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The mirror twin Higgs model is a candidate for (strongly-interacting) complex dark matter, which
mirrors SM interactions with heavier quark masses. A consequence of this model are mirror neutron stars—
exotic stars made entirely of mirror matter, which are significantly smaller than neutron stars and
electromagnetically dark. This makes mergers of two mirror neutron stars detectable and distinguishable in
gravitational wave observations, but can we observationally distinguish between regular neutron stars and
those that may contain some mirror matter? This is the question we study in this paper, focusing on two
possible realizations of mirror matter coupled to standard model matter within a compact object: (i) mirror
matter captured by a neutron star and (ii) mirror neutron star-neutron star coalescences. Regarding (i), we
find that (nonrotating) mirror-matter-admixed neutron stars no longer have a single mass-radius sequence,
but rather exist in a two-dimensional mass-radius plane. Regarding (ii), we find that binary systems with
mirror neutron stars would span a much wider range of chirp masses and completely different binary Love
relations, allowing merger remnants to be very light black holes. The implications of this are that
gravitational wave observations with advanced LIGO and Virgo, and x-ray observations with NICER,
could detect or constrain the existence of mirror matter through searches with wider model and parameter
priors.
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I. INTRODUCTION

Compact objects present a tantalizing opportunity to
study dark matter (DM) candidates. Their strong gravita-
tional fields present a unique environment, and their proper-
ties are coming under increased scrutiny thanks to
gravitational wave (GW) and x-ray observations. Most
DM candidates consider oneweakly self-interacting species
due to simplicity [1,2]. One of the consequences of this
assumption is that neutron stars (NSs) can then contain DM
only through direct (gravitational) capture or through non-
gravitational interaction channels, leading to admixed stars
(i.e., thosewith amixture of standardmodel (SM)matter and
DM) [3–11]. Admixed NSs can have a small DM core [10],
or a DM halo that would not affect the visible radius [11];
sometimes, such stars can be composed almost entirely of
DM, leading to extremely tiny dark compact objects (with
masses of ∼10−8M⊙) [12]. Alternatively, some studies have
looked into NSs composed of hidden sector nucleons from a
dark-QCD sector [13,14], fundamental asymmetric DM
fermions [10,15–24], or asymmetric bosons [25–28].
These studies generally consider simplified interactions of

only one or two particle species. An extensive review of DM
capture within NSs can be found in [29].
In recent years, however, the possibility of complex,

strongly self-interacting DM candidates has been
suggested [30–32] and the consequence for compact objects
explored [33–35]. Specifically, mirror matter [36–40]
within the mirror twin Higgs model [31,32,40–42] is a
nearly identical copy of the SM in its matter content and
gauge interaction, except that the masses of fundamental
particles are scaled up by a factor f=v, where f and v are
vacuum expectation values of SM and mirror-sector Higgs
fields, respectively. This model is highly motivated as a
solution to the hierarchy problem for f=v ∼ 3–7. The twin
top quarks are neutral under all SM gauge interactions, but
their interaction with the SM Higgs nevertheless stabilizes
its mass and solves the little hierarchy problem without
predicting large signals at the LHC [43,44]. This is in
contrast to other solutions to the hierarchy problem like TeV-
scale supersymmetry, which predicts large LHC signals due
to strong production cross sections for new particles, like
stops and gluinos [45]. Additionally, because mirror matter
contains multiple species that are strongly interacting, it is
possible for mirror matter to clump together to form mirror
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neutron stars (MNSs) [33]. MNSs were found to be very
similar to SMNSs, except that they are significantly smaller,
with massesM ∼ ð0.5–1ÞM⊙ and radii R ∼ ð4–8Þ km [33].
These MNSs are entirely new hypothesized, electro-
magnetically dark, compact objects with completely differ-
ent mass-radius sequences from SM NSs. Importantly,
since MNSs are entirely electromagnetically dark GWs
from MNS mergers are the best method to detect them.
Their distinct tidal deformability and mass range makes
them distinguishable from SM NSs or SM stellar-mass
black holes.
While mergers between MNSs are very distinct from

standard astrophysical gravitational wave signals and re-
present a spectacular discovery opportunity for new physics,
the precise abundance and distribution of MNSs, and hence
the rate of their mergers, is almost impossible to predict for a
given microphysical model of mirror matter. Depending on
the mirror matter distribution in our Universe, other astro-
physical events involving mirror matter may be much more
common. It is therefore vital to consider the full range of
possible phenomena involving mirror matter and NSs.
What would happen if a NS and a MNS were to

coalesce? Schematically, the evolution of such a binary
is depicted in Fig. 1. First, the two compact objects would
spiral around one another. While their separation is large,
they could be effectively treated as point particles in
the post-Newtonian approximation [46]. Because of GW
emission, their orbit would shrink and eventually their
separation would become small enough that the stars would
tidally deform each other. As their separation continues to
decrease, the surface of the NS and that of the MNS would
cross each other and their stellar interiors would begin to
overlap. Unlike mergers of two NSs or two MNSs, this
would not be a standard collision because mirror matter and
regular matter only interact gravitationally.1 After the MNS
sinks to the center of the NS, the final remnant would either
be a black hole or a stable NS with a mirror matter core,
depending on the mass of the progenitor stars.
The development of a quantitative description of the

coalescence sketched above requires the combination of
various techniques. In the inspiral, post-Newtonian theory
can be used to describe the orbital motion of the stars and
their tidal deformations. Indeed, the previous study [33] has
focused on this inspiral stage and the possibility of using
measurements of the tidal deformabilities to distinguish
between NS binaries and MNS binaries. In this work we
extend the inspiral analysis to NS- MNS binaries.
The merger stage can only be described via a two-fluid,

numerical relativity simulation in which the fluids only
interact gravitationally, such as found in Ref. [47]. Even
without such a code, however, one can still study the
hypothetical remnant object; a “mirror-matter admixed NS”

(MANS)—please do not confuse this with MNS, which
referred to mirror NS), partially composed of SM matter,
and mirror matter. There are three possibilities to create
MANS: (i) mirror matter accreting into the cores of a SM
NS, (ii) SM matter accreting into the cores of a MNS, and
(iii) MNSs and NSs merging into a stable admixed mirror
star remnant. In case (i) [(ii)], one would have very tiny
mirror matter [SM] cores that depend on the available
mirror matter [SM matter] from their surroundings and the
precise nature of the matter-mirror and matter interactions
(see e.g., [32] for a study of twin Higgs mirror matter
accretion in white dwarfs). In case (iii), most NS and MNS
mergers would produce light black holes, but in certain rare
cases, stable admixed mirror star remnants would remain
with large mirror matter cores.
Case (iii) can happen because cosmological den-

sity perturbations of baryons and mirror baryons are
highly correlated, meaning that ‘mirror galaxies’ will be

FIG. 1. Schematic representation of the coalescence between a
NS and a MNS. After inspiralling, radiating energy in GWs (top
panel), the two stars collide and merge (middle panel). Depend-
ing on the stellar masses, the system either relaxes to an admixed
mirror star (bottom-left panel) or collapses to a small black hole
(lower-right panel).

1Mirror matter and SM matter do interact via Higgs exchange,
but the effect is negligible for astrophysical processes.
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superimposed on ‘regular galaxies’. Furthermore, if mirror
stars form in the mirror galaxy, it is likely that gas cooling
causes a dark disk to form, which is aligned with the visible
disk [48]. This spatial proximitymakes it plausible thatmixed
binaries form through gravitational encounters, perhaps in
regions of high stellar and mirror-stellar densities near the
center of the galaxy. Since future gravitational wave observa-
tories will be able to detect mergers in the majority of the
observable Universe, even rare events become potential
signals.
In this paper, we study the properties of objects formed in

both formation scenarios of MANSs and address their
observational prospects. We essentially ask ourselves the
following question; how can we distinguish between SM
NSs, MNSs, and MANSs from GW observations with
advanced LIGO and Virgo, or x-ray observations with
NICER? To answer this question, we first construct two-
fluid solutions to the Tolman-Oppenheimer-Volkoff (TOV)
equations, which describe nonrotating stars (either SM NSs
with f=v ¼ 1, orMNSs orMANSswith f=v > 1) in general
relativity [16,49–51]. Our primary findings are the following:

(i) Given an equation of state (EOS), the mass-radius
sequence of stable NSs is continuously connected to
the mass-radius sequence of stable MNSs through
mass-radius sequences of stable MANS. This means
that MANSs have a two-dimensional (2D) mass-
radius plane, instead of a one-dimensional mass-
radius curve, given a SM EOS.

(ii) MANSs can have the ultimate mass-radius twins,
i.e., stars with the exact same mass and radius, but
different DM fraction, and thus, composition. These
ultimate twins, however, can be told apart by their
tidal deformabilities, Λ.

(iii) The mass-radius plane of stable MANSs is nearly
independent of the dark sector’s ΛQCD and extends
to much lighter (smaller mass) and much tinier
(smaller radius) objects, relative to stable NSs above
the Chandresekhar limit.

(iv) The relation between the tidal deformability and the
mass (or the compactness) of MANS is also two-
dimensional. This plane extends to a minimum
Λ ∼ 10, but not just for very massive objects, but
rather also for light objects with masses as low
as ∼0.75M⊙.

(v) The inspiral of a NS and a MNS and that of a MNS
and another MNS fills a unique phase space of
symmetric mass ratio and chirp mass, unreachable
by NS binaries. The symmetric mass ratio can be as
low as 0.16 (corresponding to a mass ratio of 0.3),
while the chirp mass can be as low as 0.5M⊙
(corresponding to a total mass of 1M⊙).

(vi) The remnant of the merger between a NS and a MNS
primarily produces very light black holes, with
masses between ∼ð1.3; 3.7ÞM⊙. Occasionally, such
a merger may also produce a stable MANS with a

mass of MMANS ∼ ð1.2; 1.6ÞM⊙ and radius RMANS∼
ð8; 9.5Þ km. The merger of a MNS binary can lead to
black holes as small as M ∼ 0.8M⊙.

(vii) If a NS and MNS merge and both are above their
respective Chandrasekhar limits,2 the admixed core of
the remnant MANS can have masses up to MDM ∼
0.4M⊙ and radii as large as 4.5 km. Thus, these cores
canmake up approximately one third of the star’smass
and are distributed up to half of their total radius.

