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We derive the total helicity conservation law for a perfect electromagnetic relativistic fluid. As the
conservation equation contains the derivative of the magnetic helicity, it can be reshaped as having the same
form as the chiral anomaly equation if the fluid is isentropic. We also take the nonrelativistic limit of
the helicity conservation law, and check the agreement with the Abanov-Wiegmann equation at zero
temperature, but we provide further corrections in the more general case. We then consider chiral fluids,
when the chiral anomaly equation has to be incorporated in the hydrodynamical equations, together with
other chiral transport effects which exist in the presence of a chiral imbalance. We finally study how the
chiral imbalance modifies the helicity conservation law.
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I. INTRODUCTION

Relativistic hydrodynamics has been applied for a long
time in a variety of cosmological, astrophysical and nuclear
physics scenarios [1,2]. The recent experimental program
associated to heavy-ion collisions has allowed this effective
theory to be further studied and developed [3]. More
particularly, it has been realized [4] that quantum effects,
such as the so-called quantum chiral anomalies, have to be
incorporated in the fluid description of chiral systems, that
is, systems made up by massless fermions. As the hydro-
dynamics contains the expressions of the conservations
laws of a system, it seems natural to incorporate the
quantum chiral anomaly. The last might be interpreted as
a (quantum) modification of the classical conservation law
of the chiral current. A lot of work has been carried out in
this modified chiral hydrodynamics, with the description of
several new transport phenomena, that even if originating
as quantum effects, have relevant macroscopic effects (see
Refs. [5–7] for reviews and references).
In this article we first study the total helicity conservation

law in a relativistic electromagnetic fluid, regardless of
its microscopic composition. We assume that there is no
dissipation taking place. We then see that in the isentropic

limit, the helicity conservation law takes a rather simple
form, and can be written in the same form as the chiral
anomaly equation, even if it is a classical effect. It expresses
the fact that a combination of the magnetic helicity, the
fluid helicity and mixed fluid-magnetic helicity is con-
served. This law has been explored and studied in
Refs. [8,9] for barotropic nonrelativistic fluids—see a
previous work in Ref. [10]—later generalized for relativ-
istic systems in Ref. [11]. Our derivation is more general,
and it describes the genuine conservation law for generic
isentropic fluids, while we also provide the dynamical
helicity evolution valid for baroclinic (nonbarotropic)
fluids. From our relativistic considerations we can take
the nonrelativistic limit, showing that we only recover the
results of Refs. [8,9] at zero temperature.
We also consider an electromagnetic fluid made up of

massless fermions, that is, a chiral fluid. Quantum mod-
ifications to the hydrodynamics are then considered by
including the quantum chiral anomaly. This chiral hydro-
dynamics can be derived from kinetic theory including
quantum corrections in the formalism [12–15] (for a recent
review see Ref. [16] and references therein). We then study
how the helicity conservation law is modified in the
presence of a chiral imbalance, when (dissipationless)
chiral transport effects have also to be incorporated in
the hydrodynamical description of the system. We then see
that even in the isentropic limit, the total helicity is not
conserved.
The paper is structured as follows. In Sec. II we derive

the conservation law of total helicity for a charged perfect
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fluid. In Sec. III we perform the nonrelativistic expansion
of this conservation law, and compare the result with the
results of Refs. [8,9]. In Sec. IV we obtain the total helicity
conservation law for a chiral relativistic fluid, thus general-
izing the result of Sec. II for chiral-imbalanced fluids.
In Sec. V we discuss possible applications of our equations
in the context of cosmology and relativistic heavy-ion
collisions. Finally in the Appendix we detail the non
relativistic limit of the Euler equation that leads to the
Crocco equation.
Our conventions are such that the metric reads gμν ¼

ðþ;−;−;−Þ, and we use natural units ℏ ¼ kB ¼ c ¼ 1
unless otherwise stated. We also rescale the electromag-
netic fields with the electromagnetic coupling constant e.

