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One vanishing minor in the neutrino mass matrix using trimaximal mixing
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We investigate the implications of one vanishing minor in the neutrino mass matrix using trimaximal
mixing matrix. In this context, we analyze all six patterns of one vanishing minor zero in the neutrino mass
matrix and present correlations of the neutrino oscillation parameters. All the six patterns are found to be
phenomenologically viable with the present neutrino oscillation data. We also predict the values of effective
Majorana mass, the effective electron antineutrino mass, and the total neutrino mass for all the patterns.
The value obtained for the effective neutrino mass is within the reach future neutrinoless double f decay
experiments. We also propose a flavor model where such patterns can be generated within the seesaw model.
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I. INTRODUCTION

Evidence of neutrino oscillations observed in multitude
of experiments confirms that neutrinos mix with each other
and have nonzero mass [1]. Neutrino oscillation phenomena
can be parametrized in terms of six independent parameters,
namely three mixing angles (6,3, 6,,, 0,3), one Dirac CP
violating phase (5¢p), and two mass squared differences
(Am3,, Am3,). Although we have very precise values of the
mixing angles and the absolute value of the mass squared
differences, there are still some unknowns such as the octant
of 6y3, Scp and the sign of Am3,. There are two possible
mass ordering of the neutrino mass spectrum: normal mass
ordering (NO) m; < m, < m5 and inverted mass ordering
(I0) m3 < m; < m, depending on the sign of Am3,.

Neutrino oscillation experiments are sensitive only to the
mass squared differences. They cannot provide any infor-
mation regarding the absolute mass scale of neutrinos which
is one of the most sought after questions in particle physics
today. Knowledge of the absolute mass scale of neutrinos is
of great importance not only in particle physics but also in
understanding the large scale structure of our universe.
Neutrinos possess very tiny mass and unlike all other
fermions in the Standard Model (SM), they do not seem
to get their mass through Higgs mechanism. Hence, it may,
in principle, help shape our understanding of the origin of
particle mass which is still one of the most fundamental
questions of particle physics. Unlike all other fermions in
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the SM, we observe only left handed neutrinos and right
handed antineutrinos. We have not found any right handed
neutrino and left handed antineutrino so far in experiments.
This brings us to the next relevant question whether neutrino
is a Dirac particle or a Majorana particle. Neutrino inter-
actions could violate CP as well which will be crucial in
explaining the matter antimatter asymmetry in the universe.
Moreover, there could be additional sterile neutrinos.
There are several experimental efforts to find the absolute
mass of the neutrino. The f decay experiment performed at
KATRIN can, in principle, measure the effective electron
antineutrino mass by studying the endpoint region of the
decay spectrum. This is completely model independent
determination, i.e., it depends neither on any cosmological
models nor on the nature of neutrinos. At present, the
improved upper bound on the effective electron antineutrino
mass is reported to be m, < 0.8 eV at 90% confidence
level. The KATRIN experiment will continue to take data
over the next several years and it is expected that the mass
sensitivity will reach up to 0.2 eV. Future experiments like
Project 8 [2], designed to measure the absolute mass scale of
the neutrino, hopes to reach a goal of 40 meV/c? neutrino
mass sensitivity. Indirectly, one can have information on
neutrino mass from cosmological observations. These
cosmological observations are sensitive to the total neutrino
mass and to the number of neutrino species. There are
several results related to the total neutrino mass coming
from various cosmological observations. Most of these
indirect methods put a limit on the total neutrino mass to
be less than 0.2 eV. These results are, however, model
dependent. They rely heavily on several cosmological
assumptions. Current upper bound on the total neutrino
mass is reported by the Planck satellite to be Y m; <
0.12 eV at 95% confidence level combining BAO data with
CMB data [3]. If KATRIN’s mass sensitivity reach up to
0.2 eV in future, it can put severe constraint on several
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cosmological models. Rare double f decay process with two
anti neutrinos in the final state is allowed in the SM. In
general double beta decay processes are powerful probes of
beyond the SM physics. More specifically, if one observes
neutrinoless double S decay in experiments, it would
confirm that neutrinos are Majorana in nature. One can
determine the effective Majorana mass M,, by studying
neutrinoless double beta decay. There exists several limits
on the value of M,, using different isotopes. At present,
the best limits are reported to be m,, < (0.079-0.18) eV,
m,, < (0.075-0.35) eV and m,, < (0.061-0.165) eV [4-7],
respectively.

There are several theoretical efforts in explaining the
origin of neutrino mass. The most natural way to understand
neutrino mass is through seesaw mechanism. The neutrino
mass matrix in the framework of type-I seesaw mechanism
is given by M, = —MpMz'M%, where M), is the Dirac
neutrino mass matrix and My is the Majorana mass matrix
of the right-handed neutrinos. Phenomenology of the
Majorana neutrino mass matrix has been studied extensively
assuming zero textures of the neutrino mass matrix which
may be realized from the zeros in M, or Mp. In literature,
there have been phenomenological studies with texture one-
zero [8—10], two-zeros [11-24] and more within the context
of Pontecorvo Maki Nakagawa Sakata (PMNS), tribimax-
imal (TB), and trimaximal (TM) mixing matrix. Similarly,
in Refs. [25-30], the authors have studied the phenomeno-
logical implication of vanishing minors in the neutrino mass
matrix. Moreover, in Refs. [31-36] and Refs. [37-41], the
authors have explored the implication of cofactor zero and
hybrid texture of the neutrino mass matrix. In case of zero
textures, it is found that three or more zeros in the neutrino
mass matrix cannot accommodate the current neutrino
oscillation data. In Ref. [11], the authors have found that
out of fifteen possible two texture zeros cases only seven
cases with PMNS mixing are allowed experimentally. Also
out of fifteen possible two cofactors zero patterns only seven
patterns are acceptable [25]. In case of TM mixing along
with magic symmetry [22], the authors have found that only
two cases are valid for two texture zero. TM mixing with
one texture zero was studied in Ref. [10] and found that all
six patterns are compatible with current neutrino oscillation
data. For TB mixing along with the condition of texture
zeros or vanishing minor [28] only five patterns are allowed.
In this work we study the implication of one vanishing
minor in the neutrino mass matrix using trimaximal mixing.

