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With a goal toward explaining the observed baryon asymmetry of the Universe, we extend the standard
model (SM) by adding a vector-vector dimension-six effective operator coupling a new Dirac fermion χ,
uncharged under the SM gauge symmetries but charged under baryon number, to a quarklike up-type
fermion and two identical down-type fermions. We introduce baryon number violation by adding Majorana
masses to χ, which splits the Dirac fermion into two Majorana fermions with unequal masses. We speculate
on the origin of the effective operator, the Majorana mass, and the new physics sector connection to the SM
by considering some ultraviolet completion examples. In addition to the baryon number violation, we show
that C and CP invariances can be violated in the theory, and the interference between tree and loop
amplitudes with on-shell intermediate states can lead to a baryon asymmetry in χ decay and scattering
processes. We provide numerical estimates for the baryon asymmetry generated, and for the neutron-
antineutron oscillation rate.
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I. INTRODUCTION

It has become established observationally over the last
few decades that there is an excess of baryons over
antibaryons in the Universe, the so-called baryon asym-
metry of the Universe (BAU). From a particle physics
perspective, although many proposals exist, the mechanism
by which the BAU has arisen is yet to be settled.
Irrespective of the specific mechanism, the generation of
the BAU requires that the three Sakharov conditions [1] be
satisfied in any candidate theory, namely, (i) C and CP
violation, (ii) baryon number violation, and (iii) departure
from thermal equilibrium. Although the standard model
(SM) of particle physics has the necessary ingredients, with
the baryon number violation provided by nonperturbative
effects (instantons [2] or sphalerons [3]), it is commonly
held that it cannot generate the observed BAU, falling short
by not having a big enough CP violating effect, and, for the
nowmeasured Higgs mass, by not having enough departure
from equilibrium when the electroweak sphalerons are
operative. This perhaps suggests that some beyond the

standard model (BSM) physics is responsible for generat-
ing the BAU. Many BSM proposals for generating the BAU
exist (for reviews, see for example Refs. [4,5]), including
electroweak (EW) baryogenesis, leptogenesis, grand uni-
fied theory baryogenesis, etc., but it is not known which of
these, if any, really generated the observed BAU.
With an aim to generate the required baryon asymmetry,

in this work we extend the SM by introducing a new BSM
Dirac fermion χ, uncharged under the SM gauge sym-
metries, coupled to an up-type (U) and two down-type (D)
quarklike fermions. This interaction assigns nonzero
baryon number to χ. We introduce baryon number violation
by introducing a Majorana mass for χ, which splits the χ
into two Majorana fermions Xn with unequal masses. We
write down a BSM effective theory which has a rich enough
structure to satisfy the Sakharov conditions and generate
the BAU directly by the decay and scattering processes
involving the X . We consider an effective theory with a
dimension-six four-fermion operator of the ðXUÞðDDÞ
type, where the parentheses indicate which spinors are
Lorentz contracted, and we analyze in detail the scalar-
scalar (SS) and vector-vector (VV) Lorentz structures in the
interactions. Our work thus belongs to the so-called
neutron-portal class of models since this operator couples
the electromagnetic (EM) charge neutral X to the UDD
operator that has quantum numbers of the neutron. The
Sakharov conditions are satisfied in our proposal, since
(i) phases in the interaction of X to quarks and in the X
Majorana mass lead to C and CP violation, (ii) the
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interaction assigning nontrivial baryon number to X
implies that the X Majorana mass gives baryon number
violation, and (iii) the decay and scattering processes of the
X in the backdrop of the Hubble expansion of the Universe
leads to a departure from thermal equilibrium. We do not
rely on sphaleron dynamics to generate the baryon asym-
metry as in electroweak baryogenesis [6] but rather directly
generate a quark-level asymmetry. Our mechanism is in the
spirit of leptogenesis [7] in which a lepton asymmetry is
directly generated, but it differs in that we directly generate
a baryon asymmetry.
In our effective theory, proton decay does not occur at the

perturbative level since lepton number remains a good
classical symmetry of our Lagrangian density, while only
baryon number is broken, and for proton decay to occur,
both these symmetries must be broken. X exchange
induces the baryon number violating neutron-antineutron
(n − n̄) oscillation, which is being searched for in experi-
ments. If the X mass is low enough, then a positive signal
could result, while if it is too heavy, null results will place
nontrivial constraints on the new-physics parameter space.
Next, we contrast our work with other works in the

literature that have similar ingredients to ours, namely, the
generation of the baryon asymmetry via dimension-six
operators involving the X and the U, D. An important
distinction between our work and the other earlier works is
that others consider higher-dimensional SS interaction,
while we focus on the VV interaction. We show in this
work that by suitably antisymmetrizing in the color indices,
the VV interaction allows the ðXUÞðDDÞ interaction with
two same flavor D fields, while this is forbidden for the SS
interaction. Another distinction is that we focus on the
baryon asymmetry generation through one effective oper-
ator, namely, the ðXUÞðDDÞ VV interaction as mentioned
above, while other works involve contributions with two
different operators being present. We include both decay
and scattering processes in computing the baryon asym-
metry, while many other works only include decay.
Some of the other works that have substantial overlap

with our work generate the baryon asymmetry as follows:
Ref. [8] in decays with the SS interaction in a grand unified
theory framework with the ðXDÞðXDÞ and the ðXDÞðUDÞ
operators present, Ref. [9] in decays with the ðXUÞðD1D2Þ
and ðXUÞðUXÞ SS interactions necessarily involving two
different D1;2 flavors, Ref. [10] in decay and scattering
processes involving the ðXDÞðUDÞ and ðXUÞðUXÞ SS
interactions with a singleD flavor, Ref. [11] in X scattering
on SM quarks with a specific SS operator with two SU(2)
doublet quarks and one singlet, and Ref. [12] in scattering
channels with a general set of SS operators. Other works
with a somewhat different focus for the generation of
baryon asymmetry include Refs. [13–15], which consider
the decay rate asymmetry of a baryon number violating
scalar into six quarks vs antiquarks; Refs. [16,17] via the
oscillation of baryons into antibaryons; Refs. [18,19]

through SM CP violation in charm and bottom meson
decays and in conjunction with a dark sector; in super-
symmetric extensions in Refs. [20–25]; and in theories with
new colored scalars in Refs. [26–32]. For a more compre-
hensive list of related references, we refer the reader
to Ref. [10].
This paper is organized as follows. In Sec. II we lay down

the effective theory with the χ and U, D. In Sec. III we
speculate on the origin of our effective theory from some
ultraviolet (UV) completion possibilities, ways in which the
baryon number violating sector is coupled to the SM. The
simplest UV completion we write takes the U, D as new
BSM quarklike vectorlike fermions, and the subsequent
analysis primarily focuses on this. However, we also present
UVcompletion exampleswhere theU,D could be identified
with SM chiral quarks, but the phenomenological implica-
tions of this possibility is somewhat cursory in this work. In
Sec. IV we discuss in general terms how in our theory the
interference of tree and loop amplitudes yields a baryon
asymmetry, considering the baryon asymmetry generation
in the Xn decay process in Sec. IVA and in Xn scattering
processes in Sec. IV B, and provide numerical estimates of
the size of the baryon asymmetry that could be generated. In
a follow-upwork [33], we give a concrete implementation of
the baryon number generation mechanism discussed here
through specific Feynman diagrams at tree and loop levels,
and compute more accurately the baryon number asymme-
try that is generated in our effective theory. In Sec. V we
write the Boltzmann equations for theX number density and
for baryon number density in the early Universe and obtain
an estimate for theMχ mass scale indicated ifX is to deviate
from equilibrium in the expanding Universe. In a follow-up
work [34], we numerically solve the Boltzmann equations
and obtain a more accurate computation of the BAU
obtained in our theory. In Sec. VI we consider operators
that violate baryon number by two units (ΔB ¼ 2) and
estimate the n − n̄ oscillation rate. We offer our conclusions
in Sec.VII. InAppendixAweprovide a compilation of some
basic spinor algebra details that we find useful, and we show
there that the SS interaction ðXUÞðDDÞ with two same
flavor D fields is forbidden. We give details on the
diagonalization of the X sector in Appendix B.

II. THE EFFECTIVE THEORY

We add to the SM a new Dirac fermion χ (i.e. a vectorlike
fermion) that is electromagnetic (EM) charge neutral
(Q ¼ 0) and couple it to an up-type color-triplet quarklike
fermion U with EM charge QðUÞ ¼ þ2=3, and to color-
triplet down-type quarklike fermions D with EM charge
QðDÞ ¼ −1=3. For the χ, in addition to the Dirac mass, we
introduce Majorana masses also, which splits the Dirac
fermion into two Majorana fermions Xn, with n ¼ 1, 2. In
this section, we write a general effective Lagrangian with
these fields, without specifying at this stage which UV
completion generates this interaction, and discuss some UV
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completion examples in Sec. III. There we also identify
other related effective operators. We assume that the usual
SM Lagrangian density is present and will not explicitly
write it down here, but will only show the BSM additions.
We write a general effective interaction including scalar,

pseudoscalar, vector, and pseudovector Lorentz structures
in the couplings as

Lint ¼
1

Λ2

�
Dc

bΓLor

�
g̃L
2
PL þ g̃R

2
PR

�
Da

�
× ½χΓLorðgLPL þ gRPRÞUc�ϵabc þ H:c:;

≡ 1

Λ2

�
Dc

b

�
Γ̃
2

�
Da

�
½χΓUc�ϵabc þ H:c:; ð1Þ

where the Lorentz structure ΓLor ⊗ ΓLor is 1 ⊗ 1 for the
scalar-scalar (SS) interaction, and is γμ ⊗ γμ for the vector-
vector (VV) interaction, Λ is the scale of even heavier new
physics that has been integrated out. To allow for the
possibility of C and CP violation in our theory, we take the
g̃L;R and gL;R to be complex. The charge conjugated four-
component spinor ψc (as defined in Appendix A) has all
charges reversed with respect to ψ . As already mentioned,
the superscript c on a four-spinor stands for the charge
conjugate spinor, while the subscript c is a color index that
is contracted with the ϵ tensor. We form a color-singlet
antisymmetric combination of the SU(3) fundamental color
indices fa; b; cg. Dc transforms as D under Lorentz and
internal symmetries, and therefore Lint involves two iden-
tical D fermion fields.1 With this effective interaction
added, the Uð1ÞB baryon number symmetry continues to
be a good symmetry at the classical level as in the SM, and
we can assign baryon number charges BðχÞ ¼ þ1 and
BðUÞ ¼ BðDÞ ¼ þ1=3 as for SM quarks.
Explicitly writing out the Hermitian conjugate terms, and

writing the Lagrangian equivalently using conjugate fields,
we write two equivalent forms of Eq. (1) that are useful to
us, namely

Lint ¼
1

2Λ2

nh
Dc

b Γ̃Da

i
½χΓUc� þ

h
D̄a

¯̃ΓDc
b

i
½ŪcΓ̄χ�

o
ϵabc;

ð2Þ

¼ 1

2Λ2

nh
Dc

b Γ̃Da

i
½Uc

cΓ̄cχ� þ
h
D̄a

¯̃ΓDc
b

i
½χ̄ΓcUc

c�
�
ϵabc;

ð3Þ

where ¯̃Γ≡ γ0Γ̃†γ0, Γ̄≡ γ0Γ†γ0, Γc ≡ CΓ�C (where C ¼
−iγ2 is the charge-conjugation matrix, see Appendix A),

from which follows Γ̄c ¼ Cγ0ΓTγ0C. In Appendix A, we
show that the Dc

a Γ̃Dbϵ
ab… part of Lint that involves two

identical GrassmannianD fields, for the (Majorana-like) SS
interaction is antisymmetric in spin, and imposing the
antisymmetry in color also, forces the SS interaction to
zero. This then means that we cannot write down the SS
interaction.
This leaves only the VV interaction as a possibility for

the interaction with two identical D fields, and, writing it
out explicitly, we have

