,

zkðϕÞ ¼ 1þ
XNZ

n¼1

1

n!
znðϕ − ϕ0;kÞn; ð87Þ

yðϕÞ ¼
XNY

n¼0

1

n!
y
n
ðϕ − ϕ0;kÞn; ð88Þ

UðϕÞ ¼
XNU

n¼0

1

n!
unðϕ − ϕ0;kÞn: ð89Þ

We also omitted the subscript k but emphasize that all
parameters are running here. In this paper, we require the
truncation orders to satisfy the requirement ðNU;NZk ; NYÞ ¼
2ðNU;NZk ; NYÞ. This guarantees that the truncations are
consistent and one can perform switching between the
variables without losing information about the correspond-
ing function.
The FRG flow equations for the coefficients can be

readily derived starting from Eqs. (52), (74), and (75). For
renormalized quantities, we get a set of equations

_un − unþ1 _ρ0 ¼ ηkðunþ1ρ0 þ nunÞ þ
dn

dρn
ð∂tUÞ

����
ρ¼ρ0

; ð90Þ

_zin − ηkzin − zinþ1 _ρ0

¼ ηkðzinþ1ρ0 þ nzinÞ þ
1

Zk

dn

dρn
ð∂tZiÞ

����
ρ¼ρ0

; ð91Þ

where we introduced the polarization index i ¼ ðk;⊥Þ. The
coefficients zn⊥ are related to yðnÞ through zn⊥¼znk−ny

ðn−1Þ−
ρ0yðnÞ.
In order to find the fixed point solutions, we also need to

determine the flow equations for the dimensionless renor-
malized coefficients. They can be obtained by computing
the expansion coefficient of dimensionless quantities, e.g.,
U=kd and zk, as functions of dimensionless ρ̃ ¼ ρr=kd−2:

ũn ¼ knðd−2Þ−dun; ð92Þ

z̃in ¼ knðd−2Þzin: ð93Þ

We have

_̃un − ũnþ1
_̃ρ0 ¼ −dũn þ ðd − 2þ ηkÞðũnþ1ρ̃0 þ nũnÞ

þ 1

kd
dn

dρ̃n
ð∂tUÞ

����
ρ̃¼ρ̃0

; ð94Þ

_̃zin − ηkz̃in − z̃inþ1
_̃ρ0 ¼ ðd − 2þ ηkÞðz̃inþ1ρ̃0 þ nz̃inÞ

þ 1

Zk

dn

dρ̃n
ð∂tZiÞ

����
ρ̃¼ρ̃0

: ð95Þ

These equations can be rewritten in terms of the expansion
coefficients of the series of ϕ without many modifications.
It amounts to replacing zin, un, and ρ0 with zin, un, and ϕ0

and η with η=2 in the right-hand sides of Eqs. (90), (91),
(94), and (95).
The equations above are to be supplemented by a choice

of the expansion point. In this work, we choose the
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expansion point ϕ0 by fixing the radial excitation mass
mR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U0ðρÞ þ 2ρU00ðρÞp
to a constant, ∂tmR ¼ 0. To

approach the YLE fixed point and at the Wilson-Fisher
point, we setmR to zero. In our work, the nonzero values of
mR are required only to determine the critical exponent δ
and, most significantly, the metric factor Bc.
The conventional expansion scheme, which is used in the

majority of applications, follows the physical point defined
by the minimum of the effective potential. Since the YLE
singularity is located at the (imaginary) magnetic field hc
where the radial mass vanishes, finding it requires numeri-
cally expensive fine-tuning with this scheme.
The advantage of our expansion scheme is that we can

directly follow the flow of the edge singularity. Since the
magnetic field enters as a linear term in the effective action,
it is not renormalized in the flow equation (47). We can,
therefore, simply read off hc as the magnetic field which
turns our expansion point ϕ0 into the physical point in the
IR. The Lee-Yang theorem guarantees that we have only to
resolve the effective action for purely real or purely
imaginary fields in the symmetric phase, so full information
in the complex plane is not required.
A downside of our expansion scheme is that numerical

computations in the broken phase are more challenging.
The reason is that in this case at any finite k our expansion
point ϕ0 lies on the real axis below the physical point. The
FRG flow flattens the potential in this region, since it has to
be convex in the deep IR. This convexity-restoring flow is
driven by near-singular propagators and, therefore, numeri-
cally challenging to resolve; see, e.g., Refs. [68,69].
However, as we have argued in Sec. II, we do not need
to compute in the broken phase.