II. HELICITY CONSERVATION IN RELATIVISTIC
HYDRODYNAMICS

In this section we derive the helicity conservation law for
a perfect relativistic charged fluid. Our starting points are
the relativistic hydrodynamical equations [1,2,17], which
are the expressions of the macroscopic conservation laws of
the charge current, jμðxÞ, and the energy-momentum tensor
TμνðxÞ,

∂μjμðxÞ ¼ 0; ∂μTμνðxÞ þ jρðxÞFρνðxÞ ¼ 0; ð1Þ

where Fμν is the electromagnetic tensor.
For a perfect fluid in local equilibrium the charge current

and energy-momentum tensor are expressed as

jμðxÞ ¼ nðxÞuμðxÞ; ð2Þ

TμνðxÞ ¼ ½ϵðxÞ þ PðxÞ�uμðxÞuνðxÞ − PðxÞgμν; ð3Þ

where nðxÞ, ϵðxÞ are the particle and energy densities,
respectively, while PðxÞ denotes the pressure. The fluid
four velocity uμðxÞ is normalized as uμðxÞuμðxÞ ¼ 1. In
the following we suppress the spacetime argument of the
hydrodynamic variables.
In a perfect fluid the entropy current is conserved [1],

∂μðsuμÞ ¼ 0, where s is the (local) entropy density in the
fluid rest frame. This conservation law can be derived by
projecting the energy-momentum conservation law along
uμ, and after using the thermodynamic relations,

dϵ ¼ Tdsþ μdn; ϵþ P ¼ Tsþ μn: ð4Þ

The relativistic Euler equation can be obtained by
projecting the energy-momentum conservation law onto
the direction perpendicular to uμ, resulting in

ðϵþ PÞuν∂νuμ ¼ Δμν
∂νPþ jνFμν; ð5Þ

where the projector orthogonal to the fluid 4-velocity is
defined as

Δμν ¼ gμν − uμuν: ð6Þ

The Euler equation can be converted into the Carter-
Lichnerowicz (CL) equation [2,18,19]. The CL equation
reads,

nuν½∂νðμuμÞ−∂μðμuνÞ�þsuν½∂νðTuμÞ−∂μðTuνÞ�¼nuνFμν:

ð7Þ

For our purposes, it turns out more convenient to express
the CL equation in terms of the entropy per particle s̄ ¼ s

n.
Then, the enthalpy per particle reads

h≡ ϵþ P
n

¼ μþ Ts̄; ð8Þ

and we define the enthalpy vorticity tensor as

Ωμν ≡ ∂μðhuνÞ − ∂νðhuμÞ: ð9Þ

The enthalpy vorticity tensor can be related to the
vorticity of the system. If we define the dual of any two-
rank tensorWμν as eWμν ≡ 1

2
ϵμναβWαβ, then it is easy to show

that the vorticity vector, defined as

ωμ ¼ 1

2
ϵμναβuν∂αuβ; ð10Þ

is naturally expressed in terms of the dual of the enthalpy
vorticity tensor as

ωμ ¼ 1

2h
Ω̃μνuν: ð11Þ

Dividing Eq. (7) by n we reach to a different form of the
CL equation,

uνF νμ ¼ −T∂μs̄; ð12Þ

expressed in terms of a generalized field strength tensor

F μν ≡Ωμν þ Fμν: ð13Þ

This generalized strength tensor can be derived from the
generalized vector connection,

Aμ ≡ huμ þ Aμ; ð14Þ

as F μν ¼ ∂μAν − ∂νAμ (and the usual Fμν ¼ ∂μAν − ∂νAμ).
In the absence of electromagnetic fields, Eq. (12) sim-
plifies, and gets to a well-known form [cf. Eq. (3.118) of
Ref. [1]],

uνΩμν ¼ T
∂s̄
∂xμ

; ð15Þ
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that expresses that in the absence of vorticity a relativistic
perfect fluid is isentropic ∂μs̄ ¼ 0 (not to be confused with
the adiabaticity condition: uμ∂μs̄ ¼ 0 [1]).
We focus now on the helicity conservation law that is

fulfilled in the system. It is convenient to start with the
Chern-Simons current associated to the electromagnetic
fields, which is defined as

