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Spirals in multiphoton pair production are revisited by two counterrotating fields with time delay for
different cycles in pulse. Novel findings include that for subcycle fields; the remarkable spiral structure in
the momentum spectrum can be still caused by a large time delay compared to the previous study for the
supercycle case where it is easier to be generated by a small time delay. Also there exist a range of critical
polarization values for the spirals’ appearance corresponding to the different cycle numbers. The relative
phase difference between two fields causes not only severe symmetry breaking of the momentum spectra
pattern and spiral but also a significant change for the shape and the number of spiral arms. The number
density is found to be more sensitive to the cycle number; in particular, it is enhanced by more than one
order of magnitude for a small cycle pulse, while it is increased a few times when the time delay is small.
These results provide an abundant theoretical testbed for the possible experimental observation of the
multiphoton pair production in the future. Meanwhile, it is applicable to use the particles’ momentum
signatures as a new way to probe the laser field information.
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I. INTRODUCTION

In past decades, there has been a lot of interest in the
research of the electron-positron (e−eþ) pair production
from vacuum in strong background fields [1–7], while the
Schwinger critical field strength Ecr ¼ m2c3=eℏ ≈ 1.3 ×
1016 V=cm (where m and −e are the electron mass and
charge) is still a few orders higher than the present laser
field and also the laser field of planned laser facilities such
as the Extreme Light Infrastructure [8], the Exawatt Center
for Extreme Light Studies, and the x-ray free electron laser
[9]. In 1997, however, an impressive E-144 experiment has
been performed at Stanford Linear Accelerator Center
using 46.6 GeV electrons colliding with a laser about
1018 W=cm2 [10]; with this, it observed the production of
4–5 pairs of e−eþ. Intrigued by this multiphoton pair
production experiment and also with the rapid development
of high-intensity laser technology [11–14], the multiphoton
pair creation mechanism provides more experimental
chances in the future. Some new important developments

that include the ponderomotive force effect [15], node
structures [16], and effective mass signatures [17] are
revealed.
Recently, spirals have attracted more and more atten-

tion, for example, the spiral structures of photoelectron
momentum distributions are identified in the multiphoton
ionization under two counterrotating circularly polariza-
tion (CP) fields [18,19]. The momentum spirals in photo-
detachment from theH− driven by pairs of counterrotating
CP pulses are revealed in Ref. [20]; meanwhile, we report
the formation of electron vortices1 in the same photo-
detachment driven by a single CP pulse or pairs of
corotating CP pulses. In fact, spirals have been widely
investigated in atomic and molecular ionization [22–24],
nonlinear optics [25], type-II superconductors [26], plas-
mas physics [27,28], atomic condensates [29], and so on.
Interestingly, our previous studies show the significant
spiral structures also exist in multiphoton pair production
[30,31]. The spirals formed with an even number of spiral
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1Note that the roots of vortices can be traced back to Ref. [21],
in which Dirac showed that in three-dimensional space the vortex
motion is described by lines where the complex amplitude
vanishes and that the circulation of the probability current around
the contour containing such a line does not disappear and is
quantized. It is known that vortices are different from spirals; in
our work, we focus on the spiral structures in the momentum
distributions of created particles.
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arms in one-color two counterrotating CP laser fields with
a time delay2 is reported on in Ref. [30]. Then the spirals
constituted by an odd number of spiral arms in two-color
counterrotating elliptically polarization fields with time
delay were also discovered [31]. These primary studies
have indicated that the spirals in multiphoton pair pro-
duction are sensitive to the field parameters.
On the other hand, it should be noticed that the previous

research has been worked within some limited range, for
instance, either the cycle or the time delay between two fields
is fixed, etc. However, for various cycles and time delays, is
there still a spiral in multiphoton pair creation? How about
the spiral changes when the relative phase is introduced
between two fields? Since the momentum pattern and spiral
is very sensitive to the ellipticity of polarized fields, what is
the range of ellipticity to observe spirals effectively?
To clarify these points, therefore, in this paper, we shall

revisit the spirals in multiphoton pair production in two
counterrotating fields with a time delay by using the Dirac-
Heisenberg-Wigner (DHW) formalism. This study focuses
on the effects of time delay and the number of cycles in
pulse on the momentum spiral and the number density of
created particles, in two typical cases of relative carrier
envelope phase as 0 and π=2, respectively. Without losing
generality, we shall consider four different cases of time
delay and three different cycles of supercycle, subcycle,
and cycle between them. It is found that there is still an
obvious spiral structure in the momentum spectrum even in
the case of a subcycle. Some novel features and interesting
phenomena for the spiral would be revealed.
We consider the following spatially homogenous and

time-varying electric field model, which is composed of
two counterrotating fields with a time delay [30,34],

EðtÞ ¼ E1ðtÞ þ E2ðtÞ; ð1Þ
with

E1;2ðtÞ ¼ f1;2ðtÞg1;2ðtÞ; ð2Þ
where

f1;2ðtÞ¼
E1;2

coshðt�T
τ Þ;

g1;2ðtÞ¼ ½cosðωðt�TÞþϕ1;2Þ;δ1;2 sinðωðt�TÞþϕ1;2Þ;0�T:
ð3Þ

Here the sign T denotes the transposition of the matrix,

E1;2 ¼ E0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ21;2

q
are the electric field strength, jδ1;2j ¼

1 denotes the circular polarizations (where we define δ1 ¼
−1 as a right-handed CP field and δ2 ¼ 1 as a left-handed

CP field [30]),ω represents the field frequency, and ϕ1;2 are
the carrier envelope phases (the corresponding relative
phase is Δϕ ¼ ϕ2 − ϕ1). And τ ¼ Nπ=ω is the pulse
duration, where N has the meaning of a number of cycles
in the individual pulse. T denotes the time delay parameter
of two consecutive pulses at �Gτ, where G is a dimension-
less quantity. Accordingly, the time delay between the
centers of the two consecutive pulses amounts 2T. Since
the main interest in this study is the dependence on the time
delay T and the number of cycles N in the single pulse.
A set of typical polar diagram of electric field is shown in