(viii) If MANS are formed by other means (e.g., accreting
matter), then a much wider 2Dmass-radius sequence
is possible that could lead to eitherDMhalos or cores.

The results summarized above differ from other recent
studies on mirror matter admixture on NSs [8,56,57] and
binary NS mergers [47]. These other studies explored
mirror matter candidates that, apart from discrete sym-
metries, are identical to SM particles. Our work is unique in
that we consider mirror twin Higgs matter, with funda-
mental masses scaled up by f=v > 1, and we employ first-
principle results [58–64], from lattice QCD and chiral
perturbation theory, to scale the EOS with f=v [33]. For
f=v ¼ 1, our model EOS is also tuned to meet current
observational constraints on the NS mass-radius relation,
while mirror matter is considered in the range f=v≳ 3
favored by LHC constraints [43,44]. This makes our EOS
models for the DM sector directly relevant for the solution
to the hierarchy problem as well as highly realistic.
The remainder of this paper presents the details that led

to the conclusions summarized above, and it is organized as
follows. Section II briefly reviews our microscopic model
for the EOS of NS matter developed in [33], and how we
extend it to the mirror sector. Section III outlines general
methods for the calculation of two-fluid stellar properties
and their stability. Section IV presents results regarding the
properties of isolated NSs, MNSs and MANS. Section V
investigates and discusses the GW imprint of a NS/MNS
inspiral. Section VI describes the possible remnants of a
NS/MNS merger. Section VII summarizes the signatures of
mirror from various merger scenarios, and Sec. VIII con-
cludes and presents an outlook of future work.

II. MICROSCOPIC MODEL

In this short section, we briefly describe our microscopic
model for the EOS of NSs and MNSs [33]. All of the
presented results are derived under the simplifying approxi-
mations of vanishing temperature and slow rotation, T ≃ 0
and Ω ≃ 0.

2The NS Chandrasekhar limit is aboutM ∼ 1.4M⊙. There have
already been observations of objects below that limit [52,53] with
x-ray observation. From those x-ray observations, one can
estimate the mass and sometimes the radius as well. However,
time-integrated measures have been found to be susceptible to
systematic error (especially due to assumptions about the
atmospheres) such that radii can differ by up to ∼50% [54,55].
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For the description of matter in the NS core, we employ a
relativistic mean-field nuclear model, suplemented by a
free gas of electrons and muons, so that charge neutrality
and chemical equilibrium under weak interactions are
satisfied. This model features scalar, vector, and vector-
isovector interactions and is tuned to reproduce properties
of nuclear matter,3 as well as current constraints from NS
observations [65–71]. At lower densities, we match the
model to a Baym-Pethick-Sutherland EOS for the NS
crust [72] via an interpolation procedure. A detailed
account of our model can be found in [33] and references
therein. Results for NS properties obtained with this model
are reviewed in Sec. IVA.
For our description of matter inside a MNS, we adopt the

same model, but rescale parameters to account for the
different microphysics of the twin Higgs mirror sector. Our
dark-matter model is then fixed by the ratio f=v between
the expectation values of the Higgs and Mirror Higgs. We
assume this ratio to lie in the range f=v ≃ ð3–7Þ, as larger
values would fail to naturally solve the hierarchy problem
in the minimal model [43], and smaller values are ruled out
by Higgs coupling measurements at the LHC [73].
All the elementary masses in our model—that is, the

ones of leptons and quarks—are thus rescaled by the same
factor f=v, defined such that the SM is recovered when
f=v ¼ 1. However, because of the nonperturbative scale
ΛQCD and the spontaneous breakdown of chiral symmetry
of QCD, this translates to nontrivial scalings for the
nuclear-model couplings and the baryon mass with f=v.
These scalings are extracted from low-energy nuclear-
physics phenomenology and first-principle results from
chiral perturbation and lattice QCD (see Ref. [33] for
extensive details and suggestions for new calculations from
lattice QCD). In the absence of these inputs, extra cou-
plings are scaled according to dimensional analysis, but for
those couplings the details of this procedure have minimal
impact on the overall EOS scaling. Details of these scalings
can be found in [33].

III. STELLAR STRUCTURE EQUATIONS

In this section, we review the equations that we use to
calculate the structure of MNSs. We also review simple
criteria for the stability of these stars and the calculation of
their Love number. These results are very well-known in
the case of ordinary compact stars (see e.g., [74] and
references therein), but here we present them with an extra
layer of generality [3–11,75].
Besides the single component stars already discussed in

Refs. [33], we address a third possibility, consisting of

two-component isolated stars, made of both SM and mirror
matter. This choice is motivated not only by completeness
but by the possibility of such stars existing, as a result of
dark-matter admixture in NSs. We refer the reader to
Sec. IV B for details. In the case of such stars, because
interactions between ordinary and DM are assumed to be
negligible, the structure equations, stability analysis and
calculation of Love number must be modified accordingly,
as we present below [7].

A. Two-fluid configurations

The structure of (mirror) NSs follows from the equilib-
rium between the push of pressure and the pull of gravity,
summarized through the equation of hydrostatic equilib-
rium. In the case of two-component stars, however, the lack
of significant interactions between dark and visible matter
prevents their equilibration with one another.4 Instead,
each fluid component must independently neutralize
gravitational forces, resulting in two independent equi-
librium pressures, say, pSM and pDM. Nonetheless, the two
fluids interact via gravitation, and the Einstein equations
must be solved in the presence of both fluids at the
same time [3,16]. Previous studies have also considered
he effects of DM particles in equilibrium with NS
matter [76–80].
Two-component stars are odd creatures, and possess two

zero-pressure surfaces, which encompass the two indepen-
dent fluids. In principle, these fluids can rotate with
different angular velocities without violating hydrostatic
equilibrium. Nonetheless, after sufficiently long times, tidal
effects tend to synchronize their rotations. In the following
sections, for the sake of simplicity, we assume no differ-
ential rotation between the two-fluid components. Under
this assumption, the two-fluid system we consider is no
different from a single-fluid system, except that there
are two stress-energy tensors on the right-hand side of
Einstein’s field equation.
Assuming two independent fluids amounts then to

writing the stress-energy tensor as the linear combination

Tμν ¼ Tμν
SM þ Tμν

DM; ð1Þ

where each component is independently conserved, i.e.,

Tμν
SM;ν ¼ Tμν

DM;ν ¼ 0: ð2Þ

Also, assuming global thermodynamic equilibrium, the
stress-energy tensor for each component can be written as

3The nuclear physics inputs of our model are the incompress-
ibility, symmetry energy, nucleon Dirac mass and binding energy
per nucleon at saturation density. The set of values that
are employed here and the corresponding parameters can be
found in [33].

4It is interesting to consider the impact of small possible
couplings, like a kinetic mixing between the SM photon and the
twin photon, which may result in non-negligible interactions
between matter and mirror matter in this case [31,32], but we
leave this for future work.
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Tμν
SM ¼ ðϵSM þ pSMÞuμSMuνSM þ pSMgμν;

Tμν
DM ¼ ðϵDM þ pDMÞuμDMuνDM þ pDMgμν: ð3Þ

From the above equations, it is clear that the standard case
of a single fluid that leads to a SM-only NS can be
recovered by taking pDM ¼ 0 ¼ ϵDM. Thus, from here on,
we concentrate on calculations for the more general case in
which two fluids are present.

B. Hydrostatic equilibrium

Let us review the hydrostatic equilibrium equations in
the case of two independent fluids, relevant for two-
component stars with admixed cores [3,16]. These equa-
tions generalize the well-known TOV equations for single-
fluid stars, which can be recovered as a particular case, by
setting to zero the density and pressure of one of the fluids.
We consider a static two-fluid hybrid star in spherical

symmetry. The line element squared can therefore be
written as ds2 ¼ −e2τdt2 þ e2σdr2 þ r2dΩ2, with signa-
ture ð−;þ;þ;þÞ, where τ and σ are functions of the (areal)
radial coordinate r and dΩ2 is the line element squared of a
two-sphere. The only nonzero component of the four-
velocity of a static fluid is the time component. Therefore,
uμSM ¼ uμDM ¼ N ð1; 0; 0; 0Þ, where N is a normalization
factor that ensures uμuμ ¼ −1. Even though our study
consider a MANS as a remnant of a merger, not a
component star in a binary, it is worth noting that both
fluids in the MANS can acquire a velocity relative to the
center of the star in a binary. However, [81] indicated that
the relative velocity is less than 5% of the time component
of the fluid four-velocity, which validates the static-fluid
assumption even in a binary.
With the four velocity known and a few algebraic

manipulations, Eqs. (2) and the Einstein field equation
simplify to a set of TOV-like equations for two fluids:

dpi

dr
¼ −ðϵi þ piÞ

mþ 4πr3ðpSM þ pDMÞ
rðr − 2mÞ ; ð4aÞ

dm
dr

¼ 4πðϵSM þ ϵDMÞr2; ð4bÞ

dNi

dr
¼ 4π

niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m=r

p r2; ð4cÞ

with i ¼ fSM;DMg. Here, pSM;DM and ϵSM;DM are the
pressure and energy density of the SM and DM fluids,
respectively, while m ¼ ½1 − expð−λÞ�=2 is the enclosed
mass function. Notice that Eq. (4a) governs the hydrostatic
equilibrium of the fluids separately. In Eq. (4c), nSM;DM and
NSM;DM are the baryon number density and the total
number of baryons and mirror baryons, respectively.
We follow [74] closely for the standard numerical

implementation to solve the two-fluid TOVequation, except

for the initial conditions and stopping conditions. For the
initial conditions, we need to specify the energy densities of
both the SM species and theDM species, ϵSMc and ϵDMc , at the
center of the star. Let us say then that we choose some value
of ϵSMc and ϵDMc and begin to integrate the equations out from
the center. At some radial coordinate, the pressure of one of
the fluids (either the SMor theDMfluid) drops to 10−8 of the
corresponding central pressure. That value of the radial
coordinate defines the “radius of the admixed core Rin,”
which contains both fluids. Of course, that is not all of the
star, since the density and pressure of the other fluid can still
be large at that radius. The integrator then continues,with the
energy density and pressure of the first fluid set to zero, until
the pressure of the second remaining fluid drops to 10−8 of
the corresponding central pressure. The radial coordinate
value at that place defines the outer radius of the entire star
Rout and the integrator stops. The total mass MMANS of the
star is then simply the value ofm evaluated at the radiusRout.
The description of this implementation presented above

anticipates one of the main results of this paper; stable two-
fluid stars have (2D) mass-radius planes instead of (1D)
mass-radius curves. Mathematically, this tracks back to the
need to specify two initial conditions, ϵDMc and ϵSMc , to find
a stellar solution to the two-fluid TOV equations. This
means that one can independently change ϵDMc while
keeping ϵSMc constant (thus, increasing the number of
mirror baryons in the star), or alternatively independently
change ϵSMc while keeping ϵDMc constant (thus, increasing
the number of SM baryons in the star). As we will show in
the next section, the sequence of stable stellar configura-
tions is, indeed, represented by a plane in mass and radius.