JμCS ¼
1

2
ϵμναβAν∂αAβ: ð16Þ

The zero component of this current is also known as the
magnetic helicity [20,21]. Integrated over a closed volume,
it is a gauge independent quantity if the magnetic field lines
are either zero or tangential to the associated boundary
surface, which is the case we will assume here. It is easy to
check that

∂μJ
μ
CS ¼

1

4
FαβF̃αβ: ð17Þ

The magnetic helicity measures the linkage and twists of
the magnetic field lines in the system [20–23].
The CL equation (12) suggests to define a generalized

Chern-Simons current,

J μ
CS ≡ 1

2
ϵμναβAν∂αAβ; ð18Þ

in terms of the vector connection in Eq. (14).
This new Chern-Simons current can be written as

J μ
CS ¼ JμCS þ h2ωμ þ hBμ; ð19Þ

where we have introduced

Bμ ¼ 1

2
ϵμναβuνFαβ: ð20Þ

Here we have also implicitly assumed that integrated over a
closed volume 1

2
ϵμναβhuνFαβ ¼ 1

2
ϵμναβAνΩαβ, as after inte-

grating by parts surface terms can be discarded, assuming
that both the magnetic field and vorticity lines are either
zero or tangential to the boundary surface [21,24].
Note that J 0

CS can be considered as the total helicity of
the system, as it is a combination of the magnetic helicity,
the fluid helicity and the mixed magnetic-fluid helicity.
Similarly to the magnetic helicity, the fluid and mixed
helicities measure the linkage among fluid lines, and fluid
and magnetic field lines, respectively.
It is easy to check that the divergence of the new Chern-

Simons current satisfies

∂μJ
μ
CS ¼

1

4
F αβF̃ αβ: ð21Þ

Then, after using the identity

F αβF̃ αβ ¼ 4F αμuμF̃ ανuν;

and the CL equation (12), one finds

∂μJ
μ
CS ¼ T∂αs̄F̃

αβuβ ¼ T∂αs̄ð2hωα þ BαÞ: ð22Þ

If the fluid is isentropic (∂μs̄ ¼ 0 [1]), then the right-hand
side of Eq. (22) vanishes, and the total helicity conservation
law ∂μJ

μ
CS ¼ 0 can be expressed as

∂μðh2ωμ þ hBμÞ ¼ −∂μJ
μ
CS ¼ −

1

4
FαβF̃αβ ¼ −E · B; ð23Þ

where we have defined Eμ ¼ Fμνuν.
If the fluid is not isentropic, this equation is corrected as

∂μðh2ωμ þ hBμÞ ¼ −E · Bþ Tð∂αs̄Þð2hωα þ BαÞ: ð24Þ

This conservation law can also be derived using the
hydrodynamical equations obeyed by ωμ and Bμ, as is
explicitly shown in Sec. IV. In that derivation we also treat
the case of a chiral fluid, where one has to further consider
the anomaly chiral equation associated to the chiral current.
For an isentropic fluid with vanishing Eμ and Bμ one

finds,

h∂μωμ ¼ −2ωμ
∂μh: ð25Þ

In the more general isentropic situation in the presence of
electromagnetic fields one can define the axial current

jμA ¼ h2ωμ þ hBμ; ð26Þ

it is clear that in the isentropic limit it obeys an equation
similar to the chiral anomaly equation

∂μj
μ
A ¼ −E · B: ð27Þ

The nonrelativistic form of this equation was first
discussed by Abanov and Wiegmann in Refs. [8,9]. In
Ref. [11] the equation was generalized to the relativistic
regime [see Eq. (51) in that reference], but we see that the
Abanov-Wiegmann (AW) equations are only valid at zero
temperature, as only then h ¼ μ, cf. Eq. (8).
Note also while we have considered a flat Minkowski

space, it is possible to generalize all our equations in
nontrivial metrics, considering the CL equation in a general
background metric [1,2,25].