Fig. 1. Equation (1) consists of two fields, where the
first is a right-handed CP and the second is a left-handed
CP. From Fig. 1(a), one can see that the corresponding
curve evolves clockwise from 0 to the maximum, and
then counterclockwise from the maximum to 0. From
Figs. 1(b)–1(d), however, it is found that the curves begin
and end at the origin of coordinates for both of fields, in
which the curves evolve clockwise and counterclockwise
with respect to first and second field, respectively. These
properties are also reflected in the momentum spectrum of
created particles. Note that the curve in Fig. 1(a) has no
self-crossing for the single field of either the first or second
one. This is because N ¼ 0.5 and T ¼ τ corresponds to an
ultrashort pulse with a subcycle, which cannot separate two
fields far away, so the two fields are overlapping for the first
right CP and the second left CP field.
Note that, throughout this paper, we set E0 ¼ 0.1

ffiffiffi
2

p
Ecr,

ω ¼ 0.6, and ϕ1 ¼ 0. And also the natural units ℏ ¼ c ¼ 1
are applied and all quantities are presented in terms of the
electron mass m. For example, the field frequency and the
momentum are in units of m, and the temporal scales of
the electric field is in units of 1=m.
The paper is organized as follows. In Sec. II, in order to

be self-contained in this work, we briefly recall the DHW
formalism. In Sec. III, we examine the different spiral
structures and signatures with different chosen parameters
of time delay and cycle number of fields when the relative
carrier envelope phase is set as 0. The case of the relative
phase as π=2 is investigated in Sec. IV. In Sec. V, the
number density is presented and analyzed. Finally, the
conclusion and outlook are given in Sec. VI.

II. DHW FORMALISM

The present study is based on the DHW formalism that
has been widely adopted to investigate vacuum pair
production in a strong background field [35–41]. Since
the detailed derivation of the DHW formalism has been
performed in Refs. [42–44], here we only present the key
points of this approach.
We start from the gauge-covariant density operator of

two Dirac field operators in the Heisenberg picture,

Ĉαβðr; sÞ ¼ UðA; r; sÞ½ψ̄ βðr − s=2Þ;ψαðrþ s=2Þ�; ð4Þ
2About the time delay, some research has been performed for

the Compton radiation spectra [32] and the Breit-Wheeler pair
production [33].
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where r denotes the center-of-mass coordinate and s the
relative coordinate. The Wilson line factor

UðA; r; sÞ ¼ exp

�
ies

Z
1=2

−1=2
dξAðrþ ξsÞ

�
; ð5Þ

is used to guarantee the density operator gauge invariant,
and it is related to the elementary charge e and the
background gauge field A.
It is known that the important quantity of the DHW

approach is the covariant Wigner operator, which could be
defined as the Fourier transform of Eq. (4) with respect to
the relative coordinate s, i.e.,

Ŵαβðr; pÞ ¼
1

2

Z
d4s eipsĈαβðr; sÞ: ð6Þ

By taking the vacuum expectation value of Eq. (6), we can
obtain the covariant Wigner function

Wðr; pÞ ¼ hΦjŴðr; pÞjΦi: ð7Þ

Because of the fact that the Wigner function is in the Dirac
algebra, it can be decomposed into 16 covariant Wigner
coefficients

W ¼ 1

4
ð1Sþ iγ5Pþ γμVμ þ γμγ5Aμ þ σμνTμνÞ; ð8Þ

where S, P, Vμ, Aμ, and Tμν denote scalar, pseudoscalar,
vector, axial vector, and tensor, respectively. According to
the Refs. [40,41,45,46], the equations of motion for the
Wigner function can be written as

DtW ¼ −
1

2
Dx½γ0γ;W� þ im½γ0;W� − iPfγ0γ;Wg; ð9Þ

here Dt, Dx, and P represent the pseudodifferential
operators.
Inserting Eq. (8) into Eq. (9), we can get a set of partial

differential equations for the 16 Wigner components.
For the spatially uniform and time-dependent electric
field Eq. (1), by applying the method of characteristics
[36,45–48] and replacing the kinetic momentum p with the
canonical momentum q via q − eAðtÞ, the partial differ-
ential equations for the 16 Wigner components can be
simplified to the ordinary differential equations for only 10
Wigner components. And the corresponding Wigner coef-
ficients are

w ¼ ðs; vi;ai; tiÞ; ti ≔ t0i − ti0: ð10Þ
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FIG. 1. A set of typical polar diagram of the electric field Eq. (1) for different time delays and cycles. (a) and (b) correspond to T ¼ τ
and T ¼ 8τ with N ¼ 0.5, respectively. (c) and (d) are T ¼ τ and T ¼ 8τ with N ¼ 4. Other field parameters are E1;2 ¼ 0.1

ffiffiffi
2

p
Ecr,

δ1 ¼ −1, δ2 ¼ 1, ω ¼ 0.6, and ϕ1;2 ¼ 0.
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For the specific derivation of these 10 equations, we
refer the reader to Refs. [40–42,44]. In order to perform
calculations, the vacuum initial conditions are given
[42,43] by

svac ¼
−2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ; vi;vac ¼
−2piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð11Þ

The single-particle momentum distribution function is
defined as

fðq; tÞ ¼ 1

2Ωðq; tÞ ðε − εvacÞ; ð12Þ

where Ωðq; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2ðtÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðq − eAðtÞÞ2

p
denotes the total energy of particles, ε ¼ msþ pivi rep-
resents the phase space energy density. To precisely
calculate the distribution function fðq; tÞ, it is necessary
to introduce an auxiliary three-dimensional vector [47,48]

vðq; tÞ ≔ viðpðtÞ; tÞ − ð1 − fðq; tÞÞvi;vacðpðtÞ; tÞ: ð13Þ

Therefore, we can obtain the single-particle momentum
distribution function fðq; tÞ by solving the following
ordinary differential equations:

_f ¼ eE · v
2Ω

;

_v ¼ 2

Ω3
½ðeE · pÞp − eEΩ2�ðf − 1Þ − ðeE · vÞp

Ω2

− 2p × a − 2mt;

_a ¼ −2p × v;

_t ¼ 2

m
½m2v þ ðp · vÞp�; ð14Þ

with the initial conditions fðq;−∞Þ ¼ 0, vðq;−∞Þ ¼
aðq;−∞Þ ¼ tðq;−∞Þ ¼ 0. Here the dot represents a
total time derivative, v, a, and t are the three-dimensional
vectors corresponding to Wigner components, and
their physical sense is as follows: v denotes current density,
a is spin density, and t is magnetic moment density [49].
E is the electric field of Eq. (1), Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ðq − eAðtÞÞ2
p

is the total energy of particles, where
p represents kinetic momentum and q denotes canonical
momentum, and e is the charge of particle, i.e., jej and −jej
for positron and electron, respectively.3 AðtÞ is the vector
potential of the external field. By the way, in solving

