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We calculate the contribution to the gravitational form factors (GFFs) from the gluon part of the energy-
momentum tensor in QCD. We take a simple spin 1=2 composite state, namely a quark dressed with a
gluon. We use the light-front Hamiltonian QCD approach in the light-front gauge. We also present the
effect of the gluon on the mechanical properties like the pressure, shear and energy distributions of the
dressed quark state.
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I. INTRODUCTION

The most fundamental question of hadron physics
includes the origin of nucleon mass and nucleon spin
structure. The energy-momentum tensor (EMT) of QCD
provides an understanding of these issues. The hadronic
matrix element of the EMT sheds light on the sum rules and
gravitational coupling of quarks and gluons. This also gives
an insight into the fundamental question of how the mass of
the nucleon is formed from the quarks and gluons [1–4].
The coupling of gravitons and matter particles is through
gravitational form factors (GFFs) [5]. These GFFs are the
form factors of EMT of QCD. They are analogues to
electromagnetic form factors in QED [6].
GFFs can be related to generalized parton distributions

(GPDs) [7], which are accessible via high-energy scattering
processes like deeply virtual Compton scattering (DVCS)
at experimental facilities like Jefferson Lab (JLab) [8,9]
and deeply virtual meson production (DVMP) [10]. The
Ji’s sum rule relates the nucleon GFFs Aðq2Þ and Bðq2Þ to
the angular momentum carried by the quarks [11]. The
quark GFFs for the nucleon were studied at JLab from

DVCS [12]. Some of the experimental facilities that will
further improve the constraints on the quark GFFs via the
GPDs are the upcoming electron-ion collider (EIC) at
BNL [13], international linear collider (ILC), the Japan
proton accelerator complex (J-PARC) [14], the nuclotron-
based ion collider facility (NICA) [15], and the PANDA
experiment at the facility for antiproton and ion research
(FAIR) [16].
The parametrization of the EMT matrix element in terms

of different hadrons for different spins can be considered as
shown in Refs. [17–21]. For a spin-half system like a
proton, the matrix elements of the symmetric EMT can be
parametrized in terms of four GFFs. The GFFs are functions
of the square of the momentum transfer ðq2Þ in the process.
The form factor Aðq2Þ for hadrons of any spin is constrained
by the conservation of momentum, such that Að0Þ when
summed over all partons at zero-momentum transfer is
unity. Likewise, the GFF Bðq2Þ is also constrained at zero-
momentum transfer to be zero. For a spin-half fermion, the
constraint on Bðq2Þ is also referred to as the vanishing of
the “anomalous gravitomagnetic moment” in analogy to
the anomalous magnetic moment [5]. The GFF Cðq2Þ can
be nonzero for quarks and gluons separately, due to the
nonconservation of the partial EMT; however, it is
expected to vanish when summed over all quarks and
gluons [22]. Unlike other GFFs, the “D-term” or the
Druck term is unconstrained at zero-momentum transfer
and can only be determined experimentally. The GFFs can
give an insight into the basic mechanical properties of the
nucleons like the mass, spin and pressure distributions. In
fact, by studying the form factor Dðq2Þ, one can get
information about the pressure and shear distributions
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inside the proton [5]. Recent extraction of theD-term from
JLab data has allowed visualizing the pressure and shear
force distributions [23,24]. The pressure distribution is
repulsive near the core of the nucleon and attractive
towards the outer region. In fact near the centre, the
magnitude of the pressure is comparable to the pressure
distribution inside a neutron star, which is the densest
object in the universe. The fact that the pressure and
energy distributions can be obtained from the GFFs which
are accessible through the generalized parton distribu-
tions, suggests an interesting method to study the equation
of state of dense matters like neutron star [25]. The
pressure, shear and energy distributions are frame depen-
dent. A discussion of the definitions of these distributions
in different reference frames can be seen in [22]. In many
cases, one defines such distributions in the Breit frame [5].
However, in this frame, they are subject to relativistic
corrections. In [22] and later in [26] two-dimensional
light-front distributions are introduced. A comparative
discussion of the definitions of densities in different
frames can be found in [27]. Because of the Galilean
symmetry in the light-front framework, such 2D distri-
butions are fully relativistic. A connection between the 2D
and 3D distributions can be obtained in terms of Abel
transformation [28,29]. The gravitational form factors
have been extensively studied for the nucleon with various
models namely the simple multipole model [22], the chiral
quark soliton model [30–32], the Bag model [33], the
Skyrme model [34,35], AdS/QCD motivated diquark
model [36], in chiral perturbation theory [37–39], and
in lattice QCD [40–44]. RecentlyD-term of the nucleon in
a holographic QCD model has been calculated in [45].
In most of the phenomenological models for the nucleon,

gluonic degrees of freedom are not included, as a result,
only the quark GFFs can be perceived. However, some of
the GFFs like the D-term, that contributes to the pressure
and shear force distributions in the nucleon depend on the
so-called “bad” components of the energy-momentum
tensor, that includes quark-gluon interactions. Thus it is
important to investigate the role played by the gluons in
such distributions. However, the gluon GFFs are much less
studied theoretically and fewer constraints exist for them
from experiments. Gluon studies for the nucleon include the
calculation of the gluon Aðq2Þ in an extended holographic
light-front QCD framework [46], GFFs for the gluon have
also been calculated recently in lattice QCD [47]. The gluon
GPDs and form factors have been calculated in a soft-wall
ADS/QCD model in [48]. In a very recent paper [49], gluon
GPDs have been calculated in a light-front spectator model,
where the proton state is assumed to be consisting of one
gluon and one spectator particle containing three valence
quarks. The gluon GPDs and GFFs for nucleon have been
investigated in a holographic QCD framework in the context
of photoproduction or leptoproduction of J=Ψ and ϒ
in [50]. Such experiments are possible at the JLab [51].

The future EIC will focus on the study of nucleon structure
and specifically, it would seek extraction of gluon D-term
for the first time [13,52].
In this work, we study the gluon GFFs in a field

theoretical model of a relativistic spin half system, namely
a quark dressed with a gluon at one loop. We use the light-
front Hamiltonian approach, in which the dressed quark
state can be expanded in Fock space in terms of multi-
parton light-front wave functions (LFWFs). The two-
particle quark-gluon LFWF can be obtained analytically
from the light-front QCD Hamiltonian. We employ the
resulting two-particle light-front wave functions to cal-
culate the necessary overlap expressions using two-
component representation [53]. A similar model and
approach have been used earlier to investigate the GPDs
and Wigner functions [54–61]. The advantage is that in the
light-front gauge, Aþ ¼ 0, one can eliminate the con-
strained degrees of freedom which then allows an analytic
calculation of the matrix element of all the components of
the EMT for such state. Thus one can explore the effect of
the quark-gluon interaction in QCD that plays a major role,
for example, in the D-term. The quark GFFs and the
mechanical properties were investigated in this model in
an earlier publication [62]. Here, we investigate the GFFs
from the gluon part of the EMTas well as the contribution to
the two-dimensional pressure, shear and energy distribu-
tions coming from the gluon. The manuscript is organized in
the following manner: In Sec. II, we discuss the two-
component formalism and present the calculation of the
gravitational form factors for gluon in the light-front dressed
quark state. In Sec. III, using D-term we calculate the
pressure distributions, forces and energy densities. In
Sec. IV we summarize our results. The useful formulas
and essential steps of calculations can be found in the
Appendices.