C. Tidal deformability

Tidal deformation emerges under strong external tidal
fields. If a MANS is in a binary orbit with another compact
object, at some point the MANS and the other compact
object will be a distance r12 apart such that the MANS will
become tidally deformed due to the gravitational pull of the
other compact object. In this case, the tidal deformability
can be calculated within this two fluid approach as well, see
Refs. [7,25,82]. Just as SM NSs, the two-fluid MANS can
be tidally deformed when the distance r12 between the stars
is small enough, i.e., Rout ≪ r12 ≪ Rext, where Rext is the
radius of curvature of the source of the external field (the
other compact object) and Rout is the radius of the entire
two-fluid MANS. A multipolar expansion of the metric
exterior to the star can be written as [83]

−
1þ gtt

2
¼ −

MMANS

Rout
−
3QðtidÞ

ij

2R3
out

�
ninj −

1

3
δij

�

þO
�

1

R4
out

�
þ 1

2
EijR2

outninj þOðR3
outÞ; ð5Þ
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where Eij is the (quadrupole) tidal tensor field, Q
ðtidÞ
ij is the

corresponding tidally-induced and traceless quadrupole
moment tensor, and ni ¼ xi=Rout is a field-point unit vector.

The tidal deformability λ can be defined by QðtidÞ
ij ¼ −λEij.

The dimensionless tidal deformability can then bewritten as

Λ ¼ λ=M5
MANS; ð6Þ

where MMANS is the mass of the entire two-fluid star
obtained from the two-fluid TOV equations.
The quantity λ can be calculated by solving the Einstein

field equations interior to the star at first order in the tidal
perturbations. The version of this equation for a single fluid
star is presented e.g., in [74]. To obtain the corresponding
equation for a two-fluid star, one may naively replace
ϵ → ϵSM þ ϵDM, p → pSM þ pDM, and m → mSM þmDM
in the relevant equations, where mi can be obtained using
the equation dmi=dr ¼ 4πϵir2 with i ∈ fSM;DMg.
However, because both fluids exert gravitational attraction
on each other, one must employ Eq. (4a) to write
dϵi=dr ¼ ðdϵi=dpiÞðdpi=drÞ, instead of applying a naive
replacement in the corresponding term for one-fluid stars.
In the end, the Einstein field equations at first order in the

tidal perturbation become

r
dy�
dr

þ y2� þ FðrÞy� þ r2QðrÞ ¼ 0 ð7Þ

with

FðrÞ ¼ rþ 4πr3ðpSM þ pDM − ϵSM − ϵDMÞ
r − 2mSM − 2mDM

ð8Þ

and

QðrÞ ¼ 4πr
r− 2mSM − 2mDM

�
5ðϵSM þ ϵDMÞ þ 9ðpSM þpDMÞ

þpSM þ ϵSM
cs2SM

þpDM þ ϵDM
cs2DM

−
3

2πr2

�

þ−
�
2
mSM þmDM þ 4ðpSM þpDMÞπr3

rðr− 2mSM − 2mDMÞ
�

2

; ð9Þ

which agrees with [7]. Here the quantity y� is defined by
y� ≡ rh02ðrÞ=h2ðrÞ, where h2 is related to time-time com-
ponent of the metric by gtt ¼ −e2τð1þ h2Y2mðθ;ϕÞÞ, with
Y2m the l ¼ 2 spherical harmonic. Notice that the quantity
h2 represents a first-order-in-perturbation term due to tidal
effects. The quantity cs2i in Eq. (9) is the speed of sound
squared of the ith fluid,

5 which is defined as cs2i ≡ dpi=dϵi.

After solving the interior equation, Eq. (7), one can match
the interior solution to the exterior metric of Eq. (5) to find
the ratio of coefficients Qtid

ij and Eij, and thus, to obtain Λ.
Doing so, one finds

Λ ¼ 16

15
fð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ�g

× f2C½6 − 3yþ 3Cð5y − 8Þ�
þ 4C3½13 − 11yþ Cð3y − 2Þ þ 2C2ð1þ yÞ�
þ3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� ln ð1 − 2CÞg−1;

ð10Þ

where C ¼ MMANS=Rout is the gravitational compactness
of the entire star and y ¼ y�ðRoutÞ.

D. Stability analysis

The stability of stellar configurations may be deter-
mined by analyzing the spectrum of radial density
oscillations. In a complete analysis, one adds a harmonic
perturbation of the form ξðrÞe−iωt to the metric fields and
linearizes the Einstein field equations with respect to the
perturbation. The result of this procedure is a Sturm-
Liouville problem, whose solution determines the fre-
quency eigenvalues fωig. In this approach, unstable radial
modes manifest as exponentially increasing solutions,
with Imωi > 0 [49,84,85]. The equation of radial pulsa-
tion for a single-fluid compact star was first derived by
Chandrasekhar [86]. Here, we resort to a simpler, less
rigorous, stability criterion, following [87,88]. An analo-
gous criterion, for single-fluid stars, is explained in detail
by Weinberg [89].
Assuming invariance under time reversal, each eigen-

mode ξiðrÞ has a pair of fundamental frequencies
ω�
i ¼ �

ffiffiffiffiffiffi
ω2
i

p
, where ωi ∈ R is an eigenvalue. The onset

of instability then corresponds to the point at which the
lowest-lying eigenvalue ω2

0 flips sign and becomes neg-
ative. Precisely at this point, ω�

0 ¼ 0, and the field
perturbations are simply ξ0ðrÞ, which is a static configu-
ration, and therefore, in equilibrium. Because equilibrium
configurations are uniquely specified by central densities,
these modes must correspond to shifts ϵic → ϵic þ δϵic.
Moreover, if we approach ω2

0 → 0þ from above, these
configurations will be joined by arbitrarily slow oscilla-
tions, which must leave the total (mirror) baryon numberNi
unchanged.
All of this implies that at the onset of unstable radial

modes, the total mirror baryon and SM baryon numbers
must be stationary under variations of ϵic,

�
δNSM

δNDM

�
¼
�
∂NSM=∂ϵSMc ∂NSM=∂ϵDMc
∂NDM=∂ϵSMc ∂NDM=∂ϵDMc

��
δϵSMc

δϵDMc

�

¼0: ð11Þ

5Note that the QðrÞ term depends on 1=c2s1 and 1=c2s2, which
can diverge during a first-order phase transition. In this radial
regime, however, the pressure and density drops violently to keep
the ratio finite.
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The existence of nontrivial solutions δϵic ≠ 0 demands that
the matrix in Eq. (11) have zero determinant,

∂NSM

∂ϵSMc

∂NDM

∂ϵDMc
−
∂NSM

∂ϵDMc

∂NDM

∂ϵSMc
¼ 0: ð12Þ

This is the criteria for the onset of radial instability for two-
fluid stars.
One might wonder if Eqs. (11) and (12) are consistent

with the well-known condition ∂M=∂ϵc ¼ 0 in the case of a
single fluid. For single-fluid stars, Eq. (11) will only have
nontrivial solutions if ∂N=∂ϵc ¼ 0. Under the assumption
of uniform entropy per baryon, the stellar mass is stationary
under any transformation ϵðrÞ → ϵðrÞ þ δϵðrÞ that leaves
the total baryon number N unchanged [89]. This holds if
and only if the TOV equation is satisfied, and thus,
exclusively for equilibrium configurations. In light of this
result, demanding that ∂N=∂ϵc ¼ 0 is equivalent to impos-
ing that ∂M=∂ϵc ¼ 0, which is the widely used criteria for
the onset of instability [89].
The result mentioned above has recently been generalized

to the case of two-fluid stars [16]. Given that the entropy per
baryon in the SM fluid and the entropy per mirror baryon in
the DM fluid are kept uniform, Eqs. (4a)–(4c) are satisfied if
and only if any transformation ϵiðrÞ → ϵiðrÞ þ δϵiðrÞ sat-
isfying δNi ¼ 0, with i ¼ fSM;DMg, also leaves the mass
unchanged, i.e., δM ¼ 0. Equation (11) is precisely the
condition that NSM and NDM are stationary, under
which case M is stationary as well. That is, at the onset
of instability, δNSM ¼ 0, δNDM ¼ 0 and δM ¼ 0 under
variations of the central energy densities, ðϵSMc ; ϵDMc Þ →
ðϵSMc þ δϵSMc ; ϵDMc þ δϵDMc Þ.
The physical intuition behind this simpler stability cri-

terion is also left unchanged. Suppose a single-fluid star is
taken out of equilibrium, with ϵc → ϵc þ δϵc, while its total
baryon numberN ¼ NðϵcÞ is kept fixed. The star is then at a
baryon-number difference ΔN ¼ NðϵcÞ − Nðϵc þ δϵcÞ
away from equilibrium. Assuming ∂M=∂N > 0, ifΔN > 0,
there is amass excess, indicating that the gravitational pull is
too strong and the star will contract. IfΔN < 0, gravitational
attraction is not sufficiently strong and the star expands. In
the spirit of Le Chatelier’s principle, equilibrium is stable if
an increase in density δϵc > 0 leads to a restoring expansion,
with ΔN ≈ −ð∂N=∂ϵcÞeqδϵc < 0, where the derivative is
taken in hydrostatic equilibrium. Therefore, a necessary
condition for stable equilibrium is that δN=δϵc > 0, or
equivalently δM=δϵc > 0 [90].
For a two-fluid star, the two central densities and two

conserved charges are mutually intertwined, making the
physical picture less clear. However, an analogous heuristic
argument can be found by diagonalizing the matrix
∂Ni=∂ϵcj, with fi; jg ¼ fDM; SMg, in Eq. (11). By doing
so, one obtains two independent sets of variables, ðϵAc ; NAÞ
and ðϵBc ; NBÞ corresponding to eigenvalues κA and κB, such
that

�
δNA

δNB

�
¼

�
κA 0

0 κB

��
δϵAc

δϵBc

�
: ð13Þ

Because NA and NB are linear combinations of NSM and
NDM, they are also conserved and are kept fixed as the star is
perturbed. Changes to ϵAc and ϵBc are then performed
independently to find that equilibrium configurations can
be stable only if both eigenvalues are positive

κA > 0; κB > 0: ð14Þ

This generalizes the widely used stability condition
∂M=∂ϵc > 0 to multifluid stars.
Finally, we observe that Eq. (12) provides one condition

for two independent variables ϵSMc and ϵDMc . Therefore, as
the mass-radius relation for two-fluid stars is an area, the
boundary of the stable region is a set of curves. This is in
contrast to the case of a single fluid, for which the mass-
radius relation is a curve and stable regions are delimited by
points.
Henceforth, we will determine stability by using

the condition in Eq. (14), which is in agreement with
previous stability studies of two-fluid dark-matter admixed
stars [49,84,85]. A rigorous stability analysis of two-fluid
stars, using e.g., our EOS, is left to future work.

