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We consider the propagation of fermions in the background of a scalar Bose-Einstein condensate. Some
illustrative examples are discussed using simple Yukawa-type coupling models between the fermions and
the scalar fields. The fermion dispersion relations are determined explicitly in those cases, to the lowest
order, and in each case we discuss some of the properties of the propagating fermion modes. We also obtain
the dispersion relations and wave functions of the scalar modes, which can be used to obtain the corrections
(e.g., damping effects) to the fermion dispersion relations due to the interactions with the excitations of the
Bose-Einstein condensate. Possible applications of these results in some contexts, such as neutrinos
propagating in a scalar dark matter background, are mentioned.
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I. INTRODUCTION AND MOTIVATION

In several models and extensions of the standard electro-
weak theory the neutrinos interact with a scalar (ϕ) and
fermion (f) via a coupling of the form f̄RνLϕ, or just with
neutrinos themselves ν̄cRνLϕ. Couplings of the form f̄RνLϕ
produce additional contributions to the neutrino effective
potential when the neutrino propagates in a background of
ϕ and f particles and their possible effects have been
considered in various contexts, such as collective oscil-
lations in supernova (see, for example, Refs. [1,2] and the
works cited therein), the hot plasma of the early universe
[3,4], cosmological observations such as cosmic micro-
wave background and big bang nucleosynthesis data [5],
and in particular dark matter-neutrino interactions [6–11].
Motivated by these developments, we have carried out in

previous works a systematic calculation of the neutrino
dispersion relation in such models, including the damping
and decoherence effects (see Ref. [12] and references
therein). These works have been based on the calculation
of the neutrino thermal self-energy using thermal field
theory (TFT) methods [13].

Analytic formulas for the various quantities of interest
have been obtained by considering various different cases
of the f and ϕ background, such as the nonrelativistic or
ultrarelativistic gases, and in particular the case in which
the f background is a completely degenerate Fermi gas.
To complement that previous work, our goal is to

determine the corresponding quantities (e.g., effective
potential and/or dispersion relation and damping) of a
neutrino that propagates in a thermal background that
contains a scalar Bose-Einstein (BE) condensate. The
hypothesis that the dark matter (DM) can be self-interacting
is intriguing, and a DM background of scalar particles is a
candidate for such environments [14–17]. In that context,
the interest is the application to the case of a neutrino
propagating in such a background.
The problem of fermions propagating in such back-

grounds can be relevant in other contexts as well, for
example, the possibility of BE condensation of pions and/or
kaons in the interior of a neutron star, or kaon condensation
in heavy ion collisions [18–21].
Our purpose here is to propose an efficient and consistent

method to treat the propagation of a fermion in the
background of the BE condensate, in particular the calcu-
lation of the effective potential and dispersion relation, in
a general way and not tied to any specific application. To
model the fermion propagation in such an environment, we
assume some simple Yukawa-type interactions between the
fermions and the scalar.
We consider three generic, but specific, models of the

fermion-scalar interaction:
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(1) Model I: Two massless chiral fermions, fL and fR,
with a coupling to the scalar particle ϕ of the
form f̄RfLϕ.

(2) Model II: A massless chiral fermion fL with
coupling f̄cRfLϕ.

(3) Model III: One massive Dirac fermion f with a
coupling f̄cfϕ.

As we will see, the symmetry breaking process produces a
Dirac fermion, a Majorana fermion, and a pseudo-Dirac
fermion in Models I, II, and III, respectively [22].
The field theoretical method we use to treat the BE

condensate has been discussed by various authors [23–25].
For completeness we first discuss those aspects and details of
themethod that are relevant for our purposes.We thenpresent
the extension we propose to treat the fermion propagation
in the BE condensate, in the context of the three models
mentioned above for concreteness and illustrative purposes.
Although one of our motivations is the possible application
in neutrino physics contexts, the method we propose for the
propagation of fermions in a BE condensate has never being
used before, and most importantly, is general and paves
the way for applications to problems in other systems, for
example, condensed matter, or nuclear matter systems and
heavy-ion collisions as already mentioned.
The plan of the paper is as follows. In Sec. II we review

the model we use to describe the BE condensate. There we
focus on the essential elements of the symmetry breaking
mechanism that we need in the next sections. In Sec. III we
consider in detail the method we use for calculating the
dispersion relations of the propagating fermions in the BE
condensate, in the context of Model I mentioned above.
The method is further illustrated by applying it to Models II
and III in Secs. IV and V, respectively.
With a view to possible interest and/or future work, we

summarize in Appendix B the details related to the scalar
modes that have a definite dispersion relation, which are
useful for the calculation of the thermal corrections to the
fermion dispersion relations due to the thermal excitations
of the BE condensate. Our concluding remarks and outlook
are given in Sec. VI.

II. MODEL FOR THE BE CONDENSATE

To describe the BE condensate the proposal is to start
with the complex scalar field ϕ that has a standard ϕ4

Lagrangian

LðϕÞ ¼ ð∂μϕÞ�ð∂μϕÞ − V0; ð2:1Þ

where

V0ðϕÞ ¼ m2
ϕϕ

�ϕþ λϕðϕ�ϕÞ2: ð2:2Þ

Critical examinations in the literature (see, e.g., Ref. [26])
support the notion that this potential can indeed lead to

thermalization and formation of a stable condensate due to
repulsive interactions that can drive long-range order, for
λϕ > 0 (as opposed to λϕ < 0). Thus, for definiteness, here
we assume that

λϕ > 0; ð2:3Þ

so that this condition to allow forming a stable condensate
is satisfied.
In the context of TFT, denoting the temperature by T and

the chemical potential of ϕ by μϕ, the procedure is to

calculate the effective potential of ϕ, call it VðϕÞ
eff ðT; μϕÞ, and

then see under what conditions VðϕÞ
eff has minimum at ϕ ¼ 0

or some other value. In the latter case, there has been a
phase transition, and

hϕi ≠ 0; ð2:4Þ

indicative of the symmetry breaking.
The alternative approach that we use, which is particu-

larly useful for treating the symmetry breaking associated
with the transition to the BE condensate, is to consider the
field ϕ0 defined by [23–25]

