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We investigate the implications of one vanishing minor in the neutrino mass matrix using trimaximal
mixing matrix. In this context, we analyze all six patterns of one vanishing minor zero in the neutrino mass
matrix and present correlations of the neutrino oscillation parameters. All the six patterns are found to be
phenomenologically viable with the present neutrino oscillation data. We also predict the values of effective
Majorana mass, the effective electron antineutrino mass, and the total neutrino mass for all the patterns.
The value obtained for the effective neutrino mass is within the reach future neutrinoless double β decay
experiments. We also propose a flavor model where such patterns can be generated within the seesaw model.
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I. INTRODUCTION

Evidence of neutrino oscillations observed in multitude
of experiments confirms that neutrinos mix with each other
and have nonzero mass [1]. Neutrino oscillation phenomena
can be parametrized in terms of six independent parameters,
namely three mixing angles ðθ13; θ12; θ23Þ, one Dirac CP
violating phase ðδCPÞ, and two mass squared differences
ðΔm2

21;Δm2
31Þ. Although we have very precise values of the

mixing angles and the absolute value of the mass squared
differences, there are still some unknowns such as the octant
of θ23, δCP and the sign of Δm2

31. There are two possible
mass ordering of the neutrino mass spectrum: normal mass
ordering (NO) m1 < m2 ≪ m3 and inverted mass ordering
(IO) m3 ≪ m1 < m2 depending on the sign of Δm2

31.
Neutrino oscillation experiments are sensitive only to the

mass squared differences. They cannot provide any infor-
mation regarding the absolute mass scale of neutrinos which
is one of the most sought after questions in particle physics
today. Knowledge of the absolute mass scale of neutrinos is
of great importance not only in particle physics but also in
understanding the large scale structure of our universe.
Neutrinos possess very tiny mass and unlike all other
fermions in the Standard Model (SM), they do not seem
to get their mass through Higgs mechanism. Hence, it may,
in principle, help shape our understanding of the origin of
particle mass which is still one of the most fundamental
questions of particle physics. Unlike all other fermions in

the SM, we observe only left handed neutrinos and right
handed antineutrinos. We have not found any right handed
neutrino and left handed antineutrino so far in experiments.
This brings us to the next relevant question whether neutrino
is a Dirac particle or a Majorana particle. Neutrino inter-
actions could violate CP as well which will be crucial in
explaining the matter antimatter asymmetry in the universe.
Moreover, there could be additional sterile neutrinos.
There are several experimental efforts to find the absolute

mass of the neutrino. The β decay experiment performed at
KATRIN can, in principle, measure the effective electron
antineutrino mass by studying the endpoint region of the β
decay spectrum. This is completely model independent
determination, i.e., it depends neither on any cosmological
models nor on the nature of neutrinos. At present, the
improved upper bound on the effective electron antineutrino
mass is reported to be mν < 0.8 eV at 90% confidence
level. The KATRIN experiment will continue to take data
over the next several years and it is expected that the mass
sensitivity will reach up to 0.2 eV. Future experiments like
Project 8 [2], designed to measure the absolute mass scale of
the neutrino, hopes to reach a goal of 40 meV=c2 neutrino
mass sensitivity. Indirectly, one can have information on
neutrino mass from cosmological observations. These
cosmological observations are sensitive to the total neutrino
mass and to the number of neutrino species. There are
several results related to the total neutrino mass coming
from various cosmological observations. Most of these
indirect methods put a limit on the total neutrino mass to
be less than 0.2 eV. These results are, however, model
dependent. They rely heavily on several cosmological
assumptions. Current upper bound on the total neutrino
mass is reported by the Planck satellite to be