IV. PROPERTIES OF INDIVIDUAL STARS

Before we study coalescences involving NSs, MNSs,
and MANSs, we must first address the properties of each of
these stars in isolation. Masses and radii follow directly
from the EOSs discussed in Sec. II and the equations
of structure (including the two-fluid TOV equation),
which were reviewed in Sec. III B. The calculation of tidal
deformabilities, can be computed as described in Sec. III C.
Results for isolated MNSs and NSs were already presented
in [33], but we present them again here for completeness.
We also present results for a new type of object (MANS),
which we remind the reader are compact ojbects composed
of an admixture of mirror matter (f=v > 1) and SM
matter (f=v ¼ 1).

A. Neutron stars and mirror neutron stars

The NS EOS discussed in Sec. II [33] can be inserted
into Eqs. (4a), (4b), and (7), with pDM ¼ ϵDM ¼ 0, to
calculate the mass, radius and tidal deformabilities of SM
NSs. The resulting mass-radius and tidal deformability-
mass relation are shown in Fig. 2 and are consistent with the
current observational constraints [33]. The latest NICER
measurement of pulsar J0740þ 6620 [65,66] was not used
to constrain model parameters in Ref. [33], but yet, the
mass radius curve is consistent with these observations. The
aim of the present study is not to advocate for a particular
model of NS matter. Instead, we simply choose an EOS that
is in agreement with known astrophysical observations, and
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which we can extend to the mirror sector to draw new
predictions. An extensive discussion of uncertainties from
the SM EOS and mass-radius relation can be found in
Ref. [33], where we show that our predictions for MNS
matter are robust against these uncertainties, as well as
model details.
Similarly, the MNS EOS of Sec. II can be inserted into

the same equations, but this time with pSM ¼ ϵSM ¼ 0 and
specific choices of f=v, to calculate the mass, radius and
tidal deformabilities of MNSs. The resulting mass-radius
and Λ-mass sequences of MNSs are also shown in Fig. 2,
where Chandrasekhar-mass configurations are marked
with a filled circle in the mass-radius panel [33], and
we calculate the sequences down to 64%MCh. Figure 2
allows us to compare predictions for NSs and MNSs.
Observe that, in the phenomenologically relevant range
f=v ≃ 3–7, the mass-radius and Λ-mass sequences for
MNS are shifted to lower masses and smaller radii, and to
smaller Λ and smaller masses. This is perhaps most clearly
seen for the Chandrasekhar-mass configurations, which
go from the well-known ∼1.4M⊙ value for SM matter to
subsolar masses for MNS. Moreover, the Λ-mass sequen-
ces for NSs and MNSs are very clearly separated,

indicating they could be distinguished by their GW
signatures [33].

B. Mirror-matter-admixed neutron stars

Besides isolated NSs and MNSs, our model enables us to
make predictions for a third class of objects, not addressed
in [33]; MANS, compact objects akin to NSs and MNSs,
but containing both SM (f=v ¼ 1) and mirror matter
(f=v > 1) in their interior. We will here consider the
structure of MANS with an arbitrary fraction of mirror
matter, which our two-fluid setup is tailor-made to handle.
In particular, we set pSMðϵSMÞ to the SM EOS and
pDMðϵDMÞ to the mirror matter EOS with a choice of
f=v in the two-fluid structure equations [Eqs. (4a) and (4b)]
to solve for MANS. We vary the fraction of mirror matter to
SM through the choice of SM and mirror matter central
energy densities. By then varying f=v and these central
densities, we are able to study how the astrophysical
properties of MANS are affected by the Higgs vacuum
in the mirror sector.
Before proceeding, let us comment on how the analysis

we carry out here differs from previous related work.
Previous studies explored admixed stars with mirror
matter, but they set f=v ¼ 1 i.e., they assumed that the
SM EOS was identical to the mirror matter EOS [8,56,57].
Our study is quite different because we use first-principle
lattice QCD results to scale the SM EOS with f=v,
thus using a consistent EOS for both sectors. Most
previous work fixed the fraction of DM to SM because
the specific DM capture model studied predicted a certain
fraction. The details of capture, however, depend sensi-
tively on the precise nature of the DM self-interactions,
the interactions between DM and SM matter, and
unknown astrophysical details, such as the precise dis-
tribution of mirror matter in our galaxy. Lifting this
restriction, the phase space of solutions of admixed stars
is clearly two dimensional, and the properties of MANS
vary depending on the choice of fraction, as we will
see below.

1. Full mass-radius region

The full mass-radius plane of MANS is shown in the left
panel of Fig. 3 for f=v ¼ 5 and various choices of central
densities shown in the right panel of this figure. Pure SM
NSs are shown with a dashed cyan line, while pure MNSs
are shown with a green dashed line. Everything in between
is a MANS, where we now clearly see that what used to be
a one-dimensional mass-radius sequence for a NS or a
MNS is now a two-dimensional mass-radius plane. In this
figure, we fixed f=v ¼ 5 as a representative example, but
we have checked that we find qualitatively similar results
for other values of f=v.
How low of a mass can MANS have? SM NSs

have a Chandrasekhar limit of ∼1.4M⊙, but lower NS
mass measurements have been claimed using x-ray

FIG. 2. Upper panel: Mass-radius relations for NSs and MNSs
with quark masses scaled by mq0=mq ¼ f=v. Lower panel: Tidal
deformability-mass for NSs and MNSs with quark masses
scaled by mq0=mq ¼ f=v. The blue and beige shaded regions
correspond to 2σ confidence regions, using x-ray observations of
pulsars J0030þ 0451 and J0740þ 6620, respectively by
NICER [65–68]. Red shaded regions represent 2σ confidence
intervals from GW event GW170817 observed by advanced
LIGO/Virgo [69–71].
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observations [52,53].6 One of the lowest SM NS observed
is approximately 0.9M⊙ (i.e., ∼64% of the Chandrasekhar
limit), and this is shown with a cyan up triangle in Fig. 3.
Fixing the SM central density to this value and then
increasing the central density of mirror matter leads to
the solid red line. For illustration, let us now assume that the
smallest MNS possible is also 64% of the Chandrasekhar
mass of that MNS sequence, shown with a green down
triangle in Fig. 3. Fixing the mirror matter central density,
ϵDMc , to 64% of its Chandrasekhar mass and increasing the
SM central density, ϵSMc , leads to the orange line in the
figure. The region in the ðϵSMc ; ϵDMc Þ below the red line and
the orange line is shown with a light gray color in both
panels.
Oneof themost interesting features of the two-dimensional

mass-radius plane is the possibility of ultimate twins; stars
with the samemass and radius but differentDM fraction. This
occurs because the mapping from ðϵSMc ; ϵDMc Þ to ðRout;MÞ is
not bijective at low radii. Examples of such twins are shown
with a filled blue circle and square, and an open green circle
and square.As is clear from the right panel, theseMANShave
different ratios ofmirrormatter toSMmatter central densities;
the green cases are actually MNSs, while the blue cases are
MANSs. Although not shown in the figure, there are actually
an infinite number of ultimate twins, as one varies the central
densities, with the pattern shown in the figure.
Let us pause at this point and discuss an unexpected

feature of the results presented above; the allowed region of

MANSs is not bounded from the left by the MNS sequence
(thick long-dashed green curves in Fig. 3). Consider then
what happens to MANS as we start with a SM NS and we
begin to add mirror matter while keeping the total mass
fixed, as shown schematically in the cartoon of Fig. 4. As
one increases the DM fraction YDM ≡ NDM=ðNSM þ NDMÞ
by increasing the mirror matter energy density, one can
identify the following stages:

(i) SM NSs: Initially, YDM ¼ 0 and the star is purely
made out of SM matter.

(ii) MANS with a DM core and a SM halo: As we
increase ϵDMc and thus YDM, the mirror matter settles
at the center of the star (because of the extra
concentration of gravitational mass in the admixed
region) and the star now has two radii; one which
contains some of the SM matter and all of the mirror
matter (Rin ¼ RDM) and one that contains all of the
SM and mirror matter in the star (Rout ¼ RSM). The
spherical region inside the inner radius, r < Rin, will
be called the core, and for these MANSs, it is
where all of the mirror matter resides. The shell
region outside the inner radius but inside the outer
radius, Rout > r > Rin, will be called the halo, and
for these MANS, it is composed entirely of SM
matter.

(iii) MANS with equal DM and SM matter: As we
increase ϵDMc and YDM further, the radius that
contains the mirror matter grows, while the radius
that contains the SM matter shrinks. Eventually, one
reaches a critical value YDM ¼ Y�

DM at which Rin ¼
RDM ¼ RSM ¼ Rout and the entire star is occupied
by both fluids. This is when the MANS sequence
reaches its minimum radius.

FIG. 3. Mass-radius plane of MANS (left panel) for different choices of central SM and mirror-matter energy densities (right panel).
The SM NS and the MNS mass-radius sequences are shown with a cyan and a green dashed line, respectively. The cyan up triangle and
the green down triangle correspond to energy densities at which a SM NS and a MNS would have masses of 64% their Chandrasekhar
limits respectively. Increasing the mirror matter and the SM central densities respectively then leads to the red and orange boundaries.
Observe that the mapping from ðϵSMc ; ϵDMc Þ to ðRout;MÞ is not bijective at low radii, allowing for the possibility of ultimate twins. Two
examples of ultimate twins are shown with filled blue and open green circles and squares.