ϕ0 ≡ eiμϕtϕ: ð2:5Þ

The recipe is to substitute ϕ ¼ e−iμϕtϕ0 in LðϕÞ to obtain
the Lagrangian for the field ϕ0, which we denote by Lðϕ0Þ.
To express Lðϕ0Þ in a convenient form we write

μϕt ¼ μϕðu · xÞ; ð2:6Þ

where

uμ ¼ ð1; 0⃗Þ; ð2:7Þ

and define

Dμ ≡ ∂μ − ivμ; ð2:8Þ

with

vμ ¼ μϕuμ: ð2:9Þ

Then using

∂μϕ ¼ ∂μðe−iμϕtϕ0Þ ¼ e−iμϕtDμϕ
0; ð2:10Þ

it follows that

Lðϕ0Þ ¼ ðDμϕ0Þ�ðDμϕ
0Þ − V0ðϕ0Þ: ð2:11Þ
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Expanding the D term in Eq. (2.11),

Lðϕ0Þ ¼ ð∂μϕ0Þ�ð∂μϕ0Þ þ i½ϕ0�ðv · ∂ϕ0Þ − ðv · ∂ϕ0Þ�ϕ0�
−Uðϕ0Þ; ð2:12Þ

where

U ¼ −ðμ2ϕ −m2
ϕÞϕ0�ϕ0 þ λϕðϕ0�ϕ0Þ2: ð2:13Þ

Now comes the key observation. If m2
ϕ > μ2ϕ, this U

corresponds to a standard massive complex scalar with
mass m2

ϕ − μ2ϕ. On the other hand, if μ2ϕ > m2
ϕ, the mini-

mum of the potential is not at ϕ ¼ 0, and therefore ϕ
develops a nonzero expectation value and the Uð1Þ sym-
metry is broken.
We assume the second option,

μ2ϕ > m2
ϕ; ð2:14Þ

and proceed accordingly. Namely, we put

ϕ0 ¼ 1ffiffiffi
2

p ðϕ0 þ ϕ1 þ iϕ2Þ; ð2:15Þ

where

hϕ0i≡ 1ffiffiffi
2

p ϕ0 ð2:16Þ

is chosen to be the minimum of

U0 ¼ −
1

2
ðμ2ϕ −m2

ϕÞϕ2
0 þ

1

4
λϕϕ

4
0: ð2:17Þ

Thus,

ϕ2
0 ¼

μ2ϕ −m2
ϕ

λϕ
: ð2:18Þ

Substituting Eqs. (2.15) and (2.18) in Eq. (2.1) we obtain
the Lagrangian for ϕ1;2. ϕ1 and ϕ2 are mixed by the vμ term.
The central result that we invoke now is that the cal-

culation of the effective potential VðϕÞ
eff ðT; μϕÞ can be carried

out in TFT using μϕ ¼ 0 in the partition (and/or distribu-
tion) function, but using the μϕ-dependent Lagrangian Lðϕ0Þ

given in Eq. (2.12). An exhaustive exposition of the
equivalence of using this scheme for the calculation of
the effective potential, or in fact any other physical quantity
involving the scalar field, is given by Weldon [23]. In
Appendix A we give a simplified but precise statement of
the arguments involved, and which further shows the
validity to proceed in the same way with the fermion
fields as well. Therefore, following this scheme, the next
step would be to find the propagator matrix of the ϕ1;2

system, determine the modes that have a definite dispersion
relation, and then define the thermal propagators of
the modes.
However, for our purposes in what follows, it is

sufficient to observe that, neglecting the T-dependent terms

(that is, at zero temperature), VðϕÞ
eff ð0; μϕÞ is simply the U

potential given in Eq. (2.13), and the zero-temperature
expectation value of ϕ0 is given by Eqs. (2.16) and (2.18).
As we will see, this strategy will allow us to determine the
contribution to the effective potential of fermions propa-
gating in the BE condensate. The thermal propagators of
the ϕ1;2 modes would allow us to calculate the correspond-
ing corrections due to the thermal excitations. While we do
not pursue here the calculation of those thermal corrections,
for completeness and possible relevance in future work we
give in Appendix B some details about the propagator
matrix of the ϕ1;2 complex, the modes that have a definite
dispersion relation, and the corresponding propagators of
the modes.

III. MODEL I

A. Formulation

We consider two chiral fermions fL and fR, with an
interaction

Lint ¼ −λϕf̄RfL þ H:c: ð3:1Þ

There are two conserved charges, which we will label
as Q1;2. The assignments must satisfy

QAðϕÞ þQAðfLÞ −QAðfRÞ ¼ 0: ð3:2Þ

We can take

Q1ðfLÞ ¼ Q1ðfRÞ ¼ 1; Q1ðϕÞ ¼ 0;

Q2ðϕÞ ¼ Q2ðfRÞ ¼ 1; Q2ðfLÞ ¼ 0: ð3:3Þ

Remembering how the QA enter in the partition function
operator, namely

Z ¼ e−βHþ
P

A
αAQA; ð3:4Þ

the assignments in Eq. (3.2) imply that the chemical
potentials satisfy

μϕ þ μL − μR ¼ 0; ð3:5Þ

where we are denoting by μL and μR the chemical potential
of fL and fR, respectively. From our discussion of the
BE condensate model in Sec. II we take that we should
rewrite the Lagrangian in terms of the field ϕ0 defined in
Eq. (2.5). The generalization that we propose here is that
every field with nonzero QA must be transformed
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accordingly. Therefore, a generalization of the transforma-
tion considered in Sec. II is to put

ϕ ¼ e−iμϕtϕ0;

fL ¼ e−iμLtf0L;

fR ¼ e−iμRtf0R: ð3:6Þ
From the discussion in Appendix A, it follows that we can
use the partition function given by Eq. (A12), without the
chemical potential, uniformly for all the fields involved,
provided we also use the dynamical equations that follow
from the transformed Hamiltonian or Lagrangian. In short,
our proposal here is that the prime fields, f0R and f0L, are the
appropriate ones to use to determine the fermion modes in
the BE condensate.
With the condition in Eq. (3.5), the interaction coupling

keeps the same form, namely

Lint ¼ −λϕ0f̄0Rf
0
L þ H:c: ð3:7Þ

However, the kinetic part of the Lagrangian changes. For ϕ0
we will borrow what we did in Sec. II. But now we have to
do something analogous for the fermion fields.
The kinetic part of the fermion Lagrangian,