Our paper is organized as follows. In Sec. II, we briefly
discuss the neutrino mass matrix using trimaximal mixing
matrix. We find all the mixing parameters such as 6,3, 6,3,
01, and the CP violating parameter d.p in terms of the
unknown parameters 6 and ¢ of the trimaximal mixing
matrix. In Sec. III, we describe the formalism of one
vanishing minor in the neutrino mass matrix and identify
all the possible patterns of one vanishing minor. We provide
all the detail numerical analysis and discussion of each

pattern in Secs. IV and V. The fine-tuning of the neutrino
mass matrix is presented in Sec. VL. In Sec. VII, we present
the symmetry realization and conclude in Sec. VIIL

II. NEUTRINO MASS MATRIX

The most widely studied lepton flavor mixing is TB
mixing pattern [42—45] introduced by Harrison, Perkins,
and Scott. TB mixing pattern provides remarkable agree-
ment with the atmospheric and solar neutrino oscillation
data. The TB mixing pattern is given by

2 1
3 3 0
— 1 1 1
Urp = | —\/¢ 3 2 (1)
—. /1 L _ /1
6 3 2

The TB mixing matrix possesses two types of symmetries:
u—7 symmetry and magic symmetry. Although TB
mixing matrix correctly predicted the value of atmos-
pheric mixing angle 6,5 and the solar mixing angle 0,5, it,
however, failed to explain a nonzero value of the reactor
mixing angle €5 that was experimentally confirmed by
T2K [46], MINOS [47], Double Chooz [48], Daya Bay
[49] and RENO [50] experiments. The possibility of an
exact ¢ — r symmetry in the mass matrix was completely
ruled out by a relatively large value of 65. Modifications
in the TB mixing pattern [51-53] was made to accom-
modate the present data. The TM mixing matrix was
constructed by multiplying the TB mixing matrix by an
unitary matrix and can be written as

2 1 | .
2 < Lsin
5 ﬁcose 7S 0
Ury = 1 cos@ _ e?sing sin0_|_ e cosd | (2)
! NEE V2 V3 V2
1 cos# + e?sind  sind __ e cosf
Vo V3 V2 V3 V2
and
2 1 2 ¢j
5cos 6 7 \Asma
U = | _cosO | e?sing 1 _sind _ ePcosh | 3
_cos@ e #sing 1 _ sind + e cosf
V6 2 V3 V6 V2

where 6 and ¢ are two free parameters. The neutrino mass
matrix corresponding to TM mixing matrix can be written as

M,, = (VMgoV"),, Wwith p,o=e.pu.z, (4)
where M ,, = diag(m,,m,, m3) is the diagonal matrix
containing three mass state, V = Uz, P and P is the phase
matrix written as
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Here a and S are the two CP violating Majorana phases.
|
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A. TM; mixing matrix

With TM; mixing matrix, the elements of the neutrino
mass matrix can be written as

1
sin?6 + —=sin 6 cos 96‘4’) mse?P

V6

. 1 . ) .
sin%@ — —sin 0 cos 96"/’) mye*P,

V6

1 1 1 N\ 2 . 1 1 S\ 2 )
M —m + —cos@——sinﬁe"”) mye?® 4+ (—sin6+—cos9e’¢> myeP,
me! (ﬂ V2 ’ V3 V2 ’
1 1 1 ) ) 1 1 ) )
M, = gt <§ cos?0 — Esinzé’ez"/’) mye?i@ + <§ sin’@ — Ecoszeez"/’) mye*P,
My, =tm + ( L cos + —sino i¢>2 2 < L sing - _coso "4’)2 2ip (6)
e =—m ——cosf +—=sinfe’? | e ——sinf — —=cos fe'? | mye*P.
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The three neutrino mixing angles 0,,, 6,3, and 65 can be
expressed in terms of € and ¢, the free parameters of the
TM, matrix, as

’ |(U12)TM1|2 - 2
S =T . 2T 1 3 s a

1 _|(U13)TM]| 3 —sin“0
2. — |(U23)TM1|2 _1 V/6sin 26 cos ¢
2= Up) P 2 3-sin’0 )’

1.

ST = ‘(U13)TM1|2 = 5511129’ (7)
where s;; = sin6;; and ¢;; = cos 0;; for i, j = 1,2, 3. Using

the standard parametn’zatlon of the PMNS matrix, the
Jarlskog invariant, a measure of CP violation, is defined
as [54]

_ 2 -
J = $12813523C12C]3C23 SING. (8)

Again, using the elements from TM; mixing matrix, the
Jarlskog invariant can be expressed as

1
J = ——=sin20sin ¢. 9
St 20sing ©

Combining Egs. (8) and (9), we can write 6 in terms of
0 and ¢ as

6sin*20cot’¢p

CSC25 = CSC2¢ - m .

(10)

The nature of neutrino can be determined from the
effective Majorana mass term. It also measures the rate
of neutrinoless double beta decay. The effective Majorana
mass |M,,| for the TM; mixing matrix can be written as

(2m; + mycos>0e*@ + mysin?@e?¥)|.

(11)

W =

Mo — '

Similarly, the effective electron antineutrino mass can be
expressed as

Z Uz, 2m1 + m3cos?0 + m3sin?0).  (12)

B. TM, mixing matrix

Using TM, mixing matrix, we can write the elements of
the neutrino mass matrix as

115023-3



IFFAT ARA MAZUMDER and RUPAK DUTTA

PHYS. REV. D 107, 115023 (2023)

V3
V3

3

The three neutrino mixing angles 0,5, 6,3, and 653 can be
expressed as

) 1
§6y = ——
12773 _ 25in20’
S%g :1 - ﬂsin2?czos¢ ’
72 3 — 2sin“@
2
573 = = sin’6). (14)

3

Again, using the elements from the TM, mixing matrix, the
Jarlskog invariant can be expressed as

1
J = ——=sin20sin ¢. 15
o350 2Wsing (15)

We can express the Dirac CP violating parameter dc-p in
terms of @ and ¢ as

3 sin® 26 cot® ¢

e A R

(16)

The effective Majorana mass |M,,| for the TM, mixing
matrix can be written as

IM,.| = |5 (2m;cos?0 + mye®® + 2mysin?0e>P)|.  (17)

W | =

The effective electron antineutrino mass can be expressed as

M; =

(2m?2 + m3cos?0 + 2m3sin®0). (18)

UJ|>—A

ITII. ONE VANISHING MINOR IN NEUTRINO
MASS MATRIX

There are six independent minors corresponding to six
independent elements in the neutrino mass matrix. We

1 N\ 2 1 . 1 1 A\ 2 .
M, = ——cos@—l——sin@e"‘/’) my + —m,e?® 4 (—sin9+—cos€e"¢> mse2ip,
o ( V6 V2 3 V6 V2 ’

1 o\ 2 1 )
—cos&—l—ﬁsinée“‘p) my + = mye*® 4

1 . 1 . 1 1 ) )
— - 08?0 + —=sin @ cos 9e"¢> m+ 3 mye?i® 4 <— —sin’f — —=sinf cos 9e"¢) mye*P,

3 V3

1 1 1 1 ) )
cos>0 — ——sin 6 cos e~ "”) mi+3 mye*i@ + (— —sin%0 + —=sin 0 cos 9e“¢) mse?P

3 V3

1 1 ) 1 1
cos29—§sm Oe 2’¢>m1 +§m262”" + <6 sm29—§cos e 2"7’) 2ip

1 1 N\ 2 .
——sin9+—cos96"¢> mye?’. (13)

(\/6 V2

I

denote the minor corresponding to ijth element of M;; as
C;;. The six possible patterns of one minor zero in the
neutrino mass matrix are listed in Table I. The condition for
one vanishing minor can be written as

Machd - Muvax =0. (19)