II. GRAVITATIONAL FORM FACTORS
AND THE TWO-COMPONENT FORMALISM

In this section, we discuss the method used to obtain the
gravitational form factors (GFFs) using a dressed quark
state in light-front Hamiltonian QCD. The symmetric QCD
EMT is defined as

θμν ¼ θμνQ þ θμνG ; ð1Þ

θμνQ ¼ 1

2
ψi½γμDν þ γνDμ�ψ − gμνψðiγλDλ −mÞψ ; ð2Þ

θμνG ¼ −FμλaFν
λa þ

1

4
gμνðFλσaÞ2: ð3Þ

The last term in Eq. (2) will become zero because of the
equation of motion. A standard way to parametrize the
matrix element in terms of the EMT for a spin-1=2 system
is given by
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hP0; S0jθμνi ð0ÞjP; Si ¼ UðP0; S0Þ
�
−Biðq2Þ

PμPν

m
þ ðAiðq2Þ þ Biðq2ÞÞ

1

2
ðγμPν þ γνPμÞ

þ Ciðq2Þ
qμqν − q2gμν

m
þ Ciðq2Þmgμν

�
UðP; SÞ; ð4Þ

where the Lorentz indices ðμ; νÞ≡ fþ;−; 1; 2g, Pμ ¼
1
2
ðP0 þ PÞμ is the average nucleon four-momentum.

UðP0; S0Þ; UðP; SÞ are the Dirac spinors for the state, and
m is the mass of the target state, i≡ ðQ;GÞ. Ai, Bi, Ci, and
Ci are the quark or gluon gravitational form factors. One
also uses the notation Dðq2Þ ¼ 4Cðq2Þ. As stated in the
introduction, Aðq2Þ, Bðq2Þ and Cðq2Þ are constrained, but
Dðq2Þ is unconstrained [22]. In general, from the matrix
element of the energy-momentum tensor, the GFFs can be
extracted. GFFs give how matter couples with gravity. In
this work, we study the gluon GFFs and analyze their
contribution to the mechanical properties of a quark state

dressed by a gluon by extracting them from the gluon part
of the EMT. This builds upon our previous study [62], in
which we used the quark part of the EMT to extract the
quark GFFs and analyzed their contribution to the mechani-
cal properties.
In light front Hamiltonian formalism, a state with

momentum P and helicity λ can be expanded in Fock
space in terms of the light front wave functions (LFWFs).
The LFWFs are boost-invariant. Here we consider a quark
state dressed with one gluon, that is, we truncate the Fock
space expansion at the two-particle level. The state can be
written as

jP; λi ¼ ψ1ðP; λÞb†λðPÞj0i þ
X
λ1;λ2

Z
½k1�½k2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3Pþ

q
δ3ðP − k1 − k2Þψ2ðP; λjk1; λ1; k2; λ2Þb†λ1ðk1Þa

†
λ2
ðk2Þj0i;

where ½k� ¼ dkþd2k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3kþ

p : ð5Þ

In Eq. (5), ψ1ðP; λÞ in the first term, corresponds to a single
particle with momentum (helicity) PðλÞ and also gives
the normalization of the state. The two-particle LFWF,
ψ2ðP; λjk1; λ1; k2; λ2Þ is related to the probability amplitude
of finding two particles namely a quark and a gluon with
momentum (helicity) k1ðλ1Þ and k2ðλ2Þ, respectively, inside
the dressed quark state. b† and a† correspond to the creation
operator of quark and gluon respectively.
The LFWFs can be written in terms of relative momenta

so that they are independent of the momentum of the
composite state. The relative momenta xi, κ⊥i (i ¼ 1, 2) are
defined such that they satisfy the relation x1 þ x2 ¼ 1 and
κ⊥1 þ κ⊥2 ¼ 0.

kþi ¼ xiPþ; k⊥i ¼ κ⊥i þ xiP⊥; ð6Þ
where xi is the longitudinal momentum fraction for the
quark or gluon, inside the two-particle LFWF. The boost
invariant two-particle LFWF can be written as shown in
Ref. [63],

ϕλa
λ1;λ2

ðx; κ⊥Þ ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p �
xð1 − xÞ

κ⊥2 þm2x2

�
Taffiffiffi
x

p χ†λ1

×

�
2ðκ⊥ · ϵ⊥�

λ2
Þ

x
þ 1

1 − x
ðσ̃⊥ · κ⊥Þðσ̃⊥ · ϵ⊥�

λ2
Þ

þ imðσ̃⊥ · ϵ⊥�
λ2
Þ x
1 − x

�
χλψ

λ
1; ð7Þ

where, ϕλa
λ1;λ2

ðxi; κ⊥i Þ ¼
ffiffiffiffiffiffi
Pþp

ψ2ðP; λjk1; λ1; k2; λ2Þ, g is the
quark-gluon coupling. Ta and ϵ⊥λ2 are color SU(3) matrices
and polarization vector of the gluon. The quark mass and the
two-component spinor for the quark are denoted bym and χλ
respectively, λ ¼ 1, 2 correspond to helicity up/down. We
have used the notation σ̃1 ¼ σ2 and σ̃2 ¼ −σ1 [64]. Note
that, here x and κ⊥ is longitudinal momentum fraction and
the relative transverse momentum of gluon respectively. We
have used the two-component framework developed in light-
cone gauge Aþ ¼ 0 [53]. In this gauge, by using a suitable
representation of the gamma matrices one can write

ψþ ¼
�
ξ

0

�
; ψ− ¼

�
0

η

�
; ð8Þ

where the two-component quark fields are given by

ξðyÞ ¼
X
λ

χλ

Z ½k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p ½bλðkÞe−ik·y þ d†−λðkÞeik·y�; ð9Þ

ηðyÞ ¼
�

1

i∂þ

�
½σ⊥ · ði∂⊥ þ gA⊥ðyÞÞ þ im�ξðyÞ; ð10Þ

ηðyÞ is the constrained field, which may be eliminated using
the above equation. The dynamical components of the gluon
field are given by

GLUON CONTRIBUTION TO THE MECHANICAL PROPERTIES … PHYS. REV. D 107, 116005 (2023)