III. HELICITY CONSERVATION IN
NONRELATIVISTIC HYDRODYNAMICS

In this section we take the nonrelativistic limit to the
helicity conservation equation (24), to deduce the
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corresponding form of the conservation law. We then check
that we reproduce the Abanov-Wiegmann equation in the
limit of zero temperature [8,9], while several corrections are
needed otherwise.
The AW equation of helicity conservation read [8,9],

∂tρAW þ ∇jAW ¼ 2E · B; ð28Þ

where E, B are the electric and magnetic fields, respec-
tively. The density ρAW includes a combination of the fluid
and mixed helicities

ρAW ¼ mv · ωAW þ 2mv · B; ð29Þ

written in terms of the (unusually normalized) vorticity
vector ωAW ¼ m∇ × v, while the current is given by

jAW ¼ vρAW þ ðωAW þ 2BÞ
�
μnr −

1

2
mv2

�
−mv × ðEþ v × BÞ; ð30Þ

where μnr is the nonrelativistic chemical potential.
Our goal in this section is to arrive to these expressions

by performing the nonrelativistic limit of our equations.
In order to take the nonrelativistic limit of Eq. (24), we

momentarily restore the speed of light constant c, while
keeping ℏ ¼ kB ¼ 1. We define xμ ¼ ðct; xÞ, while ∂

μ ¼
ðc−1∂t;−∇Þ. We have

uμ ¼ γð1; v=cÞ; γ ¼ ð1 − v2=c2Þ−1=2; ð31Þ

Eμ ¼ Fμνuν ¼ γ

�
v
c
· E;Eþ v

c
× B

�
; ð32Þ

Bμ ¼ F̃μνuν ¼ γ

�
v
c
· B;B −

v
c
× E

�
; ð33Þ

ωμ ¼ γ2
�

1

2c2
v · ð∇ × vÞ; 1

2c
ð∇ × vÞ þ 1

2c3
v × ∂tv

�
; ð34Þ

FμνF̃μν ¼ −4E · B: ð35Þ

The relativistic enthalpy can be written separating the
rest energy density,

h ¼ mc2 þ hnr ¼ mc2 þ μnr þ Ts̄; ð36Þ

so clearly we take into account also that the relativistic
and nonrelativistic chemical potentials differ by the rest
energy mc2.

Then, in the limit v ≪ c we find

ρA ≡ h2ω0 þ hB0 ¼mc2

2

�
mv · ð∇× vÞ þ 2

v
c
·B

�
þO

�
v
c

�
;

ð37Þ

The leading term, neglecting other nonrelativistic correc-
tions, is equal to c2ρAW=2.
If we use the Crocco equation (see Eq. (A3) in the

Appendix),

m∂tvþ ∇
�
hnr þ

1

2
mv2

�
−mv × ð∇ × vÞ

¼ Eþ v
c
× Bþ T∇s̄; ð38Þ

one can write up to Oðv=cÞ

∂iðh2ωiÞ ¼ mc
2

∇
�
vðv · ωAWÞ þωAW

�
hnr
m

−
1

2
v2
�

þ v ×

�
Eþ v

c
× B

�
þ Tv × ∇s̄

�
; ð39Þ

written in terms of the ωAW vorticity; while

∂iðhBiÞ ¼m∇
�
1

2
vðB · vÞ− 1

2
v× ðv×BÞ þ hnr

m
B− cv×E

�
;