Lf ¼ if̄L=∂fL þ if̄R=∂fR; ð3:8Þ
in terms of f0R and f0L is

Lf ¼ if̄0L=∂f
0
L þ if̄0R=∂f

0
R þ μLf̄0L=uf

0
L þ μRf̄0R=uf

0
R: ð3:9Þ

As discussed in Sec. II, we assume a symmetry breaking by
the mechanism implemented around Eq. (2.14). Therefore,
we put

hϕ0i≡ 1ffiffiffi
2

p ϕ0; ð3:10Þ

where ϕ0 is given in Eq. (2.18). As a result Q2 is broken,
but Q1 remains unbroken. This produces a mass term in
Eq. (3.7) of the form

−mf̄0Rf
0
L þ H:c:; ð3:11Þ

with

m ¼ λϕ0ffiffiffi
2

p

¼ λffiffiffi
2

p
�
μ2ϕ −m2

ϕ

λϕ

�1=2

; ð3:12Þ

where in the second equality we have used Eq. (2.18). The
total Lagrangian is then

L ¼ Lðϕ0Þ þ L0 þ L0
int; ð3:13Þ

where Lðϕ0Þ is given in Eq. (2.12),

L0 ¼ f̄0Li=∂f
0
L þ f̄0Ri=∂f

0
R þ μLf̄0L=uf

0
L þ μRf̄0R=uf

0
R

− ðmf̄0Rf
0
L þ H:c:Þ ð3:14Þ

and

L0
int ¼ −

λffiffiffi
2

p ðϕ1 þ iϕ2Þf̄0Rf0L þ H:c: ð3:15Þ

Defining

f ¼ f0L þ f0R ð3:16Þ
in momentum space, L0 is given by

L0ðkÞ ¼ f̄ðkÞð=k − ΣðkÞÞfðkÞ; ð3:17Þ
where

Σ ¼ mLþm�R − μL=uL − μR=uR: ð3:18Þ
The two chiral fermions form a Dirac particle, in which
the left and right components have different dispersion
relations. The next step is to find the propagating modes
(dispersion relations and wave functions) at the tree level.
This is most conveniently done using the Weyl representa-
tion of the γ matrices.

B. Dispersion relations

The field equation in momentum space is

ð=k − ΣÞf ¼ 0; ð3:19Þ
or, in terms of the left- and right-hand components of f,

=ALf0L −m�f0R ¼ 0;

=ARf0R −mf0L ¼ 0; ð3:20Þ
where

ALμ ¼ kμ þ μLuμ;

ARμ ¼ kμ þ μRuμ: ð3:21Þ
In the one-generation case we are considering the phase
of m is irrelevant, since it can be absorbed by a field
redefinition, so that we could takem� ¼ m. However, since
in more general cases such field redefinitions cannot be
done independently, we keep m arbitrary.
We use the Weyl representation of the gamma matrices

and put

f0L ¼
�
0

η

�
;

f0R ¼
�
ξ

0

�
: ð3:22Þ
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The equations to be solved then become

ðA0
L þ σ⃗ · κ⃗Þη −m�ξ ¼ 0;

ðA0
R − σ⃗ · κ⃗Þξ −mη ¼ 0; ð3:23Þ

where

AL0 ¼ ωþ μL;

AR0 ¼ ωþ μR; ð3:24Þ

and we have used A⃗L ¼ A⃗R ¼ κ⃗. In general, leaving out the
case that μR ¼ μL (i.e., assuming μϕ ≠ 0), these equations
have nontrivial solutions only if ξ and η are proportional to
the same eigenvector of σ⃗ · κ⃗. This can be seen in various
ways. For example, using the second equation of Eq. (3.23)
to eliminate η in the first equation gives

½A0
LA

0
R − κ2 − jmj2 þ σ⃗ · κ⃗ðA0

R − A0
LÞ�ξ ¼ 0; ð3:25Þ

which implies that ξ is the eigenvector of σ⃗ · κ⃗, and then the
second equation implies that η is proportional to ξ.
Therefore, we write the solution in the form

η ¼ xχs;

ξ ¼ yχs; ð3:26Þ

where χs is the spinor with definite helicity, defined by

ðσ⃗ · κ̂Þχs ¼ sχs; ð3:27Þ

with s ¼ �1. For a given helicity s, the equations for x
and y are

ðωþ sκ þ μLÞx −m�y ¼ 0;

ðω − sκ þ μRÞy −mx ¼ 0; ð3:28Þ

which imply that ω must satisfy

ðωþ sκ þ μLÞðω − sκ þ μRÞ − jmj2 ¼ 0: ð3:29Þ

Expressing μR and μL in terms of their sum and their
difference μR � μL, this equation can be written in the form�
ωþ 1

2
ðμR þ μLÞ

�
2

−
�
sκ −

1

2
ðμR − μLÞ

�
2

− jmj2 ¼ 0:

ð3:30Þ

For each s, we have two solutions, one with a positive ω
and another with a negative ω. They correspond to the
positive and negative helicity states of the Dirac particle
and its antiparticle, which are associated with the unbroken

Q1. We label the two solutions for each s as ωð�Þ
s . With this

notation the solutions are

ωð�Þ
s ðκ⃗Þ ¼ �

nh
κ −

s
2
ðμR − μLÞ

i
2 þ jmj2

o
1=2

−
1

2
ðμR þ μLÞ: ð3:31Þ

Denoting the particle and antiparticle dispersion rela-
tions by ωs and ω̄s, respectively, they are to be identified
according to

ωsðκ⃗Þ ¼ ωðþÞ
s ðκ⃗Þ

¼
nh

κ −
s
2
μϕ
i
2 þ jmj2

o
1=2

−
1

2
μRL;

ω̄sðκ⃗Þ ¼ −ωð−Þ
s ð−κ⃗Þ

¼
nh

κ −
s
2
μϕ
i
2 þ jmj2

o
1=2 þ 1

2
μRL; ð3:32Þ

where we have used Eq. (3.5) and defined

μRL ¼ μR þ μL: ð3:33Þ

It should be kept in mind that, apart from the explicit
dependence on μϕ in Eq. (3.32), m also depends on μϕ
[see Eq. (3.12)].