116005-3



A⊥ðyÞ ¼
X
λ

Z ½k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3kþ

p ½ϵ⊥λ aλðkÞe−ik·yþ ϵ⊥�
λ a†λðkÞeik·y�:

ð11Þ

Here we have suppressed the color indices. The four
momenta in light-front coordinates are defined as

Pμ ¼ ðPþ;P⊥; P−Þ: ð12Þ

We choose a framewhere the four momenta of the initial and
the final state are given by

Pμ ¼
�
Pþ; 0⊥; m

2

Pþ

�
; ð13Þ

P0μ ¼
�
Pþ; q⊥; q

⊥2 þm2

Pþ

�
; ð14Þ

and the invariant momentum transfer

qμ ¼ ðP0 − PÞμ ¼
�
0; q⊥; q

⊥2

Pþ

�
: ð15Þ

This is the Drell-Yan frame (DYF), in this frame, the
momentum transfer is purely in the transverse direction,
and qþ ¼ 0, in other words q2 ¼ −q⊥2.
In order to calculate the GFFs, we define the matrix

element of the EMT as follows

Mμν
SS0 ¼

1

2
½hP0; S0jθμνG ð0ÞjP; Si�; ð16Þ

where ðS; S0Þ≡ f↑;↓g is the helicity of the initial and final
state. ↑ð↓Þ positive (negative) spin projection along z axis.

We use the dressed quark state in Eq. (5) to calculate the
matrix element. The form factor AGðq2Þ and BGðq2Þ can be
calculated from the “good” components (θþþ

G ) directly by
taking suitable combinations. Using Eq. (16) we have

Mþþ
↑↑ þMþþ

↓↓ ¼ 2ðPþÞ2AGðq2Þ; ð17Þ

Mþþ
↑↓ þMþþ

↓↑ ¼ iqð2Þ

m
ðPþÞ2BGðq2Þ: ð18Þ

Using the two-particle LFWFs for a dressed quark state,
we calculate the LHS of the above analytically; the details
of the calculation of Eqs. (17) and (18) are given in
Appendix A. As stated in the introduction, the total Cðq2Þ
should be zero when summed over quark and gluon due to
the conservation of the EMT [22]. However, nonzero
contributions come both from the quark and gluon parts.
Quark and gluon contributions to this GFF can be
calculated as

hP0;S0j∂μθμνi ð0ÞjP;Si¼ iqνCiðq2ÞmUðP0;S0ÞUðP;SÞ; ð19Þ

where i ¼ Q=G. Taking ν ¼ 1, we arrive at the following
combination to extract CGðq2Þ,

qμM
μ1
↑↓ þ qμM

μ1
↓↑ ¼ −iqð1Þqð2ÞmCGðq2Þ: ð20Þ

The fourth GFF, DGðq2Þ ¼ 4CGðq2Þ also known as the
D-term is obtained from the transverse component of the
EMT. Both CGðq2Þ as well as DGðq2Þ involve quark-gluon
interaction in the operator structure after we eliminate the
constrained fields. Details of this calculation are given in
Appendix B. We use the following linear combination of
the transverse Lorentz indices to extract the D-term,

M11
↑↓ þM22

↑↓ þM11
↓↑ þM22

↓↑ ¼ i

�
BGðq2Þ

q2

4m
−DGðq2Þ

3q2

4m
þ CGðq2Þ2m

�
qð2Þ: ð21Þ

The final expression for the gluon GFFs are as follows:

AGðq2Þ ¼
g2CF

8π2

�
29

9
þ 4

3
ln

�
Λ2

m2

�
−
Z

dx

��
1þ ð1 − xÞ2

�
þ 4m2x2

q2ð1 − xÞ
�
f̃2
f̃1

�
; ð22Þ

BGðq2Þ ¼ −
g2CF

2π2

Z
dx

m2x2

q2
f̃2
f̃1

; ð23Þ

DGðq2Þ ¼
g2CF

6π2

�
2m2

3q2
þ
Z

dx
m2

q4
ðxðð2 − xÞq2 − 4m2xÞÞ

�
f̃2
f̃1

; ð24Þ

CGðq2Þ ¼
g2CF

72π2

�
10þ 9

Z
dx

�
x −

4m2x2

q2ð1 − xÞ
�
f̃2
f̃1

− 3 ln

�
Λ2

m2

��
; ð25Þ

where
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f̃1 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2x2

q2ð1 − xÞ2

s
; ð26Þ

f̃2 ≔ ln

�
1þ f̃1
−1þ f̃1

�
: ð27Þ

In order to calculate the analytical form of the GFFs we
have used the integrals over the transverse momentum as
shown in Appendix C. It should be noted that a UV cutoff
Λ has been used to calculate the GFFs AGðq2Þ and CGðq2Þ
in the transverse momenta (κ⊥) integration, but for GFFs
BGðq2Þ and DGðq2Þ, the κ⊥-integration is found to be
convergent, and no cutoff is used. This cutoff introduces a
renormalization scale dependence on the GFFs AGðq2Þ and
CGðq2Þ; in our approach, this has its origin in the transverse
momenta (κ⊥) integration. But the total GFFs of a system
are independent of such scale dependence [5]. Indeed our
total GFFs are independent of the UV cutoff since any Λ
dependent contribution from the gluon exactly cancels with
the corresponding quark contribution. The calculation of
quark contribution to GFFs has been explored in our
previous work [62].

III. NUMERICAL ANALYSIS: GRAVITATIONAL
FORM FACTORS

In this section, we show the plots of the GFFs AGðq2Þ,
BGðq2Þ, DGðq2Þ and CGðq2Þ listed in Eqs. (22)–(25) as a
function of the momentum transferred squared ðq2Þ. We
take the mass of the dressed quark to be m ¼ 0.3 GeV and
g ¼ CF ¼ 1. We use the cutoff Λ ¼ 2 GeV for the calcu-
lation of both quark and gluon GFFs.
In Fig. 1, we plot the total GFFs Aðq2Þ and Bðq2Þ as a

function of q2 along with the individual quark and gluon
contributions. As discussed above, Aðq2Þ for the quark and
gluon depend on Λ, although the total Aðq2Þ is independent
of this cutoff. These form factors have been calculated for a

dressed electron system in QED as well as in Yukawa theory
in [65]. The QED limit can be obtained from our calculation
by taking suitable values of the parameters. Our results for
Aðq2Þ and Bðq2Þ agree with this reference. Our result for the
GFF AGðq2Þ matches with an existing result which was
calculated through GPDs in the massless limit [54]. Lattice
study of the gluon contribution to GFFs of the nucleon,
AGðq2Þ and BGðq2Þ have been made in [44,47]. Our results
agree qualitatively for AGðq2Þ, on the lattice the gluon
contribution to the GFF BGðq2Þ in [47] is found to be
slightly positive, although in [44] it is shown to be negative.
As seen in the plot above, in the dressed quark state, the
contribution from the gluon to the GFF Bðq2Þ is negative.
As a consequence of Poincare invariance the total GFFs
Aðq2Þ andBðq2Þ satisfy the sum rules Að0Þ ¼ 1 andBð0Þ ¼
0 respectively [66,67]. These sum rules are satisfied which
can be seen in Fig. 1. This can be obtained analytically also
and is explicitly shown in Appendix A. The condition on
GFF Aðq2Þ physically gives the momentum sum rule, and
for Bðq2Þ it means that the anomalous gravitomagnetic
moment vanishes for a spin-1=2 system [5]. Together these
two GFFs satisfy Ji’s sum rule [11]:

JQ;Gð0Þ ¼
1

2
ðAQ;Gð0Þ þ BQ;Gð0ÞÞ: ð28Þ

The above relation gives the contribution to the total
angular momentum from the quark/gluon.
In Fig. 2, we plot the GFFsDðq2Þ and Cðq2Þ as functions

of q2 for the contribution of the quark, the contribution of
the gluon and the total contribution of quark and gluon parts
of the EMT. In this case the GFF CGðq2Þ is found to change
from negative to positive value as q2 increases and the value
of CGð0Þ ¼ −0.0146. The quark counterpart shows exactly
opposite behavior and the value of CQð0Þ ¼ 0.0146. The
individual GFFs Ciðq2Þ depends on the UV cut-off Λ.

0. 2. 4. 6. 8. 10.�0.2

0.

0.2

0.4

0.6

0.8

1.

0. 2. 4. 6. 8. 10.�0.01

�0.005

0.

0.005

0.01

FIG. 1. Plots of the GFF Aðq2Þ and Bðq2Þ as a function of q2. The dashed blue curve and the dot-dashed magenta curve are for the
quark (q) and gluon (g) form factors respectively. The solid black curve is for the sum of quark and gluon (qþ g) contribution. Here
m ¼ 0.3GeV and Λ ¼ 2 GeV.
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However the total Cðq2Þ is independent of Λ, as expected.
We observe that the total Cðq2Þ is nonzero, except at
q2 ¼ 0, Cð0Þ ¼ 0 as shown in Eq. (B21). The total
Cðq2Þ however, is expected to be zero due to the con-
servation of EMT. Cðq2Þ depends on the transverse com-
ponent of the EMT. As discussed in the Appendix B, in our
calculation of the matrix elements for a dressed quark state,
we have used two-component formalism. In this formalism,
while eliminating the unphysical degrees of freedom in
light-front gauge, one removes the zero mode kþ ¼ 0; as the
constrained fields cannot be written in terms of the
dynamical fields using the constraint equations at this point.
The zero modes are removed by using anti-symmetric
boundary conditions [53,68]. So our calculations do not
include the contribution from the terms that have kþ ¼ 0 for
either the quark or the gluon. The terms with kþ ¼ 0 zero do
not contribute as q2 → 0, but contribute when q2 is not zero.
A careful inclusion of the light-front zero modes is required

to see the result coming from the conservation of the full
EMT, this is beyond the scope of the present work. The
slope of the CQ is steeper than CG. As discussed in the
introduction, the D-term is not related to any Poincare
generators and therefore is not constrained. It is related to
the pressure and shear force inside the nucleon. The value of
the DGðq2Þ is found to be positive and divergent as q2

approaches zero. The total Dðq2Þ is divergent as q2 → 0 as
well. The total Dðq2Þ is found to be negative in the chosen
range as expected for a bound state except in the region
close to q2 ¼ 0, where theD-term is positive. The GFFs for
an electron in QED have been calculated in a Feynman
diagram approach in [69,70]. The D-term for the photon
part of the EMT has been found to be divergent. This
divergence was related to the infinite range of the Coulomb
interaction [71,72]. In our one loop calculation in QCD we
also see a divergent behavior. The D-term for the photon
can be obtained from our result by setting the QEDvalues for
the parameters. We observe that our result for the D-term
for the photon shows qualitatively similar behaviorwith [70].
The comparison has been shown in Fig. 3. The quantitative
difference may be due to the fact that the light-front zero
modes are not included in our calculation. This requires
further investigation, possibly in another publication.

IV. PRESSURE AND SHEAR FORCE
DISTRIBUTIONS

The D-term encodes information about the pressure and
shear distributions inside the nucleon [5]. The pressure and
shear force distributions are encoded in the transverse
component of the EMT through the pure-stress tensor [26].
The gluon contribution to theD-term is vital for a complete
understanding of the quark-gluon dynamics associated
with the transverse components of the EMT. As discussed
in the introduction, such distributions in the literature have
been defined in different frames. The spatial distributions
in the Breit frame do not have an interpretation of spatial

0. 2. 4. 6. 8. 10.�0.01

�0.005

0.

0.005

0.01

0. 2. 4. 6. 8. 10.�0.08

�0.04

0.

0.04

0.08

FIG. 2. Plots of the GFF Dðq2Þ and Cðq2Þ as a function of q2. The dashed blue curve and the dot-dashed magenta curve are for the
quark (q) and gluon (g) form factors respectively. The solid black curve is for the sum of quark and gluon (qþ g) contribution. Here
m ¼ 0.3 GeV and Λ ¼ 2 GeV.

0. 2. 4. 6. 8. 10.
0.

0.01

0.02

0.03

0.04

FIG. 3. Plot of photon GFF Dγðq2Þ as function of q2. The blue
dashed curve is the result for the photon D-term as shown in
Ref. [70] (MPR) and the solid black line is our D-term with the
same parameter. Here we set m ¼ 0.511 MeV, α ¼ 1

137
.
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density [26]. There is in general an ambiguity to define a
three-dimensional spatial distribution of a local property of
the nucleon which has a size much less than the Compton
wavelength [73]; this ambiguity comes while localizing
the nucleon to define such distributions. In light-front
formalism, we can define 2D distributions at constant light
front time xþ ¼ 0 by taking a two-dimensional Fourier
transform. In the Drell-Yan frame when the momentum
transfer is purely in the transverse direction, such distri-
butions have density interpretation [26]. In this work, we
calculate the distributions in the form of Fourier transform
of q⊥ to the impact parameter space b⊥ in the Drell-Yan
frame following the approach of [22]. In Refs. [74,75]
boost invariant impact parameter distributions (IPDFs) of
quarks and gluons has been introduced by taking 2D
Fourier transform of the GPDs, using the fact that, in light-
front framework, the transverse boosts are Galilean in
nature. The expressions for pressure and shear distribu-
tions in two dimensions [26] are

piðb⊥Þ ¼
1

8mb⊥
d

db⊥

�
b⊥ d

db⊥
Diðb⊥Þ

�
−mCiðb⊥Þ; ð29Þ

siðb⊥Þ ¼ −
b⊥
4m

d
db⊥

�
1

b⊥
d

db⊥
Diðb⊥Þ

�
; ð30Þ

where

Fðb⊥Þ ¼ 1

ð2πÞ2
Z

d2q⊥e−iq⊥b⊥F ðq2Þ

¼ 1

2π

Z
∞

0

dq⊥q⊥J0ðq⊥b⊥ÞF ðq2Þ; ð31Þ

where F ¼ ðAi; Bi; Di; CiÞ, i≡ ðQ;GÞ. J0 is Bessel’s
function of zeroth order. m is the mass of the dressed
quark state. The last term in Eq. (29) will not be there for
the pressure distribution derived from conserved total