More specifically, we can write Eq. (19) in terms of a
complex equation as

m1m2X362ia + m2m3X162i(“+ﬂ) + m3m1X2€2iﬁ = 0, (20)
where

Xy = (UyUpU;Uy; = UU LU UG+ (0 ). (21)

with (i, j, k) as the cyclic permutation of (1,2,3). Using
Eq. (20), one can write the two mass ratios as

m; R(X3e¥)J (Xe””/’) R(X,

my, N(XEP)I(Xye?) - m<x3e2m> J(Xe)
my Rz I(X, a+ﬂ>> R(X, )3 (X559)
my N(X, D)3 (X, ) — (X, ) I(X, 2D

laJrﬂ ) (X e2i(1)

(22)
TABLE I. One minor zero patterns.
Pattern Constraining equation
I Cy3=0
I Cyp =0
I C3;1 =0
IV C21 = 0
V C 32 = 0
VI C 11 — 0
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The value of m;, m,, and m; can be calculated using
Eq. (22) and mass square difference Am3,. That is

/ (ml)z
my = \/Am3, |- = ,
my

1
my =\/Am3, | ——,

()’
)
T (23)
-
ny
Similarly, the ratio of squared mass difference is defined as

- (3)
_ ‘ Z
- 2

m

() -
where Am3, and Am3, represent solar and atmospheric
mass squared difference, respectively. Value of r =

(2.950 4+ 0.08) x 1072 is determined by using the mea-
sured values of Am3, and Am3, reported in Ref. [55].

m3 =/ Am3,

r , (24)

2
’ Amy,

2
Amsz,

IV. RESULTS AND DISCUSSION

For our numerical analysis, we use the measured values
of the oscillation parameters reported in Ref. [55]. For
completeness, we report them in Table II. We wish to find
the value of the unknown parameters 6 and ¢. It is evident
from Egs. (7) and (14) that the neutrino oscillation
parameters @, and 6,5 depend only on @. To find the best
fit value of 6, we perform a naive y? analysis. The relevant
x? is defined as

exp)z

gcal
E exp

i=1

(25)

TABLE II

where 0; = (0,,,0,3). Here 65" represents the theoretical
value of 6; and 6 represents measured central value of 6;.
The corresponding uncertainties in the measured value of 6;
is represented by o} "

For the TM; mixing matrix, the best fit value of 8 is
obtained to be 14.96°. The corresponding best fit values of
0,, and 6,5 are 34.33° and 8.57°, respectively. The 3¢
allowed range of @ is found to be (14.26°-15.64°). Using
the allowed range of @, we obtain the allowed ranges of 0,
and 6,3 to be (34.25°-34.42°) and (32.11°-57.88°), respec-
tively. We show in Fig. 1(a) the correlation of 8,3 and 6,
for the TM| mixing matrix. To see the variation of 8,5 with
¢, we use the allowed range of 8 and vary ¢ within its full
range from 0° to 360°. We show in Fig. 1(b) the variation of
0,3 as a function of the unknown parameter ¢. We also
obtain the best fit value of ¢ by using the measured best fit
value of 6,5. The best fit value is shown with a * mark in
Fig. 1(b). The best fit values of ¢ corresponding to the best
fit value of 6,3 = 49.2° are 69.43° and 290.57°, respec-
tively. We show the variation of J and d as a function of ¢ in
Figs. 1(c) and 1(d), respectively. It is observed that the
Jarlskog rephasing invariant J and the Dirac CP violating
phase o are restricted to two regions. The corresponding
best fit values of J and & are [-3.184 x 1072, 3.185 x 1072
and [71.11°, 288.98°], respectively. We also obtain the 3¢
allowed ranges of J and & to be [0,43.53 x 1072] and
[(55.05, 124.95)°, (235.05, 304.95)°], respectively.

For TM, mixing matrix, the best fit value of € is obtained
to be 10.50°. The corresponding best fit values of #,, and
015 are 35.72° and 8.56°, respectively. The 3¢ allowed range
of @ is found to be (10.03°-10.99°). Using the allowed range
of 0, we obtain the allowed ranges of 6, and 6,5 to be
(35.68°-35.76°) and (39.50°-51.40°), respectively. It should
be noted that although the allowed range of 6, obtained
with TM, mixing matrix is consistent with the 3o exper-
imental range, the best fit value obtained for 6;,, however,
deviates from the experimental best fit value at more than 2¢
significance. This is quite a generic feature of TM, mixing
matrix because, by default, value of 0, will be greater than
or equal to the value obtained in case of TB mixing matrix.
We show in Fig. 2(a) the correlation of 65 and 6, for the
TM, mixing matrix.

Neutrino oscillation parameters from NuFIT [55].

Normal ordering (best fit)

Inverted ordering (Ay*> = 7.1)

Parameter bfp + lo 30 ranges bfp &+ lo 30 ranges

01 33441571 3127 > 35.86 33451077 3127 — 35.87
02 49.2119 39.5 = 52.0 49,5510 39.8 — 52.1
01 8.57-013 8.20 — 8.97 8.60702 8.24 — 8.98

b 194732 105 — 405 2873 192 — 361
L, 74203, 6.82 — 8.04 7424021 6.82 — 8.04
loég"évz +2.5151 0038 +2.431 > +2.599 —2.49810:9%8 ~2.584 — —2.413
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FIG. 1.

a function of ¢ for TM; mixing matrix.
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To see the variation of 6,3 with ¢, we use the allowed
range of @ and vary ¢ within its full range from 0° to 360°.
We show in Fig. 2(b) the variation of 0,5 as a function of the
unknown parameter ¢. The best fit value is shown with a *
mark in Fig. 2(b). We obtain the best fit value of ¢ by using
the measured best fit value of 6,3. The best fit values of ¢
corresponding to the best fit value of 0,3 = 49.2° are 44.86°
and 315.19°, respectively. We get two best fit values of ¢
because 6,3 is invariant under the transformation ¢ —
(27 — ¢) which is evident from Egs. (7) and (14). We also
show the variation of J and ¢ as a function of ¢ in Figs. 2(c)
and 2(d), respectively. It is observed that the Jarlskog
rephasing invariant J and the Dirac CP violating phase o
are restricted to two regions. The corresponding best fit
values of J and & are [2.37 x 1072, -2.50 x 1072] and
[45.48°, 314.44°], respectively. We also obtain the 3o
allowed ranges of J and & to be [0,43.60 x 1072] and
[(0,90)°, (270,360)°], respectively.

In case of inverted mass ordering the 3¢ allowed range of
0 are found to be (14.37°-15.64°) and (10.10°-10.99°) for
both TM,; and TM, mixing matrix, respectively. Using the
30 allowed range of 6, we obtain the 3¢ allowed ranges of
0, to be (34.25°-34.41°) and (35.68°-35.76°), respectively
for both TM; and TM, mixing matrix. The 3¢ allowed
ranges of 6,3 to be (32.12°-57.87°) and (38.60°-51.39°),
respectively for both TM; and TM, mixing matrix. It is to
be noted that the mixing angles are almost similar for both
the normal and inverted mass ordering. So for our later
discussion we will use the values of mixing angles for the
normal mass ordering reported in Ref. [55].