F. OðNÞ fixed point and minimal sensitivity analysis

The Wilson-Fisher fixed point can be found by solving
the set of algebraic equations _̃un ¼ _̃zin ¼ _̃ρ0 ¼ 0. There are
several ways we are going to use this solution. First, it
defines the OðNÞ anomalous dimension; we use this critical

exponent to apply the minimal sensitivity analysis via the
regulator parameter a—see below. Second, we can use a
slightly perturbed fixed point solution as the initial con-
dition for the FRG evolution toward the IR to extract the
metric factors, critical exponents, and, finally, the location
of the YLE singularity.
The critical exponent η fully defines δ through the scaling

relation Eq. (18).Moreover, calculating the stabilitymatrix at
the fixed point solution allows one to find the critical
exponent ν and, thus, the gap critical exponent through
the relationΔ ¼ ν

2
ðdþ 2 − ηÞ. Thismotivates our strategy in

defining the parameter a as the extremum of the function
ΔðaÞ, where a enters to the regulator through Eq. (76). This
fixes the regulator parameter a ¼ aΔ that we use for
calculating themetric factors (Bc andCþ), critical exponents
(δ and γ), and the location of the YLE singularity. By
choosing the extremum as a function of a, it is guaranteed
that, among the family of regulators defined in Eq. (76), we
use the one where the regulator dependence, and, hence, the
systematic error, is minimal at least for Δ. An alternative
approach would be to use minimal sensitivity analysis for all
universal quantities; this, however, is not feasible for the
location of the YLE singularity, as it is defined through the
(nonuniversal) metric factors and the critical exponents.
We show the dependence of the gap critical exponent and

the anomalous dimension on the regulator parameter a in
Fig. 3 for a few values of N. These calculations were
performed using the strict derivative expansion and the
truncation scheme ðNU;NZk ; NYÞ ¼ ð6; 3; 2Þ. As can be
seen in the figure, for N of phenomenological interest, the
locations of the extrema of ΔðaÞ and ηðaÞ are fairly close at
this truncation.
We obtained reasonable values of the anomalous dimen-

sion critical exponent displayed in Fig. 4. The nonmono-
tonic dependence of η on the number of components N is
expected from the ε expansion.
The minimal sensitivity analysis for different quantities

does not necessarily result in the same regulator parameter a.

FIG. 3. Regulator parameter dependence of the gap critical exponent Δ (normalized by its value at the maximum) and the anomalous
dimension ηðaÞ for a set of N at the Wilson-Fisher fixed point. The maxima of Δ define the minimal sensitivity point aΔ. The dashed
lines in the right panel show aΔ. The figure demonstrates that the location of the minima of ηðaÞ is fairly close to aΔ.
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In order to estimate the corresponding systematic uncer-
tainty, we also performed the analysis for the value of the
magnetic field at the YLE singularity; see Table I.

G. Yang-Lee edge singularity fixed point solution

Near and at the YLE fixed point, due to explicit
symmetry breaking h ≠ 0, there is only one light degree
of freedom—the radial mode. Therefore, we expect our
result for the critical exponent ηYLE (or σYLE) to trivially
reproduce those of the one-component theory. This also
serves as a cross-check on our calculations, as it provides a
powerful constraint on all our equations for N ≠ 1.
There is one subtle point related to how one approaches

this fixed point. We remind the reader that, at the Wilson-
Fisher fixed point, the FRG equations are k independent for
properly scaled variables as we introduced in Sec. IV E.
The k independence implies that the fixed point can be

reached at a finite value of k. To the contrary, when we start
from the general equations for the multicomponent field
theory, one cannot expect k independence for the YLE
fixed point, as the complete separation of the transverse
degrees of freedom is possible only at asymptotically small
k. Thus, when finding the algebraic equation for the YLE
fixed point, one additionally has to take the limit k → 0 for
the terms that involve transverse degrees of freedom. In
effect, this amounts to taking the limit of the dimensionless
renormalized Goldstone mass to infinity. By computing this
limit, we were able to show explicitly that the fixed point
equations of our theory reduced to those of the single-
component theory; that is, the N-dependent terms origi-
nating from Eqs. (66) and (52) drop out.

H. Critical exponents and metric factors

The scaling variable ζ, defined in Eq. (16), requires the
determination of the critical exponents and metric factors.
They can be found by performing calculations near the
critical point. Thus, appropriate perturbations of the initial
conditions near the Wilson-Fisher fixed point allow us to
extract the required quantities. The numerical procedure,
common for arbitrary N, coincides with that performed
in Ref. [7].