C. Discussion

To gain some insight into the solution we can consider
some particular cases. For example, while the particle and
antiparticle dispersion relations are different in general,
they are approximately equal in the limit of small μRL.
We also note that in the limit κ ≫ jμϕj, the dispersion
relations are approximately independent of s. They are
strictly independent of s at κ ¼ 0,

ωsð0Þ ¼
�
1

4
μ2ϕ þ jmj2

�
1=2

−
1

2
μRL;

ω̄sð0Þ ¼
�
1

4
μ2ϕ þ jmj2

�
1=2

þ 1

2
μRL; ð3:34Þ

which can be interpreted as the effective masses of the
particle and antiparticle.
On top of these effects, the dispersion relations will also

get corrections due to the interactions with the background
excitations. In the context of thermal field theory such
corrections can be determined by calculating the one-loop
self-energy diagrams. As we have already indicated, those
calculations are not in the scope of the present work.

IV. MODEL II

We consider a massless chiral fermion fL with an
interaction

Lint ¼ −
λ

2
ϕf̄cRfL þ H:c: ð4:1Þ
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In this case there is one conserved charge, with

QðfLÞ ¼ 1; QðϕÞ ¼ −2; ð4:2Þ

and the chemical potentials satisfy

μϕ þ 2μL ¼ 0; ð4:3Þ

where we are denoting by μL the chemical potential of fL.
Proceeding as in Sec. III, the total Lagrangian is given as

in Eq. (3.13), but in the present case

L0 ¼ f̄0Li=∂f
0
L þ μLf̄0L=uf

0
L −

�
m
2
f̄c0Rf

0
L þ H:c:

�
ð4:4Þ

and

L0
int ¼ −

λ

2
ffiffiffi
2

p ðϕ1 þ iϕ2Þf̄c0Rf0L þ H:c: ð4:5Þ

Defining

f ¼ f0L þ fc0R ; ð4:6Þ

L0 can be written in the form

L0 ¼
1

2
f̄ði=∂ − ΣÞf; ð4:7Þ

or in momentum space

L0 ¼
1

2
f̄ðkÞð=k − ΣÞfðkÞ; ð4:8Þ

where

Σ ¼ mLþm�R − μL=uLþ μL=uR: ð4:9Þ

Thus in this case, as a consequence of the symmetry
breaking, the fields fL and fcR form a Majorana fermion,
with the two helicities having different dispersion relations.
To obtain the solution for the dispersion relation explic-

itly, by comparing Eqs. (4.9) and (3.18) we observe that the
equations for the dispersion relations in the present case can
be obtained from those of Model I by setting μR → −μL.
Thus, from Eq. (3.31), making the indicated substitution
and remembering Eq. (4.3) [μL ¼ − 1

2
μϕ], the solutions in

the present case are

ωð�Þ
s ¼ �

��
κ −

s
2
μϕ

�
2

þ jmj2
�

1=2
: ð4:10Þ

Furthermore, by the same identification given in Eq. (3.32),
in this case we have

ω̄sðκ⃗Þ ¼ ωsðκ⃗Þ; ð4:11Þ

that is, the particle and antiparticle dispersion relations are
the same, as it must be for Majorana modes.
Similar to the discussion in Sec. III we can consider

some limiting cases. For illustrative purposes, in the limit of
small or large κ, the dispersion relation reduces to

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
μ2ϕ þ jmj2

r
−

s
2
κμϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
μ2ϕ þ jmj2

q ðsmall κÞ;

ωs ¼ κ −
s
2
μϕ þ

1
4
μ2ϕ þ jmj2

2κ
ðlarge κÞ; ð4:12Þ

respectively.

V. MODEL III

A. Formulation

We consider a massive Dirac fermion f with massM and
an interaction

Lint ¼ −
λ

2
ϕf̄cf þ H:c: ð5:1Þ

Similar to Model II, there is one conserved charge, and the
chemical potentials satisfy

μϕ þ 2μf ¼ 0: ð5:2Þ

Putting once more

ϕ ¼ e−iμϕtϕ0; ð5:3Þ

f ¼ e−iμftf0; ð5:4Þ

instead of Eqs. (4.4) and (4.5) in this case we have

L0 ¼ f̄0i=∂f0 þ μff̄0=uf0 −Mf̄0f0 −
�
m
2
f̄0cf0 þ H:c:

�
;

ð5:5Þ

L0
int ¼ −

λ

2
ffiffiffi
2

p ðϕ1 þ iϕ2Þf̄0cf0 þ H:c:; ð5:6Þ

where m is given in Eq. (3.12). The mass term m
2
f̄c0f0

breaks the degeneracy between the two Majorana compo-
nents of what would otherwise be a Dirac fermion. L0 in
Eq. (5.5) resembles the kinetic part of the Lagrangian of
the pseudo-Dirac neutrino model [22], but here it has the
additional term involving the chemical potential.
We take m to be complex in general and denote its phase

by θ, i.e.,

m ¼ jmjeiθ: ð5:7Þ
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To proceed we introduce the Majorana fields

f1 ¼
1ffiffiffi
2

p ðeiθ=2f0 þ e−iθ=2f0cÞ;

f2 ¼
1

i
ffiffiffi
2

p ðeiθ=2f0 − e−iθ=2f0cÞ; ð5:8Þ

and therefore

f0 ¼ e−iθ=2ffiffiffi
2

p ðf1 þ if2Þ: ð5:9Þ

In terms of the Majorana fields f1;2, L0 becomes

L0 ¼
1

2
ðf̄1i=∂f1 þ f̄2i=∂f2Þ þ

iμf
2

ðf̄1=uf2 − f̄2=uf1Þ

−
M
2
ðf̄1f1 þ f̄2f2Þ −

jmj
2

ðf̄1f1 − f̄2f2Þ: ð5:10Þ

Therefore, in the absence of the μf term, f1 and f2 are
uncoupled in L0 with masses M � jmj, respectively. In the
presence of the μf term, f1 and f2 are mixed. Our purpose
now is to obtain the proper combinations that have a
definite dispersion relation in the presence of the μf term.