V. PHENOMENOLOGY OF ONE
VANISHING MINOR

We wish to investigate the phenomenological implication
of one vanishing minor in the neutrino mass matrix on the
total neutrino mass, the effective Majorana mass term and
the electron antineutrino mass. It is evident from Eq. (23)
that neutrino mass m; depends on 8, ¢, a, f, and the mass
squared difference Am3,. We use the best fit value and the

0.08 T T T T T 0.1

30 allowed range of 6 and ¢ of Sec. IV that are determined
by the measured values of the mixing angles 6,3, 0,5, and
0,3. The two unknown Majorana phases @ and f are varied
within their full range from 0° to 360°. Moreover, we use the
30 allowed ranges of Am3, and r to constrain the values of
the neutrino masses. Now we proceed to analyze all the six
patterns of one vanishing minor one by one.

A. Pattern I: C33=0

Let us first consider minor zero for the (3,3) element of
the neutrino mass matrix. The equation corresponding to
this pattern can be expressed in terms of the elements of the
neutrino mass matrix as
(M,)

(Mzz> =0.

ep

(Mu)ee(Mu);m - (26)

Using Eq. (22), the two mass ratios for TM; can be
expressed as

e

A, sin2p + A, cos 2
my  (As + Ay)sin2(a— ) + (As — Ag) cos2(a — )’
my  A;sin2f + A, cos 2
my  A;sin2a+ Agcos2a’

ny

(27)

Similarly, for TM, mixing matrix, the mass ratios can be
expressed as

my _ (Ay + Ay sin2(f = ) + (A; + Ag) cos 2(5 — §)
my As sin2(a — f) — Ag cos 2(a — f§) ’
my _ (Ay+ Ay sin2(f — ) + (As + Ag) cos 2(5 — §)
my Ay sin2(¢p — a) — Ag cos 2(¢p — a) '

(28)

All the relevant expressions for A; and A; are reported in
Egs. (A1) and (A6) of appendix, respectively. We show the
variation of neutrino masses my, m,, and ms as a function
of ¢ in Figs. 3(a) and 4(a) for TM; and TM, mixing matrix,

0.12

m +
0.07 F m2
’ 0.08 o1p
__006f
E:,‘ 0.05F s 008
€ cosl L oosf
o >
€ oosf 2 o
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0.02 '/
0.01 |
o b . . . . o . . . . .
150 200 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0.15 0.2 0.25 0.3 0.35
¢ £m; (eV) m; (eV)
(a) (b) ()
FIG. 3. (a) Variation of m, m,, and mj as a function of ¢, (b) correlation of > m; and m,,, and (c) correlation of ) _ m; and m,, for Cs3
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respectively. It shows normal mass ordering for TM;
mixing matrix while for TM, mixing matrix, it shows both
normal and inverted mass ordering. The correlation of M,
and _ m; for TM; and TM, mixing matrix are shown in
Figs. 3(b) and 4(b), respectively. The vertical red line shows
the upper bound of the total neutrino mass reported in
Ref. [3]. The black, green and blue lines are the exper-
imental upper bounds of the effective Majorana mass as
reported in Refs. [4-7]. In Figs. 3(c) and 4(c), we have
shown the correlation of M, with > m; for TM; and TM,
mixing matrix, respectively. It is observed that the total
neutrino mass »_ m; puts severe constraints on effective
Majorana mass and M,,.

The range of the absolute neutrino mass scale, the
effective Majorana neutrino mass and the effective electron
antineutrino mass obtained for both the mixing matrix are
listed in Table III. The calculated upper bound of m,, is
obtained to be of O(1072) which is within the reach of
neutrinoless double beta decay experiment. The calculated
upper bound of m, < 0.06 eV may not be within the reach
of KATRIN experiment. It may, however, be within the
reach of next generation experiment such as Project 8. It
should, however, be mentioned that once the total neutrino
mass constraint is imposed, the calculated upper bound of
m,, and m,, is found to be less than 0.04 eV.

B. Pattern II: C,,=0
The vanishing minor condition for this pattern corre-

sponding to element (2,2) is given by

(M) r(M,) . = 0.

(MU)Be(MI/)‘[‘[ - (29)

TABLE IIL

The two mass ratios for TM; and TM, mixing matrix can
be expressed as

my B, sin2f + B, cos 2
my  (By+ By)sin2(a—f) — (Bs — Bg) cos2(a = f)

ms _ Bysin2f + B, cos2p

m,  Bysin2a + Bgcos2a’ (30)
and

my _ (B, + B,)sin2(f — §) + (B + By) cos 2(4 — ¢)
my Bssin2(a — ) — Bg cos 2(a — p) ’
my (By + By) sin2(8 — ¢) + (B + B,) cos 2(f — ¢)
my By sin2(¢p — a) — Bg cos 2(¢p — a)

(31)

All the relevant expressions for B; and B; are reported in
Egs. (A2) and (A7) of appendix. We show the variation of
neutrino masses m;, m,, and ms as a function of ¢ in
Figs. 5(a) and 6(a) for TM; and TM, mixing matrix,
respectively. It shows normal mass ordering for TM;
mixing matrix while for TM, mixing matrix, it shows both
normal and inverted mass ordering. The correlation of M,
and > m; for TM; and TM, mixing matrix are shown in
Figs. 5(b) and 6(b), respectively. In Figs. 5(c) and 6(c), we
have shown the correlation of M, with > m; for TM; and
TM, mixing matrix, respectively. The phenomenology of
this pattern is quite similar to Css.

The allowed range of the absolute neutrino mass scale,
the effective Majorana mass and the effective electron

Allowed range of > m;, m,,, and m, for Cs; pattern.

Mixing matrix Mass ordering

>_m; (eV)

me, (€V) m, (eV)

™, NO [0.059, 0.288] [1.955 x 1075, 0.048] 8.889 x 1073,0.053]
™, NO [0.056, 0.310] [1.462 x 1075,0.057] 8.575 x 1073,0.099]
10 [0.094, 0.425] [0.014, 0.116] [0.044, 0.144]
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antineutrino mass for this pattern are listed in Table I'V. It is
evident from Figs. 5 and 6 that the upper bound of ) m; <
1.2 eV put severe constraint on the value of the effective
Majorana mass term m,, and the value of the effective
electron antineutrino mass m,.. The estimated upper bound
of m,, and m, is found to be less than 0.04 eV.

C. Pattern III: C5;=0

This pattern corresponds to the matrix element (3,1) of
the neutrino mass matrix. The vanishing minor condition is
given by

(M,),,(M,)

- (M), (M,),, =0. (32)

et Hp

ey 723

Using the elements from the neutrino mass matrix, one can
write the neutrino mass ratios for this pattern. With TM,
mixing matrix, we have

myp Cysin2p + C, cos2p
m, Csysin2(a—f) —Cycos2(a—p)’
my _ Cysin2f +Cycos2f

m,  Cssin2a + Cqcos2a’ (33)
and for TM, mixing matrix, we have

my_Cysin2(p - §) + Cycos2(p - )

my  Cysin2(a—p) —Cycos2(a—p)

my C, sin2(p ¢; + G, cosZ(ﬁ—qﬁ;’ (34)

my  Cs sin2(¢p — ) + Cgcos2(¢p — a

where all the relevant C; and éi are reported in Eqs. (A3)
and (AS8) of appendix. We show in Figs. 7(a) and 8(a) the
correlation of neutrino masses m;, m, and ms with the
unknown parameter ¢ for TM; and TM, mixing matrix. It
shows both normal and inverted mass ordering for TM,; and
TM, mixing matrix. Similarly, the correlation of M, against
> m; for TM; and TM, mixing patterns are shown in
Figs. 7(b) and 8(b), respectively. Moreover, in the Figs. 7(c)
and 8(c), we have shown the correlation of M, with > m;
for TM; and TM,, respectively.