P
mi <

0.12 eV at 95% confidence level combining BAO data with
CMB data [3]. If KATRIN’s mass sensitivity reach up to
0.2 eV in future, it can put severe constraint on several
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cosmological models. Rare double β decay process with two
anti neutrinos in the final state is allowed in the SM. In
general double beta decay processes are powerful probes of
beyond the SM physics. More specifically, if one observes
neutrinoless double β decay in experiments, it would
confirm that neutrinos are Majorana in nature. One can
determine the effective Majorana mass Mee by studying
neutrinoless double beta decay. There exists several limits
on the value of Mee using different isotopes. At present,
the best limits are reported to be mee < ð0.079–0.18Þ eV,
mee < ð0.075–0.35Þ eV andmee < ð0.061–0.165Þ eV [4–7],
respectively.
There are several theoretical efforts in explaining the

origin of neutrino mass. The most natural way to understand
neutrino mass is through seesaw mechanism. The neutrino
mass matrix in the framework of type-I seesaw mechanism
is given by Mν ¼ −MDM−1

R MT
D, where MD is the Dirac

neutrino mass matrix and MR is the Majorana mass matrix
of the right-handed neutrinos. Phenomenology of the
Majorana neutrino mass matrix has been studied extensively
assuming zero textures of the neutrino mass matrix which
may be realized from the zeros in MD or MR. In literature,
there have been phenomenological studies with texture one-
zero [8–10], two-zeros [11–24] and more within the context
of Pontecorvo Maki Nakagawa Sakata (PMNS), tribimax-
imal (TB), and trimaximal (TM) mixing matrix. Similarly,
in Refs. [25–30], the authors have studied the phenomeno-
logical implication of vanishing minors in the neutrino mass
matrix. Moreover, in Refs. [31–36] and Refs. [37–41], the
authors have explored the implication of cofactor zero and
hybrid texture of the neutrino mass matrix. In case of zero
textures, it is found that three or more zeros in the neutrino
mass matrix cannot accommodate the current neutrino
oscillation data. In Ref. [11], the authors have found that
out of fifteen possible two texture zeros cases only seven
cases with PMNS mixing are allowed experimentally. Also
out of fifteen possible two cofactors zero patterns only seven
patterns are acceptable [25]. In case of TM mixing along
with magic symmetry [22], the authors have found that only
two cases are valid for two texture zero. TM mixing with
one texture zero was studied in Ref. [10] and found that all
six patterns are compatible with current neutrino oscillation
data. For TB mixing along with the condition of texture
zeros or vanishing minor [28] only five patterns are allowed.
In this work we study the implication of one vanishing
minor in the neutrino mass matrix using trimaximal mixing.
Our paper is organized as follows. In Sec. II, we briefly

discuss the neutrino mass matrix using trimaximal mixing
matrix. We find all the mixing parameters such as θ13, θ23,
θ12 and the CP violating parameter δCP in terms of the
unknown parameters θ and ϕ of the trimaximal mixing
matrix. In Sec. III, we describe the formalism of one
vanishing minor in the neutrino mass matrix and identify
all the possible patterns of one vanishing minor. We provide
all the detail numerical analysis and discussion of each

pattern in Secs. IV and V. The fine-tuning of the neutrino
mass matrix is presented in Sec. VI. In Sec. VII, we present
the symmetry realization and conclude in Sec. VIII.

II. NEUTRINO MASS MATRIX

The most widely studied lepton flavor mixing is TB
mixing pattern [42–45] introduced by Harrison, Perkins,
and Scott. TB mixing pattern provides remarkable agree-
ment with the atmospheric and solar neutrino oscillation
data. The TB mixing pattern is given by

UTB ¼

0
BBBBBB@

ffiffi
2
3

q ffiffi
1
3

q
0

−
ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2
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−
ffiffi
1
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q ffiffi
1
3

q
−

ffiffi
1
2

q

1
CCCCCCA
: ð1Þ

The TB mixing matrix possesses two types of symmetries:
μ − τ symmetry and magic symmetry. Although TB
mixing matrix correctly predicted the value of atmos-
pheric mixing angle θ23 and the solar mixing angle θ12, it,
however, failed to explain a nonzero value of the reactor
mixing angle θ13 that was experimentally confirmed by
T2K [46], MINOS [47], Double Chooz [48], Daya Bay
[49] and RENO [50] experiments. The possibility of an
exact μ − τ symmetry in the mass matrix was completely
ruled out by a relatively large value of θ13. Modifications
in the TB mixing pattern [51–53] was made to accom-
modate the present data. The TM mixing matrix was
constructed by multiplying the TB mixing matrix by an
unitary matrix and can be written as