Eq. (14) above, we employ FORTRAN software by the
Runge-Kutta fourth order with a fixed time step 0.0005.
And the number of lattice points of momentums qx, qy are
set as Nqx ¼ Nqy ¼ 800, see Refs. [37,41].
Moreover, the number density of created pairs can also

be obtained by integrating the distribution function fðq; tÞ
over full momenta at t → þ∞, i.e.,

n ¼ lim
t→þ∞

Z
d3q
ð2πÞ3 fðq; tÞ: ð15Þ

III. SPIRALS FOR FIELDS WITH RELATIVE
PHASE Δϕ= 0

In this section, we study the effects of time delay with
different cycles in pulse on the momentum spirals in
multiphoton pair production by two counterrotating fields
with relative carrier envelope phase Δϕ ¼ ϕ2 − ϕ1 ¼ 0.

A. N = 4

We know that the time delay is fixed in previous study
[31], but now we explore how the momentum spectrum
changes in the case of varying time delay. Before present-
ing our findings in detail, the symmetry of the momentum
spectrum in the case T ¼ 0 is briefly discussed. When
N ¼ 4, the effects of T on the momentum spectra in the
polarization plane for two counterrotating fields are shown
in Fig. 2. For T ¼ 0, one can see that the momentum
spectrum presents four bright curved moon-shaped struc-
tures and has a good axisymmetry in the qx and qy
directions, see Fig. 2(a). Since the momentum distribution
is mainly related to the total energy of particle Ωðq;tÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðq−eAðtÞÞ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðqx−eAxðtÞÞ2þðqy−eAyðtÞÞ2

q
,

and only in the case of T ¼ 0, AxðtÞ is an odd function with
respect to twhile AyðtÞ ¼ 0. Therefore, under time reversal,
the time t and the momentums qx and qy change sign,
Ωðq; tÞ still stays invariant, which ensures a good axisym-
metry of the momentum spectrum. Once T ¼ τ, the
symmetry in the qx direction still exists, but the symmetry
in the qy direction gradually disappears.
In the case of varying T, our findings include that, as

time delay increases to T ¼ τ, the four curved moon-
shaped structures in Fig. 2(a) are gradually elongated and
rotated, which eventually leads to the generation of spiral
structure in the momentum spectrum, see Fig. 2(b).
Importantly, it is found that the spiral consists of six spiral
arms. With the time delay increasing to T ¼ 4τ and T ¼ 8τ,
however, we observed that the momentum spectra exhibit
the signature of eight arms of a spiral pattern, see Figs. 2(c)
and 2(d). And compared to the case of T ¼ τ, the spiral
arms become longer and slender, resulting in the appear-
ance of a more pronounced spiral structure. This phenome-
non may be understood qualitatively from the evolution of

3In fact, the sign of e does not affect scientific results, and the
� of e corresponds to the momentum spectrum of created
positron/electron. Equivalently, if the sign of e changes while
the electric field reverses its sign, then the momentum spectrum
of created particles is consistent with each other. In present work
we choose the positive charge.
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the electric field in Figs. 1(c) and 1(d). One can see that the
evolution curve for T ¼ 8τ in Fig. 1(d) presents a wider and
more uniform distribution than that of T ¼ τ in Fig. 1(c),
which leads to a more pronounced spiral structure in the
corresponding momentum spectrum. In particular, for
T ¼ 8τ, the spiral pattern becomes almost a quasi-Rasmey
interference fringe consisting of many concentric rings.
Upon the particle spin effect on the pair production, there

has been some studies [48–51]. For the single field, there
exists some difference for the effect of spin-up or spin-
down of particles on the pair creation [48–50]. Under the
two counterrotating fields with a time delay, however, as
was shown in Refs. [31,51], the effect of particle spin-up
and spin-down on the spiral structures in the momentum
spectrum of created particles can be ignored since the
invariance of the combinational symmetry by opposite
helicity of two CP field and the particle spin. Therefore, in
the present work, we do not need to consider it.
In order to clearly understand the spiral structures

in the momentum spectra described above, we employ
the Wentzel-Kramers-Brillouin (WKB)-like approximation
method [48,50] to make some semiquantitative under-
standings on obtained numerical results. It is known that

e−eþ pairs are primarily created at the maximum of the
electric field, i.e., at t ¼ −T and t ¼ T for the electric field
Eq. (1), and the creation process is dominated by the two
pairs of turning points near t ¼ −T and t ¼ T. According
to WKB-like approximation [30,31,48,50,52], for a certain
q, the amplitude of pair creation for the first field in
our model can be expressed as A1 ¼ exp½−iKsðq; tþ1 Þ� and,
correspondingly, the second one can be written as A2 ¼
exp½−iKsðq; tþ2 Þ�, where t1 and t2 represent the turning
points near t ¼ −T and t ¼ T. Therefore, one can obtain
the momentum distribution function

fðqÞ ¼
X
s¼�

jA1 þ A2j2;

¼
X
s¼�

je−iKsðq;tþ1 Þ þ e−iKsðq;tþ2 Þj2; ð16Þ

where Ksðq; tÞ ¼ K0ðq; tÞ − sKxyðq; tÞ, K0ðq; tÞ ¼
2
R
t
−∞Ωðq; t0Þdt0, Kxyðq; tÞ¼ ϵ⊥

R
t
−∞

_pxðt0Þpyðt0Þ− _pyðt0Þpxðt0Þ
Ωðq;t0Þ½p2

xðt0Þþp2
yðt0Þ� dt

0,

s ¼ �1 represents the electron spin, s ¼ 0 denotes
the scalar particle, Ωðq;tÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ½q−eAðtÞ�2

p
, and

FIG. 2. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for N ¼ 4 with different time delay
parameters. From (a) to (d), the corresponding time delays are T ¼ 0; τ; 4τ; 8τ, respectively. Other electric field parameters are
E1;2 ¼ 0.1

ffiffiffi
2

p
Ecr, δ1 ¼ −1, δ2 ¼ 1, ω ¼ 0.6, and ϕ1;2 ¼ 0.
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ϵ⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2z

p
. For a larger time delay T, the amplitude

of pair production for the second field can be rewritten
as A2 ¼ exp½iθsðqÞ�A1, where θsðqÞ ¼ Re½Ksðq; tþ2 Þ −
Ksðq; tþ1 Þ� denotes a phase accumulated factor between the
two pulses [30,31]. From these, Eq. (16) becomes

fðqÞ ¼
X
s¼�

jA1 þ eiθsðqÞA1j2;

¼
X
s¼�

2ð1þ cos½θsðqÞ�Þe−2ϑsðq;tþ1 Þ

∝ f1þ cos½θ0ðqÞ�ge−2ϑ0ðq;tþ1 Þ: ð17Þ

Note that for a large T, since both the electric field and the
vector potential between t ¼ −T and t ¼ T are very small,
the θ0ðqÞ can be expressed as θ0ðqÞ ≈ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
T.