The allowed ranges of the absolute neutrino mass, the
effective Majorana mass and the effective electron anti-
neutrino mass for both the maxing matrix are listed in the
Table V.

D. Pattern IV: C5; =0

The vanishing minor condition for this pattern corre-
sponding to element (2,1) of the neutrino mass matrix is
given by

(M,)

(M) = (M) (M,),r = 0. (35)

e T

The two neutrino mass ratios for this pattern for TM; and
TM, mixing matrix are given by

my D, sin2f + D, cos 2f

m, Dysin2(a—p) +Dycos2(a—p)’
m3 _ Dysin2f + D, cos2f

m,  Dssin2a + Dgcos2a’

(36)

and

TABLE IV. Allowed range of > m;, m,,, and m, for C,, pattern.

Mixing matrix Mass ordering

Z m; (eV)

M, (eV) my, (eV)

™, NO [0.059, 0.425]
™, NO [0.056, 0.350]
10 [0.098, 0.427]

[0.011, 0.139]
[8.415 x 1073,0.113)
[0.045, 0.145]

[2.097 x 1075,0.127]
[4.185 x 1076, 0.081]
[0.015, 0.082]

115023-9



IFFAT ARA MAZUMDER and RUPAK DUTTA

PHYS. REV. D 107, 115023 (2023)

FIG. 6.

0.12 0.12
012f me L
ms 0.1 01f
0.1
E .08
o >
% L oosf
£ s
g 0.04 L
002 f e
L -
0.‘15 O.AZ 0f25 0.3 %.05 (;.1 0.‘15 0‘.2 0.‘25 0.3
% m; (eV) m; (eV)
(a) (b) ()
FIG.7. (a) Variation of m,, m,, and m5 as a function of ¢, (b) correlation of Y m; and m,,, and (c) correlation of » _ m; and m,, for Cs,

T
my +
my X

0.1

T 0.12

01

0.08 |

T

T T

m
g s
o~ [ o
€ L 06| e
.
0.04 "
',
0.02 -/
. . . . . o . . . . .
015 02 025 03 035 005 01 015 02 025 03 035
9’ m; (eV) Im; (eV)
(a) (b) (c)

(@) Variation of m,, m,, and mj5 as a function of ¢, (b) correlation of »  m; and m,,, and (c) correlation of >_ m; and m,, for C,,
pattern using TM, mixing matrix. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines show the experimental upper bounds of the effective Majorana mass reported in Refs. [4-7].

pattern using TM; mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines are the experimental upper bounds of the effective Majorana mass reported in Refs. [4-7].
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TABLE V. Allowed range of > m;, m,,, and m, for C3; pattern.

Mixing matrix Mass ordering > m; (eV) m,, (V) m, (V)

™, NO [0.057, 0.253] [1.003 x 107#,0.073] [0.011, 0.080
10 [0.096, 0.329] [0.014, 0.087] [0.044, 0.112]

™, NO [0.057, 0.294] [3.658 x 107, 0.092] [8.624 x 1073, 0.094]
10 [0.092, 0.548] [0.014, 0.126] [0.045, 0.185]
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my _ Dysin2(8 - ¢) + Dycos2(B - ¢)

my  Dysin2(a—p) + Dycos2(a—p)’

my _ Dy sin2(f — ¢) + D, cos2(f — ¢) (37)
my  Dssin2(¢p—a) —Dgcos2(¢p—a)’

where all the relevant D; and D; are reported in Eqs. (A4)
and (A9) of appendix. In Figs. 9(a) and 10(a) we have
shown the correlation of neutrino masses m;, m,, and m;,
with the unknown parameter ¢ for TM; and TM, mixing
matrix. It shows both normal and inverted mass ordering
for TM; and TM, mixing matrix. The correlation of M,,
against _ m; for TM; and TM, mixing patterns are shown

and 10(c), we have shown the correlation of M, with >_ m;
for TM; and TM,, respectively.

We also report the allowed ranges of the absolute
neutrino mass, the effective Majorana mass and the
effective electron antineutrino mass for both the maxing
matrix in Table VI. The phenomenology of this pattern is
very similar to that of Cj;.

E. Pattern V: C;;,=0

The condition of vanishing minor for this pattern is
given by

in Figs. 9(b) and 10(b), respectively. In the Figs. 9(c) (Mv>ee(Mv)m - (Mv)ﬂe(MV>er =0. (38)
TABLE VI. Allowed range of > m;, m,,, and m, for C,; pattern.
Mixing matrix Mass ordering > m; (eV) m,, (V) m, (eV)
™, NO [0.080, 0.249] [2.213 x 1073,0.076] [0.017, 0.079]
10 [0.101, 0.720] [0.014, 0.125] [0.044, 0.241]
™, NO [0.066, 0.569] [1.655 x 107*,0.095] [0.010, 0.187]
10 [0.097, 0.458] [0.015, 0.137] [0.045, 0.154]
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For this pattern, the two neutrino mass ratios for TM; and
TM, mixing matrix are given by

mp Eysin2f + £, cos2p
m, Eysin2(a—pf)+ Eycos2(a—p)’
msy & sin2f + & cos2p

m,  Essina + Egcos2a’ (39)
and

my &y sin2(f—¢) + & cos2(B - ¢)

my  Eysin2(a—pf) + Eycos2(a— )

my & sin2(f—¢) + & cos2(f — ¢) (40)

my  Essin2(¢p—a) —Egcos2(p—a)’

TABLE VIIL.

respectively. The relevant expressions for &£ and &; are
reported in Egs. (AS) and (A10) of appendix. The corre-
lation of neutrino masses 1, m,, and m; with the unknown
parameter ¢ are shown in Figs. 11(a) and 12(a), respec-
tively for TM; and TM, mixing matrix. It is observed that,
it shows normal mass ordering for TM; mixing matrix,
whereas, for TM, mixing matrix, it shows both normal and
inverted mass ordering. The correlation of M,, and >_ m;
are shown in Figs. 11(b) and 12(b), respectively using TM;
and TM, mixing matrix. In Figs. 11(c) and 12(c), we have
shown the correlation of M, with >  m; using TM,; and
TM, mixing matrix, respectively.

The allowed ranges of all the relevant parameters such as
the absolute neutrino mass, the effective Majorana mass
and the effective electron antineutrino mass under normal
and inverted ordering for both the mixing matrix are
reported in Table VII.

Allowed range of > m;, m,,, and m, for Cs, pattern.