ð40Þ

up to Oðv=cÞ. In the isentropic case we have that the
leading nonrelativistic correction is given by

jA ≡ h2ωþ hB ¼ v
c
ρA þ c

2

�
ωAW þ 2

c
B

��
hnr −

1

2
mv2

�

−
mc2

2

�
v
c
×

�
Eþ v

c
× B

��
; ð41Þ

which keeps the same form as cjAW=2, but replacing μnr
by hnr.
Finally, from our Eq. (23) we arrive—for isentropic

fluids—to

1

c2
∂tρA þ 1

c
∇jA ¼ 1

c
E · B: ð42Þ

If we multiply the whole equation by 2 we reproduce the
AW equation (28) if we go to the zero temperature limit, as
only in this case hnr ¼ μnr. Note that in Ref. [8] the thermo-
dynamical relation dp ¼ ndμnr—which is only strictly
valid at zero temperature—was used for the derivation of
the helicity conservation law, while here we apply the more
general Gibbs-Duhem relation dp ¼ ndμnr þ sdT. Notice
also that since an isentropic fluid is also barotropic [1,2],
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we are able to arrive to the results of Ref. [8] by setting
∂μs̄ ¼ 0.
If the fluid is not isentropic further corrections to the

equation are needed, and we arrive to

1

c2
∂tρA þ 1

c
∇jA ¼ 1

c
E · Bþ T

�
ωAW þ 1

c
B

�
· ∇s̄; ð43Þ

which is valid up to order v2=c2. In the conservation law
(43), for the non isentropic case, ρA is still given by
Eq. (37), while the current jA shown in (41) receives a
correction,

jA ¼ v
c
ρA þ c

2

�
ωAW þ 2

c
B

��
hnr −

1

2
mv2

�

−
mc2

2

�
v
c
×

�
Eþ v

c
× B

��
þ Tmc

2
ðv × ∇s̄Þ; ð44Þ

Let us finally stress that Eq. (43) is valid for any perfect
electromagnetic fluid in its nonrelativistic regime.

IV. HELICITY CONSERVATION IN CHIRAL
RELATIVISTIC PLASMAS

In this section we consider a chiral relativistic fluid and
obtain the total helicity conservation relation using the
equations of motion of ωμ, Eq. (10), and Bμ, Eq. (20).
To begin with, we consider a relativistic fluid defined by

its Uð1Þ current vector jμ, its chiral current jμ5, and its
energy-momentum tensor TμνðxÞ. In the presence of chiral
imbalance, characterized by a chiral chemical potential μ5,
new dissipationless transport phenomena associated to the
chiral anomaly has to be incorporated in the hydrodynam-
ical description [4,5]. We still work in the perfect fluid
(nondissipative) situation, but we need to add corrections
to the vector and chiral currents proportional to Bμ and ωμ.
In this respect we use the Landau reference frame which
allows us to include these corrections only in jμ and jμ5, but
not in the energy-momentum tensor [4,7,26]. Therefore,
Tμν is still given by the expression in Eq. (3), but the
currents are now given by [26]

jμ ¼ nuμ þ ξωμ þ ξBBμ; ð45Þ

jμ5 ¼ n5uμ þ ξ5ω
μ þ ξB;5Bμ; ð46Þ

where ωμ and Bμ are defined in Eqs. (10) and (20),
respectively. The scalars ξ; ξB; ξ5; ξB;5 are the coefficients
describing the chiral vortical, chiral magnetic, axial vorti-
cal, and chiral separation effects, respectively [6,26].
Having both vector and chiral densities, the thermody-

namic relations should be generalized. To accommodate
both densities into the specific enthalpy density h we now
take,

h ¼ ϵþ P
n

¼ sT þ nμþ n5μ5
n

; ð47Þ

We also apply the following thermodynamic relation in
terms of the specific entropy s̄ and the chiral fraction
density x5 ¼ n5=n,

dP ¼ ndh − Tnds̄ − μ5ndx5: ð48Þ

The local conservation equations for hydrodynamics read
(1), together with the additional chiral anomaly equation,

∂μj
μ
5 ¼ −CEμBμ; ð49Þ

with C ¼ 1=ð2π2Þ the anomaly coefficient.
From the conservation of the energy-momentum tensor

we find two independent equations. Projecting it along uμ

one finds the usual,

Dϵþ ðϵþ PÞ∂μuμ ¼ 0; ð50Þ

where D≡ uμ∂μ and uν∂μuν ¼ 0 has been used.
The second equation is obtained by projecting the

conservation of the energy-momentum tensor by the
projector Δμν, arriving to a generalization of Eq. (5),