I. Location of Yang-Lee edge singularity

To locate the YLE singularity, we compute in the
symmetric phase t > 0 and at vanishing renormalized mass
of the radial excitations. Practically, we use small but

FIG. 4. The results of the minimal sensitivity analysis at the Wilson-Fisher fixed point for the gap critical exponent Δ ¼ ΔðaΔÞ. The
corresponding anomalous dimension is shown in the right panel η ¼ ηðaΔÞ.

TABLE I. The regulator parameter as determined by minimal
sensitivity analysis applied to the gap critical exponent aΔ and the
anomalous dimension aη at the Wilson-Fisher fixed point as well
as to the value of the magnetic field at YLE singularity, ah. The
numbers are quoted to the fourth digit.

N 1 2 3 4

aΔ 0.5108 0.5069 0.5026 0.5044
aη 0.5044 0.5075 0.5064 0.4906
ah 0.6299 0.5921 0.5724 0.5617

TABLE II. The location of the YLE singularity jζcj ¼ jzcj=R1=γ
χ for a representative number of components N.

The numbers in the parentheses (Δtr) and (Δreg) show the truncation error and the error due to residual regulator
dependence, respectively. The uncertainty quoted in the text corresponds to the maximum of Δtr and Δreg. In all
considered cases, Δtr is the largest. For the three-dimensional Ising universality class N ¼ 1, the result of the current
work is consistent with the previous study in Ref. [7].

N 1 2 3 4 5

jζcj 1.621(4)(1) 1.612(9)(0) 1.604(7)(0) 1.597(3)(0) 1.5925(2)(1)
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nonzero values mR ¼ 0þ. As we are interested in
extracting the universal location, we have to consider rather
small positive t to minimize nonuniversal contributions.
Similarly to Ref. [7], we perform the switch of the para-
metrization of the solution from ρ to ϕ at some small but
nonzero negative value of ρs0. We checked that our results
are insensitive to the variation of the value of ρs0.
Solving the flow numerically yields the determination of

hYLE ¼ U0ðϕ0Þ in the infrared. Performing the mapping to
ζc (see Ref. [7] for details), we obtained the results
presented in Table II and illustrated in Fig. 5. The error
was computed as follows. First, to estimate the error due to
the truncation of the field dependence, Δtr, we compare the
results in the (5, 2, 1) and (5, 3, 2) truncation schemes to the
ones obtained for (6,3,2). We use the result of the highest
truncation (6,3,2) for central points and maximal of the
absolute values of the two differences jζcjð6;3;2Þ − jζcjð5;3;2Þ
and jζcjð6;3;2Þ − jζcjð5;2;1Þ for the error estimate due to
truncation. Second, to evaluate the uncertainty associated
with the regulator dependence Δreg, we perform calcula-
tions of jζcj at two values of a: aΔ determined by the
minimal sensitivity analysis applied to the critical exponent
Δ at the Wilson-Fisher fixed point (see Sec. IV F) and ah
determined by the dependence of the magnetic field at the
YLE singularity hYLE. The difference between the corre-
sponding values of jζcj determines Δreg. The numerical
values for the regulators determined by both schemes are
listed in Table I. Both our errors are measures for the
convergence of our truncation within the next-to-leading
order of the derivative expansion. A meaningful estimate
for the systematic error of the derivative expansion itself
requires us to go to next-to-next-to-leading order [63,66].3

While this is required for a precision calculation, this is
beyond the scope of the present work.
The next step is to perform the transformation from jζcj

to jzcj. This step requires the determination of Rχ . Our
current setup does not allow us to compute this quantity, as
it necessitates solving the FRG equation in the broken
phase, which cannot be done using an expansion point
defined by equation ∂tmR ¼ 0 at finite k. Fortunately, high-
precision calculations of Rχ were performed recently in
Ref. [20] for N ¼ 2, 3, 4, and 5. We will use these results
together with the value of Rχ computed for N ¼ 1 in
Ref. [70]. Reference [70] does not provide systematic
uncertainty on the value of Rχ ; we estimated it by
comparing to earlier calculations of Rχ in the LPA0 FRG
in Ref. [46]. We list the results in Table III, where, to find
R1=γ
χ , the value of γ was taken from Ref. [63]. With this, we

can perform the transformation to jzcj. The result is
presented in Table IV. Within the systematic uncertainty,

FIG. 5. Location of the YLE singularity jζcj ¼ jzcj=R1=γ
χ as a

function of N. The estimated uncertainty is within the marker
size. The infiniteN limit (jζcj ≈ 1.649) is approached from below.
As was demonstrated in Ref. [6], this approach is parametrically
slow.