EMT. In order to avoid infinities at intermediate steps,
we use a wave packet state to calculate these spatial
distributions [55,76]. The dressed quark state confined in
transverse momentum space with definite longitudinal
momentum can be written as

1

16π3

Z
d2p⊥dpþ

pþ ϕðpÞjpþ; p⊥; λi; ð32Þ

with ϕðpÞ ¼ pþδðpþ − pþ
0 Þϕðp⊥Þ. We use a Gaussian

wave packet in transverse momenta at fixed longitudinal
light-front momentum.

ϕðp⊥Þ ¼ e−
p⊥2

2Δ2 ; ð33Þ

where Δ is the width of Gaussian.
This state provides Fourier-transformed pressure and

shear distribution and also smooth plots. The combination
of pressure and shear gives the normal and the tangential
forces experienced by a ring of radius b⊥:

Fnðb⊥Þ ¼ 2πb⊥
�
pðb⊥Þ þ 1

2
sðb⊥Þ

�
; ð34Þ

Ftðb⊥Þ ¼ 2πb⊥
�
pðb⊥Þ − 1

2
sðb⊥Þ

�
: ð35Þ

We have suppressed the index i for quark/gluon. In Fig. 4
we have shown the plots of 2πb⊥pðb⊥Þ and 2πb⊥sðb⊥Þ.
We have shown three plots for quark, gluon and the total
contribution. The quark and gluon contributions to the
pressure distribution have one node each that coincides.
The position of the node depends on the width of the
Gaussian. Here, we have chosen Δ ¼ 0.2 for illustrative
purpose. The node moves to higher value of b⊥ as the width

FIG. 4. Plots of the pressure distribution 2πb⊥pðb⊥Þ and the shear force distribution 2πb⊥sðb⊥Þ as a function of b⊥. The dashed blue
curve and the dot-dashed magenta curve are for the quark (q) and gluon (g) contributions respectively. The solid black curve is for the
sum of quark and gluon (qþ g) contribution. Here Δ ¼ 0.2.
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of the Gaussian wave packet is increased, and the distri-
bution becomes broader. The quark contribution is larger
than the gluon and hence the total contribution mimics the
behavior shown by the quark contribution. The profile of
the total pressure curve indicates that at the center of the
two-particle system, there is a positive core, and there is
negative pressure distribution towards the boundary. This
behavior of the pressure distribution is essential for a stable
system, which is a repulsive core balanced by the confining
pressure in the outer region [23]. This behavior of the
pressure distribution is similar to what has been observed
for a nucleon for example from fits to the JLab data [23].
The total pressure profile of the dressed quark satisfies the
Von Laue stability condition [26] for which at least a single
node should be present in the pressure distribution (left
panel of Fig. 4). Z

d2b⊥pðb⊥Þ ¼ 0: ð36Þ

The shear force due to gluon turns out to be negative,
unlike the quark shear force which is a positive definite
quantity. The total shear force resembles that of a stable
hydrostatic system [5] (right panel of Fig. 4).
Figure 5 shows the normal force Fn and tangential force

Ft in the impact parameter space. The gluon part of normal
force Fn is found to be negative, but the total normal force
is positive. This means that the system is stable under
collapse [5]. The nature of the gluon contribution to the
tangential force Ft is similar to the quark but opposite in
sign. The total tangential force is zero at the center of the
two-particle system; positive near the core and negative
towards outer region, which keeps stability in the tangential
direction. Again, the position of the node in the tangential
force distribution moves to higher value of b⊥ as the width
of the Gaussian is increased. However, the position of the
node does not depend on the mass parameter m.

V. ENERGY DENSITY AND PRESSURE
DISTRIBUTIONS

The two-dimensional Galilean energy density, radial
pressure, tangential pressure, isotropic pressure, and pres-
sure anisotropy, for quark/gluon are defined in Ref. [22].

μiðb⊥Þ ¼ m

�
1

2
Aiðb⊥Þ þ Ciðb⊥Þ þ

1

4m2

1

b⊥
d

db⊥

×

�
b⊥ d

db⊥

�
1

2
Biðb⊥Þ − 4Ciðb⊥Þ

���
; ð37Þ

σri ðb⊥Þ ¼ m

�
−Ciðb⊥Þ þ

1

m2

1

b⊥
dCiðb⊥Þ
db⊥

�
; ð38Þ

σtiðb⊥Þ ¼ m

�
−Ciðb⊥Þ þ

1

m2

d2Ciðb⊥Þ
db⊥2

�
; ð39Þ

σiðb⊥Þ ¼ m

�
−Ciðb⊥Þ þ

1

2

1

m2

1

b⊥
d

db⊥

�
b⊥ dCiðb⊥Þ

db⊥

��
;

ð40Þ

Πiðb⊥Þ ¼ m

�
−

1

m2
b⊥ d

db⊥

�
1

b⊥
dCiðb⊥Þ
db⊥

��
; ð41Þ

where i≡ ðQ;GÞ. Equations (40) and (41) agree with
Eqs. (29) and (30). The isotropic pressure and the pressure
anisotropy can be defined in terms of radial pressure and
tangential pressure as follows:

σi ¼
ðσri þ σtiÞ

2
; ð42Þ

FIG. 5. Plots of the normal force Fnðb⊥Þ, and the tangential force Ftðb⊥Þ as a function of b⊥. The dashed blue curve and the dot-
dashed magenta curve are for the quark (q) and gluon (g) contributions respectively. The solid black curve is for the sum of quark and
gluon (qþ g) contributions. Here Δ ¼ 0.2.
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Πi ¼ σri − σti: ð43Þ