B. Dispersion relations

To restate the problem in a more compact algebraic form
we introduce the notation

fM ¼
�
f1
f2

�
: ð5:11Þ

In momentum space, L0 is then

L0 ¼
1

2
f̄Mð=kþ μ̂f=u − M̂ÞfM; ð5:12Þ

where

μ̂f ¼ μf

�
0 i

−i 0

�
ð5:13Þ

and

M̂ ¼
�
Mþ 0

0 M−

�
; ð5:14Þ

where we have defined

M� ¼ M � jmj: ð5:15Þ

The equation for the dispersion relations and the corre-
sponding eigenspinors is

ð=kþ μ̂f=u − M̂ÞfM ¼ 0: ð5:16Þ

As in the previous cases, we use the Weyl representation
of the gamma matrices and decompose

fi ¼
�
xiχs
yiχs

�
ði ¼ 1; 2Þ; ð5:17Þ

using the helicity spinors χs [defined in Eq. (3.27)] as the
basis. The equations for the coefficients xi and yi then
become

ðωþ sκ þ μ̂fÞx − M̂y ¼ 0;

ðω − sκ þ μ̂fÞy − M̂x ¼ 0; ð5:18Þ

where x, y are two-dimensional spinors in the f1;2 flavor
space,

x ¼
�
x1
x2

�
;

y ¼
�
y1
y2

�
: ð5:19Þ

Again, if the μf term is dropped, we get back two
uncoupled pairs of equations, in the Weyl representation
and the helicity basis, for two massive fermions with
dispersion relations ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ðM � jmjÞ2

p
. We now seek

the solutions in the presence of the μf term.
Using the first to write

y ¼ 1

M̂
ðωþ sκ þ μ̂fÞx; ð5:20Þ

and substituting in the second one, we get the equation for x,

�
ðω − sκ þ μ̂fÞ

1

M̂
ðωþ sκ þ μ̂fÞ − M̂

�
x ¼ 0: ð5:21Þ

By straightforward algebra, we obtain

ðω − sκ þ μ̂fÞ
1

M̂
ðωþ sκ þ μ̂fÞ ¼

1

M̂
Â; ð5:22Þ

where
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Â ¼
 

ω2 − κ2 þ rμ2f iμfðω − sκÞ þ iμfrðωþ sκÞ
−iμfðω − sκÞ − i μfr ðωþ sκÞ ω2 − κ2 þ μ2f

r

!
ð5:23Þ

with

r ¼ Mþ
M−

: ð5:24Þ

Substituting Eq. (5.22) in Eq. (5.21) and multiplying by M̂,
the equation for x is

ðÂ − M̂2Þx ¼ 0; ð5:25Þ

where M̂ and Â are given in Eqs. (5.14) and (5.23),
respectively.
The dispersion relations are obtained by solving the

equation

ðA11 −M2þÞðA22 −M2
−Þ − A12A21 ¼ 0; ð5:26Þ

where Aij are the elements of the matrix Â defined in
Eq. (5.23). It follows by inspection of Eq. (5.23) that the
products of the Aij that appear in Eq. (5.26) have the form

ðA11 −M2þÞðA22 −M2−Þ ¼ ω4 þ A1ω
2 þ A0;

A12A21 ¼ A0
1ω

2 þ A0
0; ð5:27Þ

where A0;1 and A0
0;1 are independent of ω. Equation (5.26)

then leads to the following equation for the dispersion
relation:

ω4 − 2bω2 þ c ¼ 0; ð5:28Þ

where

b ¼ −
1

2
ðA1 − A0

1Þ;
c ¼ A0 − A0

0: ð5:29Þ

By straightforward algebra, after some simplifications,
we find

A0
1 ¼

μ2f
r
ð1þ rÞ2;

A0
0 ¼ −

μ2f
r
ð1 − rÞ2κ2;

A0 ¼ ðκ2 þM2þ − rμ2fÞ
�
κ2 þM2

− −
μ2f
r

�
;

A1 ¼ −
�
2ðκ2 þM2 þ jmj2 þ μ2fÞ −

μ2f
r
ð1þ rÞ2

�
: ð5:30Þ

Then from Eq. (5.29),

b ¼ κ2 þM2 þ jmj2 þ 1

4
μ2ϕ;

c ¼ κ4 þ 2κ2
�
M2 þ jmj2 − 1

4
μ2ϕ

�

þ
�
M2þ −

rμ2ϕ
4

��
M2

− −
μ2ϕ
4r

�
: ð5:31Þ

The dispersion relations are given by

ω2
� ¼ b�

ffiffiffi
d

p
; ð5:32Þ

with

d ¼ b2 − c; ð5:33Þ

where, from Eq. (5.31),

d ¼ 4M2jmj2 þ μ2ϕκ
2 þ μ2ϕ

4r
½ð1þ rÞ2ðM2 þ jmj2Þ

þ 2ð1 − r2ÞMjmj�: ð5:34Þ

Once again we recall that m is given in Eq. (3.12).

C. Discussion

To gain some insight we can consider various limit-
ing cases.

Pseudo-Dirac limit. If the situation is such that the term
μ2ϕκ

2 in Eq. (5.34) can be dropped (sufficiently small
μϕ and/or κ), then the dispersion relations are given by

ω2
� ¼ κ2 þM02

�; ð5:35Þ
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where

M02
� ¼ M2 þ jmj2 þ 1

4
μ2ϕ

�
�
4M2jmj2 þ μ2ϕ

4r
½ð1þ rÞ2ðM2 þ jmj2Þ

þ 2ð1 − r2ÞMjmj�
�

1=2
; ð5:36Þ

which are the dispersion relations for two fermions
with effective masses M0

�.
Further, in the special case that μϕ is sufficiently

small that the explicit μϕ terms can be dropped in
Eq. (5.36) (while jmj is kept), the dispersion relations
reduce to

ω2
� ¼ κ2 þM2

�; ð5:37Þ

which resemble the dispersion relations in vacuum for
two fermions with masses M�, as already anticipated
above. In the neutrino context Eq. (5.37) is the familiar
pseudo-Dirac neutrino mode [22]. However, it must be
kept in mind that in the more general case in which the
term μ2ϕκ