ðϵþPÞuν∂νuμ−Δμ
ν∂

νP¼Δμ
νðnEνþ ξFνλωλþ ξBFνλBλÞ;

ð51Þ

where we keep the projector in the right-hand side for
convenience (even when Δα

νFμν ¼ Fμα). Equation (51)
can be seen as a generalization of the relativistic Euler
equation with electromagnetic fields in the presence of
chiral imbalance.
To obtain the equation of helicity conservation we start

by considering the divergence of the vorticity,

∂μω
μ ¼ 1

2
ϵμνλρ∂μuν∂λuρ; ð52Þ

which follows from the definition of ωμ in Eq. (10). The
right-hand side of this equation can be rewritten as,

1

2
ϵμνλρ∂μuν∂λuρ ¼ −ϵμνλρuν∂λuρuα∂αuμ ¼ −2ωμuν∂νuμ:

ð53Þ

Inserting this relation into Eq. (52) we can then use the
Euler equation (51) to obtain,

∂μω
μ ¼ −

2

ϵþ P
ωμð∂μPþ nEμÞ; ð54Þ

where we have used that BμFμλBλ ¼ ωμFμλωλ ¼
ωμFμλBλ ¼ 0. Equation (54) (up to a change of sign in
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the last term due to metric convention) was also derived in
Refs. [4,27].
On the other hand, from the definition of the field in (20),

we calculate its divergence

∂μBμ ¼ 1

2
ϵμναβ∂μuνFαβ þ

1

2
ϵμναβuν∂μFαβ; ð55Þ

where the last term vanishes identically.
The first scalar term in Eq. (55) is simplified by the

following relation,

1

2
ϵμναβ∂μuνFαβ ¼

1

2
ϵμναβFαβuμuλ∂λuν þ ϵμναβuν∂αuβFλ

μuλ:

ð56Þ

Therefore we end up with

∂μBμ ¼ 2ω · E −
1

ϵþ P
ðB · ∂Pþ nE · BÞ; ð57Þ

which coincides with the expression in Refs. [4,27] (up to a
sign in the terms carrying Eμ due to metric convention).
Now we manipulate the Eqs. (54) and (57), by multi-

plying them by h2 and h, respectively,�
h2∂μωμ ¼−2hω ·∂hþ2hTω ·∂s̄þ2hμ5ω ·∂x5−2hω ·E

h∂μBμ ¼ 2hω ·E−B ·∂hþTB ·∂s̄þμ5B ·∂x5−E ·B
;

ð58Þ
where we also applied the thermodynamical relation (48).
Rewriting the two equations as

�
∂μðh2ωμÞ ¼ 2hTω · ∂s̄þ 2hμ5ω · ∂x5 − 2hω ·E;

∂μðhBμÞ ¼ 2hω ·Eþ TB · ∂s̄þ μ5B · ∂x5 −E ·B;
ð59Þ

it is easy to see that their sum gives

∂μðh2ωμ þ hBμÞ ¼ −E ·Bþ ð2hωμ þBμÞðT∂μs̄þ μ5∂μx5Þ;
ð60Þ

where E · B ¼ 1
4
F̃μνFμν. Notice that in the absence of chiral

imbalance x5 ¼ 0 the expression obtained in Eq. (24) is
recovered.
Equation (60) is one of the main results of this work. It

describes the (non)conservation of the total helicity of a
chiral nonisentropic fluid. Even when ∂μs̄ ¼ 0 (for example
in barotropic fluids), the total helicity is not conserved due
to the presence of chiral imbalance. The later itself evolves
according to the chiral anomaly equation, which reads