The distributions defined in Eqs. (37)–(41) are studied in
the impact parameter space and hence we take the Fourier
transform as shown in Eq. (31). As before, we choose a
Gaussian wave packet state with a width of Δ ¼ 0.2.
We show our result for the energy density in the impact

parameter space in Fig. 6. The Galilean energy density
involves all four GFFs as seen from Eq. (37). The energy
density for quark shows a negative region near the center
whereas the gluon energy density has a negative region
towards the peripheral region away from the center. The
energy density of the gluon is positive near the center and
as we move away from the center the quark contribution
becomes positive. However, the total energy density
remains a positive definite quantity over the entire range.
The blue dashed curve and the dotted magenta curve

intersect at around b⊥ ≈ 0.025 fm which is the point
where the quark and gluon energy density share the exact
same nonzero value. The total energy density has a peak
centered around b⊥ ≈ 0.03 fm, where b⊥ indicates the
magnitude of b⊥.
Figure 7 shows the plot for the radial and tangential

pressure as defined in Eqs. (38) and (39) respectively. The
quark radial pressure has a maximum at the center of the
impact parameter space and it falls off gradually becoming
zero around b⊥ ≈ 0.06 fm. On the other hand, the gluon
radial pressure exhibits a negative value at the center. The
quark contribution dominates over the gluon such that the
total radial pressure stays positive. The tangential pressure
for both quark and gluon show positive as well as negative
regions. The tangential pressure due to gluon is found to be
negative till b⊥ ≈ 0.02 fm and positive after that. The quark
behavior is inverted compared to the gluon case. However,
the total tangential pressure mimics the quark behavior
which indicates that the quark contribution is larger
compared to the gluon.
Figure 8 shows the plot for the isotropic pressure and the

pressure anisotropy as defined in Eqs. (40) and (41)
respectively. These two pressures are linear combinations
of the radial and tangential pressure as shown in Eq. (43).
The isotropic pressure is the average of the radial and
tangential pressure. Hence we observe that the region near
the center resembles the behavior as seen in the radial
pressure and the region around the periphery mimics the
behavior observed in the tangential pressure. Pressure
anisotropy is the difference between radial and tangential
pressure. In Fig. 8, we observe that the quark contribution is
positive and the gluon contribution is negative. This implies
that the radial pressure is always greater than the tangential
pressure for the quark and for the gluon the tangential
pressure is always greater than the radial pressure. The total
pressure anisotropy remains non-negative throughout the
impact parameter space.

FIG. 6. Plot of the energy density μðb⊥Þ as a function of b⊥.
The dashed blue curve and the dot-dashed magenta curve are for
the quark (q) and gluon (g) contributions respectively. The solid
black curve is for the sum of quark and gluon (qþ g) contri-
bution. Here Δ ¼ 0.2.

FIG. 7. Plots of the 2D radial pressure σrðb⊥Þ and the tangential pressure σtðb⊥Þ as a function of b⊥. The dashed blue curve and the
dot-dashed magenta curve are for the quark (q) and gluon (g) contributions respectively. The solid black curve is for the sum of quark
and gluon (qþ g) contribution. Here Δ ¼ 0.2.

GLUON CONTRIBUTION TO THE MECHANICAL PROPERTIES … PHYS. REV. D 107, 116005 (2023)

116005-9



VI. CONCLUSION

In this work, we have calculated the gluon contribution
to the GFFs and mechanical properties like pressure, shear
force and energy distribution for a dressed quark state. A lot
of theoretical studies have been done in the direction of
mechanical properties of the nucleons [22,30,33,34,37],
especially the D-term has got a lot of attention because it is
related to the pressure distribution inside the nucleon. Most
phenomenological models for the nucleon do not include
gluons. But the D-term and the pressure distribution
depend on the quark-gluon interaction [5,26], as they are
related to the transverse components of the energy-momen-
tum tensor. In this work, instead of a nucleon state, we use a
simpler relativistic spin-1

2
composite state, namely a quark

dressed with a gluon at one loop in QCD. The advantage is
that in the light-front gauge, one can use the constraint
equations to eliminate the constrained fields. We use the
two-component formalism in light-front Hamiltonian per-
turbation theory. The quark state is expanded in Fock space
in terms of multi-parton LFWFs and we keep up to the two-
particle sector that is the quark-gluon LFWF. These Boost
invariant LFWFs for a dressed quark state can be calculated
analytically using the LFQCD Hamiltonian. This allows us
the calculate the contribution to the GFFs coming from the
quark and gluon parts of the energy-momentum tensor, as
well as their contribution to the mechanical properties like
the pressure, shear and energy distributions. This gives an
intuitive picture of the spatial distributions of the two-
particle relativistic composite state. In our earlier publica-
tion [62] we have calculated the GFFs and mechanical
properties of the dressed quark state from the quark part of
the EMT; in this work, we have presented the contribution
from the gluon part of the EMT. We have compared our
results with existing results in the literature for a dressed
electron [70]. Using the QED values of the parameters we
obtain Dγðq2Þ, which diverges as q2 → 0, as a result, the
total D-term also diverges in this limit. This behavior is

discussed in the literature. We observe that in the GFFs
Dðq2Þ and Cðq2Þ contributions from the light front zero
modes need to be carefully investigated.
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APPENDIX A: EXTRACTION OF
AGðq2Þ AND BGðq2Þ

To extract GFFs AGðq2Þ and BGðq2Þ we use the ðþ;þÞ
component of the EMT. The operator structure of θþþ

G in
light-cone gauge Aþ ¼ 0 is

θþþ
G ¼ ðFþi

a Þ2 ¼ ð∂þAi
aÞ2: ðA1Þ

While calculating all the GFFs, we categorize the
contributions to the matrix elements as follows:

(i) Single particle contribution with one quark in the
initial as well as final state and we denote it by 1;D.

(ii) Nondiagonal contribution in which we calculate
matrix element with one quark in the initial state
and one quark and a gluon in the final state or vice
versa. This contribution is denoted by ND.

(iii) The two-particle diagonal contribution in which we
calculate the matrix element with one quark and a
gluon in the initial state as well as in the final state
and we denote it by 2;D.

The diagonal one-particle sector does not contribute, as
this would need x ¼ 1 for the gluon.

FIG. 8. Plots of the 2D isotropic pressure σðb⊥Þ and pressure anisotropyΠðb⊥Þ as a function of b⊥. The dashed blue curve and the dot-
dashed magenta curve are for the quark (q) and gluon (g) contributions respectively. The solid black curve is for the sum of quark and
gluon (qþ g) contribution. Here Δ ¼ 0.2.
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h
Mþþ

↑↑ þMþþ
↓↓

i
1;D

¼ 0; ðA2Þ
h
Mþþ

↑↓ þMþþ
↓↑

i
1;D

¼ 0: ðA3Þ

The final expression for the matrix elements coming
from the two-particle sector of θþþ

G in terms of the overlap
of the LFWFs is as follows:

hP0; S0jθþþ
G jP; Si ¼ 2Pþ2

X
λ0;λ;σ

Z
dxd2κ⊥ð2xÞϕ�S0

σ;λ0 ð1 − x;

− ðκ⊥ þ ð1 − xÞq⊥ÞÞϕS
σ;λð1 − x;−κ⊥Þ:

ðA4Þ

The diagonal contribution coming from the two-particle
sector is given by

½Mþþ
↑↑ þMþþ

↓↓ �2;D ¼ 2Pþ2g2CF

Z
½xκ⊥� ½m

2ð1 − xÞ4 þ ð1þ x2Þðκ⊥2 − xκ⊥ · q⊥Þ�
D1D2

; ðA5Þ

½Mþþ
↑↓ þMþþ

↓↑ �2;D ¼ 2Pþ2g2CF

Z
½xκ⊥�

�
−iqð2Þ

�mx2ð1 − xÞ2
D1D2

: ðA6Þ

The nondiagonal contribution coming from the overlap of
one and two-particle sectors also vanishesh

Mþþ
↑↑ þMþþ

↓↓

i
ND

¼ 0; ðA7Þ
h
Mþþ

↑↓ þMþþ
↓↑

i
ND

¼ 0; ðA8Þ

where

½xκ⊥� ≔ dxd2κ⊥
8π3

: ðA9Þ

D1 ≔
h
κ⊥2 þm2x2

i
: ðA10Þ

D2 ≔
h
ðκ⊥ þ ð1 − xÞq⊥Þ2 þm2x2

i
: ðA11Þ

From Eq. (22) we get

lim
q2→0

AGðq2Þ ¼
g2Cf

2π2

�
5

9
þ 1

3
ln

�
Λ2

m2

��
: ðA12Þ

Now the expression for the quark part of the GFF AQðq2Þ
as discussed in our previous work [62], in the limit q2 → 0,
we get

lim
q2→0

AQðq2Þ ¼ 1 −
g2Cf

2π2

�
5

9
þ 1

3
ln

�
Λ2

m2

��
: ðA13Þ

So it is clear from Eqs. (A12) and (A13) that the total quark
and the gluon GFF Aðq2Þ satisfies the sum rule as expected.

lim
q2→0

ðAQðq2Þ þ AGðq2ÞÞ ¼ 1: ðA14Þ

Similarly from Eqs. (23) and Ref. [62] in the limit q2 → 0,
we get

lim
q2→0

BGðq2Þ ¼ −
g2Cf

12π2
; lim

q2→0
BQðq2Þ ¼

g2Cf

12π2
: ðA15Þ

So, the total quark and gluon GFF Bðq2Þ satisfies the
sum rule as expected.

lim
q2→0

ðBQðq2Þ þ BGðq2ÞÞ ¼ 0: ðA16Þ

Equations (A13) and (A16) imply that the total angular
momentum of the dressed quark state is Jð0Þ ¼ 1

2
as per Ji’s

sum rule [11].

APPENDIX B: EXTRACTION
OF CGðq2Þ AND CGðq2Þ

In light-front gauge Aþ ¼ 0, the calculation of the GFFs
CGðq2Þ and CGðq2Þ involve the transverse component A⊥
and the longitudinal component A− of the gauge field. The
transverse component of the gauge field is the independent
dynamical degree of freedom in LFQCD. However, A− is
not a dynamical variable and can be eliminated using
the equation of motion. Thus one obtains the following
constraint equation:

1

2
ð∂þA−

a Þ ¼ ð∂kAk
aÞ þ 2g

1

∂
þ ðξ†TaξÞ þ gfabc

1

∂
þ ðAk

b∂
þAk

cÞ:
ðB1Þ

It should also be noted that the last term in Eq. (B1)
does not contribute at Oðg2Þ and hence can be neglected.
The components of the EMT required for extracting
CGðq2Þ and CGðq2Þ are θijG and θþj

G . These EMT compo-
nents up to order g can be written in terms of the gauge
fields as shown below:
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θþj
G ¼ −Fþλ

a Fj
aλ

¼ ð∂kAk
aÞð∂þAj

aÞ þ ð∂þAk
aÞð∂jAk

a − ∂
kAj

aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2;D

þ 2gð∂þAj
aÞ 1

∂
þ ðξ†TaξÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ND

ðB2Þ

þgfabcð∂þAj
aÞ 1

∂
þ ðAk

b∂
þAk

cÞ − gfabcð∂þAk
aÞAj

bA
k
c|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Do not contribute

; ðB3Þ

θijG ¼ −Fiλ
a F

j
aλ −

1

4
ðFλσaÞ2

¼ θijI þ θijII; ðB4Þ

where

θijI ¼ −
1

2
ð∂þAi

aÞð∂−Aj
aÞ þ ð∂jAi

aÞð∂kAk
aÞ þ

1

2
ð∂iAk

a − ∂
kAi

aÞð∂jAk
a − ∂

kAj
aÞ þ termsfi ↔ jg

− δij
�
1

2
ð∂kAk

aÞ2 −
1

2
ð∂þAk

aÞð∂−Ak
aÞ þ

1

4
ð∂kAl

a − ∂
lAk

aÞ2
�
þ 2gð∂iAj

aÞ 1

∂
þ ðξ†TaξÞ þ termsfi ↔ jg; ðB5Þ

θijII ¼
g
2
fabcð∂jAi

aÞ
1

∂
þ ðAk

b∂
þAk

cÞ þ termsfi ↔ jg þ g
2
fabcð∂þAi

aÞðA−
bA

j
cÞ þ g

2
fabcð∂þAj

aÞðA−
bA

i
cÞ

− gfabcð∂iAk
a − ∂

kAi
aÞAj

bA
k
c − gfabcAi

bA
k
cð∂jAk

a − ∂
kAj

aÞ − δij
�
g
2
fabcð∂þAk

aÞA−
bA

k
c

−
g
4
fabcð∂kAl

a − ∂
lAk

aÞAk
bA

l
c −

g
4
fabcAk

bA
l
cð∂kAl

a − ∂
lAk

aÞ −
g
2
fabc

1

∂
þ ðAk

b∂
þAk

cÞð∂kAk
aÞ
�
: ðB6Þ

In our two-component approach, we have not included the contribution from the light-front zero modes that is kþ ¼ 0. We
calculate the GFFs up to order Oðg2Þ and the terms in Eq. (B6) and the second line of (B3) do not contribute to our
calculations. The terms relevant to our calculations are given in Eq. (B5) and the first line of (B3).
In order to compute the matrix element of terms in Eqs. (B5) and (B3) we consider the generic operator for the diagonal

contribution

Oμνij ¼ ð∂μAiÞð∂νAjÞ; ðB7Þ

such that components can be ðμ; νÞ≡ ðþ;−; 1; 2Þ and ði; j; k; lÞ≡ ð1; 2Þ. By substituting the appropriate Lorentz index we
can obtain each term in Eqs. (B5) and (B3). The final expression for the general matrix elements in terms of the overlap of
the two-particle LFWFs using the above operator is as follows:

D
P0; S0




Oμνij



P; SE ¼

X
λ0;λ;σ

Z
dxd2κ⊥

x
ϕ�S0
σ;λ0 ð1 − x;−ðκ⊥ þ ð1 − xÞq⊥ÞÞϕS

σ;λð1 − x;−κ⊥Þ

×
�
Rμνϵiλϵ

j�
λ0 þ Sμνϵi�λ0 ϵ

j
λ

�
: ðB8Þ

The expressions for Rμν and Sμν are shown in Table I. Consider the generic operators for nondiagonal contribution

Oij
1 ¼ 2gð∂iAjÞ 1

∂
þ ðξ†TaξÞ; Oþj

2 ¼ 2gð∂þAjÞ 1

∂
þ ðξ†TaξÞ: ðB9Þ

So the expression for matrix elements for terms in Eqs. (B5) and (B3) in terms of overlap of the two-particle LFWFs is
as follows:
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D
P0; S0




Oij
1




P; SE ¼
X
σ;λ

2gffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p Z
dxd2κ⊥

��−κiϵjλ�
x3=2

�
χ†S0T

aχσ
�
ϕS
σ;λð1 − x;−κ⊥Þ

þ ϕ�S0
σ;λð1 − x;−κ⊥Þ ð−κ

i − xqiÞϵj�λ
x3=2

ðχ†σTaχSÞ
�
; ðB10Þ

D
P0; S0




Oþj
2




P; SE ¼
X
σ;λ

2gPþffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p Z
dxd2κ⊥

��
−ϵjλffiffiffi
x

p
��

χ†S0T
aχσ

�
ϕS
σ;λð1 − x;−κ⊥Þ

þ ϕ�S0
σ;λð1 − x;−κ⊥Þ

�
−ϵj�λffiffiffi

x
p

�
ðχ†σTaχSÞ

�
: ðB11Þ

In order to extract GFF CGðq2Þ we utilize the equation derived from the conservation of EMT as shown in Eq. (19)

qμθ
μð1Þ
G ¼ q⊥2

2Pþ θþ1
G − qð1Þθ11G − qð2Þθ21G : ðB12Þ

The conservation of EMT finally leads to Eq. (19) which is used to extract CGðq2Þ. The l.h.s. of Eq. (20) will not receive
any contribution from the single particle sector.h

qμM
μð1Þ
↑↓ þ qμM

μð1Þ
↓↑

i
1;D

¼ 0: ðB13Þ

The diagonal and nondiagonal contributions to the l.h.s. of Eq. (20) is as follows:

h
qμM

μð1Þ
↑↓ þ qμM

μð1Þ
↓↑

i
2;D

¼ ig2CF

Z
½xκ⊥�mð1 − xÞ

D1D2

½κð2Þqð1Þq⊥2ð1 − xÞ − 2κð1Þ2qð1Þqð2Þxþ 2κð1Þκð2Þ
�
q⊥2 − xqð2Þ2

�
þ κð1Þqð2Þq⊥2ð1 − xþ x2Þ�; ðB14Þ

h
qμM

μð1Þ
↑↓ þ qμM

μð1Þ
↓↑

i
ND

¼ ig2CFqð1Þqð2Þ
Z

½xκ⊥�mx
D1

: ðB15Þ

The extraction of CGðq2Þ involves both BGðq2Þ and CGðq2Þ as shown in Eq. (21). Again the single particle sector
contribution to the l.h.s. of Eq. (21) is zero.h

M11
↑↓ þM22

↑↓ þM11
↓↑ þM22

↓↑

i
1;D

¼ 0: ðB16Þ

The diagonal and nondiagonal contributions to the l.h.s. of Eq. (21) is as follows

h
M11

↑↓ þM22
↑↓ þM11

↓↑ þM22
↓↑

i
2;D

¼ 2ig2CF

Z
½xκ⊥�mð1 − xÞ

D1D2

h
κ⊥2qð2Þ − κð2Þq⊥2 − 2qð1Þκð1Þκð2Þ

þ x
�
κð2Þq⊥2 þ κð1Þ2qð2Þ − κð2Þ2qð2Þ

�i
; ðB17Þ

TABLE I. Expression for the tensors R and S appearing in Eq. (B8) for different components of μ and ν. Here k
and l are transverse indices such that ðk; lÞ ¼ ð1; 2Þ.
μ ν Rμν Sμν

þ − ðκ⊥ þ q⊥Þ2 κ⊥2

þ k xPþðκk þ qkÞ xPþðκkÞ
k l ðκkÞðκl þ qlÞ ðκk þ qkÞðκlÞ
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½M11
↑↓ þM22

↑↓ þM11
↓↑ þM22

↓↑�ND
¼ −ig2CFqð2Þ

Z
½xκ⊥�mx

D1

: ðB18Þ

From Eq. (25) we get

lim
q2→0

CGðq2Þ ¼
g2Cf

24π2

�
−
1

3
þ ln

�
Λ2

m2

��
: ðB19Þ

The expression for the quark part of the GFF CQðq2Þ as
discussed in our previous work [62], in the limit q2 → 0,
we get

lim
q2→0

CQðq2Þ ¼
g2Cf

24π2

�
1

3
− ln

�
Λ2

m2

��
: ðB20Þ

So, the total quark and gluon GFF Cðq2Þ at q2 → 0 is

lim
q2→0

ðCQðq2Þ þ CGðq2ÞÞ ¼ 0: ðB21Þ

APPENDIX C: INTEGRALS USED
TO CALCULATE GFFs

These integrals are used to calculate the analytical forms
of the GFFs:Z

∞

−∞
d2κ⊥ 1

D1

¼ π ln

�
1þ Λ2

m2x2

�
; ðC1Þ

Z
∞

−∞
d2κ⊥ 1

D1D2

¼ 2π

q⊥2ð1 − xÞ2
f̃2
f̃1

; ðC2Þ

Z
∞

−∞
d2κ⊥ κðiÞ

D1D2

¼ −
πqðiÞ

q⊥2ð1 − xÞ
f̃2
f̃1

; ðC3Þ

Z
∞

−∞
d2κ⊥ κ

ð1Þκð2Þ

D1D2

¼ πqð1Þqð2Þ

q⊥2

�
−1þ

�
1þ f̃1

2

2f̃1

�
f̃2

�
; ðC4Þ

Z
∞

−∞
d2κ⊥ ðκðiÞÞ2

D1D2

¼ π

�
−
1

2
f̃1 f̃2 þ

1

2
þ ðqðiÞÞ2

q⊥2

×

�
−1þ

�
1þ f̃1

2

2f̃1

�
f̃2

��

þ π

2
ln

�
Λ2

m2x2

�
: ðC5Þ

f̃1 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2x2

q⊥2ð1 − xÞ2

s
; ðC6Þ

f̃2 ≔ ln

�
1þ f̃1
−1þ f̃1

�
: ðC7Þ
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