2 in Eq. (5.34) cannot be dropped, the κ
dependence of the dispersion relations does not have
the canonical form of Eqs. (5.36) and (5.37).

jmj ≪ M limit. In this limit, the d term in Eq. (5.34) can
be approximated by

d ¼ 4M2jmj2 þ μ2ϕκ
2 þ μ2ϕM

2; ð5:38Þ

so that the dispersion relations reduce to

ω2
�ðκÞ ¼ κ2 þM2 þ jmj2 þ 1

4
μ2ϕ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2jmj2 þ 1

4
μ2ϕκ

2 þ 1

4
μ2ϕM

2

r
: ð5:39Þ

Further, taking the κ → 0 limit,

ω2
�ð0Þ ¼

 
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmj2 þ 1

4
μ2ϕ

r !
2

; ð5:40Þ

which can be interpreted as the effective masses of the
Majorana modes, in the jmj ≪ M limit. But again, the
κ dependence of the dispersion relation is different
than the one given in Eqs. (5.36) and (5.37). In the
case that jmj can be neglected relative to μϕ (for
example, if μϕ is sufficiently close to mϕ), then
Eq. (5.39) can be approximated by

ω�ðκÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þM2

p
� 1

2
μϕ; ð5:41Þ

which resemble the dispersion relation of a neutrino
propagating in a matter background with a Wolf-
enstein-like potential Veff ¼ 1

2
μϕ.

Small M limit. For sufficiently small values of M, the
dispersion relations are approximated by

ω2
� ¼ κ2 þ jmj2 þ 1

4
μ2ϕ � μϕκ: ð5:42Þ

Therefore, the two modes have the same effective
mass

ωð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmj2 þ 1

4
μ2ϕ

r
; ð5:43Þ

but different dispersion relations away from κ ¼ 0.
A plot of Eq. (5.42) is shown in Fig. 1.

VI. CONCLUSIONS AND OUTLOOK

In previous works we have carried out a systematic
calculation of the neutrino dispersion relation, as well as
the damping and decoherence effects, when the neutrino
propagates in a thermal background of fermions and
scalars, with a Yukawa-type interaction between the neu-
trino and the background particles (see Ref. [12] and
references therein).
As a complement of that work, the motivation of the

present work is to determine the corresponding quantities
for the case in which the scalar background consists of
a Bose-Einstein condensate. To this end, here we have
proposed an efficient and consistent method to treat the
propagation of generic fermions in the background of the
BE condensate. With an outlook to possible application in

FIG. 1. Plot of the dispersion relations of the Majorana modes
in the case of negligible M, given in Eq. (5.42). For the plot we
take jmj2 ∼ μ2ϕ. For reference, the plot of the dispersion relation
ω0 ¼ κ is superimposed.
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other contexts, we have illustrated and implemented the
method in a general way and not tied to any specific
application. In the present work we have focused exclu-
sively on the calculation of the dispersion relations. To
model the propagation of the fermions in such an envi-
ronment, we assumed some simple Yukawa-type inter-
actions between the fermions and the scalar.
As mentioned in the Introduction, the method we use to

treat the BE condensate has been discussed by various
authors [23–25]. In Sec. II we reviewed those aspects
and details of the method that are relevant for our
purposes. In the following three sections we presented
the extension we propose of that method to treat the
propagation of fermions in the BE condensate, in
the context of three generic, but specific, models of the
fermion-scalar interaction. Specifically in Sec. III we
considered two massless chiral fermions, fL and fR, with
a coupling to the scalar particle ϕ of the form f̄RfLϕ
(Model I). In Sec. IV we considered a massless chiral
fermion fL with coupling f̄cRfLϕ (Model II). Finally, in
Sec. V we considered one massive Dirac fermion f with a
coupling f̄cfϕ (Model III).
In each case we determined the fermion modes and

corresponding dispersion relations and pointed out some
of their particular characteristics. For example, as a result
of the symmetry breaking the propagating mode is a
Dirac fermion and a Majorana fermion in Models I and II,
respectively. In Model III the symmetry breaking pro-
duces two nondegenerate Majorana modes of what
otherwise would form a Dirac fermion field in the
unbroken phase. In the latter case, various particular
features of the dispersion relations of the Majorana modes
were illustrated by considering particular limiting cases
of the parameters of the model. For example, one
interesting observation is that, while in general the two
Majorana modes have different effective masses (the
value of the dispersion relation at zero momentum), in
some limits the two modes have the same effective mass
although the dispersion relations at nonzero momentum
are different.
The method we propose for the propagation of fermions

in a BE condensate has never been used before and can
be applicable in various contexts, for example, neutrino
physics, condensed or nuclear matter systems, and heavy-
ion collisions. In addition, the work sets the ground for
considering the case of various fermion flavors, as would
be required for the application to neutrinos, or the correc-
tions to the dispersion relations due to the thermal effects of
the background excitations that could be required for
particular applications.
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APPENDIX A: TRANSFORMATION OF THE
CHEMICAL POTENTIAL

Here we show and state precisely the result we invoke in
Sec. II regarding the use of the ϕ0 field (with its corre-
sponding Lagrangian Lðϕ0Þ) in the thermal field theory
calculations while setting μϕ ¼ 0 in the partition function.
Moreover, as will become evident, the result also holds for
any other field, not just for the ϕ field, that is transformed in
a similar way as we have done for the fermions.
We denote by QA the set of conserved charges

associated with the symmetries of the Lagrangian, which
are such that

½QA;ϕ� ¼ −qAϕ: ðA1Þ

The partition function is given by

Z ¼ e−βHþQ; ðA2Þ

where

Q ¼
X
A

αAQA; ðA3Þ

and the chemical potential of ϕ is given by

μϕ ¼ αϕ
β
; ðA4Þ

where

αϕ ≡
X
A

αAqA: ðA5Þ

From Eq. (A1) we have

½Q;ϕ� ¼ −αϕϕ: ðA6Þ

The statement we now show is this: if instead of carrying
the calculations with the ϕ field and its original Lagrangian
L and corresponding Hamiltonian H, we use the ϕ0 field,
with the transformed Lagrangian L0 and corresponding
Hamiltonian H0, and then the partition function becomes