Actually, it is more convenient to understand the varia-
tion in the number and the shape of spiral arms in the
spherical coordinates (q; θ;φ). Since the amplitude of pair
creation in spherical coordinates is able to provide a phase
factor which may well reveal the rotation properties of aCP
field. Similar to Refs. [30,31], the amplitude A1 in spherical
coordinates can be written as A1 ≈ expðilδ1φÞA0ðq; θ;φÞ,
where l is the number of photons absorbed in the multi-
photon pair production process and φ denotes the azimuthal
angle, and the amplitude A2 can be expressed as A2 ≈
expðilδ2φÞ exp½iθ0ðq; θ;φÞ�A0ðq; θ;φÞ. Finally, combin-
ing Eqs. (16) and (17), we can obtain the momentum
distribution function in the polarization plane (where the
polar angle θ ¼ π=2, i.e., qz ¼ 0)

fðq;φÞ ∝ f1þ cos½θ0ðq;φÞ þ ðδ2 − δ1Þlφ�gjA0ðq;φÞj2;
ð18Þ

here θ0ðq;φÞ ≈ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
T for a large T. It is known

from Eq. (18) that the number of spiral arms is associated
with

qmax
k0 ðφÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2k0π − ðδ2 − δ1Þlφ

4T

�
2

−m2

s
; ð19Þ

where k0 is an integer. Furthermore, we can know from
Eq. (19) that the spiral arms number is primarily deter-
mined by jðδ2 − δ1Þlj, which will be illustrated in the
following numerical results.
For example, when time delays are T ¼ 4τ and T ¼ 8τ

in Figs. 2(c) and 2(d), the helicities of the two counter-
rotating CP fields are δ1 ¼ −1 and δ2 ¼ 1 and the
frequencies are ω ¼ 0.6. According to the energy con-
servation equation lω ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2�

p
with the effective

mass m�, we know that the pair production is related to
four-photon process, i.e., l ¼ 4. Therefore, one can obtain
jðδ2 − δ1Þlj ¼ 8, which indicates that the spiral pattern is

composed of eight spiral arms. It has a good agreement
with our numerical results.
In addition, the change in the shape of the spiral arm with

increasing time delay can also be understood. According
Eq. (19), we can obtain φðqÞ ¼ ð2k0π − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
TÞ=

ðδ2 − δ1Þl. The absolute value of the derivative for the
above equation with respect to q can be written as

jdφðqÞ=dqj ¼ j4T=ðδ2 − δ1Þlj ·
�
q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q �
: ð20Þ

One can see from Eq. (20) that the increase of φ with q
changes more quickly for a large T than a small one. It
indicates that the larger the time delay, the faster the spiral
structure rotates, which causes the spiral arms to become
thinner, longer, and tighter. These results are consistent
with the variation of spirals in the momentum spectrum
shown in Figs. 2(c) and 2(d).

B. N = 2

In our previous work [30], the effect of a relatively large
time delay on the momentum spectrum with relative phase
Δϕ ¼ π=2 is considered. Here we add some details, one is
that time delay is relatively small, the other is the relative
phase Δϕ ¼ 0. We shows the effects of T on the momen-
tum distributions for N ¼ 2 in Fig. 3. For T ¼ 0, the result
is almost the same as in Fig. 2(a) of Ref. [30], in addition, it
is similar to that of N ¼ 4, i.e., the momentum distribution
still exists a good axisymmetry in the qx and qy directions.
While as the time delay increases to T ¼ τ, we found that
some results include the axisymmetry being destroyed, and
the H-shaped momentum distribution that is the strongest
near the center in Fig. 3(a) gradually expands outward and
twists simultaneously, which eventually can cause the
generation of spiral structures, see Fig. 3(b). Meanwhile,
the spiral pattern presents an obvious rotational symmetry.
The reason is that even though there is a time delay
between the two counterrotating fields, under time rever-
sal, the momentums qx and qy change sign, the total
energy of particle Ωðq; tÞ remains almost invariant.
Therefore, there is a pronounced rotational symmetry in
the spiral structure, and the larger the time delay, the better
the rotational symmetry. Moreover, we also found that the
spiral consists of six inhomogeneous spiral arms. Since
the two fields are not yet completely separated and there is
an overlap between them when T is small, there is a
remarkable interference effect between them, which leads
to the generation of the inhomogeneous spiral structure in
Fig. 3(b).
As time delay further increases to T ¼ 4τ and T ¼ 8τ,

compared to the case of T ¼ τ, we observed that the
number of spiral arms changes from 6 to 8, and the
distribution of the arms changes from inhomogeneity to
homogeneity, as shown in Figs. 3(c) and 3(d). Where about
the understanding of the number of spiral arms is similar to
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Fig. 2. The change in homogeneity is due to the fact that,
when T is large, the two fields are completely separated, so
the interference effect between them is significantly
reduced, which leads to a relatively uniform distribution
of the spiral arms. In addition, according to Eq. (19), we can
determine the position of the eight spiral arms in the
momentum spectrum. For instance, in the case of T ¼ 4τ,
the estimated results of the maximum value positions for
eight spiral arms are shown in Table I. Compared with the
numerical results in Fig. 3(c), we found a good agreement
between them, and the errors lie within at about 2% ∼ 6.5%.
On the other hand, it is found that the spiral patterns

present an obvious difference between the cases of N ¼ 2

and N ¼ 4. For the time delay as T ¼ Gτ, under the given
same G, the spiral structure of N ¼ 2 is more dispersed
than that ofN ¼ 4, meanwhile, the spiral arms ofN ¼ 2 are
also shorter and thicker than those of N ¼ 4. These
phenomena can be understood as below. Since it is known
from field Eq. (1) that the pulse duration is τ ¼ Nπ=ω, so
the time delay is T ¼ GNπ=ω. It leads to the fact that, when
G is fixed, the smaller N is, the smaller the corresponding T
is. Then according to Eq. (20), we can see that, for small T,
φ varies slowly with increasing q, which means that the
spiral structure withN ¼ 2 rotates slower than that one with
N ¼ 4. This eventually results in the spiral structure for
N ¼ 2 being more dispersed than that of N ¼ 4, and the

FIG. 3. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for N ¼ 2 with different time delay
parameters. From (a) to (d), the corresponding time delays are T ¼ 0; τ; 4τ; 8τ, respectively. Other electric field parameters are the same
as in Fig. 2.