∂μðn5uμ þ ξ5ω
μ þ ξB;5BμÞ ¼ −CE · B: ð61Þ

This equation coincides with the conservation law of
Refs. [28,29]. In the last reference this equation is called

total “helicity” conservation. However, given our defini-
tions, and following the terminology of Ref. [1] the
(non)conservation of the helicity is given by (60) instead,
while we simply refer to Eq. (61) as the chiral anomaly
equation.
The chiral anomaly equation has already been used to see

the possible transfer of chirality and helicity among the
different sectors of the system [28–31]. For the consistent
description of the magnetic helicity evolution we would
need to consider dynamical electromagnetic fields and
couple the Maxwell equations [32,33]

∂μFμν ¼ ejν; ∂μF̃μν ¼ 0: ð62Þ

This is left for future publications. In the present work we
stress that if there is a conserved current, Eq. (60) has also
to be taken into account.

V. DISCUSSION AND SUMMARY

The helicity conservation law that we have derived for
perfect relativistic fluids might lead to several different
effects. Depending on the physical situation, the helicity
could be transferred from the fluid to the electromagnetic
sector and/or viceversa. It remains to be studied how the
inclusion of dissipative effects might alter such a possibil-
ity, as viscosities and electrical conductivity will affect the
dynamical evolution of the helicity. We leave these studies
for future projects, as a well-defined relativistic formulation
of the hydrodynamical effects is not straightforward.
Further, the backreaction of the electromagnetic fields
should also be considered.
Note that we have considered a situation quite different

from the one of ideal magnetohydrodynamics, when one
typically assumes that the electrical conductivity is infinite,
which then imposes the constraint Eμ ¼ 0 [see Eq. (32)].
In that case, the magnetic helicity is conserved, and if we
further take x5 ¼ 0 in Eq. (59), these tell us that in the
isentropic limit both the fluid and mixed magnetic helicity
are conserved independently [24], and thus there is no
possibility of transfer of helicity among the different sectors
of the system.
We believe that our considerations might be relevant in

different cosmological scenarios, as the chiral anomaly
plays a central role in different baryogenesis and lepto-
genesis models. It might also be relevant for the physics
associated to heavy-ion collisions. The fluid created in
these experiments is known to be almost perfect, and thus,
ignoring the role of viscosities might be a good approxi-
mation. Further, it is known that a large vorticity is
generated in these experiments [34,35], while different
transport codes describing these experiments reveal that
fluid helicity is also recreated [36]. On the other hand, large
magnetic fields are also generated in the collision [6], while
one might expect also the generation of chiral imbalance.
This last point has triggered substantial theoretical and
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experimental efforts for the search of chiral effects in
heavy-ion collisions [37,38]. However, we note that the
presence of a chiral imbalance also modifies the entropy
content of the fluid (even in the dissipationless case) [4,26],
and, according to our Eq. (60), the initially generated chiral
density can be transferred not only to magnetic helicity
[32,39–41], but also to fluid helicity. We plan to investigate
more on this interplay in future publications by considering
dynamical electromagnetic fields reacting to the presence
of the fluid’s helicity via the Maxwell equations.
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APPENDIX: NONRELATIVISTIC LIMIT
OF EULER AND VORTICITY EQUATIONS

From the relativistic Euler equation (51)—neglecting
any chiral imbalance—one can take the nonrelativistic limit
by applying the expressions shown in Eq. (31). Expanding
up Oðv2=c2Þ we obtain,

mð∂t þ v · ∇Þvþ 1

n
∇P ¼ Eþ v

c
× B: ðA1Þ

Then introducing the thermodynamic relation (48) without
chiral imbalance, and the vector identity

ðv · ∇Þv ¼ 1

2
∇v2 − v × ð∇ × vÞ; ðA2Þ

we get

m∂tvþ ∇
�
hnr þ

1

2
mv2

�
−mv × ð∇ × vÞ

¼ Eþ v
c
× Bþ T∇s̄; ðA3Þ

which is the so-called Crocco equation [1,2] with an
acceleration term coming from the Lorentz force.
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