Z ¼ e−βH
0
; ðA7Þ

when it is expressed in terms of the prime field. As already
mentioned, a somewhat exhaustive discussion of this point
is given in Ref. [23]. A simple way to understand this result
is the following.
The evolution equation for ϕ is given by

i∂tϕ ¼ −½H;ϕ�; ðA8Þ
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where H is the Hamiltonian corresponding to the
Lagrangian L. If we now calculate the time derivative of
ϕ0 ≡ eiμϕtϕ, we get

∂tϕ
0 ¼ iμϕϕ0 þ eiμϕt∂tϕ

¼ iμϕϕ0 þ eiμϕti½H;ϕ�
¼ iμϕϕ0 þ i½H;ϕ0�

¼ −
i
β
½Q;ϕ0� þ i½H;ϕ0�

¼ i

�
H −

1

β
Q;ϕ0

�
ðA9Þ

or

i∂tϕ0 ¼ −
�
H −

1

β
Q;ϕ0

�
: ðA10Þ

In other words, the Hamiltonian that governs the evolution
of ϕ0 is H − 1

βQ, or equivalently the two Hamiltonians are
related by

H0 ¼ H −
1

β
Q: ðA11Þ

Therefore, when we express the partition function in terms
of the field ϕ0,

Z ¼ e−βHþQ ¼ e−βH
0
: ðA12Þ

That is, in the calculations using ϕ0 we use the partition
functionwith itsHamiltonianH0 and zero chemical potential.
The reason we emphasize here the operator proof of

Eq. (A11) is because in this way it is applicable to any field
(e.g., a fermion field), not involving Lagrangian dynamics
arguments, and therefore the result shown above holds for
any field and not a scalar field. On the other hand, the
Lagrangian formulation we carried out in Sec. II is the most
efficient way to do the dynamics of the ϕ0, which makes it
very straightforward to solve the evolution equations, rather
than starting with the Hamilton equation, to find the
dispersion relations, propagators, and wave functions of
the propagating modes.

APPENDIX B: SCALAR MODES OF THE
BE CONDENSATE

In this appendix we complete the discussion of the model
presented in Sec. II with regard to the ϕ1;2 excitation modes
of the BE condensate. To simplify the notation, here we
omit the subscript in the chemical potential, mass, and
quartic coupling of the ϕ and denote them by simply μ,m, λ
(without the ϕ subscript), respectively.

1. Lagrangian for the scalar modes

As already mentioned in Sec. II, the starting point is to
substitute Eqs. (2.15) and (2.18) in Eq. (2.12) to obtain the
Lagrangian for the scalar excitations ϕ1;2. Doing piece
by piece,

ð∂μϕ0Þ�ð∂μϕ0Þ ¼ 1

2
½ð∂μϕ1Þ2 þ ð∂μϕ2Þ2�;

i½ϕ0�ðv · ∂ϕ0Þ − ðv · ∂ϕ0Þ�ϕ0� ¼ 2Reðiϕ�v · ∂ϕÞ
¼ ϕ2v · ∂ðϕ1 þ ϕ0Þ − ðϕ1 þ ϕ0Þv · ∂ϕ2

¼ ϕ2v · ∂ϕ1 − ϕ1v · ∂ϕ2 − ϕ0v · ∂ϕ2: ðB1Þ
The last term is a total derivative and therefore does not contribute to the action or the equations of motion and can be
dropped. Finally,

Uðϕ0Þ ¼ −
1

2
ðμ2 −m2Þ½ðϕ0 þ ϕ1Þ2 þ ϕ2

2� þ
1

4
λ½ðϕ0 þ ϕ1Þ2 þ ϕ2

2�2

¼ U0 þ U1 þ U2 þU3 þ U4; ðB2Þ
where U0 has been defined in Eq. (2.17), and

U1 ¼
∂U0

∂ϕ0

ϕ1;

U2 ¼ −
1

2
ðμ2 −m2Þ½ϕ2

1 þ ϕ2
2� þ

1

2
λϕ2

0ϕ
2
2 þ

3

2
λϕ2

0ϕ
2
1;

U3 ¼ λϕ0ðϕ3
1 þ ϕ1ϕ

2
2Þ;

U4 ¼
λ

4
ðϕ4

1 þ ϕ4
2 þ 2ϕ2

1ϕ
2
2Þ: ðB3Þ
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The terms U3;4 give the self-interactions between ϕ1;2

which we are not interested in at the moment, U0 is an
irrelevant constant, and U1 ¼ 0 when Eq. (2.18) is used.
The quadratic part, using Eq. (2.18), is

U2 ¼
1

2
m2

1ϕ
2
1 þ

1

2
m2

2ϕ
2
2; ðB4Þ

where

m2
1 ¼ −ðμ2 −m2Þ þ 3λϕ2

0

¼ 2ðμ2 −m2Þ;
m2

2 ¼ −ðμ2 −m2Þ þ λϕ2
0

¼ 0: ðB5Þ

In the second line in each equation we have used Eq. (2.18).
Therefore, the quadratic part of the ϕ1;2 Lagrangian is

Lð2Þ
ϕ ¼ 1

2
½ð∂μϕ1Þ2 þ ð∂μϕ2Þ2� þ ϕ2v · ∂ϕ1 − ϕ1v · ∂ϕ2

−
1

2
m2

1ϕ
2
1: ðB6Þ

Thus ϕ1 and ϕ2 are mixed by the vμ term. The next step is
to find the propagator matrix of the ϕ1;2 complex and
determine the modes that have a definite dispersion
relation.