Mixing matrix Mass ordering

>_m; (eV)

My, (V) m, (eV)

™, NO
™, NO
1(0)

[0.061, 0.261]
[0.056, 0.507]
[0.101, 0.346]

[1.309 x 1074,0.063
[6.054 x 1075,0.164]
[0.017, 0.078]

[0.011, 0.082]
[0.084, 0.166]
[0.045, 0.118]
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F. Pattern VI: C;; =0

The vanishing minor condition for this pattern is
given by

(M) (M) e = (M), (M,) e = 0. (41)

T UT
The two neutrino mass ratios can be obtained using the
elements from the neutrino mass matrix. For TM;| mixing
matrix, we have

my 2sin2p
m, cos*@sin2(a—p)’
my  tan?@sin2f (42)
my, sin 2«
and for TM, mixing matrix, we have
my _ 2cos®@sin2p
m, sin2(a—p) "’
my  2sin?@sin2p (43)
m, sin 2a

Using Eq. (42), we obtain the mass relation for TM;
mixing matrix as
mysin2(a — ff) —2m, sin2f + mysin2a =0 (44)
and using Eq. (43), we obtain the mass relation for TM,
mixing matrix as
mysin2(a—f) —2m,sin2f —mzsin2a =0.  (45)
This pattern gives a clear inverted mass ordering for both
TM; and TM, mixing matrix. The correlation of the
neutrino masses m;, m, and ms for both the mixing
patterns with the unknown parameter ¢ is shown in
Figs. 13(a) and 14(a), respectively. The correlation of
M,, with > m; for TM; and TM, are shown in Figs. 13(b)
and 14(b), respectively. In Figs. 13(c) and 14(c), we have
shown the correlation of M, with ) m; for TM; and TM,
mixing matrix, respectively.
The allowed ranges of the absolute neutrino mass, the
effective Majorana mass and the effective electron anti-

neutrino mass obtained for both the mixing matrix are listed
in the Table VIIL.
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TABLE VIII.  Allowed range of Y m;, m,,, and m,

for C,; pattern.

Mixing matrix Mass ordering

Z m; (eV)

Mee (€V) m, (eV)

10
10

™,
™,

[0.092, 0.111]
[0.091, 0.112]

[0.013, 0.050]
[0.014, 0.052]

[0.043, 0.053]
[0.044, 0.054]

VI. DEGREE OF FINE TUNING IN THE NEUTRINO
MASS MATRIX

In this section, we wish to determine whether the
entries of the neutrino mass matrix are fine tuned or
not. In order to determine the degree of fine tuning of the
mass matrix elements, we define a parameter dgy [19,56]
which is obtained as the sum of the absolute values of the
ratios between each parameter and its error. We follow
Refs. [19,56] and define the fine tuning parameter as

dr =y |

, (46)

where par; = (015,603,023, Am3,, Am3,) is the best fit
values of the parameters. The error err; for each parameter
is obtained from the shift of best fit value that changes the
x> value by one unit keeping all other parameters fixed at
their best fit values. To determine the best fit values of all
the parameters, we perform a y? analysis of all the classes
of one minor zero and find the y2. . We define the y* as
follows:

3

A=Y

i=1

(0 — 02 A — A
(77 G

+Z(

j=2131

(47)

where 6; = (015,613, 653) and Am; = (Am3,, Amj3, ). Here
05" and AmS" represent the theoretical value of ¢; and
Am;, respectively, whereas 67" and Am}™® represent
measured central value of ¢; and Am;, respectively. It
should be noted that ¢ and Am$* depend on four
unknown model parameters, namely 6, ¢, @, and fS.

Similarly, the uncertainties in the measured value of 6,
and Am; are represented by 07" and o;", respectively.
The central values and the corresponding uncertainties in
each parameter are reported in Table II.

We first compute dp,, which is defined as the sum of the
absolute values of the ratios between the measured values of
each parameter and its error from Table II. We obtain the
value of dp,, to be around 200 for both normal and inverted
ordering case. The degree of fine tuning can be roughly
estimated from the value of dgr because if the dpr value is
large then a minimal variation of the corresponding param-
eters give large difference on the value of . Hence a large
value of dpr corresponds to a strong fine tuning of the mass
matrix elements and vice versa. The sznin value and the
corresponding best fit values of the unknown parameters of
the neutrino mass matrix 6, ¢, a, f and the value of dpy
parameter for each patterns are listed in the Tables IX and X
for the TM; and TM, mixing matrix respectively. We also
report the best fit values of several observables such as 6,
013, 023, Am3,, and Am3, for each pattern. For the patterns
Cs3, Cy, C31, C3, and C,;, the results are for NO case
and for the pattern Cy;, the results are for the IO case. As the
pattern C,; follows the 10, the y2. value obtained for
this pattern is large for both TM; and TM, mixing matrix.
The best fit values of the mixing angles 0,3, 6;,, ;3 and the
mass squared differences Am3,, Am3, obtained for each
pattern are compatible with the experimentally measured
values reported in Table II.

In case of TM; mixing matrix, pattern C,3 shows very
good agreement with the data with a very small dgr value.
Although, the pattern C5; also have same y? as pattern C»3,
it, however, has a much larger dgy value compared to
pattern C,3. It can be concluded that for the pattern Cjy,
there is a strong fine tuning among the elements of the mass

TABLE IX. The values of y2, . dgr, the best fit values of 65, 6},, 055, 6", ¢", &, f', Am3, (107 eV?), and Am3,(1073 eV?) for TM,

mixing matrix.

Type 12, dpr 0, 0, 03 o ¢ o p Am3, (1075 eV?)  Am3, (1073 eV?)
Cy; 266 838x10° 848 3435 4859 14.80 287.67 290.89 320.72 7.51 2.42
Cy 280 235x10° 846 3436 4877 1477 25138 31324 7437 7.48 2.45
Cy  1.69 843 x10° 857 3433 4883 1496 108.69 7.46  338.00 7.47 2.44
Cyp 169 83.72 8.60 3433 4956 1502 76.68 8495 357.14 7.47 2.44
Cy 324 136x10° 8.67 3431 5000 1507 6350 269.82 21681 7.47 2.41
C;; 405 488x10* 841 3437 4933 1468 291.60 18842  83.27 7.40 -2.46
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TABLE X. The values of y2. , dgr, the best fit values of 6}, 6},, 655, 0", ¢", &', 7, Am3, (107 eV?), and Am?,(1073 eV?) for TM,

mixing matrix.