TABLE I. Comparison of qx (qy) and qestx (qesty ) corresponding to the maximum value of the eight spiral arms in Fig. 3(c), where qx (qy)
is the numerical result, and qestx (qesty ) is the estimated result of Eq. (19) for k0 ¼ 33; 34;…; 40.

i 1 2 3 4 5 6 7 8

qx 0.5576 0.1721 −0.3259 −0.6264 −0.5638 −0.1683 0.3298 0.6327
qestx 0.5938 0.1775 −0.3429 −0.6623 −0.5938 −0.1775 0.3429 0.6623
qy 0.3292 0.6245 0.5644 0.1700 −0.3266 −0.6295 −0.5620 −0.1740
qesty 0.3428 0.6623 0.5938 0.1775 −0.3429 −0.6623 −0.5938 −0.1775
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spiral arms of N ¼ 2 are shorter and thicker than that
of N ¼ 4.

C. N = 1

In previous studies, it was shown that the cycles in pulse
is relatively large [30,31], but here we consider the effect of
time delay on pair production for small cycles. When
N ¼ 1, the influences of different T on the momentum
spectra are displayed in Fig. 4. For T ¼ 0, the phenomenon
is similar to the cases of N ¼ 2 and N ¼ 4. But with
increasing time delay, we discover some important phe-
nomena. For T ¼ τ, the elliptic momentum distribution in
Fig. 4(a) is gradually distorted and elongated, at the same
time, a pronounced interference phenomenon can be
observed, see Fig. 4(b). Moreover, the maximum value
of momentum spectrum in Fig. 4(b) is smaller than that in
Fig. 4(a). These results will be qualitatively interpreted by
the semiclassical picture in the following paragraph.
Importantly, as time delay increases to T ¼ 4τ and

T ¼ 8τ, there exist still obvious spiral patterns con-
sisting of eight spiral arms in the momentum spectra,
as shown in Figs. 4(c) and 4(d). It means that Eq. (19) is
also approximately applicable in the case of N ¼ 1.

Moreover, compared to the cases of T ¼ τ and T ¼ 0,
one can see that the maximum values of momentum spectra
in Figs. 4(c) and 4(d) are smaller than those in Figs. 4(a)
and 4(b). On the other hand, compared to the cases of
N ¼ 2 and N ¼ 4, we found that the spiral patterns shrink
significantly in the direction of small momentum. Because
we know from the electric field Eq. (1) that, when N
reduces, the corresponding time delay and the range of
effective time action on the pair production also decrease,
which leads to a smaller distribution of spirals.
It is known that the interference effects of momentum

spectrum and the number density of created particles are
associated with the location of turning points in the
complex t plane [53–57]. Specifically, the number density
depends on the turning points nearest to the real t axis also
called the dominant turning points, while the interference
effects are dominated by the distances between the dom-
inant turning points along the real t axis direction. The
turning points structures corresponding to the maximum
momentum distribution for different T in Fig. 4 are shown
in Fig. 5. One can see that, for T ¼ 0, there is one pair of
dominant turning points, see Fig. 5(a), while for T ¼ τ, we
can observe three pairs of dominant turning points are

FIG. 4. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for N ¼ 1 with different time delay
parameters. From (a) to (d), the corresponding time delays are T ¼ 0; τ; 4τ; 8τ, respectively. Other electric field parameters are the same
as in Fig. 2.
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almost equidistant along the real t axis, see Fig. 5(b). It is
well known that the closer the distance between the
dominant turning points along the real axis, the stronger
the interference effect of the momentum spectrum.
Therefore, there is an obvious interference pattern in the
momentum spectrum shown in Fig. 4(b). Moreover, it is
found that the dominant turning points in Fig. 5(a) are closer
to the real t axis than those in Fig. 5(b). And we known that
the closer the dominant turning points are to the real axis, the
greater the number density of created particles. Thusnððqx¼
0.03;qy¼0.91Þ;t→∞Þ¼1.91×10−4 in Fig. 4(a) is larger
than nððqx ¼ 0.03; qy ¼ 0.02Þ; t → ∞Þ ¼ 2.87 × 10−5 in
Fig. 4(b).
As time delay increases to T ¼ 4τ and T ¼ 8τ, the

distributions of turning points become more complicated as
displayed in Figs. 5(c) and 5(d). It is found that there are
four pairs of dominant turning points and the distributions
present an obvious periodic structure. Note that the four
pairs of turning points are obtained by contributing two
pairs per period. This means that the turning points
distributions exist with an interference within each period

(second order interference) in addition to the interference
between the two periods (first order interference). We think
that the periodicity of turning points may be primarily
related to the generation of spirals in the momentum
spectra, while the combined effect of two orders interfer-
ence may be mainly associated with the interference
between the spiral arms. Therefore, one can see from
Figs. 5(c) and 5(d) that the distributions of turning points
show a remarkable periodic structure, which leads the
generation of the spirals in Figs. 4(c) and 4(d).
Moreover, from Fig. 5(c), it is found that the distance

along the real t axis direction between the dominant turning
points of two periods is ΔReðtÞ ≈ 40, while the corre-
sponding distance in Fig. 5(d) is ΔReðtÞ ≈ 85. Meanwhile,
the distance along the real t axis direction between the two
pairs of dominant turning points for each period in Fig. 5(c)
isΔReðtÞ ≈ 4, while the corresponding distance in Fig. 5(d)
is ΔReðtÞ ≈ 5. Therefore, the total interference of the
turning point distribution in Fig. 5(c) is stronger than that
in Fig. 5(d). It demonstrates that the interference effect
between the spiral arms in Fig. 4(c) is stronger than that in

(a) (b)