LVV
int ¼ 1

2Λ2
½Dc

bγ
μðg̃LPL þ g̃RPRÞDa�

× ½χγμðgLPL þ gRPRÞUc�ϵabc þ H:c: ð4Þ

As shown in Eq. (A6) in Appendix A, the first part of this
interaction with two identical D fermions and with color
antisymmetryhas a constraint, namely, ðD̄aCΓ̃�CDc

bÞϵab… ¼
−ðD̄aγ

0Γ̃†γ0Dc
bÞϵab…. Applying this to the form in the VV

interaction, namely, Γ̃ ¼ γμðg̃LPL þ g̃RPRÞ, we obtain the
constraint g̃L ¼ g̃R ≡ g̃. Taking this into account,wewrite the
VV interaction as

LVV
int ¼ 1

2Λ2
½Dc

bγ
μg̃Da�½χγμðgLPL þ gRPRÞUc�ϵabc þ H:c:

ð5Þ

We thus identify Γ̃ ¼ γμg̃ and Γ ¼ γμðgLPL þ gRPRÞ for the
VV interaction. It is thisVV interaction thatwe consider in the
remainder of our work. We note in passing that the Lorentz
structure DcγμD in the interaction connects different chir-
alities, i.e., is of the form DLð…ÞDR, written symbolically.
By a Fierz rearrangement, as explained in Appendix A 1,

we can equivalently write the VV interaction as a sum over
SS operators and other related VV operators (cf. Sec. III).
The equivalent Fierz rearranged form we find is

LVV
int ¼ 1

2Λ2
f½Dc

bγ
μgLPLUc�½χγμg̃PLDa�

þ ½Dc
bγ

μgRPRUc�½χ̄γμg̃PRDa�
− 2½Dc

bgLPLUc�½χ̄ g̃ PRDa�
− 2½Dc

bgRPRUc�½χ̄ g̃ PLDa�gϵabc þ H:c: ð6Þ

We see that in addition to the usual SS operators considered
in the literature, new related VV operators (cf. Sec. III) are
also present.
To our Lagrangian, we add effective mass terms

LDirac mass ¼ −MDDD −MUŪU −Mχ χ̄χ; ð7Þ

LMaj mass ¼ −
1

2
χcðM̃LPL þ M̃RPRÞχ þ H:c:; ð8Þ

1One could consider an effective operator with two different
EM charge −1=3 fields, say D1 and D2, but for the sake of
minimality we mostly work with this operator with the identical
D fields in our work.
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where the first line contains Dirac mass terms, while the
second line are Majorana mass terms for χ, with the charge-
conjugate field as defined already (see Appendix A). The
details of the origin of these masses are not important for
our purposes here. It is of crucial importance to note that the
effective Majorana mass terms M̃L;R, which could be
complex, are the only sources of breaking of baryon
number in our effective theory. In other words, in the limit
of zero M̃L;R, baryon number is a good classical symmetry
of the effective theory (including the SM), with the charges
as given earlier. With M̃L;R being nonzero, the Dirac
fermion χ splits up into two Majorana fermions Xn, with
an indefinite baryon number. Thus, we anticipate that any
baryon number violating process must involve theXn fields
and be proportional to the Majorana masses M̃L;R.
We remove unphysical phases by field redefinitions and

work in the basis where the physical phases are contained
in gL ≡ gL0

eiϕL , g̃R ≡ g̃R0
eiϕ̃R , M̃R ≡ M̃R0

e−iϕ̃
0
R , with gL0

,
g̃R0

, M̃R0
all real, and all phases ϕ also real. Furthermore,

since g̃R ¼ g̃L ¼ g̃ for the VV interaction, as shown earlier,
g̃ has to be real, i.e., ϕ̃R is not physical for the VV
interaction. Thus, the phases in gL and M̃R, namely ϕL and
ϕ̃0
R respectively, remain as the only two physical phases for

the VV interaction, and the other parameters, namely, gR, g̃,
M̃L, MD, MU, Mχ are all real.
In terms of four-component spinors, the χ mass terms can

be assembled into

Lmass ¼ −
1

2
ðχ χc Þ

 
Mχ M̃�

RPL þ M̃�
LPR

M̃LPL þ M̃RPR Mχ

!

×

�
χ

χc

�
; ð9Þ

but recall that M̃L is real while M̃R can be complex. This
off-diagonal mass matrix should be diagonalized to go to
the mass basis. This diagonalization is achieved by a 2 × 2
unitary rotation matrix U as explained in Appendix B. As
shown there in Eq. (B6), we write the Dirac χ in terms of
two mass basis Majorana states Xn ¼ fX 1;X2g as

χ ¼ ðU1nPL þ U�
2nPRÞXn; ð10Þ

with mass eigenvalues Mn ¼ fM1;M2g. The phases in U
are all proportional to the one physical Majorana mass
phase ϕ̃0

R.
We substitute Eq. (10) into Eq. (5), and obtain the VV

interaction in the χ mass basis as

LVV
int ¼ ϵabc

2Λ2

nh
Dc

bG̃
μ
VDa

i
½XnGn

VμUc�

þ
h
D̄a

¯̃Gμ
VD

c
b

i
½ŪcḠn

VμXn�
o
; ð11Þ

where we have Gn
Vμ ≡ γμðgLU�

1nPL þ gRU2nPRÞ, Ḡn
Vμ ¼

γμðg�LU1nPL þ g�RU
�
2nPRÞ, G̃μ

V ¼ ¯̃Gμ
V ¼ γμg̃, and for future

use we define ĝLn
≡ gLU�

1n and ĝRn
≡ gRU2n.

2

Under charge conjugation, the three fermionic fields ψ ¼
fX ; D;Ug transform as ψ → Cψ� ¼ ψc, which implies
ψ ¼ Cψc�. Substituting this in Eq. (11), using the relations
shown below Eq. (3), we find an equivalent form written in
terms of the charge-conjugated fields that is useful to us,
namely,

LVV
int ¼ −

ϵabc

2Λ2

nh
Dc

bG̃
μ
VDa

i
½Uc

cGn
ΛμXn�

þ
h
D̄a

¯̃Gμ
VD

c
b

i
½X̄nḠn

ΛμU
c
c�
o
; ð12Þ

where we have defined Γc ¼ Gn
V
c
μ ≡ CGn

V
�
μC ¼ −Ḡn

Λμ and
Γ̄c ¼ Ḡn

V
c
μ ≡ CḠn

V
�
μC ¼ −Gn

Λμ, with Gn
Λμ ¼ Gn

VμjðPL↔PRÞ
and Ḡn

Λμ ¼ Ḡn
VμjðPL↔PRÞ (i.e., GΛ is the corresponding GV

with PL and PR interchanged). We also have Γ̃c ¼ G̃μ c
V ≡

CG̃μ�
V C ¼ − ¯̃Gμ

V and ¯̃Γc ¼ ¯̃Gμ c
V ≡ C ¯̃Gμ�

V C ¼ −G̃μ
V .

Under a parity transformation that takes x ¼ ðt; xÞ →
ðt;−xÞ≡ x̃, the fermionic fields ψ ¼ fX ; D;Ug transform
as ψðxÞ → ηaγ

0ψðx̃Þ≡ ψ̃ðxÞ (see Appendix A), and taking
ηa ¼ i for all three fields, we have ψðxÞ ¼ −iγ0ψ̃ðx̃Þ.
Substituting this in the charge-conjugated form in
Eq. (12) we obtain LVV

int in terms of the charge and parity
transformed fields ψ̃cðx̃Þ as

LVV
int ¼ ϵabc

2Λ2

nh
¯̃DbG̃

μ
VD̃

c
a

ih
¯̃XnḠn

VμŨ
c
c

i
þ
h
¯̃Da

¯̃Gμ
VD̃

c
b

ih
¯̃Uc
cGn

VμX̃n

io
: ð13Þ

Comparing Eqs. (12) and (11) we find that we have C
invariance if and only if Ḡn

Vμ ¼ Gn
Λμ, i.e., for ĝ

�
Ln

¼ ĝRn
.

Comparing Eqs. (13) and (11), we find that we have CP
invariance if and only if Gn

Vμ ¼ Ḡn
Vμ, i.e., for ĝ

�
Ln

¼ ĝLn
and

ĝ�Rn
¼ ĝRn

. From this, we reach the following important
conclusion: Since the Sakharov conditions for the gener-
ation of the baryon asymmetry requires that both C and CP
invariances should be violated, the couplings should be
such that both these relations are violated, i.e., we must
have (ĝ�Ln

≠ ĝRn
) and (ĝ�Ln

≠ ĝLn
or ĝ�Rn

≠ ĝRn
).

Feynman rules: From the Lagrangian for the VV
interaction in Eq. (11) and its equivalent form in
Eq. (12) we extract the Feynman rules as shown in
Fig. 1. We write the couplings as ð…Þ ⊗ ð…Þ, where
the first factor shows the coupling for the Dc −D fermion
line, and the second factor for the Xn −U line. On the
fields, the superscript c denotes the charge conjugate, and

2The connection to Eq. (2) is given by Γ̃ ¼ ¯̃Γ≡ g̃γμ, Γ≡ Gn
Vμ,

Γ̄≡ Ḡn
Vμ.
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the subscript fa; b; cg denotes the color index, with the
color indices contracted using the ϵabc as shown. The
direction of the arrow denotes the flow of fermion number
(also baryon number), and although the Majorana fermions
Xn have an indefinite baryon number owing to their
Majorana mass, we put an arrow on the Xn leg showing
the direction in the limit of zero Majorana mass.
Having the equivalent forms in Eqs. (11)–(13) gives us

the advantage of cleanly comparing the process and the
charge-conjugated process (or parity-transformed process)
with the u, v spinors unchanged between them. In par-
ticular, in computing the decay rate (or scattering rate)
difference between the process and (baryon) charge con-
jugated process to find the baryon asymmetry, if we use
Eq. (11) to compute the decay rate for the process involving
particular u, v spinors, the decay rate into the opposite
baryon charge using Eq. (12) will have the same spinors in
the same places, with only the interaction vertex different.
If we compute the process with any of the Q ¼ fU;Dg in
the final state as hQjð…Þ ¼ h0jaQð…Þ with L of Eq. (11),
we compute the corresponding conjugate process with Q̄ in
the final state by picking in the final state hQ̄jð…Þ ¼
h0jbQð…Þ with the L of Eq. (12) having the conjugate
fields. When dealing with conjugate fields (e.g., Uc, Dc) in
Feynman diagrams, we note that as far as the spinors are
concerned, the arrow (that shows fermion number) is to be
read in the opposite sense for picking the spinors for those
fermion lines, i.e., in picking the u, v spinors for initial/final
state, and for the sign of the mass term in the numerator of
their propagators.

III. UV COMPLETIONS AND THE OTHER
EFFECTIVE OPERATORS

The nonrenormalizable effective interaction of Eq. (1)
can be obtained as the lower energy limit of a renormaliz-
able (UV complete) theory. Here we consider how this may
arise by taking a few example UV completions. The
discussions in this section serve to illustrate in some
example UV completions how the effective theory we laid
down might arise, but one should keep in mind that our
mechanism of baryon number generation is quite general
and not wedded to much of the details in these examples.