TABLE III. The combination required to map ζc to zc. Critical
amplitude Rχ and critical exponent γ are obtained from
Refs. [46,70] and precision calculations in Refs. [20,63].

N 1 2 3 4 5

R1=γ
χ 1.497(22) 1.26(5) 1.140(34) 1.058(21) 0.974(26)

TABLE IV. Location of the YLE singularity zc at different N.
The uncertainty is dominated by the uncertainty in determination
of Rχ .

N 1 2 3 4 5

jzcj 2.43(4) 2.04(8) 1.83(6) 1.69(3) 1.55(4)

FIG. 6. Four-parameter Padé approximation for the dependence
of the YLE location on the number of spatial dimensions; see the
text for details. The result for the location of the YLE singularity
in the two-dimensional Ising model is taken from Ref. [26]; see
also Ref. [7] for reparametrization to jzcj. We expect that, at
d ¼ 2, going to fractional values of N would fill in the gap from
N ¼ 1 to N ¼ 2. The line corresponding to N ¼ 1 reaches
maximum at some value of d in the range 1 < d < 2 and then
drops to 1 at the lower critical dimension d ¼ 1.

3Since the anomalous dimension is always zero in the leading-
order derivative expansion, it is not a suitable truncation to
describe the YLE singularity and, therefore, also not suitable for a
meaningful error estimate.

UNIVERSAL LOCATION OF YANG-LEE EDGE SINGULARITY … PHYS. REV. D 107, 116013 (2023)

116013-15



the values are consistent with our previous calculations in
LPA0; see Ref. [6].
Tables II and IV constitute the main results of this paper.

V. CONCLUSIONS

Using the functional renormalization group, we extended
our previous results (see Refs. [6,7]) for the universal
location of the Yang-Lee edge singularity in the most
important three-dimensional classic OðNÞ symmetric uni-
versality classes to the (truncated) next-to-leading order in
the derivative expansion. Furthermore, we used the pre-
scription of the principle of minimal sensitivity to minimize
the regulator dependence of our results. Our method is best
suited for investigating the symmetric phase, and, thus, our
main results are for jζcj ¼ jzcj

R1=γ
χ
. We used the high-precision

FRG calculations of Rχ and γ from Refs. [20,63] for N ¼ 2,
3, 4, and 5 in order to find the location jzcj. For N ¼ 1, Rχ

was obtained from Refs. [46,70]. See Tables II and IV for
the summary of the results. To date, these are the best
estimates for the location of the YLE singularity in classical
OðNÞ universality classes in three dimensions.
Combining the input from our FRG results with the

semiexact two-dimensional Ising model result in Ref. [26],
the epsilon expansion about d ¼ 4 (see Sec. III B), and the
behavior of OðN > 2Þ systems near two dimensions (see
Sec. III C), we perform a Padé approximation to capture the
dependence of the YLE singularity location jzcj on the

number of spatial dimensions d for N ¼ 1–5; see Fig. 6.
Qualitatively, this result is similar to our earlier calculation
in Ref. [6].
Complemented by recent ideas and methods in

Refs. [71–78], our findings might help to establish the
existence and potentially the location of the QCD critical
point.
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APPENDIX: ON THE NONPERTURBATIVE
NATURE OF THE ϵ EXPANSION

For the sake of simplicity, in this appendix, we consider a
special case of N ¼ 1. Our conclusions trivially extend to
an arbitrary N.
Consider the Widom equation of state (see, e.g.,

Ref. [79]):

fðxÞ ¼ 1þ xþ 1

6
ϵ

�
−x ln

�
27

4

�
þ ðxþ 3Þ lnðxþ 3Þ− 3 lnð3Þ

�
þ 1

648
ϵ2ð9ðxþ 9Þln2ðxþ 3Þ þ 50ðxþ 3Þ lnðxþ 3Þ þ � � �Þ

þ ϵ3
�
ln2ðxþ 3Þð675þ 246xþ 25x2Þ

1944ðxþ 3Þ þ � � �
�
; ðA1Þ

where in the two- and three-loop contributions we explicitly displayed only a few principal terms. We also need the
derivative

f0ðxÞ ¼ 1þ 1

6
ϵ

�
ln

�
4ðxþ 3Þ

27

�
þ 1

�
þ 1

648
ϵ2
�
4ð17xþ 78Þ lnðxþ 3Þ

xþ 3
þ � � �

�
þ ϵ3

�ð25xðxþ 6Þ þ 63Þln2ðxþ 3Þ
1944ðxþ 3Þ2 þ � � �

�
:

ðA2Þ

For the location of the singularity at one-loop order, we then have

βδfðxcÞ − xcf0ðxcÞ ¼
xþ 3

2
þ ϵ

12

�
ðxþ 9Þ logðxþ 3Þ − x

�
2þ log

27

4

�
− 9 log 3

�
¼ 0 ðA3Þ

with the approximate solution xc ¼ −3þ ϵðln 1
ϵ þ � � �Þ, where the ellipses include a constant term, nested logarithms, and

their ratios.
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Evaluating f0ðxÞ at xc ¼ −3þ ϵ ln 1
ϵ reveals the problem. In Eq. (A2), let us separately consider the two-loop

1

648
ϵ2
�
4ð17xþ 78Þ lnðxþ 3Þ

xþ 3
þ � � �

�����
x→−3þϵ ln1ϵ

¼ −
ϵ

6
−
ϵ log



logð1ϵÞ

�
6 logðϵÞ þ � � � ðA4Þ

and the three-loop terms

ϵ3
�ð25xðxþ 6Þ þ 63Þln2ðxþ 3Þ

1944ðxþ 3Þ2 þ � � �
�����

x→−3þϵ ln1ϵ

¼ −
ϵ

12
−
ϵ log



logð1ϵÞ

�
6 logðϵÞ þ � � � : ðA5Þ

We see that, despite the loop counting, both contributions are
of the order of ϵ (that is, the same as the one-loop term).
Higher-order loop terms also contaminate ϵ1 order and similar
terms involving nested logarithms. This necessitates all loop
order resummation and, thus, brings us to themain conclusion

of this appendix that the corrections to the location of YLE
singularity are not perturbative in ϵ. Note that this does not
prevent us from extracting the leading-order correction to zc.
This correction is of the order of ϵ; higher-order contributions
suffer from the nonperturbative contribution.

[1] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and
E. Vicari, Critical exponents and equation of state of the
three-dimensional Heisenberg universality class, Phys. Rev.
B 65, 144520 (2002).

[2] J. Engels, L. Fromme, and M. Seniuch, Numerical equation
of state from an improved three-dimensional Ising model,
Nucl. Phys. B655, 277 (2003).

[3] M. Hasenbusch, A Monte Carlo study of the three-
dimensional XY universality class: Universal amplitude
ratios, J. Stat. Mech. (2008) P12006.

[4] F. Kos, D. Poland, and D. Simmons-Duffin, Bootstrapping
the OðNÞ vector models, J. High Energy Phys. 06 (2014)
091.

[5] M. Hasenbusch, Three-dimensional OðNÞ-invariant ϕ4

models at criticality for N ≥ 4, Phys. Rev. B 105,
054428 (2022).

[6] A. Connelly, G. Johnson, F. Rennecke, and V. Skokov,
Universal Location of the Yang-Lee Edge Singularity in
OðNÞ Theories, Phys. Rev. Lett. 125, 191602 (2020).

[7] F. Rennecke and V. V. Skokov, Universal location of Yang-
Lee edge singularity for a one-component field theory, Ann.
Phys. (Amsterdam) 444, 169010 (2022).

[8] C. N. Yang and T. D. Lee, Statistical theory of equations of
state and phase transitions. I. Theory of condensation, Phys.
Rev. 87, 404 (1952).

[9] T. D. Lee and C. N. Yang, Statistical theory of equations of
state and phase transitions. II. Lattice gas and Ising model,
Phys. Rev. 87, 410 (1952).

[10] F. Gliozzi and A. Rago, Critical exponents of the 3d Ising
and related models from conformal bootstrap, J. High
Energy Phys. 10 (2014) 042.

[11] X. An, D. Mesterházy, and M. A. Stephanov, Functional
renormalization group approach to the Yang-Lee edge
singularity, J. High Energy Phys. 07 (2016) 041.

[12] L. Zambelli and O. Zanusso, Lee-Yang model from the
functional renormalization group, Phys. Rev. D 95, 085001
(2017).

[13] M. Borinsky, J. A. Gracey, M. V. Kompaniets, and O.
Schnetz, Five-loop renormalization of ϕ3 theory with
applications to the Lee-Yang edge singularity and percola-
tion theory, Phys. Rev. D 103, 116024 (2021).