(c) (d)

FIG. 5. Contour plots of jΩðq; tÞj2 in the complex t plane, showing the turning point distribution where Ωðq; tÞ ¼ 0. These plots are
for the cycle N ¼ 1, and other field parameters are the same as in Fig. 4. From (a) to (d), the corresponding time delays are
T ¼ 0; τ; 4τ; 8τ, respectively, and the corresponding maximums of the momentum spectra are located in (qx ¼ 0.03, qy ¼ 0.91),
(qx ¼ 0.03, qy ¼ 0.02), (qx ¼ −0.14; qy ¼ −0.37), (qx ¼ −0.01; qy ¼ −0.43), respectively. The three dashed lines are guidelines.
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Fig. 4(d). Besides, the turning points characteristics in
Figs. 5(c) and 5(d) also reflect the fact that the time delay
between the two fields in the case of Fig. 5(c) is smaller
than that of Fig. 5(d), which is consistent with the
information reflected by our electric field Eq. (1). On
the other hand, compared to the case of T ¼ τ, one can see
that the dominant turning points in Figs. 5(c) and 5(d) are
farther from the real t axis than those in Fig. 5(b), but
the dominant turning points in Figs. 5(c) and 5(d) have
almost the same distances from the real axis. It suggests
that nððqx ¼ 0.03; qy ¼ 0.02Þ; t → ∞Þ ¼ 2.87 × 10−5 in
Fig. 4(b) is larger than nððqx ¼ −0.14; qy ¼ −0.37Þ;
t → ∞Þ ¼ 4.8 × 10−6 in Fig. 4(c) and nððqx ¼ −0.01;
qy ¼ −0.43Þ; t → ∞Þ ¼ 4.9 × 10−6 in Fig. 4(d), while
nððqx ¼ −0.14; qy ¼ −0.37Þ; t → ∞Þ ¼ 4.8 × 10−6 in
Fig. 4(c) and nððqx ¼ −0.01; qy ¼ −0.43Þ; t → ∞Þ ¼
4.9 × 10−6 in Fig. 4(d) are almost equal.

D. N = 0.8 and N = 0.5

When the cycle decreases to N ¼ 0.8, we show the
effects of T on the momentum spectra in Fig. 6. The results
are almost similar to the case of N ¼ 1, except that, for

T ¼ 4τ and T ¼ 8τ, the momentum spirals are less pro-
nounced than those in the case of N ¼ 1. However, for
T ¼ 8τ, a spiral structure composed of eight spiral arms can
still be generated in the momentum spectrum. It indicates
that the appropriate time delay under the subcycle also
causes the generation of spirals in the momentum spectrum,
which provides a new reference for the possible experi-
mental observation about themultiphoton pair production in
the future. Based on this finding, we further explorewhether
there is still a spiral when the cycle decreases to N ¼ 0.5?
When the cycle decreases further to N ¼ 0.5, the

effects of T on the momentum spectra are shown in
Fig. 7. In Fig. 7(a), we find a similar phenomenon as in
Fig. 6(a); i.e., the center of momentum spectra for created
particles in the polarization plane is not located exactly at
(qx ¼ 0, qy ¼ 0), but is shifted little. The reason is that,
when the external field is turned off, a small value of vector
potential Aðt → ∞Þ ≠ 0 is possible for the very short
subcycle pulse. Therefore, the symmetry point has a little
deviation from (qx ¼ 0, qy ¼ 0). The phenomenon is
similar to the cases in Fig. 1 of Ref. [39] and in Fig. 2
of Ref. [58]. In addition, from Fig. 7, we found some new
phenomena compared to the case of N ¼ 0.8. As can be

FIG. 6. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for N ¼ 0.8 with different time delay
parameters. From (a) to (d), the corresponding time delays are T ¼ 0; τ; 4τ; 8τ, respectively. Other electric field parameters are the same
as in Fig. 2.
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seen in Fig. 7(a), for T ¼ 0, there is one of the strongest
momentum distributions that is near the center, while as the
time delay increases, the momentum distribution along the
qy direction shifts rapidly toward the large momentum
direction, at the same time, the strongest momentum
distribution is split into two parts that are far from the
center, see Figs. 7(b)–7(d). The reason is that e−eþ pairs are
mainly generated at the two maximums of the electric
field, where T ¼ �Gτ, G ¼ 1, 4, 8. Especially in Figs. 7(c)
and 7(d), we found that the range of momentum distribu-
tion along the qx direction expands and a weak interference
appears. The interference can be interpreted as interference
effect of particles created by large peaks of the two
counterrotating fields.
Importantly, compared to the case of N ¼ 0.8, it is found

that even if the time delay increases to T ¼ 8τ, there is still
no pronounced spiral structure in the momentum spectrum.
It indicates that the spiral is very sensitive to the number of
cycles, i.e., even if the time delay is large, the obvious
spirals still cannot be generated if the cycle is very small.
Meanwhile, from Fig. 7, we found that the time delay
mainly affects the momentum separation in the qy direc-
tion, and one can see from Fig. 6 that the number of cycles

seems to primarily dominate the momentum distribution in
the qx direction, while the combined effect of the time delay
and the number of cycles affects the generation of the spiral
structure. Furthermore, in Fig. 7, one can see a simple
distribution, which has a no pronounced spiral structure in
the momentum spectrum. This may be understood quali-
tatively from the evolution curves in Figs. 1(a) and 1(b). It
is found that the curves are not widely and uniformly
distributed, especially, the curve in Fig. 1(a) has no self-
crossing for the single field. This leads to a less obvious
spiral structure in the corresponding momentum spectrum.

IV. SPIRALS FOR FIELDS WITH RELATIVE
PHASE Δϕ=π=2

In this section, the influence of time delay with different
cycles in pulse on the momentum spirals in two counter-
rotating fields with relative phase Δϕ ¼ ϕ2 − ϕ1 ¼ π=2
are investigated. Note that since the results in the cases of
N ¼ 4 and N ¼ 2 are almost similar to those for Δϕ ¼ 0,
except that all patterns are rotated Δϕ=2 ¼ π=4 counter-
clockwise, so we do not show the results here. In the
following, we are focusing on the study of the cases of
N ¼ 1 and N ¼ 0.5.