Our mechanism of baryon number asymmetry generation
assumes that, in addition to the χ Dirac mass Mχ that
conserves baryon number, there is also present Majorana
masses M̃L;R that break the baryon number that is respon-
sible for generating a baryon asymmetry. We leave open the
exact origin of this Majorana mass but provide below a
simple example for the origin of the Majorana masses. In
addition to demonstrating how the effective operator in
Eq. (1) arises in example UV completions, we also discuss
below how in these UV completions the new physics sector
talks to the SM, which would be relevant for the transfer of
the generated baryon asymmetry to the SM.
We assign χ to have baryon number charge of BðχÞ ¼

þ1 such that the baryon number is a good symmetry of our
theory in the limit of vanishing χ Majorana mass. In
addition to the χ, D, and U propagating states we have
in Sec. II, consider, for instance, the addition of an even
heavier complex vector field ξ in the 3̄ of SUð3Þc and
having a mass Mξ. We assign baryon number BðξÞ ¼ 2=3,
with the U, D in the fundamental representation of
SUð3Þc.3 Next, we discuss in turn two examples UV
completions.
UV completion A: Here, we take D and U to be

vectorlike quarks, SUð2ÞL singlets, with hypercharge
YðDÞ ¼ −1=3, YðUÞ ¼ 2=3, and χ to be uncharged under
the SM gauge symmetries. We take ξ to be a singlet of
SUð2ÞL with Uð1ÞY hypercharge −2=3 (which implies EM
charge −2=3), and denote the state as ξcμ with vector-index
μ and (anti)color-index c (the superscript c on this bosonic
field should not be confused with the charge-conjugation
superscript c on fermionic fields elsewhere). We show in
Table I these quantum number assignments, and, consistent
with this, we can write down the interactions

FIG. 1. The Feynman rules for the VV interaction, with the first factor showing the coupling for the Dc −D fermion line, and the
second factor for the Xn − U fermion line. On the fields, the superscript c denotes the charge conjugate, and the subscript fa; b; cg
denotes the color index. The direction of the arrow denotes the flow of fermion number (also baryon number).

3Our mechanism of generating the baryon asymmetry goes
through for more general EM charge and baryon number assign-
ments, and will have the same aspects as long as we have
2QðDÞ þQðUÞ ¼ 0 and 2BðDÞ þ BðUÞ ¼ þ1. We take the D
and U to be in the fundamental of SUð3Þc, and we antisymme-
trize the interaction in the color index to make them color
singlets. If some other quantum number antisymmetrizes the
interaction, then our analysis would apply and a baryon number
asymmetry can be generated in the same way.
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LðAÞ
UV ⊃ −

1

2
ϵabcDc

b g̃ γ
μDaξ

c
μ
� − χγμðgLPL þ gRPRÞUcξ

c
μ

þ H:c: ð14Þ

We take the BSM scale, i.e., the U, D, χ mass scales, to be
TeV scale or higher, leaving the SM structure intact with
the BSM sector decoupling as the BSM scale is raised.
Furthermore, we include a mass mixing between the BSM
D, U with the SM quarks, SUð2ÞL singlets uiR, d

i
R, or

doublets qiL, where i is the generation index, i.e., di ¼
ðd; s; bÞ and ui ¼ ðu; c; tÞ. Our phenomenological analysis
primarily focuses on this scenario. Before we delve into this
further, we briefly comment on the consistency of not
including operators like those in Eq. (14) but with SM
chiral quarks qL, uR, dR, instead of the vectorlike
Q ¼ fU;Dg.
For an SUð2Þ singlet ξ, the analog of the first term cannot

be written down with SM chiral fields since it would
involve both ðdL; dRÞ and SUð2ÞL invariance would forbid
it. However, the analog of the second term of the form
ðχ̄uRξÞ can be. Even in this case, the effective operator
generated upon integrating out ξ would still be suppressed
by the Λ≡Mξ scale, and the baryon asymmetry would still
be generated at the Mχ scale. (We note that our baryon
asymmetry generation mechanism must involve the first
operator also, since the effective operator gotten via only
the second operator is self-conjugate and will not contain a
CP-violating phase.) The presence of the ðχ̄uRξÞ operator
may in fact present an opportunity to probe this in
experiments (such as the n − n̄ oscillations discussed in
Sec. VI) since it now involves the SM uR. The flip side of
this is that constraints on the theory would be tighter. To be
safe from constraints, we could forbid the ðχ̄uRξÞ operator
but allow the ðχ̄UξÞ operator by invoking a Z3 symmetry
under which the BSM fields transform but the SM fields are
singlets. Under the Z3 let Q → eið2π=3ÞαQQ, χ → eið2π=3Þαχ χ,
ξ → eið2π=3Þαξξ, where the αi are integer charges. Z3 invari-

ance of LðAÞ
UV follows if αξ ¼ 2αQ and αχ ¼ 3αQ. One

possible choice is αQ ¼ 1, which yields Q → eið2π=3ÞQ,

χ → χ, ξ → ei2ð2π=3Þξ. Clearly, this allows LðAÞ
UV but forbids

the ðχ̄uRξÞ operator as we intend. For this assignment,
interestingly, the χ is a Z3 singlet, and the Majorana mass
generation mechanism (discussed below) is unaffected by
this consideration. Our identification of the Z3 symmetry

implies that leaving out the corresponding operators with
the SM quarks is consistent in the sense of Ref. [35], i.e.,
radiatively stable.
For physics below the Mξ scale, we can use an effective

theory obtained by integrating out the ξ field, which leads
to new dimension-six effective operators. Doing so, we
generate the effective operator of Eq. (5) with Λ≡Mξ,
which in the mass basis is Eq. (11). In addition, we also
generate the effective operators

L ⊃ −
1

Λ2
½ŪcḠn

VμXn�½X̄mGm
V
μUc�

−
1

2Λ2
ðδaa0δbb0 − δab

0
δba

0 Þ½D̄c
bg̃γ

μDa�½D̄a0 g̃γμDc
b0 �;

ð15Þ
which are self-conjugate. Such operators have been con-
sidered in the literature, albeit with the scalar-scalar Lorentz
structure, while our operators above are of the vector-vector
type. Writing the first term in Eq. (15) in terms of the
conjugate fields, we can write an equivalent form
L ⊃ −ð1=Λ2Þ½Ūc

cGn
ΛμXn�½X̄mḠ

mμ
Λ Uc

c�. From these, we
can extract the Feynman rules of these new operators as
shown in Fig. 2. Although one could take the effective
couplings of the operators in Eqs. (11) and (15) as
unrelated, the effects generated by doing so could be
misleading as a particular UV completion could indeed
relate them in a definite way as we see here.
Other operators that could be generated in a different UV

completion, for instance by integrating out a different
heavier state of EM charge 1=3, are ½DcΓUc�½χΓD�,
½DcΓUc�½UΓDc�, and ½D̄Γχ�½χ̄ΓD�, where we show the
Lorentz structure symbolically as Γ. Some of these will be
contained in a Fierz rearrangement of the earlier operators.
Since the origin of these operators are different, it would
not be unreasonable to consider these operators as uncor-
related with the earlier couplings and to keep the analysis
manageable, we omit these and only consider the operators
in Eqs. (11) and (15) in our study. Furthermore, for reasons
that we explain in a follow-up work [33], we find that, for
our choices of masses, the baryon asymmetry due to
including the operators in Eq. (15) is subdominant and
we therefore mainly focus on the operator in Eq. (11) in
our work.
Next, we discuss one way in which the new physics

sector could couple to the SM. The D and/or the U BSM
fields, having SM-like EM charges, could have mass
mixing terms with any of the SM quark flavors of the
same EM charge. TheD andU can interact with the SM via
the interaction terms

LYuk ⊃ −ỹdD̄H†qL þ ỹuŪH · qL þ H:c:; ð16Þ

where qL is the SM SUð2ÞL doublet quark of any gen-
eration (we suppress generation index), H is the SM Higgs

TABLE I. Quantum number assignments in UV completion A.

SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞB
χ 1 1 0 1
ξ 3̄ 1 −2=3 2=3
U 3 1 2=3 1=3
D 3 1 −1=3 1=3
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doublet, and H · qL represents the antisymmetric combi-
nation of the SUð2ÞL indices.4 After electroweak symmetry
breaking this interaction induces mass mixing terms D̄RdL
and ŪRuL, which are diagonalized to go to the mass basis
with the sine of the mixing angles sdD ≡ sin θdD, suU ¼
sin θuU and mass eigenstates d1;2 and u1;2 as detailed in
Refs. [36,37]. For notational ease, we continue denoting the
lighter mass eigenstate as d, u and the heavier mass
eigenstate as D, U. This is abuse of notation, but in the
limit of small mixing, and to leading order in the mixing,
this is appropriate as we have u1 ≈ u and u2 ≈U, and
similarly for the d, D. We note that the ỹu;d breaks the Z3

symmetry identified above. In the limit ỹu;d → 0, this Z3

becomes exact, and therefore taking ỹu;d small is radiatively
stable, i.e., this is technically natural [35]. The bottom-line
is that the mass-mixing terms induces the decays D →
ðdh; dZ; uW−Þ and U → ðuh; uZ; dWþÞ, where h is the
Higgs boson, and W�, Z are the SM electroweak gauge
bosons. These decays are discussed in detail in
Refs. [36,37] and references therein. These decays being
B conserving, the baryon asymmetry contained in D, U is
transferred fully to the SM d, u in these decays. This
provides a concrete example in which the baryon asym-
metry generated and contained in the D, U sector could be
transferred into the SM quarks.
UV completion B: Here we consider the possibility that

one or both of the D, U fields could be taken to be any of
the di ¼ ðd; s; bÞ and/or ui ¼ ðu; c; tÞ SM fields, respec-
tively, with i being the generation index. As noted below
Eq. (5), the DcγμD part of the effective VV interaction in
Eq. (1) connects different Lorentz chiralities since it is of
the form Dc

L;Rγ
μð…ÞDR;L. This implies that if the D is

taken to be the SM d quark, then one of these must be a dL
and contained in qL for SUð2ÞL invariance, and must
necessarily also involve the uL. We ensure the SUð2ÞL
invariance of the UV completion by taking the ξcμ to be a
doublet. This allows two alternatives, which we refer to as
UV completions B1 and B2, depending on whether the χ is

a singlet or doublet of SUð2ÞL, respectively. We show in
Table II the quantum number assignments for UV com-
pletion B1 (top) and B2 (bottom). We discuss each one in
turn next.
First, in UV completion B1, we take ξ to be a doublet of

SUð2ÞL, χ to be a singlet, include an SUð2ÞL doubletQ and
a singlet D, and write

LðB1Þ
UV ⊃ −

1

2
ϵabcξcμ

†Qc
bγ

μðg̃LPL þ g̃RPRÞDa

− χγμðgLPL þ gRPRÞQc · ξcμ þ H:c:; ð17Þ

where the ð·Þ denotes the antisymmetric combination of the
SUð2ÞL indices. We assign the hypercharges YðQÞ ¼ 1=6,
YðχÞ ¼ 0, YðξÞ ¼ −1=6, and baryon number BðQÞ ¼ 1=3.
We can write the doublet components as Q ¼ ðQuQdÞT
with Qu having EM charge þ2=3 and Qd having EM
charge −1=3, and ξ ¼ ðξ1

3
ξ−2

3
ÞT showing the EM charge of

the components as subscripts.
Next, in UV completion B2, we take ξ to be a doublet of

SUð2ÞL, χ to be a doublet, include a doubletQ, and with the
U, D as before, we write

LðB2Þ
UV ⊃ −

1

2
ϵabcξcμ

†Qc
bγ

μðg̃LPL þ g̃RPRÞDa

− χγμðgLPL þ gRPRÞUcξ
c
μ þ H:c: ð18Þ

FIG. 2. The Feynman rules of the other operators associated with the VV interaction, with each factor associated with the
corresponding fermion line. On the fields, the superscript c denotes the charge conjugate, and the subscript fa; b; cg denotes the color
index. The direction of the arrow denotes the flow of fermion number (also baryon number).

TABLE II. Quantum number assignments in UV completion B1

(top) and UV completion B2(bottom).

SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞB
χ 1 1 0 1
ξ 3 2 −1=6 2=3
Q 3 2 1=6 1=3
D 3 1 −1=3 1=3

SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞB
χ 1 2 −1=2 1
ξ 3̄ 2 −1=6 2=3
Q 3 2 1=6 1=3
U 3 1 2=3 1=3
D 3 1 −1=3 1=3

4Proton stability motivates us to keep lepton number symmetry
unbroken at the classical level, and therefore we do not include
the χ̄L ·H operator that breaks lepton number, where the L is an
SUð2Þ leptonlike doublet, and we assign lepton number 0 to χ.
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We assign the hypercharges YðQÞ ¼ 1=6, YðχÞ ¼ −1=2,
YðξÞ ¼ −1=6, and baryon number BðQÞ ¼ 1=3. We can
write the doublet components as Q ¼ ðQuQdÞT ,
χ ¼ ðχþχ0ÞT , and ξ ¼ ðξ1

3
ξ−2

3
ÞT , showing the EM charge

of the χ, ξ components as subscripts. The mechanism of
Uð1ÞB breaking in the UV completion must ensure that
only χ0 receives a Majorana mass in order to not spoil EM
invariance.
We make the specific choices in developing UV com-

pletion B2 as it allows us the possibility to take the D, U,
and Q to be the chiral SM quarks, namely, we can identify
D → diR, U → uiR, and Q → qiL. This now allows chiral
couplings g̃L;R, unlike in UV completion A which has
vectorlike couplings g̃. This gives us a realization in which
it may be possible to generate the baryon asymmetry
directly in the SM sector, while in UV completion A,
the baryon asymmetry is generated in the BSM sector and
transferred to the SM by mass mixing, as already discussed.
Integrating out the ξ fields in the UV completions B1 and

B2 leads to lower energy effective theories containing the
effective operator in Eq. (11) along with other associated
operators. The details of which other operators are gen-
erated in UV completion B is left for future work. Since the
U, D are embedded in the SM sector, there is no clean
separation of scales between the SM and BSM sectors, and
the phenomenological implications of coupling the χ to the
SM sector will have to be worked out more carefully. We do
not do this here, but only present this UV completion
possibility as something that could be developed further. In
the following, in working out the baryon asymmetry
generated, we primarily have in mind UV completion A
and take the U, D to be vectorlike quarks with masses
bigger than a TeV; however, we expect that our mechanism
of baryon asymmetry generation should work even if theU,
D are identified with the SM chiral quarks.
Majorana mass generation: Here, we illustrate with a

simple example how the baryon number violating χ
Majorana mass might arise from a baryon number con-
serving theory. For this, we introduce a complex scalar field
ΦB with Yukawa couplings to the χ, and write down a
baryon number conserving Lagrangian density

L¼−Mχ χ̄χ−
1ffiffiffi
2

p ½ΦBχ
cðỹLPLþ ỹRPRÞχþH:c:�−VðΦBÞ;

ð19Þ

where Mχ is the Dirac mass. Recalling the baryon number
assignment BðχÞ ¼ þ1, we assign BðΦBÞ ¼ −2 for invari-
ance underUð1ÞB. If the potential energy density for theΦB
field, VðΦBÞ, is such that the minimum of the potential is at
a nonzero value hΦBi ¼ vB=

ffiffiffi
2

p
≠ 0, baryon number is

spontaneously broken, resulting in Majorana mass terms
M̃L;R ¼ yL;RvB, the effective Majorana masses written
down in Eq. (8). The spontaneous breaking of a global

symmetry, i.e., Uð1ÞB here, implies the presence of a
massless Nambu-Goldstone boson, which is problematic
phenomenologically. A discussion of the mechanism that
gives a mass to the Nambu-Goldstone boson alleviating this
problem is beyond the scope of our work, and this naive
example only serves to illustrate how the baryon number
violating Majorana masses might arise from a Uð1ÞB
conserving theory.
We turn next to discussing our mechanism for generating

the baryon asymmetry at the D, U level, being agnostic to
the details of how the so generated asymmetry is transferred
to the SM sector.

IV. GENERATING THE BARYON ASYMMETRY

In this section, we discuss themechanism of generation of
a baryon asymmetry in our effective theory we laid out in
Sec. II that couples the Xn with the Q ¼ fU;Dg. First, we
consider the baryon asymmetry from the decay of the
Majorana Xn due to the decay rate difference between
ΓðXn → QQQÞ and ΓðXn → Q̄ Q̄ Q̄Þ, where the former
decay final state has baryon numberB ¼ þ1, while the latter
has B ¼ −1. Second, we consider the baryon asymmetry
from Xn scattering on a Q̄ orQ due to a difference between
the scattering cross section σðXnQ̄ → QQÞ and σðXnQ →
Q̄ Q̄Þ, where the former process has ΔB ¼ þ1 while the
latter hasΔB ¼ −1.Wediscuss each of these in turn, next. In
our discussion, we only consider unpolarized rates, i.e., take
it that the matrix element squared are averaged over initial-
state spins and summed over final-state spins.

A. Baryon asymmetry from decay

The Majorana fermions Xn (n ¼ f1; 2g) have indefinite
baryon number and can decay either to DDU or to D̄ D̄ Ū
final states which have B ¼ þ1 and −1, respectively.
Equivalently, in our theory, the baryon asymmetry arises
due to a difference in the decay rates Γn ≡ ΓðXn →
DcDUÞ vs Γcn ≡ ΓðXn → DDcUcÞ, where the former
decay has a final state with B ¼ þ1 while the latter
B ¼ −1. Since Xn is a Majorana particle, i.e., Xc

n ¼ Xn,
the initial state is the same in both, but decaying to final
states with opposite B.
We denote, for each n, the amplitude forXn → DcDU as

An ¼ An
0 þAn

1 þ… with An
0 being the tree-level ampli-

tude andAn
1 the loop-level amplitude, and for the conjugate

process Xn → DDcUc as Acn ¼ Acn
0 þAcn

1 þ…. The
decay rate for the process is then given by

Γn ¼ 1

2Mn

Z
dΠ3jAnj2; ð20Þ

where we integrate over the three-body final-state phase-
space dΠ3, and for the conjugate process decay, the Γcn is
given similarly in terms of jAcnj2. We define the baryon
asymmetry AB as
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AB ¼
X
n¼1;2

An
B; with An

B ≡ Γn − Γcn

Γn þ Γcn : ð21Þ

Not surprisingly, we find that at tree level, i.e., leading
order, in the VV interaction, the decay rate is the same for
the process and its conjugate process, i.e., Γ0 ¼ Γc

0. So we
must go to loop level, i.e., at least to the next to leading
order level, to possibly have a nonzero AB. In the
following, to avoid clutter, we suppress the n on these
amplitudes, but it is understood where appropriate.
Now, Γ ∝ jAj2 and Γc ∝ jAcj2 from which it is easy to

see that AB ∝ ½ðA�
0A1 −Ac�

0 Ac
1Þ þ H:c:� þ… where we

keep only the terms to lowest order in the VV coupling that
give a nonzero asymmetry. Thus, the interference term
between tree and loop contributions is the leading con-
tribution to AB, and we have for each n

AB ¼ 2ΔΓ01

ðΓþ ΓcÞ≈
ΔΓ01

Γ0

; where Γ0 ¼
1

2Mn

Z
dΠ3jA0j2;

ΔΓ01 ¼
1

2Mn

Z
dΠ3ReðA01 −Ac

01Þ; ð22Þ

withA01 ≡A1A�
0 andA

c
01 ≡Ac

1A
c�
0 , we include

R
dΠ3 for

the integration over the three-body phase space, and
ΔΓ01 ¼ Γ01 − Γc

01 where Γ01 ¼ ð1=ð2MnÞÞ
R
dΠ3ReðA01Þ

and Γc
01 is with Ac

01. Since there is no asymmetry at tree
level, in the denominator we have taken Γ ≈ Γc ≈ Γ0 for
obtaining the leading contribution to AB.
The interaction vertices Gn

Vμ in Eq. (11) that enter in this
process are complex due to the phases in the elements of U
(due to a phase in M̃R, i.e., ϕ̃

0
R), and in the coupling gL (phase

being ϕL). In general terms, we can write the tree and loop
amplitudes for the process as A0;1 ≡ a0;1eiϕ0;1 , and for the
conjugate process as Ac

0;1 ≡ ac0;1e
iϕc

0;1 , where the ϕ0;1 are
combinations of phases coming from the couplings. The
interference term for the process isA01 ¼ A1A�

0 ¼ a01eiϕ01 ,
where a01 ¼ a0a1 and ϕ01 ¼ ϕ1 − ϕ0, and similarly for the
conjugate process we have Ac

01 ¼ Ac
1A

c
0
� ¼ ac01e

iϕc
01 with

ac01 ¼ ac0a
c
1 and ϕc

01 ¼ ϕc
1 − ϕc

0. Assuming for now that no
intermediate particles go on shell, the only phases are those
in the couplings. From the way the couplings enter the
amplitudes, we find that the conjugate process amplitudes
Ac

0,A
c
1 (andA

c
01) have the same corresponding magnitudes

but opposite phases as the corresponding process, i.e.,
ac0;1 ¼ a0;1 and ϕc

0;1 ¼ −ϕ0;1, and the interference term
for the conjugate process evaluates to a01e−iϕ01 . The ϕ0,
ϕ1 (and ϕ01), that flip sign in going from the process to
the conjugate process, are commonly referred to as
“weak-phases.” Equation (22) then tells us that
AB ∝ 2a01Reððeiϕ01 − e−iϕ01Þ ¼ 0; in other words we find
no asymmetry generated here.
However, if intermediate states can go on shell and the

loop diagram can be cut, a discontinuity arises in the

amplitude, and a piece iÂ1 ≡ ð1=2ÞDiscðA1Þ is added to
the amplitude [38]. The Â1 itself may be complex due to
phases in the couplings. The above factor of i, i.e., an extra
phase of π=2, comes with the same sign for the process and
the conjugate process, and is like the “strong phase”
(usually denoted as δ).5 Correspondingly, the discontinuity
adds to the interference term A01 the piece iÂ01 ¼ iÂ1A�

0,
and we write its contribution to the decay rate as iΓ̂01.
Similarly, for the conjugate process, the discontinuity adds
in the interference term the piece iΓ̂c

01.
In general terms, in the loop amplitude A1, we can write

the piece added due to the cut as iÂ1 ¼ a1eiðϕ1þπ=2Þ and for
the conjugate process as iÂc

1 ¼ ac1e
iðϕc

1
þπ=2Þ. Thus, for the

process, the piece added due to the cut to the interference
term A01 is iÂ01 ¼ a0a1eiðϕ01þπ=2Þ, and for the conjugate
process it is iÂc

01 ¼ ac0a
c
1e

iðϕc
01
þπ=2Þ. If there is no asym-

metry at tree level, we have a0 ¼ ac0, in which case, from
Eq. (22), we obtain

An
B ≈ −

ΔΓ̂n
01

Γn
0

; where

ΔΓ̂01 ¼
1

2Mn

Z
dΠ3ImðÂ01 − Âc

01Þ

¼ 1

2Mn

Z
dΠ3a0ða1 sinϕ01 − ac1 sinϕ

c
01Þ; ð23Þ

and, in addition to a0 ¼ ac0, if we also have ϕc
0 ¼ −ϕ0,

a1 ¼ ac1, and, ϕ
c
1 ¼ −ϕ1, we obtain

ΔΓ̂01 ¼
1

2Mn

Z
dΠ32ImðÂ01Þ

¼ 1

2Mn

Z
dΠ3ð2a0a1 sinϕ01Þ; ð24Þ

with ΔΓ̂01 ¼ Γ̂01 − Γ̂c
01, where Γ̂01 ¼ ð1=ð2MnÞÞR

dΠ3ImðÂ01Þ and Γ̂c
01 is with Âc

01.
This then is a mechanism by which a nonzero baryon

asymmetry could be generated in this theory. This is an
instance of well known aspects (see for example
Refs. [39,40]) of how an asymmetry arises from the
interference of two complex amplitudes (A0 and A1), with
a nonzero weak phase difference (ϕ01 from couplings) and
a nonzero strong phase (δ ¼ π=2 from the cuts).
In Fig. 3 we show this situation diagrammatically,

highlighting how the baryon asymmetry arises. This

5In fact, given that the final state is colored leading to hadrons
in the final state, their rescattering via (QCD) strong interactions
could also lead to a phase that is the same for the process and its
conjugate process. We do not include such a strong phase δ here,
but if we do, then all our expressions would include an extra
factor of sin δ. Our expressions are written down for the special
case of δ ¼ π=2.
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corresponds to the equationAB ∝ ðΓ− ΓcÞ ∝ jA0 þ iÂ1j2−
jAc

0 þ iÂc
1j2, for each n, where the i is due to the cut of the

loop diagram shown as the dashed curve in the figure and is
the same for the process and conjugate process, and acts as
a strong phase. The Â1 itself is complex due to phases in
the couplings and we have ImðÂc

1Þ ¼ −ImðÂ1Þ; i.e., these
phases act as weak phases.