Type 1% dpr 0, 0, 05 o ¢ a s Am, (107 eV?)  Am3, (1073 eV?)
Cs3 8.87 5.86x10> 857 3572 4895 10.52 31043 178.66 169.70 7.42 243

Cy 9.08 431x10*> 859 3572 4885 10.54 230.78 63.70  184.68 7.37 4.43

Cy 923 478 x10* 855 3572 4850 10.49 23475 18556 217.34 7.37 2.44

Cs, 929 1.09x10*> 8.56 3572 4894 10.51 31043 355.65 82.48 7.50 2.44

Cy 912 207x10° 854 3570 49.80 1047 142.15 279.77 59.23 7.40 243

Cyy 9.82 229x10* 8.65 3573 5055 10.62 25.81 341.08 103.82 7.42 -2.49
matrix. Similarly, C»,, Cy;, and Cs3 have larger dgy value 0* ot o

compared to C;; pattern, although they have less y* value O=1 o o 10 (49)
than C;;. For C,,, Cy;, and Cs3 also the degree of fine 6 s

tuning among the mass matrix elements is very strong.
Moreover, it is very clear from Table IX that all these
patterns prefer the atmospheric mixing angle 6,3 to be
greater than /4. Based on the dgr values, it is clear that it
requires less fine tuning of the mass matrix elements for
patterns C,3 and Cy;.

For the TM, mixing matrix, the fine-tuned parameter dgy
is small for the patterns Cs3, Cy,, C3,, and Cy;. Among all
these patterns C3, has the lowest dpp value. However, for
patterns C3; and C,;, dpr value is quite large and hence the
degree of fine tuning among the elements of the mass
matrix is quite strong for these patterns. All the patterns
prefer the best fit value of 6,5 to be larger than /4.

VII. SYMMETRY REALIZATION

The symmetry of one vanishing minor can be realized
through type-I seesaw mechanism [57,58] along with
Abelian symmetry. One vanishing minor in the neutrino
mass matrix can easily be obtained if one element in the
Majorana matrix My is zero along with diagonal Dirac
mass matrix Mp. In order to fulfill this condition, we need
three right-handed charged lepton I, (p = 1, 2, 3), three
right-handed neutrinos v, and three left-handed lepton
doublets D;,. We present the symmetry realization of
pattern V. The symmetry of this pattern can be realized
through the Abelian symmetry group (Z;, x Z,) that is
discussed in Refs. [27,59].

The leptonic fields under Z,, transform as

[g1 = wlg, Up| = @lpy, Dy —» oDy,

7 27 - 2- =

gy = @Iy, VUgy = W VR, Dy — a)3DL2,

Igs = @ I, Uy = @ gs, Dp;— o®Dyy, (48)

where @ = exp(Z). The bilinears Ig,D;, and vg,Dp,.
where p, g =1, 2, 3, relevant for (M;),, and (Mp),,
transform as 7RI,DLq — Qlg,Dy,, where

.y - =T
and the bilinears g, Cig,, relevant for (M), transform as
gy Clk, = Ag,Clg,, Where

(50)

For each nonzero element in My, we need a scalar singlet
Xpq @nd for each nonzero element in (M;),, or (Mp),,

we need Higgs scalar ¢, or (}pq, respectively. The scalar
singlets get the vacuum expectation values (vevs) at the
seesaw scale, while Higgs doublets get vevs at the electro-
weak scale. Under Z, transformation, the sign of i pg and
Vgp changes, while other multiplets remain invariant. The
diagonal charged lepton mass matrix can be obtained by
introducing only three Higgs doublets namely ¢, ¢, and
¢33, similarly, the diagonal Dirac neutrino mass matrix can
be obtained by introducing three Higgs doublets ¢, ¢oo,
and ¢s3. The nonzero elements of My can be obtained by
introducing scalar fields y, x12, ¥13> X220, and y33 which
under Z, transformation gets multiplied by ', ©°, @°, »®,
and @?, respectively. The Majorana mass matrix My can be
written as

(51)

This provides minor zero corresponding to (3,2) element in
the neutrino mass matrix. Other patterns can also be realized
similarly for different Mp.
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VIII. CONCLUSION

We explore the implication of one minor zero in the
neutrino mass matrix obtained using trimaximal mixing
matrix. There are total six possible patterns and all the
patterns are found to be phenomenologically compatible
with the present neutrino oscillation data. The two unknown
parameters € and ¢ of the trimaximal mixing matrix are
determined by using the experimental values of the mixing
angles 6),, 6,3, and 0,3. It is found that TM; mixing matrix
provides a better fit to the experimental results than TM,
mixing matrix. The Jarlskog invariant measure of CP
violation is nonzero for all the pattern, so they are
necessarily CP violating. Patterns I, II, and V show normal
mass ordering for TM; mixing matrix while these patterns
show both normal and inverted mass ordering for TM,
mixing matrix. Patterns IIT and IV show both normal and
inverted mass ordering for both TM; and TM, mixing
matrix. Pattern VI predicts inverted mass ordering for both
the mixing matrix. We predict the unknown parameters such
as the absolute neutrino mass scale, the effective Majorana

1
—sin’6 + cos?6 cos 2¢p — \/7 sin @ cos 0 cos qb)

1
3¢ cos?0sin 2¢) — \/7 sin @ cos @ sin qﬁ)

mass and the effective electron antineutrino mass using both
TM, and TM, mixing matrix. The effective Majorana mass
obtained for each pattern is within the reach of neutrinoless
double beta decay experiment. Similarly, the value obtained
for the effective electron antineutrino mass may be within
the reach of future Project 8 experiment. We also discuss the
fine tuning of the elements of the mass matrix for all the
patterns by introducing a new parameter dpr. We observe
that for the pattern C»3, the fine tuning among the elements
of the mass matrix is small compared to other patterns.
Moreover, we also discuss the symmetry realization of
pattern V using Abelian symmetry group Z;, X Z, in the
framework of type-I seesaw model which can be easily
generalized to all the other patterns as well.

APPENDIX

The coefficients in the mass ratios for the TM; mixing
matrix can be expressed in terms of the two unknown
parameters 6 and ¢ as

1 2 1 1 2
cos’0 + 5 sin6 cos 2¢ + \/; sin @ cos 0 cos gb) <3 sin0 + 5 cos?6 cos 2¢p — \/; sin @ cos 0 cos qb) ,

"6
_1
6
€
| P 2, . | 2,
Ay = §s1n951n2¢+ gsmé?cosé’smqb Ecos€s1n2¢— gsmecosecosqﬁ,

2 1 1 2
> sin®@sin 2¢ + \/; sin @ cos @ sin ¢> (3 sin?@ + 3 cos?6 cos 2¢) — \/; sin @ cos @ cos ¢) ,
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1/1 1 2
B, = c <§ sin% + 500526 cos2¢ + \/;sinﬁcos 0 cos qﬁ),

1 2
(E cos?@sin 2¢ + \/; sin @ cos 0 sin ¢> ,

1 2 1 1 2
cos?0 + 3 sin6 cos 2¢) — 3 sin @ cos 0 cos ¢> <§ sin’6 + 5 cos’0 cos 2¢ + \/; sin @ cos 6 cos (/5) ,

1
6
1 ) . 2 . . 1 2 . 2 .
By = Esm Osin2¢p — gsmecosﬁsmd) zcos Osin2¢ + gsmﬁcosﬁcosd) ,
2 2, . L, L., 2,
cos“@sin2¢ + gsmecosﬁsm(ﬁ gcos 9+Esm 0cos2¢ — §51n9cost9005¢ ,

1 2 1 2
sin’6 + 3 c0s?6 cos 2¢ + \/; sin @ cos 0 cos ¢> (5 sin?@sin 2¢ — 3 sin @ cos @ sin 45) ,