6These time-integrated measures have been found to be sus-
ceptible to systematic error (especially due to assumptions about
the atmospheres) such that radii can differ by up to∼50% [54,55],
but we still adopt this measurement as an interesting benchmark.
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(iv) MANS with a SM core and a DM halo: Increasing
ϵDMc and YDM even further, the radius that contains
SM matter is now inside the radius that contains the
DM, so RSM < RDM, and therefore, the MANS now
has a SM core (Rin ¼ RSM) and a DM halo
(Rout ¼ RDM). This is the flip case to the MANS
with a DM core and a SM halo.

(v) MNSs: Eventually, ϵDMc is increased enough that
YDM tends to unity and the MANS becomes a MNS.
Since the radius that contains the DM grows as we
increase ϵDMc , Rout ¼ RDM while Rin ¼ RSM ¼ 0. In
particular, note that the radius of the MNS is here
larger than the radius of the MANS with equal DM
and SM matter.

From this analysis, one can clearly see that the stellar
radius Rout decreases for YDM < Y�

DM and it increases for
YDM > Y�

DM, until at YDM ¼ Y�
DM the MANS has the mini-

mum allowed value for Rout. This critical value is the point at
which the star is entirely filled with both fluids, so that the
maximum possible concentration of mass is achieved. The
sequence of stars with YDM ¼ Y�

DMðMÞ therefore delimits
the mass-radius region from the left in Fig. 3.
A consequence of the results presented above is that the

mirror-baryon fraction YDM is indeed zero at the right most
boundary (at the SM NS sequence), but it is not unity at the
left most boundary, and therefore, YDM must change
nonmonotonically as the MANS radius changes near the
MNS sequence. Because the radius is nonmonotonic in
YDM, the region to the left of the MNS sequence (to the left
of the thick long-dashed green curve in Fig. 3) is composed
of two overlapping areas with different values of YDM. Let
us investigate how these overlapping areas are connected.
Since YDM is one-to-one in ϵDMc , one can focus on any

constant ϵDMc curve, such as the orange curve in Fig. 3.
Starting at the intersection of this sequence with the MNS
sequence (i.e., the intersection of the thick dashed green
curve and the orange curve, which also corresponds to the
rightmost star in Fig. 4), as ϵSMc increases, the mass-radius
point moves left along the orange curve, as shown in the top
panel of Fig. 5, which is just a zoomed version of the left

FIG. 4. Typical outer radius Rout for stellar configurations with
different mirror baryon fractions YDM ≡ NDM=ðNSM þ NDMÞ.
The inset illustrates the definition of the inner and outer radii, Rin
and Rout. The minimum value for the outer radius corresponds to
a configuration where both fluids occupy the entirety of the star,
that is, when Rin ¼ Rout, which happens at YDM ∼ 0.75. For
0 < YDM ≲ 0.75, we find NSs develop a DM core, YDM ≳ 0.75,
we find a DM halo instead.

FIG. 5. Mass-radius regions, zoomed to the region inside which
ultimate twins exist (top) and color-coded to indicate stars with
different DM fraction (bottom), fixing f=v ¼ 5. The arrows in the
top panel indicate the direction in which the SM central energy
density increases. Observe that there is a region (between the
leftmost boundary and the MNS sequence) inside which different
YDM leads to stars with the same mass and radius, which we have
defined in this paper as ultimate twins.

MAURÍCIO HIPPERT et al. PHYS. REV. D 107, 115028 (2023)

115028-10



panel of Fig. 3. After hitting the left boundary, where
Rout ¼ Rin (the central star in Fig. 4), the mass-radius
sequence turns around and begins to move right. When this
happens, the region left to the pure MNS sequence becomes
double-valued in YDM. One can see this more clearly in the
bottom panel of Fig. 5, which shows the mass-radius plane
again, with points of different YDM color-coded. This
region between the MNS sequence and the left-most
boundary is where the ultimate mass-radius twins live.

2. MANSs through accretion of dark matter
into neutron stars

Having explored the entire mass-radius plane that con-
nects NSs and MNSs, we now explore predictions for
MANSs formed from accretion of DM into SM NS. Since
SM NSs cannot have masses smaller than some percentage
(64% for this paper) of their respective Chandrasekhar
masses (0.9M⊙ for this paper), the mass of the MANS
after DM accretion is also constrained from below. Such
MANS have a DM core instead of a DM halo, with
Rin ¼ RDM < RSM ¼ Rout.
The left panel of Fig. 6 shows the mass-radius plane for

these objects for various values of f=v. Observe that the
mass-radius region for these MANS depends very weakly
on f=v, and thus, on the mirror quark massm0

q ¼ ðf=vÞmq.
The right panel of Fig. 6 shows the mirror-matter mass
MDM as a function of the inner radius Rin. While the inner
radius Rin can change by a factor of ∼2 with varying f=v,
the maximum value of MDM changes at most by ∼15%.
Why is the mass-radius plane approximately universal

with f=v but theMDM-Rin plane is not? Let us consider the
mass-radius plane first. Near the SM NS sequence, for
smallMDM, the DM core is very small (compare to the total
radius of the star). The influence of such a core is then to

only increase the total mass (by adding DM mass), while
keeping the size of the inner radius small (as one can see on
the right panel). As the MDM increases further, the size of
the inner core also increases and the f=v universality
begins to be lost because different f=v lead to different
sizes of DM cores (as seen again on the right panel).
A more detailed view of the maximum DM mass, Mmax

DM ,
as a function of the initial SM mass MSM, is presented in
Fig. 7. Indeed, one observes that the curves for different
f=v lie very close to each other for small Mmax

DM , partly
explaining the behavior observed in Fig. 6. The dependence
of Mmax

DM on f=v becomes weaker for decreasing MDM and
for increasing f=v, as Rin becomes larger.
One might naively expect that adding DM to a NS would

correspond to increasing ϵDMc at a fixed ϵSMc , but this,
however, is not the case. As DM is added to a NS, the
increase in stellar mass leads to an increase in gravitational

FIG. 6. Left panel: Mass-radius region for MANSs that contain a DM core (instead of a DM halo). The black-dashed line is the
isolated NS mass-radius sequence. Green shaded regions are constraints from LIGO and NICER [65–71]. The overlapping shaded
regions connected to the isolated NS sequence are the mass-radius regions for MANSs with a DM halo for different values of f=v. Right
panel: DM core mass as a function of its radius Rin for different values of f=v. Observe that the mass-radius planes are mostly insensitive
to the value of f=v, although the relation between the mass and radius of the DM core is not.

FIG. 7. Maximum amount of mirror matter that can be added to
a SM NS before it becomes unstable, as a function of its total SM
mass. Different values of f=v are considered for the mirror matter
contribution.
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pull, which leads to an increase in the SM central density
ϵSMc . In fact, this change in ϵSMc can be used to investigate
the effect of DM-admixture on the matter distribution and
hydrostatic balance of the SM fluid. Results for the frac-
tional change of ϵSMc as a function of MDM are shown in
Fig. 8, where we fix SM mass atMSM ¼ 0.9M⊙. The point
at which the star becomes radially unstable is marked by a
star and coincides with the maximum of MDM, as one
would expect. Observe that the SM central density can
increase by a factor of ∼5–7 due to the admixture of DM.
Surprisingly, this change tends to be smaller for smaller
values of f=v, even though Mmax

DM tends to be larger.

C. Compactness and tidal deformability of MANSs

As we have seen above, MANS s can have rather small
radii, so one may expect their compactness C ¼ M=Rout to
also be large and their tidal deformability to be small. The
top panel of Fig. 9 shows the compactness as a function of
the total mass M for MANSs with different values of f=v.
Observe that, even with the addition of DM, MANS never
reach a compactness above C ¼ 0.3, which is comparable
to the maximum compactness of SM NSs. However, for
MNSs and DM-rich MANS, this large value of compact-
ness is achieved at much lighter masses. As the mass of a
star increases, the star acquires a higher compactness, and
therefore, it should become harder to deform and thus it
possess a smaller tidal deformability (i.e., a smaller Λ). The
relation between Λ and the total mass M is shown on the
middle panel of Fig. 9, which corroborates this expectation.
The tidal deformability of MANSs, however, is not

monotonic in the mass of the star, contrary to the intuition
presented above. Figure 10 shows the compactness as a
function of mass (left) and the tidal deformability as a

function of mass (right) for the f=v ¼ 5 case. For con-
creteness, let us focus on a particular stellar sequence,
depicted through the dotted magenta line. When the mirror-
matter central density is zero (ϵDMc ¼ 0), the MANS is
simply a SMNS, shown at the point where the magenta line
connects to the cyan line. As one increases ϵDMc , the
sequence moves to the left (as shown by the arrows on
the magenta line), terminating in the ultimate twins shown
with the green empty circle and blue filled circle. Observe
that for M ≳ 0.85M⊙, as ϵDMc increases, the mass and

FIG. 8. Fractional change in the central energy density of SM
matter ϵSMc , normalized to its value in the absence of DM ϵNSc , as a
function of the admixed DM massMDM. Here, we increaseMDM
at a fixed SM mass ofMSM ¼ 0.9M⊙. The point at which the star
becomes radially unstable is marked by a star, with faint lines
corresponding to unstable configurations. Different colors cor-
respond to different values of f=v.