1. Numerical estimate of AB

Using Eq. (20), we make an estimate of the tree-level
decay width as

Γ0 ∼ jgj2
�
M5

n

Λ4

ð4πÞ2
ð2πÞ5 f̂00

�
; ð25Þ

where g represents the GV effective coupling of Eq. (11),
we take g̃ ¼ 1 here, and we introduce theM5

n for Γ to come
out with the right dimensions. The […] contains three-body
phase-space factors, namely, ð1=ð2πÞ5Þ as usual, a dimen-
sionless f̂00 from momentum integration (including Dirac
traces), and ð4πÞ2 from angular integrals. For ðGVÞ ∼Oð1Þ,
we thus obtain the estimate Γ0=Mn ∼ 10−3ðMn=ΛÞ2f̂00.
We estimate next using Eq. (24) the interference term

contribution to the decay width as

ΔΓ̂01 ∼ Imðg4Þ ð4πÞ
2

ð2πÞ5
�
M7

n

Λ6

ð4πÞ
ð2πÞ2 ;

M9
n

Λ8

ð4πÞ2
ð2πÞ5

�
f̂01; ð26Þ

where we have shown two possibilities for the cut loop
contribution iÂ1 as fone-loop; two-loopg factors, respec-
tively, introducing now the dimensionless f̂01 as arising
from momentum integrals over phase-space and loop-
momenta (and includes Dirac traces). The fM7

n;M9
ng

factors is again to obtain the correct dimensions.
Using the estimates in Eqs. (25) and (26), from Eq. (23),

we estimate the resulting baryon asymmetry as

AB ∼
Imðg4Þ
jgj2

�
M2

n

Λ2

1

π
;
M4

n

Λ4

1

2π3

�
f̂01
f̂00

: ð27Þ

For a generic coupling size of about ðImðGVÞÞ ∼ 0.1, we
thus estimate a baryon asymmetry from Xn decay to be of

size AB ∼ f10−4M2
n=Λ2; 10−5M4

n=Λ4gf̂01=f̂00. We expect
the phase space and loop momentum integrals
f̂00; f̂01 ∼Oð1Þ, but they could be suppressed, for example,
as ðMU þ 2MDÞ → Mn closes the phase space, or due to
cancellations in angular integrations. We take up a detailed
numerical analysis in Ref. [33] to determine the f̂00, f̂01,
and compute AB more accurately.

B. Baryon asymmetry from scattering

Here we discuss the baryon asymmetry in 2 → 2
scattering processes of the Xn with Q ¼ fU;Dg with
cross section σn, and compare it with the scattering of
the Xn with Uc,Dc with cross section σcn. In particular, we
consider the scattering processes

SC-1: XnðpnÞD̄ðkiÞ → Dðq1ÞUðq2Þ, and
SC-2: XnðpnÞŪðkiÞ → Dðq1ÞD̄cðq2Þ,

for n ¼ f1; 2g. SC-1 includes both XnðpnÞDcðkiÞ →
Dðq1ÞUðq2Þ and XnðpnÞD̄ðkiÞ → Dcðq1ÞUðq2Þ. If the
scattering cross sections for process and conjugate-process
are different, i.e., if σ ≠ σc for SC-1 and SC-2, then we will

have a nonzero baryon asymmetry from scattering, AðσÞ
B .

The scattering amplitudeAðσÞ for each process SC-1 and
SC-2 is obtained in close analogy with the decay amplitude
of Sec. IVA. This too can be written as a sum over the tree
and loop amplitudes, i.e., for the process we write the

amplitude as AðσÞ ¼ AðσÞ
0 þAðσÞ

1 þ…, and for the con-

jugate process as AcðσÞ ¼ AcðσÞ
0 þAcðσÞ

1 þ…. The scatter-
ing cross section for each n is

σ ¼ 1

v
1

2En2Ei

Z
½dΠ2�jAðσÞj2; ð28Þ

where we now integrate over the two-body final-state phase
space, and v is the relative velocity between the incoming
particles. The conjugate process cross section σc is given in
terms of jAcðσÞj2. The tree-level scattering cross section σ0
is given by taking AðσÞ

0 in Eq. (28). Since there is no
asymmetry at tree level, we have σ0 ¼ σc0. Again, like in

decay, the scattering baryon asymmetry AðσÞ
B arises to

lowest order first in the interference term between the tree

FIG. 3. The baryon asymmetry AB from the decay of the Majorana states Xn is shown as a difference between the rate for the
Xn → DcDU and the conjugate process Xn → DDcUc. The arrows on the fermion lines show the direction of fermion (baryon) number
flow. The dashed curve shows a cut in the loop, contributing a factor of i. The a, b, c shown next to the momenta are the color indices,
and the superscript c on a field denotes its charge conjugate field.
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and loop amplitudes, and the cut in AðσÞ
1 adding the piece

for the process iÂðσÞ
1 ≡ ð1=2ÞDiscðAðσÞ

1 Þ, and for the

conjugate process iÂcðσÞ
1 ≡ ð1=2ÞDiscðAcðσÞ

1 Þ. The cut adds
to the interference term the piece iÂðσÞ

01 ¼ iÂðσÞ
1 AðσÞ

0

�, and
for the conjugate process similarly adds iÂcðσÞ

01 .
Correspondingly, this adds to the process cross section

iσ̂ðσÞ01 , and to the conjugate process it adds iσ̂
cðσÞ
01 . Analogous

to Eqs. (23) and (24), we now define a cross section
asymmetry

AðσÞ
B ¼

X
n¼1;2

AnðσÞ
B ; with AnðσÞ

B ≡ σn − σcn

σn þ σcn
≈ −

Δσ̂n01
σn0

;

ð29Þ
where for leading order accuracy of the asymmetry, we take
σn ≈ σcn ≈ σn0 in the denominator, since there is no asym-
metry at tree level, and we now have, for each n,

Δσ̂01 ¼ σ̂01 − σ̂c01 ¼
1

v
1

2En2Ei

Z
½dΠ2�ImðÂðσÞ

01 − ÂcðσÞ
01 Þ

¼ 2Imðσ̂01Þ: ð30Þ

This is a way in which a baryon asymmetry might develop
due to scattering in our theory, for which is needed a
nonzero Imðσ̂01Þ. Diagrammatically, the situation is as
shown in Fig. 3, but now with one of the Q legs crossed
from the final state to the initial state as appropriate for
SC-1 and SC-2.

1. Numerical estimate of AðσÞ
B

To estimate AðσÞ
B we follow a similar analysis as in

Sec. IVA 1, but now, for scattering, take the two-body final
state. In fact, since the scattering matrix element can be got
from crossing the corresponding decay amplitude as
explained above, the translation is exact. An estimate of
the tree-level scattering cross section that follows from

taking AðσÞ
0 in Eq. (28) is

σ0 ∼
1

v
1

2En2Ei
jgj2
�
M4

n

Λ4

4π

ð2πÞ2 f̂
ðσÞ
00

�
; ð31Þ

where g represents the GV effective coupling of Eq. (11),
we introduce theM4

n factor for σ0 to come out with the right
dimensions. The […] factor includes the two-body phase-
space factors, namely, ð1=ð2πÞ2Þ as usual, a dimensionless

f̂ðσÞ00 with Dirac traces (unlike for the three-body phase
space in the decay case, there is no momentum integration
for two-body phase space), and 4π from angular integra-
tion. For g ∼Oð1Þ, En; Ei ∼Mn, we obtain the esti-

mate σ0v ∼ 0.1ðM2
n=Λ4Þf̂ðσÞ00 .

We estimate next from Eq. (30) the interference term
contribution to the cross section as

Δσ̂01 ∼
1

v
1

2En2Ei
Imðg4Þ 4π

ð2πÞ2
�
M6

n

Λ6

4π

ð2πÞ2 ;
M8

n

Λ8

ð4πÞ2
ð2πÞ5

�
f̂ðσÞ01 ;

ð32Þ

where we have shown two possibilities for the cut loop

contribution iÂðσÞ
1 as fone-loop; two-loopg factors, respec-

tively, and the fM6
n;M8

ng is again to obtain the correct
dimensions for Δσ̂01.
Using Eqs. (31) and (32) in Eq. (29), we estimate the

resulting baryon asymmetry as

AðσÞ
B ∼

Imðg4Þ
jgj2

�
M2

n

Λ2

1

π
;
M4

n

Λ4

1

2π3

�
f̂ðσÞ01

f̂ðσÞ00

: ð33Þ

For a generic coupling size of about ImðgÞ ∼ 0.1,
and En; Ei ∼Mn, we estimate a baryon asymmetry

from Xn scattering to be of size AðσÞ
B ∼ f10−4M2

n=Λ2;

10−5M4
n=Λ4gf̂ðσÞ01 =f̂

ðσÞ
00 . Comparing with Eq. (27), we find

that the baryon asymmetry from scattering and decay are of
similar size. We take up a detailed numerical analysis in

Ref. [33] to determine the f̂ðσÞ00 , f̂
ðσÞ
01 , and compute AðσÞ

B
more accurately.
In Ref. [33] we compute the decay rate and scattering

cross section after identifying tree and loop Feynman
diagrams and show that C and CP invariances are violated
in these processes, as required to satisfy the Sakharov
conditions, and compute the baryon asymmetry AB and

AðσÞ
B that are generated. Next, we place this mechanism of

baryon asymmetry generation in a thermal context appro-
priate for the early Universe and ask if the observed BAU
can be generated via X decays and scattering.