2. Dispersion relations for the scalar modes

Using matrix notation,

ϕ̂ ¼
�
ϕ1

ϕ2

�
; ðB7Þ

the Lagrangian, in momentum space, is

Lð2Þ
ϕ ðkÞ ¼ 1

2
ϕ̂�ðkÞΔ−1

ϕ ðkÞϕ̂ðkÞ; ðB8Þ

where

Δ−1
ϕ ðkÞ ¼

�
k2 −m2

1 2iv · k

−2iv · k k2

�
: ðB9Þ

The classical equations of motion are then

Δ−1
ϕ ðkÞϕ̂ ¼ 0: ðB10Þ

The dispersion relations of the eigenmodes are given by the
solutions of

D ¼ 0; ðB11Þ

where D is the determinant of Δ−1
ϕ ,

D≡ k2ðk2 −m2
1Þ − 4ðv · kÞ2; ðB12Þ

or

D ¼ ðω2 − κ2Þðω2 − κ2 −m2
1Þ − α2ω2; ðB13Þ

where we have defined

α ¼ 2μ: ðB14Þ

The dispersion relations are determined by solving

ðω2 − κ2Þðω2 − κ2 −m2
1Þ − α2ω2 ¼ 0; ðB15Þ

which we write in the form

ðω2 − κ2Þðω2 − κ2 −m2
1Þ − α2ðω2 − κ2Þ − α2κ2 ¼ 0;

ðω2 − κ2Þ2 − ðω2 − κ2Þðm2
1 þ α2Þ − α2κ2 ¼ 0:

ðB16Þ

This is a quadratic equation for ðω2 − κ2Þ with solutions

ω2
�ðκÞ ¼ κ2 þ 1

2
ðm2

1 þ α2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðm2

1 þ α2Þ2 þ α2κ2
r

;

ðB17Þ

and obviously,

D ¼ ðω2 − ω2þÞðω2 − ω2
−Þ: ðB18Þ

Thus, the masses of the propagating modes are

m2þ ¼ m2
1 þ α2;

m2
− ¼ 0: ðB19Þ

The zero mass mode is the realization of the Goldstone
mode associated with the breaking of the global Uð1Þ
symmetry.
The corresponding eigenvectors satisfy

Δ−1
ϕ ðkÞj

ω¼ωs
ϕ̂sðκÞ ¼ 0; ðB20Þ

where s ¼ �. Writing

ϕ̂sðκÞ ¼
�
as
bs

�
; ðB21Þ
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the equations for the components are

ðω2
s − κ2 −m2

1Þas þ iαωsbs ¼ 0;

−iαωsas þ ðω2
s − κ2Þbs ¼ 0: ðB22Þ

We write the solutions in the form

ϕ̂þðκÞ ¼
1ffiffiffiffiffiffiffi
Nþ

p
�
ω2þ − κ2

iαωþ

�
;

ϕ̂−ðκÞ ¼
1ffiffiffiffiffiffiffi
N−

p
�−iαω−

ω2
− − κ2 −m2

1

�
: ðB23Þ

The normalization factors N� are determined by requiring
that the one-particle contribution to the propagator from
the eigenmodes coincide with the form of the propagator
near the dispersion relations (ω → ωs). The procedure is
the following. Instead of expressing ϕ̂ in terms of the 1,2
modes,

ϕ̂ðkÞ ¼
�
ϕ1ðkÞ
ϕ2ðkÞ

�
; ðB24Þ

it is expressed in terms of the modes that have a definite
dispersion relation,

ϕ̂ðkÞ ¼
X
s¼�

csðkÞϕ̂sðκÞ; ðB25Þ

where the ϕs are the eigenvectors found above. The free-
field ϕ̂ðxÞ is then expanded in the usual form,

ϕ̂ðxÞ ¼
X
s¼�

Z
d3κ

ð2πÞ32ωsðκÞ
× ½e−iks·xasðκ⃗Þϕ̂sðκÞ þ eiks·xa�sðκ⃗Þϕ̂�

sðκÞ�; ðB26Þ

with

½asðκ⃗Þ; a�sðκ⃗0Þ� ¼ ð2πÞ32ωsðκÞδðκ⃗ − κ⃗0Þ; ðB27Þ

and

kμs ¼ ðωs; κ⃗Þ: ðB28Þ

The one-particle contribution to the propagator from a
given mode is then

Δϕjone-particle;s ¼
ϕ̂sϕ̂

†
s

2ωsðω − ωsÞ
: ðB29Þ

For reference and example, we give explicitly the formula
for s ¼ þ,

ϕ̂þϕ̂
†
þ ¼ 1

Nþ

� ðω2þ − κ2Þðω2þ − κ2Þ ðω2þ − κ2Þð−iαωþÞ
iαωþðω2þ − κ2Þ ðiαωþÞð−iαωþÞ

�
:

ðB30Þ

On the other hand, by inverting Eq. (B9), we obtain the
propagator of the ϕ1;2 complex

ΔϕðkÞ ¼
1

D

�
k2 −iαω
iαω k2 −m2

1

�
; ðB31Þ

whereD is given in Eq. (B13).1 The propagator has poles at
the dispersion relations given in Eq. (B17). Using
Eq. (B18), near the ω ¼ ωþ pole, Eq. (B31) gives

ΔϕðkÞjω→ωþ
¼ 1

2ωþðω − ωþÞðω2þ − ω2
−Þ

×

�
ω2þ − κ2 −iαωþ
iαωþ ω2þ − κ2 −m2

1

�
: ðB34Þ

The normalization factor Nþ is determined by requiring
that

Δϕjω→ωþ
¼ Δϕjone-particle;þ: ðB35Þ

Comparing Eqs. (B29) and (B34), the normalization factor
is then determined by requiring that

ϕ̂þϕ̂
†
þ ¼ 1

ω2þ − ω2
−

�
ω2þ − κ2 −iαωþ
iαωþ ω2þ − κ2 −m2

1

�
; ðB36Þ

and using Eq. (B30) [and remembering Eq. (B15), for the
22 element] we then obtain the wave function renormal-
ization factor

1

Nþ
¼ 1

ω2þ − ω2
−

1

ω2þ − κ2
: ðB37Þ

Applying similar arguments to N−,

1

N−
¼ 1

ω2þ − ω2
−

1

κ2 þm2
1 − ω2

−
: ðB38Þ

1To leading order in μ,

ΔϕðkÞ ≃ Δð1Þ
ϕ ðkÞ≡

 
1

k2−m2
1

−iαω
d

iαω
d

1
k2

!
; ðB32Þ

where

d ¼ k2ðk2 −m2
1Þ: ðB33Þ
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