FIG. 9. Compactness of MANSs as a function of total mass
(top) and tidal deformability as a function of total mass (bottom)
for different values of f=v (shown with different colors). The
black solid line corresponds to SM NSs, while the colored solid
lines correspond to MNSs with different values of f=v. Observe
that the compactness of MANSs is at most 0.3, which is
comparable to that of SM NSs. Such high-compactness stars
also correspond to the maximum mass configurations, which
occurs at lower masses for MANSs than for SM NSs. Similarly,
the tidal deformability of MANSs can be extremely low, even at
low masses.
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compactness decrease, while the tidal deformability
increases. The compactness decreases because, although
the radius decreases, it does so slower than the mass. The
tidal deformability increases because, as the star becomes
lighter, it also becomes easier to deform, as expected.
This behavior, however, changes drastically when ϵDMc

has increased enough that M ≲ 0.85M⊙. Now, as the mass
continues to decrease, the compactness increases, while the
tidal deformability decreases. The compactness increases
because the radius begins to decrease faster than the mass.
In turn, the tidal deformability decreases because, as the
compactness increases, the star becomes more difficult to
deform. We conclude from this then that the tidal deform-
ability is indeed tied to how easy or hard it is to deform a
star, but the latter is connected to the compactness of the
star, and not just its total mass, when one changes ϵcDM
while fixing ϵcSM.
Another interesting feature of Fig. 10 refers to the

ultimate twins, which we recall are depicted with a green
empty circle and a green filled square. As explained earlier,
ultimate twins are MANSs with the same mass and radius,
but different internal DM composition and, thus, different
ϵcDM. As such, ultimate twins must also have the same
compactness, which is corroborated by the left panel of
Fig. 10. The tidal deformabilities of these twins, however, is
not the same, as shown in the right panel of this figure.
Indeed, the twin with a combination of mirror matter and
SM matter (the blue filled square and filled circle in
Figs. 10 and 3) has a lower tidal deformability than the
twin that only possesses mirror matter (the green empty
circle and empty square in Figs. 10 and 3).
Why is this? The reason that for a two-fluid star the tidal

deformability does not just scale with the compactness can
be gleaned from the definition of Λ in Eqs. (7) and (9). As
one can see from these equations,Λ is a function of both the

compactness of the star and the variable y�, evaluated at the
surface of the star. From the differential equation that y�
must satisfy, one can schematically argue that y�ðRoutÞ will
depend on the pressure and energy density inside the star,
the averaged value of which can be related to the compact-
ness of a star in a single-fluid model. For a two-fluid model,
however, the average pressure and density do not just scale
with the compactness. In fact, for a two-fluid model, the
averaged value of the pressure is much larger for a two-
fluid star than for a single-fluid star. A larger amount of
interior pressure translates into a star that is more difficult to
deform, and thus one with a lower tidal deformability. This
is indeed what we find with ultimate twins, which always
have one member that is very near the MNS sequence
(essentially a single-fluid star with ϵSMc ≈ 0) and one
member in the MANS plane (a two-fluid star with
ϵSMc ≠ 0 ≠ ϵDMc ). Therefore, the MANS member of the
twin has a larger averaged pressure, is more difficult to
deform, and thus has a smaller Λ.
The different tidal deformabilities suggests the possibil-

ity that GW observations of the inspiral of stellar-mass
compact objects could be used to detect MANS s. We have
already seen that the Λ-M relation of MANSs lies on a
plane instead of a line. Therefore, a set of measurements of
Λ, each with sufficient accuracy, could allow us to
reconstruct the Λ-M relation and determine its dimension-
ality. To further determine whether there are ultimate twins
in this plane, one would have to measure the mass, radius
and tidal deformability of the same star, which may be
achievable if one can infer not just Λ, which is the
quadrupolar (electric-type) tidal deformability, but also
the octopolar one. This could be achievable with third-
generation detectors.
Inferences on the compactness, and thus the radius, of

MANS through the Λ-C relation, however, must be done

FIG. 10. Compactness versus total mass (left) and tidal deformability versus total mass (right) for the f=v ¼ 5 case. The color coding
of curves is the same as in Fig. 3, except that here we also introduce a new sequence (colored magenta), with arrows indicating the
direction in which ϵDMc increases, which we discuss in the main text. Observe that the behavior of the compactness and the tidal
deformability is not monotonic in the total mass. Observe also that ultimate twins have the same mass, radius and compactness, but
different tidal deformabilities.
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with great care. This is because, although SM NSs
share a nearly EOS insensitive relation between the tidal
deformability and the compactness, this universality is lost
in MANS, as shown in Fig. 11. Indeed, observe how SM
NS sequences and MNS sequences all share a nearly
identical Λ-C relation, MANSs do not, and in fact, they
possess a two-dimensional Λ-C relation. Therefore, the
measurement of the tidal deformability of MANSs cannot
be associated with a single compactness (and thus a single
radius).

V. INSPIRALING MIXED BINARIES

In this section, we present predictions for the observable
signatures of inspiraling binaries of NSs and MNSs. We

present results for the chirp mass and mass ratio between
these stars and find that MNS-MNS and NS-NS inspirals
produce unique GW signatures.

A. Mass-ratio properties

Having determined the structure of isolated NSs, MNSs,
and MANSs, we now investigate binary systems composed
of NSs and MNS, specifically NS-MNS, and MNS-MNS
binaries.
The properties of these binaries are limited by the

formation mechanisms for these objects. For instance, there
are no known mechanisms to create NSs below a certain
thresholdMðSMÞ

min . To limit ourselves to viable NS and MNS
masses, we implement minimummass thresholds according

to the estimated constraint M ≳MðSMÞ
min ≃ 0.9–1M⊙ for

NSs [52]. For definiteness, and to avoid the risk of being

overly restrictive, we take MðSMÞ
min ¼ 0.9M⊙. To extrapolate

this estimate to the mirror sector, we fix the ratio
between Mmin and the Chandrasekhar mass of MNSs at

MðSMÞ
min =MCh ¼ 0.64. In practice, this yields a scaling ofMmin

with the (mirror) baryon mass m0
B,

MðDMÞ
min

MðSMÞ
min

¼ MðDMÞ
Ch

MðSMÞ
Ch

¼
�
mB

m0
B

�
2

; ð15Þ

where mB is the SM baryon mass andm0
B=mB as a function

of f=v is taken from Ref. [33]. These are the same
restrictions we placed on the minimum mass of MANS in
Sec. IV B 1.
With this in mind, let us now look at the allowed mass

ratio q≡M1=M2 and total mass Mbin ¼ M1 þM2 regions
for NS-NS, NS-MNS and MNS-MNS binaries, using the
convention M1 ≤ M2. Results are shown in Fig. 12,
where the shaded areas correspond to the predicted region
for NS-MNS inspirals. The areas corresponding to NS-NS
and MNS-MNS binaries are enclosed by dotted and dashed
lines, respectively. Each panel corresponds to a different

FIG. 11. Tidal deformability as a function of compactness for
different values of f=v. Observe that while SM NSs and MNSs
(solid black and color lines) all share an approximately insensi-
tive Λ-C relation, but MANS do not. Instead, the Λ-C relation
for MANS is not a one-dimensional curve, but rather a two-
dimensional place, which can differ significantly from the
relation for SM NSs and MNSs.

FIG. 12. Mass ratio q vs total mass M of binary systems for three different values of f=v. The shaded region enclosed by solid lines
corresponds to binaries composed of one NS and one MNSs, while the region delimited by dashed lines corresponds to binaries of two
MNSs. For reference, we also show the region corresponding to SM NS binaries, delimited by the black dotted lines.
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value of f=v ¼ 3, 5, and 7. For all values of f=v, we find
significant regions in the q-Mbin space that are exclusive of
NS-MNS and MNS-MNS inspiral and mergers, indicating
that these systems can be effectively distinguished from the
binary masses alone. For f=v≳ 5, we find no overlap
between the three different regions. For example, one could
have a ð0.5; 0.5ÞM⊙ binary MNS inspiral, which would
lead to a mass ratio of 1 and a total mass of 1M⊙, which is
not possible for a binary NS inspiral.

B. Gravitational wave signatures

In the event of a NS- MNS binary coalescence, GW
radiation from the inspiral phase would provide the best
candidate for signatures of its exotic nature. In a coales-
cence, the evolution of the orbital and, therefore, GW,
frequency is determined by the chirp mass M≡
η3=5ðM1 þM2Þ of the binary, where η≡M1M2=ðM1 þ
M2Þ2 is the symmetric mass ratio. The chirp mass and
symmetric mass ratio regions relevant to NS-NS, NS-MNS,
and MNS—MNS inspirals are shown in Fig. 13. The low
values of chirp mass for MNS—MNS and NS- MNS
binaries indicate that the inspiral phase would be respon-
sible for most of the detectable GW radiation emitted by
such binaries. The merger of such compact objects would
be outside the sensitivity band of second-generation
ground-based detectors.
The inspiral of binaries containing MNS s would also be

less loud than those composed of SM NSs. The chirp mass
of the binary system determines the magnitude of the GW
signal, since the latter scales with ∼M5=6=DL, whereDL is
the luminosity distance to the source. As can be seen from
the figure, the chirp mass of a NS- MNS binary is M ∼
0.9M⊙ for f=v ¼ 3, and M ∼ 0.7M⊙ for f=v ¼ 7, which
is smaller than M ∼ 1.2M⊙ for NS-NS binaries. This
suggests that GW signals from NS- MNS inspirals should
be ∼60–80% that of NS-NS binaries, and therefore,
although weaker, they should still be detectable. Such a
detection would then allow us to distinguish a NS-MNS

binary from a NS-NS binary just from the chirp mass
measurement.
GW emission in the late inspiral phase is also charac-

terized by the tidal deformabilities of the inspiraling stars.
The tidal deformabilities of the two stars, Λ1 and Λ2, can be
calculated by solving Eq. (7) with a given EOS [91]. Using
current GW detectors, only a certain combination of the
individual tidal deformabilities Λ1 and Λ2, the so-called
chirp deformability [92,93], can be measured. This implies
that without any additional information, the individual tidal
deformabilities are degenerate and cannot be solved for
from a GW measurement. One way to break this degen-
eracy is to use EOS insensitive relations, including the
binary Love relation [94], or some functional form for
the EOS [95]. However, both approaches assume that the
merging compact objects have a single EOS that can
describe both stars. In the case of an inspiraling NS-
MNS, this is a poor assumption because each compact
object has a different EOS, therefore completely breaking
the universality of the binary Love relation.
To explore the potential breakage of the binary Love

relations, we plot the relations for MNS—MNS and NS—
MNS binaries in Fig. 14. The top panel shows the binary
Love relations of MNS—MNS binary systems with both
stars with the same f=v. One can clearly see that the EOS
insensitivity is preserved for different values of f=v,
keeping q fixed, which is unsurprising for MNS—MNS
mergers because they both come from the same EOS. In
that panel, NS-NS binaries are shown in black, and they lie
on top of the other curves. The middle panel shows the
binary Love relations of a lighter NS with a heavier MNS.
We cannot calculate the relations for lower mass ratios and
high f=v because, from Fig. 2, MNSs become lighter for
higher f=v, and for some q and f=v, there are no MNS that
are heavy enough. In this case, we see that the EOS
insensitivity is lost,7 with the f=v ¼ 2 curve lying far from

FIG. 13. Symmetric mass ratio η vs chirp massM of binary systems for three different values of f=v. The shaded region enclosed by
solid lines corresponds to binaries composed of one NS and one MNSs, while the region delimited by dashed lines corresponds to
binaries of two MNSs. For reference, we also show the region corresponding to SM NS binaries, delimited by the black dotted lines.