V. THE BAU

The BAU today can be expressed as the ratio

ηB ≡ ðnB − nBÞ=nγ ¼ 6 × 10−10
Ωbh2

0.0222
; ð34Þ

with nB (nB̄) as the number density of baryons (antibary-
ons) and nγ as the number density of photons today.
Experimental observations on BBN and CMB [41] tell
us that ηB ≈ 6 × 10−10. In this section, we briefly inves-
tigate whether the Xn decay and scattering baryon asym-
metry we identified in Sec. IV could match the observed
BAU, and if so, for what values of parameters of our
effective theory.
In the radiation dominated epoch in the early Universe,

the Q ¼ fU;Dg, being EM charged, are kept in thermal

equilibrium very efficiently by QED processes so that nQ ¼
nðeqÞQ and μQ̄ ¼ −μQ, where μQ (μQ̄) is the chemical

potential for Q (Q̄), and we write nQ ¼ nð0ÞQ eμQ=T ,
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nQ̄ ¼ nð0ÞQ e−μQ=T . The X , however, being EM neutral and
coupled via the VV interaction, could behave quite differ-
ently. A nonzero baryon asymmetry could develop if
processes involving the X are not fully in thermal equi-

librium owing to X decay and scattering rates Γχ ;Γ
ðσÞ
χ ≲H,

where H is the Hubble expansion rate, satisfying the
Sakharov condition requiring a departure from thermal
equilibrium. Whether this situation ensues depends on the
mass scale Mχ , and the couplings g̃; gL;R.
We analyze this situation by considering the Boltzmann

equations (see for example Ref. [4]) that govern the X , Q,
Q̄ number densities, nχ , nQ, nQ̄, respectively. The details of
setting up these equations for our situation will be pre-
sented in Ref. [34], and we present here the final result,
which is

d
dt

nX þ 3HnX ¼ −ðΓX þ ΓðσÞ
X ÞðnX − nðeqÞX Þ; ð35Þ

d
dt

nQ þ 3HnQ ¼ 3ΓnX − 3e3μQ=TnðeqÞX Γ̄− ðΓ̄ðσÞ − 2ΓðσÞÞnX
þ ðe−μQ=TΓðσÞ − 2eμQ=TΓ̄ðσÞÞnðeqÞX þ � � � ;

ð36Þ

nðeqÞχ is the equilibrium number density, the total decay rate
ΓX ¼ Γþ Γ̄ is a sum over the decay rates Γ ¼ ΓðX →
QQQÞ and Γ̄ ¼ Γc ¼ ΓðX → Q̄ Q̄ Q̄Þ, their inverse-
decay channels are QQQ → X and Q̄ Q̄ Q̄ → X
respectively, and all the widths are the thermally averaged
widths hΓi. The scattering channel cross sections we have
used are σ ≡ σXQ̄ ≡ σðXQ̄ → QQÞ, σ̄ ≡ σc ¼ σXQ≡
σðXQ → Q̄ Q̄Þ, their inverse scattering channel cross sec-
tions are σQQ ≡ σðQQ → XQ̄Þ, σQ̄ Q̄ ≡ σðQ̄ Q̄ → XQÞ,
respectively, and ΓðσÞ

X ¼ ΓðσÞ þ Γ̄ðσÞ is a sum over the
scattering rates ΓðσÞ ≡ hσXQ̄vinQ̄ and Γ̄ðσÞ ≡ hσXQvinQ,
the hσvi being the thermally averaged cross section.
We obtain the Boltzmann equation for nQ̄ by inter-
changing Γ ↔ Γ̄, ΓðσÞ ↔ Γ̄ðσÞ, and μQ ↔ −μQ, in Eq. (36).
The assumption of CPT invariance implies the following
relations among the decay and inverse-decay matrix
elements (mod-squared summed over spins),
jMðX → QQQÞj2 ¼ jMðQ̄ Q̄ Q̄ → XÞj2, and jMðX →
Q̄ Q̄ Q̄Þj2 ¼ jMðQQQ → XÞj2, and between the inverse
and forward scattering channel matrix elements jMj2Q̄ Q̄ ¼
jMj2XQ̄ and jMj2QQ ¼ jMj2XQ. The baryon asymmetry gen-

eration mechanism discussed in Sec. IV leads to nQ ≠ nQ̄,
resulting in the BAU. The Boltzmann equation for the net
baryon number density nB ¼ ðnQ − nQ̄Þ=3 can now be
obtained by taking the difference of the equations for nQ
and nQ̄. One must correctly match the contributions of an
on-shell X intermediate state in other scattering channels,

shown as … in Eq. (36), with the X decay contribution. In
the small μQ=T limit, Ref. [42] shows that such contribu-

tions overturns the sign of theABn
ðeqÞ
X piece. Based on this,

we write the Boltzmann equation below with the sign
overturned, and expect that such a mechanism also over-

turns the sign of the ÂðσÞ
B nðeqÞX scattering term. More details

on these aspects will be presented in Ref. [34]. Including
these contributions, we write the Boltzmann equation as

d
dt
nBþ3HnB¼ΓX

�
ABðnX −nðeqÞX Þ−nðeqÞX sinh

�
3μQ
T

��

þΓðσÞ
X

�
ÂðσÞ

B ðnX −nðeqÞX Þ−nðeqÞX sinh

�
μQ
T

��
;

ð37Þ

where we use the definition of AB in Eq. (21), we have

defined the thermally averaged ÂðσÞ
B ¼ðΓðσÞ− Γ̄ðσÞÞ=ð2ΓðσÞ

0 Þ
analogous to Eq. (29), we have sinh ðμQ=TÞ ¼
ð3=2ÞnB=nð0ÞQ , and we have computed to first order in

YB;AB; Â
ðσÞ
B ≪ 1. In Eq. (37), we see that inverse decay

and scattering channels lead to a partial washout of the
baryon number.
Changing the independent variable from cosmological

time t to the temperature T and writing in terms of
x≡M=T, we obtain the equivalent Boltzmann equation
for Y ≡ n=s in terms of dimensionless variables as

d
dx

YX ¼ −ðΓ̂eff þ Γ̂ðσÞ
eff ÞxðYX − YðeqÞ

X Þ;
d
dx

YB ¼ xΓ̂eff

�
ABðYX − YðeqÞ

X Þ − YðeqÞ
X sinh

�
3μQ
T

��

þ xΓ̂ðσÞ
eff

�
ÂðσÞ

B ðYX − YðeqÞ
X Þ − YðeqÞ

X sinh

�
μQ
T

��
;

ð38Þ

where Γ̂eff ¼ CðMPl=MχÞΓ̂ with Γ̂ ¼ ðΓX=MχÞ, Γ̂ðσÞ
eff ¼

C0ðMPl=MχÞM2
χhσ0viYQ=x3, with C ∼ 1=10, C0 ∼Oð1Þ,

and sinhðμQ=TÞ ¼ ð3=2ÞYB=Y
ð0Þ
Q .

The out-of-equilibrium Sakharov condition in our case
could be satisfied if Yχ deviates from YðeqÞ

χ resulting in the
BAU. Equation (38) indicates that this could happen

if Γ̂eff ; Γ̂
ðσÞ
eff ≲ 1. From our estimate in Sec. IV that

Γ̂ ∼ 10−5ðMχ=ΛÞ4 and AB ∼ 10−5ðMχ=ΛÞ4 (two-loop
contribution), this indicates a mass-scale Mχ≳
1013ðMχ=ΛÞ4 GeV. For instance, for M=Λ ∼ 1=10, the
preferred scale is about 109 GeV. These considerations
only give an indication of the preferred mass scale in our
theory for which the observed BAU is obtained, and wewill
present a more accurate numerical computation of the
Boltzmann equations in Ref. [34] that fully takes into
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account forward and backward reaction rates in the thermal
plasma and possible washout effects, and distinguishes the
fU;Dg in Q.

VI. ΔB= 2 TRANSITIONS (n− n̄ OSCILLATION)

In this section, we discuss ΔB ¼ 2 transitions that
violate the baryon number by two units, and focus
particularly on the neutron-antineutron n − n̄ oscillation
process, which is a ΔB ¼ 2 process since the neutron n has
baryon number B ¼ þ1 and the antineutron n̄ has B ¼ −1.
We recall that the neutron n at the quark level is the bound
state n ¼ ðuddÞ and the antineutron n̄≡ ðucdcdcÞ, which
we write symbolically without paying attention to the
Lorentz structure but rather emphasizing the internal
symmetry quantum numbers, making no distinction
between n̄ and nc (the conjugate). In our effective theory
of Sec. II, n − n̄ oscillation is induced by the exchange of
the Majorana Xn due to its indefinite baryon number. Since
in our VV interaction, two same D fields enter, as discussed
in Ref. [10], the prospects for n − n̄ oscillation is better in
comparison with a similar SS operator usually studied in the
literature that is forced to have two different flavorD fields.
n − n̄ oscillation is being searched for in ongoing

experiments, and a recent experimental limit on its life-
time is τn−n̄ ≥ 4.7 × 108 s at 90% confidence limits (C.L.)
[43]. The lifetime can be equivalently thought of in terms of
a mass difference, namely, Δmn−n̄ ≡ 1=τn−n̄, and the above
experimental limit can be recast as

ðΔmn−n̄Þexpt ≤ 10−34 GeV: ð39Þ

In this section, we obtain a rough estimate of the constraint
on our effective theory from this limit.
A ΔB ¼ 2 process induced in our effective theory of

Sec. II is shown in Fig. 4 where theN ≡ ðDDUÞ transitions
to the N̄ ≡ ðDcDcUcÞ, again symbolically written without
paying attention to the Lorentz structure of these operators,
and making no distinction between Nc and N̄. Integrating
out the Xn exchange in Fig. 4 generates a six-Q effective
operator, which we encode in an effective Hamiltonian at a
renormalization scale μ ≲Mχ as

Heff ⊃ C6QO6Q¼ g̃2ϵabcϵa
0b0c0

Λ4Mχ
Uc

c0γνγμΓgUcDc
bγ

μDaDc
b0γ

νDa0

þOðmn=MχÞ; ð40Þ

from using the VV interaction couplings of Eq. (11), we
have set Γg ≡ ðĝ2Ln

PL þ ĝ2Rn
PRÞ, and we have ignored the

momentum transfer in the X propagator since this effective
theory is valid for scales p2 < Mχ .
The discussion in Sec. III on the connection between the

U, D and the SM quarks u, d implies the corresponding
connection in the effective theory also between the N

operator and the neutron n, and similarly between N̄ and
the antineutron n̄. In other words, the N − N̄ transition
induces n − n̄ oscillation. We encode theQ ¼ U;Dmixing
with the SM q ¼ u; d in a parameter seff, and include in it
the D ↔ d, U ↔ u mixing angles sdD, suU discussed in
Sec. III, and perhaps Cabibbo-Kobayashi-Maskawa
(CKM)-like suppression sCKM if the U and D mixing is
into second or third generation SM quarks. Collecting these
factors we write as an example s2eff ¼ s4dDs

2
uUs

6
CKM, while

reiterating that a different UV realization would have its
own structure for the combination of mixing angles.
We match our ΔB ¼ 2 contribution in Eq. (40) to an

effective theory with SM 6q operators listed in Ref. [44]
(for earlier studies enumerating the operator basis, see
references therein). To find the overlap of our vector/
tensor operator in Eq. (40) with the standard scalar operator
basis given in Ref. [44], we start by denoting our operator
as ½γνγμΓg�ðγμÞððγνÞÞ using the bracket convention [45] to
denote the fields. We compute the Fierz rearrangement
following the method given in Appendix A 1 to obtain
an equivalent Fierz rearranged form of our operator as
−2ĝ2Rn

½PR�ðPRÞÞððPLÞ − 2ĝ2Ln
½PL�ðPRÞÞððPLÞ − 2ĝ2Rn

½PR�×
ðPLÞÞððPRÞ−2ĝ2Ln

½PL�ðPLÞÞððPRÞþ3ĝ2Rn
½PRÞÞðPR�ððPLÞ−

3ĝ2Rn
½PR ÞðPLÞÞððPR�þ3ĝ2Ln

½PLÞÞðPL �ððPRÞ− 3ĝ2Ln
½PLÞ×

ðPRÞÞððPL�þ…, where we omit showing the other vector
and tensor operators that are generated, and we have
included a minus sign whenever an odd number of fermion
fields have been Fierz rearranged. These scalar six-quark
operators have overlap with the Q2, Q̄2, Q3, Q̄3, Q7, Q̄7

operators of Ref. [44]. An exact matching of our operator
with the standard basis including projecting onto the proper
tensors in color space, will be taken up in future work [46].
Here we content ourselves with estimating the bound on the
scale of new physics from theQ3,Q7 contributions we have
identified above. We estimate the n − n̄ oscillation rate as