1/1 1 2
B, =—— <— cos20 + Esinzﬁ cos2¢ — gsinﬁcosecos (]5),

6 \3
AN 2 . .
38:—6 5 sin 6sin2¢ — gsmﬁcosﬁsmqﬁ . (A2)
1/1 1
C, = -3 <§sin€cos€— \/%coszecosqﬁ),
1
C, = ———(cos?fsin ),

1 1 1 1 1
Cy = <6 sin 900539sin2¢> - <§COSZH+ \/gsinecosesin gb) <§ sin @ cos 6 — \/%coszecos qb),
TRTYS B [ I 1 T
Cy = Ecos Osin ¢ gcos 0+ gsmecosecosqb + gsmﬁcos@cosqb gsm&cosG— Ecos Ocosg |,
C ! 1cos29+\/isin9cosecos¢
> 3\3 6 ’

1
Cq = ——=sin O cos 0 sin ¢. A3
1/1 1
D, = -3 (gsinm— \/;sinécosecoscﬁ),
1
D, = ———(cosfsing),

1 1 1 1 1
D; = (6 sin29coszt9$in2¢) + (500529 - \/%sinécosécos ¢> (5 sin?6 — \/%sinecosecos ¢>,
. . ., L. L. . r 1.

D,y = {/=sinfcosOsin¢ gsm 0+ gsm900s900s¢ - gsmacosesmqﬁ gcos 0— gschochosqﬁ ,

Loos \f in 0 cos B cos

—c0s“0 — {/—sin# cos  cos

3 6 '
1

sin € cos @sin ¢p. (A4)

QN =

DSZ

(USRI

Dy———
63\/6
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1/1 1
& = ~¢ <§ cos?0sin 2¢p — 3 sin29> ,
1
&= 1 (cos?0sin 2¢),
.o 20cin2 I ooy 1.y I o .,
&3 = | —sin“fOcos“Osin“2¢ | — [ =cos“0 — =sin“dcos2¢ | | =cos“fcos2¢ — —sin“0 |,
4 3 2 2 3
L, | P B | | L.,
E, ==cos 0sin2¢ | =cos 0 — —sin“Ocos2¢p | + =sin“dsin 2¢ | = cos“Ocos2¢p — —sin“H |,
2 3 2 2 2 3
1/1 1
Es = —% <§ cos?0 — 3 sin®@ cos 2¢> ,
1
Es = - sin?6 sin 2¢. (A5)
Similarly, the coefficients in the mass ratios for the TM, mixing can be written as

10 1 1 1
A = —sin?0cos>0 cos 2¢ + — sin* — ——sin?@ sin 20 cos ¢ + - cos*0(cos?2¢p — sin?2¢h),

36 12 6V3
- 1 1
A, = 673 c0s@ sin 26 cos 3¢p — o sin?26 cos 2,
Ay = 10 sin?6cos’@ sin 2¢p b sin?@ sin 20 sin ¢ + 1cos“é’ cos 2¢ sin 2¢
7736 6v/3 6 ’
~ 1 1
A, = 6/ cos?@ sin 26 sin 3¢p — - sin%20 sin 2¢,
~ 1 1 1
As = —sin?0 + —cos?6 cos 2¢p — ——sin 26 ,
5=1g sin“0 + 6 cos“0 cos 2¢ 63 sin 26 cos ¢
~ 1 1
As = —c0s20 sin 2¢p — ——sin 26 sin ¢,
- 1 1 1
A, = —sin20 + — cos20 cos 2¢p + ——sin 20.cos ¢,
7 6sm +lgcos cos (/)+6\/§sm cos ¢
- 1 1
Ag = —cos?fsin2 ——sin 20sin ¢. A6
g = 7gcos @sin ¢+6\/§sm sin ¢ (A6)
B, = 10 sin®0cos?@ cos 2¢ + 1 sin*0 + 1 sin®@ sin 26 cos ¢ + 1 cos*0(cos?2¢p — sin’2¢)
S 12 63 12 ’
- 1 1
B, =- 6/ cos?6sin 26 cos 3¢p — - sin26 cos 2¢,
B, = 10 sin?6cos?@ sin 2¢) + b sin®@ sin 26 sin ¢ + 1 cos*@ cos 2¢p sin 2¢
3736 613 6 ’
- 1 1
B, =- 6/ cos?@sin 20sin 3¢p — - sin®26 sin 2¢,
Bs = ! sin®0 + | c0s%6 cos 2¢ + ! sin 20 sin ¢
> 18 6 6v/3 ’
- 1 1
Bg = —co0s*0sin 2¢p + ——=sin 20sin ¢,
B, = ! sin®0 + ! 0826 cos 2¢p ! sin 20 cos ¢
776 18 6v3 ’
- 1 1
By = —co0s?0sin 2¢p — ——=sin 20 sin ¢p. A7
g = g Cos Osin ¢ V3 sin 26 sin ¢ (A7)
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1 1 1 1
C, = 5 sin?0cos?6 cos 2¢p — ——cos’@ sin 26 cos 3¢p + ——sin>@ sin 260 cos ¢ — - sin26 cos 2¢,

6v/3 6v/3
~ 1 1 1 1
C, = —sin6cos? sin 2¢p — ——cos20 sin 26 sin 3¢p + ——sin® sin 20 sin p — — sin®@ sin 24,
- 1 1
C; = ﬁ sin 26 cos ¢ — 9 sin%6,
Cy = sin 26 sin ¢,
6\/_
Cs = Lcos?0 2¢ + ! in20 b
= —cos?f cos —sin 26 cos ¢,
) 6V3
- 1 1
Ce = —c0s%0sin 2¢p + ——=sin 20sin ¢p. A8
°=9 Pt T3 ¢ (A8)
D, = ! sin®0cos?6 cos 2¢ — L sin’@ sin 26 cos 3¢ + b cos?0sin 26 cos ¢ — 1 sin26 cos 2¢
9 63 63 12 ’
~ 1 1 1 1
D, = —sin20c0s20 sin 2¢p — ——sin?0 sin 20 sin ¢ + —— cos26 sin 26 sin 3¢p — — sin6 sin 2¢p,
P9 N AV =1 ¢
- 1
3 = sin 26 cos ¢ —i——sm 20,
6f
~ 1
e @ sin 26 sin ¢,
- 1 1
Ds = —cos?6 cos 2¢p — ——sin 26 cos ¢,
sin20sin¢p — — c0529 sin 2¢. (A9)

De =
6 — 6\/_
& = 10 sin*fcos’0 cos 2¢) — 1 cos*@cos?2¢ — 1 sin*@ + icos“&sinzqu,
36 12 12 12
5 1
& = 8 sin?@cos?@ sin 2¢) — ¢ cos*@'sin 2¢) cos 2¢p,

~ 1 1
&3 = — 0826 cos 2¢p — s sin’#,

~ 1
Ey = 6 cos?f sin 2¢,
& ! sin%0 ! c0s26 cos 2¢
= —S1 —_—— s
> 6 18
~ 1
Ee = 6 cos@ sin 2. (A10)
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