FIG. 7. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for N ¼ 0.5 with different time delay
parameters. From (a) to (d), the corresponding time delays are T ¼ 0; τ; 4τ; 8τ, respectively. Other electric field parameters are the same
as in Fig. 2.
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When N ¼ 1, the effects of T on the momentum
spectra are displayed in Fig. 8 where the remarkable
difference could be observed. First, for T ¼ 0, the
axisymmetry of the momentum spectrum in the qx
and qy directions is severely destroyed, but since
ϕ2 ¼ π=2, the polarized axes are rotated Δϕ=2 ¼ π=4
counterclockwise to produce new coordinates as (q0x,
q0y); the symmetry in the q0y direction still exists while
the symmetry in the q0x direction is broken, as shown in
Fig. 8(a). The reason is that, under the new coordinates,
as a time reversal, the time t and the momentums q0x
and q0y change sign, the sign (odd/even property)

of Ωðq0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðq0x − eA0

xðtÞÞ2 þ ðq0y − eA0
yðtÞÞ2

q
can still remain invariant only in the q0y direction, while
its invariant is violated in the q0x direction. Therefore,
the momentum spectrum presents an axisymmetry only
in the q0y direction. Second, as the time delay increases
to T ¼ 4τ and T ¼ 8τ, the rotational symmetry of spiral
is also severely broken, since that the spiral pattern is
mainly distributed in the third quadrant, see Figs. 8(c)
and 8(d). This phenomenon can be understood based on
the knowledge of turning points. We know that the

turning points structure is related to the solution of
Ωðq0; tÞ ¼ 0. For T ¼ 4τ and T ¼ 8τ, when the
polarized axis are rotated π=4 counterclockwise, the
Ωðq0; tÞ can be eventually rewritten as Ωðq0; tÞ ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ f21 þ f22 þ q02x þ 2αq0x

p
near the q0y ¼ 0, here

α ∼ f1ðtÞ þ f2ðtÞ. Since α > 0, thus it is easier to satisfy
the equation Ωðq0; tÞ ¼ 0 with q0x < 0, which means that
the turning points are closer to the real t axis in the
region of q0x < 0 that leads to the dominant momentum
locating the third quadrant. Moreover, we found that the
number of corresponding spiral arms is significantly
decreased and the shape of arms becomes slender.
When the cycle decreases to N ¼ 0.5, the influences of

T on the momentum spectra are shown in Fig. 9.
Compared to the case of ϕ2 ¼ 0 in Fig. 7, we discover
some interesting phenomena except that the axisymmetry
of momentum distribution in Fig. 9(a) is severely
destroyed. With the increase of time delay, the maximum
momentum distribution that was originally split into two
parts in Fig. 7 is merged into one part, and the range of
distribution is significantly shrunken, see Figs. 9(b)–9(d).
This phenomenon is due to the fact that, when ϕ2 ¼ π=2,

FIG. 8. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for N ¼ 1 with different time delay
parameters. From (a)–(d), the corresponding time delays are T ¼ 0; τ; 4τ; 8τ, respectively. Other field parameters are the same as in
Fig. 2 except ϕ2 ¼ π=2.
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there is always only one maximum field strength in the

electric field Eq. (1) as the time delay increases, and e−eþ

pairs are mainly created at the maximum of the electric
field. Therefore, there exists only one maximum momen-
tum distribution in the corresponding momentum spectra.
Interestingly, for T ¼ 8τ, we found that spiral structure is
still generated in the momentum spectrum. However,
when ϕ2 ¼ 0, there are no spirals in this case. It indicates
that the introduction of carrier phase can lead to the
generation of spiral in the momentum spectrum even if the
cycle is very small.
Of course, another interesting point is that we found the

range of critical polarization values for the appearance of

spirals in the momentum spectra for different cycles with
Δϕ ¼ 0 and Δϕ ¼ π=2 by numerical calculations. The
results are shown in Table II; note that we only consider
T ¼ 8τ for each cycle. It is found that in two cases of
relative phases, when the cycle decrease from N ¼ 2
to N ¼ 0.5, the polarization range for the transition
from the appearance to the disappearance of spirals is
gradually decreasing. Moreover, for N ¼ 0.5, there is
always no spiral in the momentum spectrum when
Δϕ ¼ 0, while when Δϕ ¼ π=2, the momentum spectrum
is spiral, and the polarization range of the spiral transition
is 0.4 ∼ 0.3.
In order to observe the change in polarization values

during the spiral transition, we select some examples from
Table II for study, as shown in Fig. 10. One can see from
Figs. 10(a) and 10(b) that for N ¼ 2 with Δϕ ¼ 0, there
are still spirals in the momentum spectrum as jδ1;2j
decreases to 0.6, while when jδ1;2j further decreases to
0.5, the spiral gradually disappear and the momentum
distribution shrinks primarily toward small momentum
direction. From Figs. 10(c) and 10(d), it is found that, for
N ¼ 1 with Δϕ ¼ π=2, the momentum spectrum still
exists in a spiral as jδ1;2j reduces to 0.5, while when

FIG. 9. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for N ¼ 0.5 with different time delay
parameters. From (a)–(d), the corresponding time delays are T ¼ 0; τ; 4τ; 8τ, respectively. Other field parameters are the same as in
Fig. 2 except ϕ2 ¼ π=2.

TABLE II. Critical polarization range of the transition of spirals
appearance/disappearance for various cycles with Δϕ ¼ 0 and
Δϕ ¼ π=2, respectively, when T ¼ 8τ is given. Note that the
blank denotes the absence of spiral under the studied parameters.

Number of cycles N ¼ 2 N ¼ 1 N ¼ 0.5

jδ1;2j (Δϕ ¼ 0) 0.6 ∼ 0.5 0.5 ∼ 0.4
jδ1;2j (Δϕ ¼ π=2) 0.6 ∼ 0.5 0.5 ∼ 0.4 0.4 ∼ 0.3
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jδ1;2j further reduces to 0.4, the spiral gradually disap-
pears. These results show that we can observe spiral
patterns not only in the two counterrotating CP fields
(jδ1;2j ¼ 1) but also in the two counterrotating elliptical

polarization fields (jδ1;2j ≈ 0.5). It greatly reduces the
polarization of the field to observe spirals effectively.
It should be noted that N ¼ 4 is a special case, in which

there are no spiral transitions but a variation of a spiral split.
The details are described as follows: we can observe spiral
patterns at all polarizations, but at jδ1;2j ¼ 1, the spiral
structure is relatively uniform and is a globe, while at
jδ1;2j ∈ ½0.9; 0.5�, it is split into two parts, and at
jδ1;2j ∈ ½0.4; 0�, it is further split into four parts. Here we
do not display the results.
Based on the effect of field polarization on spiral

formation and change mentioned above, we are reminded
that, by adjusting the polarization, we can control not only
the appearance or disappearance of a spiral pattern but also
the location of spiral presence.