[14] M. E. Fisher, Yang-Lee Edge Singularity and Φ3 Field
Theory, Phys. Rev. Lett. 40, 1610 (1978).

[15] J. Berges, N. Tetradis, and C. Wetterich, Nonperturbative
renormalization flow in quantum field theory and statistical
physics, Phys. Rep. 363, 223 (2002).

[16] L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal,
Optimization of the derivative expansion in the nonperturba-
tive renormalization group, Phys. Rev. D 67, 065004 (2003).

[17] P. M. Stevenson, Optimized perturbation theory, Phys. Rev.
D 23, 2916 (1981).

[18] D. J. Amit, Field Theory, the Renormalization Group, and
Critical Phenomena (World Scientific, 1984), https://books
.google.com/books?id=M4yqQgAACAAJ.

[19] B. Widom, Equation of state in the neighborhood of the
critical point, J. Chem. Phys. 43, 3898 (1965).

[20] G. De Polsi, G. Hernández-Chifflet, and N. Wschebor,
Precision calculation of universal amplitude ratios in O(N)
universality classes: Derivative expansion results at order
Oð∂4Þ, Phys. Rev. E 104, 064101 (2021).

[21] M. Moshe and J. Zinn-Justin, Quantum field theory in the
large N limit: A review, Phys. Rep. 385, 69 (2003).

UNIVERSAL LOCATION OF YANG-LEE EDGE SINGULARITY … PHYS. REV. D 107, 116013 (2023)

116013-17

https://doi.org/10.1103/PhysRevB.65.144520
https://doi.org/10.1103/PhysRevB.65.144520
https://doi.org/10.1016/S0550-3213(03)00085-3
https://doi.org/10.1088/1742-5468/2008/12/P12006
https://doi.org/10.1007/JHEP06(2014)091
https://doi.org/10.1007/JHEP06(2014)091
https://doi.org/10.1103/PhysRevB.105.054428
https://doi.org/10.1103/PhysRevB.105.054428
https://doi.org/10.1103/PhysRevLett.125.191602
https://doi.org/10.1016/j.aop.2022.169010
https://doi.org/10.1016/j.aop.2022.169010
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1007/JHEP10(2014)042
https://doi.org/10.1007/JHEP10(2014)042
https://doi.org/10.1007/JHEP07(2016)041
https://doi.org/10.1103/PhysRevD.95.085001
https://doi.org/10.1103/PhysRevD.95.085001
https://doi.org/10.1103/PhysRevD.103.116024
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1103/PhysRevD.23.2916
https://doi.org/10.1103/PhysRevD.23.2916
https://books.google.com/books?id=M4yqQgAACAAJ
https://books.google.com/books?id=M4yqQgAACAAJ
https://books.google.com/books?id=M4yqQgAACAAJ
https://doi.org/10.1063/1.1696618
https://doi.org/10.1103/PhysRevE.104.064101
https://doi.org/10.1016/S0370-1573(03)00263-1


[22] H. T. Ding et al. (HotQCD Collaboration), Chiral Phase
Transition Temperature in (2þ 1)-Flavor QCD, Phys. Rev.
Lett. 123, 062002 (2019).

[23] R. Abe and M. Masutani, Note on ε expansion for critical
amplitude ratio Rχ , Prog. Theor. Phys. 59, 672 (1978).

[24] G. M. Avdeeva and A. A. Migdal, Equation of state in
(4—epsilon)—dimensional Ising model, Sov. J. Exp. Theor.
Phys. Lett. 16, 178 (1972).

[25] P. Fonseca and A. Zamolodchikov, Ising field theory in a
magnetic field: Analytic properties of the free energy, arXiv:
hep-th/0112167.

[26] H.-L. Xu and A. Zamolodchikov, 2D Ising field theory in a
magnetic field: The Yang-Lee singularity, J. High Energy
Phys. 08 (2022) 057.

[27] V. L. Berezinskiı̆, Destruction of long-range order in one-
dimensional and two-dimensional systems having a con-
tinuous symmetry group I. Classical systems, Sov. J. Exp.
Theor. Phys. 32, 493 (1971).

[28] V. L. Berezinskiı̆, Destruction of long-range order in one-
dimensional and two-dimensional systems possessing a
continuous symmetry group. II. Quantum systems, Sov.
J. Exp. Theor. Phys. 34, 610 (1972).

[29] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability
and phase transitions in two-dimensional systems, J. Phys.
C 6, 1181 (1973).
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