7The f=v ¼ 2 and q ¼ 0.9 curve is almost on top of the f=v ¼
3 and q ¼ 0.60 curve, by pure coincidence.
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the f=v ¼ 3 curve for fixed q ¼ 0.90. The bottom panel
shows the binary Love relations for a higher NS with a
lighter MNS. Because MNSs tend to be lighter than NS,
this is the most common scenario of a MNS—NS binary.
Observe, once more, that the EOS insensitivity is com-
pletely lost because, for the same mass ratio q (dashed
curves for example), there is no overlap for curves with
different values of f=v. Observe also that, since MNS s are
typically less deformable than NS s (due to their higher
compactness), the asymmetric Love number Λa can be
negative. This occurs for both f=v > 4 and q > 0.60, and
tends toward Λa ¼ −Λs as f=v and q increase, making Λ1

much smaller than Λ2.
Before continuing with a discussion of the postmerger

phase, let us end with a warning. Many GW searches today
use a prior on the chirp mass and symmetric mass ratio that
may exclude MNS stars all together. Indeed, only a fraction
of the allowed η-M region overlaps with the region
expected to be occupied by NS-NS binaries. Because of
this, GW events from binary systems including one or two
MNSs run the risk of being overlooked in a template-based
coherent analysis. To detect such events, the priors on the
chirp mass and the symmetric mass ratio should be updated
to include the relevant mass ranges (i.e., much lower
masses). Alternatively, one could rely on wavelet methods
or excess power methods, both of which do not rely on
templates, to detect such events, although such approaches
may be less efficient than template-based searches.

VI. POSTMERGER REMNANT

In this section, we discuss the possible remnants of a
MNS-NS collision. In particular, we present results for
possible stable MANS remnants. We also comment on the
formation of black holes when a stable stellar configuration
is not achieved.

A. NS-MNS collision

A NS-MNS binary merger would be a unique event.
Because there are no interactions via QCD, QED, or weak
interactions that exist between mirror matter and the SM,
one cannot directly change the SM EOS of NSs to add in
the contribution of mirror matter. In other words, collisions
of NSs and MNSs would not be like NS-NS collisions at all
because they would be like “ghosts passing through each
other”. Rather, they are likely to continue to inspiral well-
past the regime where their surfaces are overlapping. Once
inside each other, the nested stars are likely to keep on
spinning at different rotational angular frequencies, even as
differential rotation within each fluid subsides, because the
only mechanism for angular-momentum transfer between
the two fluids in the remnant is gravitational, including tidal
effects. While the observational signature of NS-MNS
mergers can be interesting due to the above differences

FIG. 14. Binary Love relations for binaries of two MNSs (top),
a MNS with a heavier NS companion (middle), and a MNS with a
lighter NS companion (bottom). The asymmetric binary Love
number Λa ≡ ðΛ1 − Λ2Þ=2 is shown as a function of the
symmetric Love number Λs ≡ ðΛ1 þ Λ2Þ=2. Different colors
correspond to different values of f=v, while the distinct line
styles represent different mass ratios q≡M1=M2. Observe that,
in the top panel, curves for fixed values of q, but different values
of f=v, lie on top of each other, and therefore present EOS
insensitivity. In the middle panel, two of the curves are very close
to each other, but they correspond to different mass ratios. In the
bottom panel, the EOS insensitivity is completely lost.
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to NS-NS mergers, conclusions would have to rely on input
from computer simulations, which are not yet available. We
thus leave the discussion of the merger phase of NS-MNS
binaries for future work.

B. MANS remnants

After a sufficiently long time, transient effects should die
out and a NS-MNS merger would lead to a black hole or to
a MANS, like the ones discussed in Sec. IV B. In both
cases, the resulting configurations are restricted by the
relevant mass thresholds for each of the colliding stars. Let
us then consider these end states and discuss whether they
would lead to interesting observational signatures.
Let us once again consider the viable star requirement

(MNS ≥ 0.9M⊙) but this time we will also apply this
constraint to MNS [MMNS ≥ 0.9ðmB=m0

BÞ2M⊙]. To accom-
plish this, we follow the procedure in Sec. VA and use
Eq. (15). For simplicity, we neglect the effects of rotation
on the stellar structure. We also neglect possible (SM and
DM) particle number losses during the merger. The
resulting range for MANS remnants is shown in the left
panel of Fig. 15. The right panel of this figure shows the
DM massMDM versus inner radius Rin for values of f=v of
the stable remnants. The effect of the lower-mass threshold
Mmin on possible stable postmerger remnants is noticeable.
In combination with radial stability constraints (see
Sec. III D), the minimal mass thresholds lead to a tight
region inMMANS − Rout inside which MANS remnants can
exist and only if f=v≳ 5. When f=v≲ 4, on the other
hand, all remnants either violate the minimum threshold
condition or are radially unstable. Consequently, NS-MNS
binaries in the left panels of Fig. 12 and Fig. 13, corre-
sponding to a dark sector with f=v ¼ 3, will all collapse to
black holes after coalescence.

Figure 16 shows the corresponding ranges in mirror
baryon fraction YDM ¼ NDM=ðNSM þ NDMÞ and total mass
MMANS for MANS remnants of NS/MNS mergers, when
f=v ¼ 5, 6, and 7. The mass of these objects is tightly
limited to the regime ð1.2–1.55ÞM⊙. The DM fraction YDM
is also on a tight range, from ∼15% to ∼25%. Observe that
the mirror-matter fraction YDM is anticorrelated with the
total mass of the star, which we can understand intuitively
as follows. Increasing the amount of DM at the center of the
star leads to stronger gravitational forces. That additional
force must be balanced by larger pressure gradients, which
means the pressure in the MANS will drop faster in the
radial direction. Because the energy density is a monotonic
function of pressure, the energy density will also drop
faster, leading to a smaller total mass. Another consequence

FIG. 16. Mirror matter fraction YDM versus total mass MMANS
for stable remnants of NS-MNS coalescences. Allowed regions
for different f=v are represented as shaded areas of different
color. Stable remnants are not expected for f=v ≲ 4.

FIG. 15. Left panel: Mass-radius region for stable remnants of a NS-MNS merger. The black dashed line is the isolated NS mass-
radius sequence. Green-shaded regions are constraints from LIGO and NICER [65–71]. The overlapping shaded regions are the
allowable mass-radius region for stable remnants, for different values of f=v. Right panel: The shaded regions correspond to the allowed
dark-matter mass and radius for the mirror-matter core of the stable remnants of NS-MNS mergers. Stable remnants are not expected for
f=v ≲ 4.
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of Fig. 16 is that all MANS produced from a MNS—NS
merger leading to a stable remnant are of the form of a DM
core with a SM halo.

C. Black hole remnants

If a stableMANS cannot form, the systemwill eventually
collapse to a black hole. Because of the lower mass
thresholds on the colliding stars, this turns out to be the
most likely scenario. Black hole remnants from MNS-NS
coalescences, however, would be very light, lying in the
mass range ∼ð1.3; 3.7ÞM⊙. Black holes from MNS-MNS
coalescences would be even lighter, in the interval
∼ð0.8; 3.2ÞM⊙. To explain how we come to these numbers,
we look at the minimum mass Mmin from f=v ¼ 4 that
produces no stable remnants. Then, Mf=v¼4

min ∼ 0.4M⊙ and
the MSM

min ¼ 0.9M⊙ so our total minimum black hole mass
from a coalescence of a SMNS and a MNSwith f=v ¼ 4 is
then MBH

min ∼ 1.3M⊙. Of course, for larger f=v then smaller

Mmin are possible. For instance, Mf=v¼7
min ¼ 0.3M⊙.

However, the coalescence of this MNS with a MSM
min ¼

0.9M⊙ NS leads to a stable configuration (as shown in
Fig. 15) so it would not produce a black hole. Themaximum
values of a black hole mass for a MNS-NS coalescence
comes from taking the maximum mass for f=v ¼ 2 and
adding that to the maximum mass of the standard model
sequence such thatMBH

max ¼ 1.6þ 2.1 ¼ 3.7M⊙. In Sec. VII
we will focus specifically on the difference between
f=v < 5 and f=v ≥ 5 for two reasons: i.) f=v ≥ 5 obtain
stable configurations whereas f=v < 5 only produce black
hole remnants ii.) f=v ¼ 5 also is the smallest f=v that
provides no overlap in the η vsM relation shown in Fig. 13.
Thus, for much of our following calculations, it is important
to know that Mf=v¼5

min ∼ 0.4 and Mf=v¼5
max ∼ 0.9.

Such a light range of remnant black hole masses would
have important implications for the GWs emitted post-
merger. In particular, the GW ringdown, generated as the
remnant settles to its final stable configuration, would
occur at very high frequencies. The GW frequency of the
dominant fundamental ringdown mode scales as
fGW ∼ 0.44=ð2πMRÞ, whereMR is the mass of the remnant
[96,97]. For a normal black-hole binary merger with
component masses m1 ¼ m2 ¼ 5M⊙, one then expects
fGW ∼ 1400 Hz. However, for a MNS-NS coalescence
(with m1 ¼ m2 ¼ 3M⊙), the black hole remnant would
ring at fGW ∼ 2300 Hz, while for a MNS-MNS coales-
cence (with m1 ¼ m2 ¼ 1M⊙), the black hole remnant
would ring at fGW ∼ 14; 000 Hz. This means that while the
ringdown of a MNS-NS coalescence may be observable,
it will be incredibly hard to observe the ringdown of a
MNS-MNS collision. Moreover, if somehow only the
ringdown were observed, then it would be impossible to
distinguish this small-mass black hole remnant from a
primordial black hole.

VII. OBSERVATIONAL PROSPECTS

Because of the unique signatures for binary MNSs
mergers and NS-MNS mergers, we find that there are
multiple ways that one could detect the presence of
mirror matter within NSs. Here we will list all the
unique signatures that underlie various scenarios, sum-
marizing several discussions presented earlier in
this paper.