Δmn−n̄ ∼
g̃2Gn

VG
n
Λs

2
eff

Λ4Mn
hn̄jQijni; ð41Þ

and include in our estimate the Qi ¼ Q2; Q3; Q7 contribu-
tions discussed above.
We use the lattice determination of the matrix

elements hn̄jQijni≡ hQii presented in Ref. [47], namely,

FIG. 4. The operator responsible for violation of B by two units
that can lead to N − N̄ transition.
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hQ2i¼144ð26Þ, hQ3i ¼ −47ð11Þ, hQ5i¼ð−3=2ÞhQ7i¼
−0.23ð10Þ, in units of 10−5 GeV6, at the scale
μ ¼ 700 TeV. We can write these matrix elements equiv-
alently as hQii≡ Λ6

QCDhQ̂ii taking ΛQCD ¼ 180 MeV, and

from the above values, we have hQ̂2i ¼ 42ð8Þ, hQ̂3i ¼
−13ð4Þ, hQ̂7i ¼ 0.04ð2Þ. In our estimate here, we ignore
the running from the matching scale μ ¼ 700 TeV of
Ref. [47] up to theMχ scale as it will be a small effect [10].
Applying the experimental bound of Eq. (39) to the

estimate in Eq. (41), we obtain the constraint on the model
parameters given by

g̃2Gn
VG

n
Λs

2
eff

Λ6
QCDhQ̂ii
Λ4Mn

≲ 10−34 GeV; ð42Þ

and we use the hQ̂ii given above. For illustrative purposes,
if we take g̃; Gn

V; G
n
Λ ∼Oð1Þ, with Mn ∼ Λ, we obtain an

estimate of the bound on the new physics scale Λ≳
ðs2=5eff 10

3Þ TeV from the n − n̄ oscillation experimental
constraint. If seff is Oð1Þ, then the bound we obtain on
the scale of new physics is Λ ≳ 103 TeV, which is well
outside the direct on-shell production reach of current
(LHC) and planned future colliders, and only leaves the
possibility of probing this physics in precision (indirect)
experiments. If such new physics is to be accessible
kinematically for direct production in present day collider
experiments, then we need Λ ∼ TeV for which the bound
is seff ≲ 10−8, i.e., the neutron mixing to new physics (via
the N operator) should be very highly suppressed. We have
already discussed above a natural way this suppression
comes about, for instance, due to suppressed mixing angles
sqQ. Taking sdD ∼ suU ≡ sqQ we find we need s1=3eff ¼
sqQsCKM ≲ 10−3 (for Λ ∼ 1 TeV), which is not unreason-
able to expect from a UV completion point of view. As
another example, consider the scale obtained in Sec. V,
namely, Mχ ∼ 109 GeV, M=Λ ∼ 1=10, for which we find
Δmn−n̄∼ðg̃2g2L;Rs2eff10−18Þð10−34GeVÞ. Unfortunately, this
mass scale is well beyond the reach of current and
upcoming n − n̄ oscillation experimental searches. For n −
n̄ oscillation search prospects in upcoming experiments,
see, for example, Refs. [10,48]. We leave a more accurate
analysis of the n − n̄ oscillation rate in our theory with VV
interactions for future work [46].

VII. CONCLUSIONS

The issue of which physics is responsible for the
generation of the observed BAU is presently not yet settled,
although many BSM proposals have been put forth. In this
work we develop an effective theory with a new Dirac
fermion χ that is uncharged under the SM gauge sym-
metries but carries nonzero baryon number, coupled to a U
and two D fermions, which are up and down type

SM-quark-like fermions, respectively. The interaction is
a dimension-six effective operator which we denote as
ð1=Λ2ÞðχUÞðDDÞ, not showing Lorentz and color indices,
Λ being the cutoff scale. We start by considering both SS
and VV Lorentz structures, but show that if the two D
fermions involved in this coupling are identical, the SS
interaction is not allowed owing to the Grassmann nature of
the fermion fields and antisymmetry in the color indices,
leaving us to focus on the VV interaction in the remainder of
the work.
We speculate on the origin of this effective interaction

from a UV completion perspective and give a few example
renormalizable theories, and comment on other associated
operators that are also generated in these examples. We give
an example of how the baryon number violating Majorana
mass might arise as a spontaneous symmetry breaking in a
theory which conserves baryon number at the Lagrangian
level. We also give examples of ways the sector in
which the baryon asymmetry is generated is connected
to the SM.
In our theory, baryon number violation arises due to

turning on Majorana masses for the χ, which splits the
Dirac χ into a pair of Majorana fermionsXn (n ¼ 1, 2) with
unequal masses Mn. There are two physical phases in our
theory, one in the coupling and another in the Majorana
mass. When we diagonalize the mass matrix and obtain the
interaction in the mass basis, these phases imply complex
couplings as shown in Eq. (11). We derive the conditions on
the couplings under which the C and CP invariances are
broken in our theory, that along with the source of baryon
number violation explained above, are required to satisfy
the Sakharov conditions.
We considerXn decay and scattering processes and work

out the baryon asymmetry by comparing the rates for the
process and its conjugate process. We show how the
interference between tree- and loop-level amplitudes could
result in a baryon asymmetry, due to the presence of
nonzero (weak) phases in couplings that flip sign in going
from the process to its conjugate process, and a (strong)
phase (factor of i) coming from on-shell intermediate states
in the loop amplitudes that has the same sign in both. This
is summarized in Fig. 3.
We make numerical estimates for the baryon asymmetry

from Xn decays and scatterings, and find them to be

roughly of size AB;A
ðσÞ
B ∼ 10−5ðMn=ΛÞ4 for reasonable

choices of couplings. A more detailed numerical analysis
considering specific Feynman diagrams is underway, and
will be presented in Ref. [33]. We place this mechanism of
baryon asymmetry generation in the expanding Universe,
write down the Boltzmann equation for the baryon number
density and make an estimate of the resulting BAU. In
another follow-up work [34] we will present a more
accurate numerical solution of the Boltzmann equation
and the BAU.
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Another interesting consequence of our theory is the
possibility of ΔB ¼ 2 transitions, such as n − n̄ oscillation
that is being looked for in experiment. We estimate the size
of this oscillation and place constraints on the parameters of
the theory. The Mχ scale we estimate from requiring that
the X be away from equilibrium in order to generate the
BAU suggests that this scale is well beyond the reach of
upcoming n − n̄ oscillation experiments, and we will
sharpen this estimate in future work [46].
More generally, the discovery prospects in ongoing and

future experiments depend on the scale ofMχ and on details
of how the communication between the BSM sector and the
SM arises. If Mχ ≲OðTeVÞ, then there could even be
signatures at present day colliders (LHC) and at proposed
hadron colliders, which we relegate to future work.

APPENDIX A: SPINOR ALGEBRA

Here we collect well-known aspects of spinor algebra
that are useful to us, including aspects of two-component
Weyl spinors and its connections to four-component
spinors. We use the mostly minus ð1;−1;−1;−1Þ metric
signature. We follow the Van der Waerden undotted and
dotted spinor convention to denote spinors that transform as
the ð1=2; 0Þ and ð0; 1=2Þ irreducible representations of the
Lorentz group respectively (cf. Appendix of Ref. [49]).
We write the Lorentz transformation group element as

M ¼ e−ð1=2ÞðiθiþβiÞσi , the θi, βi being three-space rotation
and (three) boost parameters, respectively, and σi the three
Pauli matrices. Under such a Lorentz transformation, the
ψα transforms as ψα → Mαβψβ and is said to transform
as a ð1=2; 0Þ spinor. A dual spinor χα can be defined
as χα ≡ ϵαβχβ; i.e., the index can be raised using the
completely antisymmetric tensor ϵ, where we take
ϵ12 ¼ −ϵ21 ¼ þ1. Under a Lorentz transformation we have
ψα → ψβðM−1Þβα, so that the combination ðχψÞ≡ χαψα is
a Lorentz invariant (sum over repeated indices is implied
unless specified otherwise). We denote the inverse of ϵαβ as
ϵαβ, and take ϵαβ ¼ −ϵαβ (i.e., ϵ12 ¼ −ϵ21 ¼ −1) so that
ϵαβϵ

βγ ¼ δγα. We then have ψα ¼ ϵαβψ
β. These spinors are

taken to be Grassmann objects with ψαχβ ¼ −χβψα. We
can show that ðχψÞ ¼ ðψχÞ.
We define the conjugate representation, denoted as ψ̄ _α,

as ψ̄ _α ≡ ðψαÞ†. Under a Lorentz transformation, it trans-
forms as ψ̄ _α → ψ̄ _βðM†Þ _β _α (where M† ¼ M�T is the adjoint

of the matrix M). Its dual ψ̄ _α ¼ ðψαÞ† is given as ψ̄ _α ¼
ϵ _α _βψ̄ _β transforming as ψ̄ _α → ððM†Þ−1Þ _α _βψ̄ _β under a

Lorentz transformation, where ðM†Þ−1 ¼ e−ð1=2Þðiθ−βÞ·σ .
Similar to the undotted case, we have ϵ_1 _2 ¼ −ϵ_2 _1 ¼ þ1
and its inverse is ϵ_1 _2 ¼ −ϵ_2 _1 ¼ −1. We can raise and lower

similarly, i.e., ψ̄ _α ¼ ϵ _α _βψ̄ _β and ψ̄ _α ¼ ϵ _α _βψ̄
_β. The ψ̄ _α is said

to transform as a ð0; 1=2Þ spinor. The combination ðχ̄ ψ̄Þ≡
χ̄ _αψ̄

_α is Lorentz invariant and ðχ̄ ψ̄Þ ¼ ðψ̄ χ̄Þ.

The ðχψÞ is a c number, and its complex conjugate ðχψÞ�
can be evaluated as ðχψÞ� ¼ ðχαψαÞ� ≡ ðψαÞ†ðχαÞ† ¼
ψ̄ _αχ̄

_α ¼ ðψ̄ χ̄Þ ¼ ðχ̄ ψ̄Þ. We note that the order of the
spinors is reversed above when ð…Þ† is expanded over a
spinor bilinear (without any minus sign).
We find it useful to have a four-spinor formalism also at

our disposal. We can define a four-component spinor in
terms of the above two-component (Weyl) spinors as

ψ ≡
�
ψα

χ̄ _α

�
; ðA1Þ

where, although we use the same symbol (ψ) for both the
four-component and two-component spinors, which one we
mean should be clear from the context. We adhere to the
notation of Ref. [38] for the γμ, namely,

γμ ¼
�

0 σμ

σ̄μ 0

�
; ðA2Þ

with σ̄0 ¼ σ0 ¼ 1, σ̄i ¼ −σi. We can affix indices as σμα _α,

σ̄μ _αα, and we have the relation ϵ _α _βϵαβσμ
β _β

¼ σ̄μ _αα. For any

four-component spinor ψ, we define the charge-conjugated
spinor as ψc ≡ Cψ� ¼ −iγ2ψ�, using the charge conjuga-
tion matrix C ¼ −iγ2.
Consider a four-spinor bilinear of the form B≡ χ̄Γψ . We

note that the complex conjugate can be evaluated in two
ways, namely B�, or as B†. The first can be written as
χcCΓ�Cψc, after introducing a minus sign in expanding �
over a four-spinor bilinear.6 The second can be written as
ψγ0Γ†γ0χ, keeping in mind that the † reverses the order of
the spinors. Since for the c number B, B� ¼ B† what we
have shown is