V. NUMBER DENSITY

In this section, the effects of time delay and cycle in
pulse on the number density of created particles in the case
of relative phase Δϕ ¼ 0 and Δϕ ¼ π=2 are investigated,
respectively. Note that, for comparison between the results,
the following studies are performed under the same laser
field energy [59], and we selected several different field
parameters.
The number density dependence on T for various N is

shown in Fig. 11. In the case of Δϕ ¼ 0, one can see

FIG. 10. Momentum spectra of created particles in the polarization plane (where qz ¼ 0) for various polarization values with different
N and Δϕ. Where the time delay is set as T ¼ 8τ, (a) and (b) correspond to the case of N ¼ 2 and Δϕ ¼ 0, (c) and (d) correspond to the
case of N ¼ 1 and Δϕ ¼ π=2.

(a) (b)

FIG. 11. Number density of created particles under the same
laser field energy dependence on time delays for various cycles
with different phase parametersΔϕ ¼ 0 for (a) andΔϕ ¼ π=2 for
(b), respectively. Other electric field parameters are the same as in
Fig. 2. Note that the green rectangle marks the minimal T when
the spiral is generated.
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from Fig. 11(a) that, when T is fixed, the number density
does not change obviously at largeN, while it is significantly
enhanced about one order of magnitude at smallN. WhenN
is fixed, the number density tends to be a constant at large T,
while it is increased at least five times at small T. Combining
the above we can conclude that either the small T or N is
beneficial for e−eþ pair production. On the other hand,
according to the markings of the green rectangle in the
figure,we found thatwhenN is larger, instead, spirals start to
be generated in the momentum spectrum at smaller T. In
particular, when N ¼ 0.8 and N ¼ 1, the corresponding
number densities only differ about two times, but the
minimal T for spiral generation is significantly different.
Specifically, whenN ¼ 0.8, a spiral structure appears in the
momentum spectrum at T ¼ 8τ, while when N ¼ 1, it
appears in the momentum spectrum at T ¼ 4τ. It indicates
that, without losingmuch number density, we can obtain the
spiral pattern at a smaller time delay by adjusting the above
two parameters flexibly.
In the case of Δϕ ¼ π=2, the results shown in Fig. 11(b)

are similar to those of Fig. 11(a). The difference is that, for
T ¼ 0, the number density ofΔϕ ¼ 0 is slightly larger than
that of Δϕ ¼ π=2 for N ¼ 0.5 and N ¼ 0.8. Moreover,
for N ¼ 0.5, there is no spiral structure in the case of
Δϕ ¼ 0, while in the case of Δϕ ¼ π=2, momentum
spectrum exists spiral pattern. This indicates that the
introduction of the phase has little effect on the number
density of the generated particles, while it mainly affects
the momentum spirals.
To see more clearly how the number density of created

particles varies with N for small T, we display Fig. 12.
It is found that, in the cases ofΔϕ ¼ 0 andΔϕ ¼ π=2, when
T is fixed, the corresponding number density is enhanced
about one order of magnitude with the decrease of N, while
whenN is fixed, it is increased by a few times with reducing

T. These results indicate that the number density is more
sensitive to the number of cycles in pulse.

VI. CONCLUSION AND OUTLOOK

In summary, we revisit the spirals in multiphoton pair
creation by two counterrotating fields with a time delay for
different cycles using the DHW formalism. The focus is on
considering two case of the relative carrier envelope phase
as 0 and π=2, and the effects of different time delays
and cycles on the number density are further examined.
Meanwhile, some typical spiral structures are semiquanti-
tatively analyzed by employing the WKB-like approxima-
tion method. Moreover, we provide some qualitative
understandings to some results obtained by corresponding
turning points structure.
For themomentum spiral, it is sensitive to time delays and

cycles in pulse. Compared to previous studies [30,31], we
found some interesting new results. With the increase of
either the time delay or cycle number, the spiral arms
become thinner and longer, meanwhile, the number of spiral
arms is significantly increased. Importantly, for a small cycle
N ¼ 0.8, the momentum spectrum still exists an obvious
spiral pattern. Moreover, the carrier phase plays an crucial
role inmultiphoton pair production, which destroys not only
the axisymmetry of momentum spectrum but also the
rotational symmetry of momentum spiral. And the number
of spiral arms is decreased due to the introduction of carrier
phase. More importantly, for Δϕ ¼ π=2, there still exists a
spiral pattern in the momentum spectrum when the cycle
decreased to N ¼ 0.5. On the other hand, we also found the
range of critical polarization values for the spirals appear-
ance corresponding to the different cycle number with
relative carrier envelope phase as 0 and π=2, respectively.
Based on the studied results, it is applicable to regard the
momentum signatures as a new probing to the laser field
information. For example, by breaking the symmetry, we
can probe the information about the relative phase. By the
thinning shape and the number of spiral arms, one can detect
the information of cycles in pulse. By the presence or
absence of spirals in the momentum spectrum, we can probe
the information of the time delay.
For the number density of created particles, it is

insensitive to the relative phase but sensitive to time
delay and cycle number. We found that either small time
delay or cycle increases the number density significantly.
Specifically, the number density is increased at least five
times at a small time delay, and it is enhanced about one
order of magnitude at the small cycle. While for either a
large time delay or pulse cycle, the number density tends
to be a constant. Interestingly, it is found that, without
losing much number density, we can obtain the spiral
pattern at a smaller time delay by adjusting the above
two parameters flexibly. This is important since it may
provide a possibility of broader parameter ranges for
realizing the spirals in multiphoton pair production.

(a) (b)

FIG. 12. Number density of created particles under the same
laser field energy dependence on cycles in pulse for small time
delay with different relative phase parameters. The electric field
parameters are the same as in Fig. 11.
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These results indicate that the time delay, the number of
cycles in the pulse, and the carrier envelope phase play an
extremely important role in spirals of multiphoton pair
creation by two counterrotating fields. While we have only
investigated two typical cases of the carrier phase, we
believe that the results have exhibited many important
features about the spirals of multiphoton pair production.
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