Scenario 1—binary MNS inspiral and merger with
f=v ≥ 5: Both objects are dark (no electromagnetic
signatures) and the symmetric mass ratio and chirp
mass is entirely distinguishable from that of SM NS
binaries. The tidal deformabilities are orders of
magnitude smaller than that of SM NSs, and the
remnant is also dark, but may produce a more massive
MNS or a black hole. The black hole remnant would
be very light and certainly lower than the maxi-
mum mass of a NS (black hole masses starting at
M ∼ 0.8M⊙ for f=v ¼ 7).

Scenario 2—binary MNS inspiral and merger with
f=v < 5: Since both objects are dark (no electromag-
netic signatures), we need to rely on GW measure-
ments and need to look into the parameter space of
such measurements. For the parameter space of mass
ratio and Mbin (or η and M), there is a small overlap
between SM NS binaries and MNS binaries. There-
fore, for most binary systems, a MNS binary can be
distinguished from a SM NS binary, and evidence of
DM can be found once we detect a binary system in
the MNS-MNS region. Tidal deformabilities are
approximately one order of magnitude smaller than
that of SM NSs, and the remnant is dark, but may
produce a more massive MNS or a black hole. In
this case, however, the black holes produced may
be smaller than the maximum mass of SM NSs, i.e.,
the black hole remnants can be as small as
M ≳ 1.3M⊙.

Scenario 3—NS-MNS inspiral and merger with f=v ≥ 5:
One object is dark, but the NS may produce electro-
magnetic signatures from tidal disruption. The sym-
metric mass ratio and chirp mass are entirely
distinguishable from those of SM NS binaries.
The tidal deformabilities of the binary components
are orders of magnitude different from each other.
The remnant may produce a MANS or a black
hole. The resulting admixed star has a significantly
smaller radius than that of a SM NS. The black hole
remnant may be lighter than the maximum mass of the
SM NS sequence (black hole masses starting at
M ∼ 1.4M⊙).

Scenario 4—NS-MNS inspiral and merger with
f=v < 5: One object is dark but the NS may produce
electromagnetic signatures from tidal disruption. The
symmetric mass ratio and chirp mass are mostly
distinguishable from those of SM NS binaries, but
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some small overlap region exists. The tidal deform-
abilities of the binary components are an order of
magnitude different from each other. The remnant
willxbe a black hole. The black hole remnant may be
lighter than the maximum mass of the SM sequence
(masses starting at M ∼ 1.3M⊙).

Scenario 5—MANS-MANS inspiral and mergers or
NS-MANS inspiral and mergers: Both objects may
produce electromagnetic signatures from tidal disrup-
tion. The symmetric mass ratio and chirp mass may
overlap with that of SM NS binaries. Tidal deform-
abilities would break universal relations and may
appear similar to twin stars [98,99]. The remnant will
be a black hole in most scenarios, unless the DM core
is extremely small.

Scenario 6—Radius measurement of MANS with x-rays:
Because a MANS can have an outer layer (or halo)
entirely composed of SM matter, it can have a hot spot
on its surface, just like a SM NS. If the hot spot emits
x-rays, NICER could potentially observe them and
obtain theMMANS and Rout. Notice that it is possible to
observe two MANSs with the same mass, but with
very different radii, because MANSs exist in a 2D area
in the mass-radius plane. Therefore, from an obser-
vational perspective, MANS s may be confused with
1st-order phase transition (first-order PT) twin stars,
which also allows two SM NSs with the same mass
but very different radii [100]. The difference between
MANSs and first-order PT twin stars (known as mass
twins [101–107]) is that mass twins are produced by a
single SM EOS (one fluid only), and they lie on a
single nonmonotonic mass-radius curve, instead of a
nonbijective mapping from ðϵSMc ; ϵDMc Þ to the
ðRout;MÞ plane that occurs for MANS. However,
MANSs would not be subject to constraints to the
EOS of nuclear matter in the same way as mass twins
[108–110]. Moreover, it may still be possible to
distinguish the 2D mirror matter plane from mass
twins with just the measurement of two compact
objects with the same mass, if they have drastically
different radii. For instance, applying the heavy
maximum mass constraint of Mmax ∼ 2M⊙ [111], it
is difficult to produce mass twins; only extremely
large first-order phase transitions can produce a large
radius difference between the different branches (e.g.,
see Fig. 12 and Fig. 14 from [112]). Thus, admixed
mirror stars may initially mask as mass twins, but once
a 2D mass-radius plane is measured, they would be
clearly identified as mirror matter.

Scenario 7—Black hole-NS twins: Binary inspirals and
mergers involving MNSs have the potential to create
very light black holes. A striking possibility is that this
would lead to black hole-NS mass twins—that is, a
black hole and a NS with the same gravitational mass.
In order to clearly distinguish these objects from each

other, one would need a sufficiently good measure-
ment of the their tidal deformability, since black hole
are expected to have none. This could prove very
difficult for very massive NSs, because their deform-
ability, Λ ∼ 10, would not be sufficiently different
from that of black holes. Therefore, it would be more
feasible to distinguish between lighter black hole-NS
twins, say with M ≈ 1.4M⊙.

We have outlined some of the specific scenarios for the
inspiral and merger of compact objects containing mirror
matter. However, some signatures will only appear if a
large population of these objects is measured. The primary
signature with large statistics is that if admixed mirror
stars exist, then one could find a 2D plane in the mass-
radius or the tidal deformability-mass relation. The size
and shape of the 2D mass-radius plane depend on a
number of factors, such as the value of f=v, the minimum
mass of a MNSs (i.e., if they are subject to the
Chandrasekhar limit or not), if the admixed stars are
produced due to accreted mirror matter or as a remnant of
a MNS-NS merger, and details of the EOS. However, the
existence of the 2D plane is robust, only possible in a two-
fluid model, and would not occur from any known
SM EOS.
Thus, if it were to become clear from observations (say

with GW detectors such as advanced LIGO/Virgo/
KAGRA, or the x-ray telescope NICER) that the mass-
radius posteriors of compact objects cannot be described
through a one-dimensional sequence alone (even consid-
ering disconnected sequences), then such a measurement
would be a clean-cut signature for admixed mirror stars.
Such a measurement would require the confidence ellipses
on the mass-radius (or mass-tidal deformability) plane of
two independent observations of at least two different NSs
to be nonoverlapping. This could happen, for example, if
one were to observe a compact object with M ¼ 1M⊙ and
R≲ 6 km, with an accuracy of δR≲ 4 km. Black holes of
such a low mass could potentially be distinguishable from
admixed mirror star remnants through the quasinormal
GWs they would emit as they settle down to their final
stationary configuration.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the effects of twin
Higgs mirror matter in isolated MANS, and in NS-MNS
and MNS-MNS binaries. We have found that, instead of
forming a single curve, MANS span over a 2D region on
the mass-radius plan. This region ranges from the SM NS
mass-radius curve on the left, past the MNS sequence, to a
curve of minimal radius, where Rout ∼ 4 km, and the star is
filled with both DM and SM matter throughout its
extension. Because the outer radius changes nonmonotoni-
cally with the DM fraction YDM in the star, different YDM
intervals can overlap in the mass-radius diagram, leading to
“ultimate twins”, i.e., stars with the same exact mass and
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radius, but different internal composition. While these
twins have exactly the same mass and radius, their tidal
deformability is different and would distinguish the two
compact objects.
We have also explored the properties of MANS that

would have formed via DM capture in NSs above a
generous assumed NS formation threshold MSM ≳ 0.9M⊙.
Surprisingly, we find that the corresponding mass-radius
region is nearly independent of the mirror Higgs scale,
yielding approximately the same region for f=v ¼ 3–7. If
we allow for the possibility of mirror matter capture, then a
DM-admixed NS can support masses in the same range as a
regular NS, but with a smaller radius (as low as R ∼ 8 km).
Conversely, if we begin with a MNS and allow for SM
capture, then masses on the small end of NS are possible
but the radii are significantly smaller R ∼ 4 km. A smok-
ing-gun signature of MANS is the mass-radius plane that
they inhabit, which presents a 2D structure, unlike any
other object studied so far. Indeed, even objects with
distinct stable branches due to first-order phase transition
(mass twins) still exist in a one-dimensional sequence.
We then moved to a discussion of the effects of mirror

matter in NS-MNS and MNS-MNS binary systems. We
found that the amplitude of the GWs emitted by these
binary systems (at fixed distance) would be smaller than,
but still comparable to, the one from NS-NS binaries due to
the smaller total mass of MNSs. We also emphasize that, by
measuring the chirp massM and the symmetric mass ratio
η alone, one can distinguish a MNS-NS or MNS-MNS
system from a NS-NS one. This distinction is clear-cut only
when f=v≳ 5. We have also shown that binary Love
relations cannot be naively applied to break the degeneracy
of a GW measurement from a NS-MNS system, because
that relation is no longer EOS insensitive. These relations
can, however, be applied without change to MNS—MNS
binaries.
NS-MNS mergers are of particular interest because they

provide a promising way to form MANSs. However,
stability against radial oscillations and NS and MNS mass
thresholds impose very stringent constraints on the result-
ing remnant. For f=v < 5, we have found no possibility of
stable MANSs remnants. For f=v ≥ 5, we find a small
stable mass-radius region. In cases where a stable MANS
remnant is not formed (the most likely scenario), collapse
to a black hole will follow. In that case, one could
potentially measure the postmerger ringdown.

One very intriguing possibility that arises from the
coalescence of MNS-MNS and NS-MNS is that they can
produce very light black-hole remnants, with masses as low
as 0.8M⊙. Thus, depending on the masses of the MNS-
MNS and NS-MNS binaries, it is possible to produce black
hole remnants in the range ð0.8–3.7ÞM⊙, MNSs remnants
in the range ð0.8–1.5ÞM⊙, and MANS remnants in the
range ð1.2–1.6ÞM⊙. Thus, mirror matter provides a mecha-
nism that allows for black holes, MNSs and MANSs
remnants—all in the same mass range, but with very
different radii.
Our work opens up a number of new possibilities and

questions. It is not clear what the precise merger and
postmerger signals of such a two-fluid model would be
like. Would the two-fluid nature of the compact objects
affect the peak frequency of the GWs emitted at merger?
What properties would we expect if spin is considered? Is
there a possibility of a Kilonova if MANS merge? In order
to answer these questions, a full two-fluid numerical
relativity simulation is required, which we leave to future
work.
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