χcCΓ�Cψc ¼ ψγ0Γ†γ0χ: ðA3Þ

Defining Γc ≡ CΓ�C and Γ̄≡ γ0Γ†γ0, we can write this as

χcΓcψc ¼ ψ Γ̄ χ: ðA4Þ

6We note that one must be careful in handling four-spinor
bilinears due to the Grassmann nature of fields. If a matrix
notation is followed for four-spinor bilinears of fields, as in usual
matrix algebra, then we can freely attach a transpose operator
ð…ÞT on a ð1 × 1Þ (i.e., c-number) quantity, but, when expanding
the transpose over a bilinear of four-spinor fields, there is an
implicit switching of these (Grassmann) fields, and therefore a
minus sign must be attached. Similarly, we can freely attach a
dagger operator ð…Þ† on a ð1 × 1Þ quantity. However, to be
consistent with the fact that a † operation expanded over a four-
spinor bilinear switches the order of the four-spinors without a
minus sign, we also must attach a minus sign when we expand the
complex conjugation operator ð…Þ� over a four-spinor bilinear.
Here ð…Þ† ≡ ð…Þ�T . These rules on four-spinor bilinear oper-
ations are in place to ensure that the corresponding underlying
two-spinor structure is left intact.
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For colored fermions, χa, ψa, antisymmetrized over the
color indices using ϵ, Eq. (A4) can be used to write

χcaΓcψc
bϵ

ab ¼ −ψaΓ̄χbϵab; ðA5Þ

where we obtain a minus sign on the rhs from using the
antisymmetry property of ϵ. We now apply Eq. (A5) to the
Dc

aΓ̃Dbϵ
ab… part of the interaction of Eq. (1) by taking

Γ → Γ̃, χ → Dc and ψ → D, which yields,

DaΓ̃cDc
bϵ

ab ¼ −Da
¯̃ΓDc

bϵ
ab; ðA6Þ

or more simply Γ̃c ¼ − ¯̃Γ. This is a nontrivial constraint
on Γ̃.
Equation (A6) applied to the SS interaction LSS

int , i.e., for
Γ̃ ¼ ðg̃LPL þ g̃RPRÞ, implies that this part of the interac-
tion is the negative of itself, and therefore must be zero!
This is a consequence of having two identical D fields in
Lint, the Grassmann nature of the fields, the spinor
structure, and the color antisymmetry property. Next,
Eq. (A6) applied to LVV

int , i.e., for Γ̃ ¼ γμðg̃LPL þ g̃RPRÞ,
implies that g̃L ¼ g̃R ≡ g̃ is required for consistency.
We check the result that the SS interaction cannot be

written down now using Weyl spinors. First note that
for a four-component spinor ψ ¼ ðψα χ̄ _αÞT, we have
ψc ¼ ðχα ψ̄ _αÞT . Now writingD ¼ ðdα dc _αÞT , where dα and
dc _α are independent Weyl spinors not related by conjuga-
tion, we have Dc ¼ CD� ¼ ðdcα d _αÞT . Then Dc

aðgLPLþ
gRPRÞDbϵ

ab… ¼ ðgLdαadαb þ gRdc_αad
c _α
bÞϵab…. Consider the

first term, dαadαbϵab ¼ ϵαβdβadαbϵ
ab, and since these are

Grassmann objects, this is −ϵαβdαbdβaϵ
ab. Now relabeling

a ↔ b and α ↔ β, and using the antisymmetry property of
ϵ, this becomes −ϵαβdβadαbϵ

ab ¼ −dαadαbϵab. In other
words we have shown that dαadαbϵab is the negative of
itself and therefore must be zero. We can show similarly
that dc_αad

c _α
bϵ

ab ¼ 0. We note that this scalar bilinear is
clearly antisymmetic in spin as evidenced by the ϵαβ above.
Thus we conclude that a scalar (i.e., antisymmetric in spin)
Majorana-like bilinear that is also antisymmetric in color is
identically zero. We then have shown again, now using
Weyl spinors, that the SS interaction cannot be writ-
ten down.7

The antisymmetry in color enters crucially in forcing the
above Majorana-like scalar bilinear to zero. This
becomes clearer when we consider a similar bilinear, but
for a color singlet χ with four-spinor χ ¼ ðχα χc _αÞT,
i.e., χcðM̃LPL þ M̃RPRÞχ ¼ ðM̃Lχ

αχα þ M̃Rχ
c
_αχ

c _αÞ. Going
through the same steps as before brings us back to the same
form as we started (without an extra minus sign as in the

colored case since we do not have antisymmetric color
indices to flip here). Therefore, this bilinear is not zero and
we indeed included this scalar bilinear as the Majorana
mass of χ.
A parity transformation takes x ¼ ðt; xÞ → ðt;−xÞ≡ x̃,

under which a four-spinor transforms as ψðxÞ →
ηaγ

0ψðx̃Þ≡ ψ̃ðxÞ (in the notation of Ref. [38] where ηa;b
are introduced), and we need ηa ¼ −η�b. For a Majorana
fermion X we have ηa ¼ ηb ≡ ηX leading us to take
ηX ¼ i, which is also consistent with Xc ¼ X . For the
D,U fields, we have a choice on what η to take, and we find
it convenient to make the unconventional choice
ηD;U
a ¼ ηD;U

b ¼ i. We thus have ψ̃ðx̃Þ ¼ iγ0ψðxÞ, or equiv-
alently ψðxÞ ¼ −iγ0ψ̃ðx̃Þ, and we have ψcðxÞ ¼ iγ0ψ̃cðx̃Þ,
for all the fields D, U, X .

1. Fierz rearrangement

By Fierz rearrangement we can switch the order of four
spinors or fields. Here we start by briefly reviewing the
procedure, and then apply it to the VV interaction.
Consider an expression of the form w̄1ΓAw2w̄3ΓBw4

involving four spinors w1;2;3;4 that are u, v spinors, and ΓA;B

involve any combination of Dirac matrices. Using the
bracket convention [45], we can denote the above form
succinctly as ðΓAÞ½ΓB�. The Fierz rearrangement (see, for
example, Refs. [45,50]) is an equivalent form written as a
linear combination of terms in which the w2 and w4 switch
places, i.e., of the form w̄1Γ̂Aw4w̄3Γ̂Bw2, which, in the
bracket convention, is ðΓ̂A�½Γ̂BÞ. To derive this form we
adopt the chiral basis of Ref. [45] and take the 16 matrix
basis set as

fΓAg ¼ fPR; PL; PRγ
μ; PLγ

μ; σμνg; ðA7Þ

and the inverse of these as

fΓAg ¼
�
PR; PL; PLγ

μ; PRγ
μ;
1

2
σμν
�
: ðA8Þ

These satisfy the orthogonality condition

TrðΓAΓBÞ ¼ 2δBA: ðA9Þ

The Fierz rearranged combination is given by [45]

ðΓAÞ½ΓB� ¼
X
C;D

CABCDðΓD�½ΓCÞ; where

CABCD ¼ 1

4
TrðΓAΓCΓBΓDÞ: ðA10Þ

Using this procedure, we obtain the Fierz rearrangement
of the VV interaction as

7We find that if we go ahead anyway and compute the tree-
level Xn decay amplitude with the SS interaction, we obtain zero,
consistent with not being able to write down the SS interaction.
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ðg̃γμÞ½γμðgLPL þ gRPRÞ�
¼ −ðγμgLPL�½γμg̃PLÞ − ðγμgRPR�½γμg̃PRÞ
þ 2ðgLPL�½g̃PRÞ þ 2ðgRPR�½g̃PLÞ: ðA11Þ

In terms of the fields, the equivalent Fierz rearranged VV
interaction is as shown in Eq. (6), where we include an extra
minus sign arising from switching two fermion fields in the
Fierz rearrangement. In particular, we see that we cannot
Fierz rearrange our VVoperator purely as SS operators, but
rather it will include a sum over other related VV operators
(cf. Sec. III).

APPENDIX B: DIAGONALIZATION OF THE
χ SECTOR

To go to the diagonal basis in the χ sector, we find it
useful to write the Dirac (four-component) fermion χ in
terms of its component Weyl (two-component) fermions
χ ≡ ðχα χ _αÞT , using the dotted and undotted index notation
for the Weyl spinors as explained in detail in Appendix A.
In terms of the Weyl spinors, the mass terms in Eq. (9) take
the form

Lχmass ¼ −
1

2
ðχα χcα Þ

�
M̃L Mχ

Mχ M̃�
R

��
χα

χcα

�
þH:c: ðB1Þ

We recall thatMχ and M̃L are real, while M̃R ≡ M̃R0
e−iϕ̃

0
R is

complex.
The mass matrix (M) in Eq. (B1) is complex symmetric

and can be brought to a diagonal form by a rotation of the
form MD ¼ UTMU, where U is a 2 × 2 unitary matrix and
MD is real, positive, and diagonal. We take U to be of the
form

U ¼
�

c e−iϕ1 s e−iϕ2

−s e−iðϕ3−ϕ2Þ c e−iðϕ3−ϕ1Þ

�
; ðB2Þ

where c≡ cos θ and s≡ sin θ. Our task then is to find the
U, i.e., to find θ, ϕ1;2;3 that takes us to the diagonal form
MD with real and positive entries. To reduce clutter, we
write M as

M ¼
�
a0 b0
b0 d0eiϕ

�
;

with a0 ≡ M̃L, d0 ≡ M̃R0
, b0 ≡Mχ , ϕ≡ ϕ̃0

R, and equating
the real and imaginary parts of MD ¼ UTMU with MD
being real and diagonal, we find the solution to be

tan ϕ̃ ¼ −
d0 sinϕ

ða0 þ d0 cosϕÞ
; tan 2θ≡ t2 ¼

2b0
d0 cos ðϕþ ϕ̃Þ − a0 cos ϕ̃

;

tan 2ϕ1 ¼
ðd0s2sϕþ2ϕ̃ − b0s2sϕ̃Þ

ða0c2 − b0s2cϕ̃ þ d0s2cϕþ2ϕ̃Þ
; tan 2ϕ2 ¼

ðd0c2sϕþ2ϕ̃ þ b0s2sϕ̃Þ
ða0s2 þ b0s2cϕ̃ þ d0c2cϕþ2ϕ̃Þ

;

ϕ3 ¼ ϕ1 þ ϕ2 − ϕ̃; ðB3Þ

written in terms of ϕ̃≡ ϕ1 þ ϕ2 − ϕ3, s2 ≡ sin 2θ,
sϕ̃ ≡ sin ϕ̃, cϕ̃ ≡ cos ϕ̃, sϕþ2ϕ̃ ≡ sin ðϕþ 2ϕ̃Þ, cϕþ2ϕ̃≡
cos ðϕþ 2ϕ̃Þ.
It is possible that a mass eigenvalue (although real) is

negative. If this happens, say for a particular n, then we
multiply the nth column of U by i, which flips the sign of
that eigenvalue and leads to Mn real and positive. The new
U obtained so by multiplying a column by i remains unitary
and is adopted as the U for the rest of the analysis.
With the U as found above, we write the mass eigenstates

χnα ¼ fχ1α χ2αg as

�
χα

χcα

�
¼ U

�
χ1α

χ2α

�
; ðB4Þ

which, using an index notation, can be written as χaα ¼
ðUÞanχnα with χaα ¼ fχα χcαg (a ¼ 1, 2 and n ¼ 1, 2). We
assemble the Weyl mass eigenstate spinors χnα into two
four-component Majorana spinors as

Xn ¼
�
χnα

χ _α
n

�
; ðB5Þ

for n ¼ 1, 2. Clearly, the Xn are self-conjugate and are thus
Majorana as claimed. We thus have the Dirac four-com-
ponent spinor χ written in terms of two mass eigenstate
four-component Majorana spinors Xn as

χ ¼ ðU1nPL þ U�
2nPRÞXn: ðB6Þ
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The mass eigenvalues, i.e., the entries of MD ≡ diagðM1;M2Þ, are given as

M1 ¼ a0c2 cos 2ϕ1 − b0s2 cos ðϕ2 − ϕ1 − ϕ3Þ þ d0s2 sin ðϕ − 2ϕ3 þ 2ϕ2Þ;
M2 ¼ a0s2 cos 2ϕ2 − b0s2 cos ðϕ1 − ϕ2 − ϕ3Þ þ d0c2 cos ðϕ − 2ϕ3 þ 2ϕ1Þ: ðB7Þ
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