UTM1
¼

0
BBBB@

ffiffi
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3
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1ffiffi
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− 1ffiffi
6

p cos θffiffi
3

p − eiϕ sin θffiffi
2

p sin θffiffi
3

p þ eiϕ cos θffiffi
2

p

− 1ffiffi
6

p cos θffiffi
3

p þ eiϕ sin θffiffi
2

p sin θffiffi
3

p − eiϕ cos θffiffi
2

p

1
CCCCA: ð2Þ

and

UTM2
¼

0
BBBB@
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CCCCA: ð3Þ

where θ and ϕ are two free parameters. The neutrino mass
matrix corresponding to TMmixing matrix can bewritten as

Mρσ ¼ ðVMdiagVTÞρσ with ρ; σ ¼ e; μ; τ; ð4Þ

where Mdiag ¼ diagðm1; m2; m3Þ is the diagonal matrix
containing three mass state, V ¼ UTMP and P is the phase
matrix written as
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P ¼

0
B@

1 0 0

0 eiα 0

0 0 eiβ

1
CA: ð5Þ

Here α and β are the two CP violating Majorana phases.

A. TM1 mixing matrix

With TM1 mixing matrix, the elements of the neutrino
mass matrix can be written as

Mee ¼
2

3
m1 þ

1

3
cos2θm2e2iα þ

1

3
sin2θm3e2iβ;

Meμ ¼
�
−
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�
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6
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The three neutrino mixing angles θ12, θ23, and θ13 can be
expressed in terms of θ and ϕ, the free parameters of the
TM1 matrix, as

s212 ¼
jðU12ÞTM1

j2
1 − jðU13ÞTM1

j2 ¼ 1 −
2

3 − sin2θ
;

s223 ¼
jðU23ÞTM1

j2
1 − jðU13ÞTM1

j2 ¼
1

2

�
1þ

ffiffiffi
6

p
sin 2θ cosϕ
3 − sin2θ

�
;

s213 ¼ jðU13ÞTM1
j2 ¼ 1

3
sin2θ; ð7Þ

where sij ¼ sin θij and cij ¼ cos θij for i, j ¼ 1, 2, 3. Using
the standard parametrization of the PMNS matrix, the
Jarlskog invariant, a measure of CP violation, is defined
as [54]

J ¼ s12s13s23c12c213c23 sin δ: ð8Þ

Again, using the elements from TM1 mixing matrix, the
Jarlskog invariant can be expressed as

J ¼ 1

6
ffiffiffi
6

p sin 2θ sinϕ: ð9Þ

Combining Eqs. (8) and (9), we can write δ in terms of
θ and ϕ as

csc2δ ¼ csc2ϕ −
6sin22θcot2ϕ
ð3 − sin2θÞ2 : ð10Þ

The nature of neutrino can be determined from the
effective Majorana mass term. It also measures the rate
of neutrinoless double beta decay. The effective Majorana
mass jMeej for the TM1 mixing matrix can be written as

jMeej ¼
���� 13 ð2m1 þm2cos2θe2iα þm3sin2θe2iβÞ

����: ð11Þ

Similarly, the effective electron antineutrino mass can be
expressed as

M2
ν ¼

X3
i¼1

U2
ie ¼

1

3
ð2m2

1 þm2
2cos

2θ þm2
3sin

2θÞ: ð12Þ

B. TM2 mixing matrix

Using TM2 mixing matrix, we can write the elements of
the neutrino mass matrix as
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The three neutrino mixing angles θ12, θ23, and θ13 can be
expressed as

s212 ¼
1

3 − 2sin2θ
;

s223 ¼
1

2

�
1þ

ffiffiffi
3

p
sin 2θ cosϕ

3 − 2sin2θ

�
;

s213 ¼
2

3
sin2θ: ð14Þ

Again, using the elements from the TM2 mixing matrix, the
Jarlskog invariant can be expressed as

J ¼ 1

6
ffiffiffi
3

p sin 2θ sinϕ: ð15Þ

We can express the Dirac CP violating parameter δCP in
terms of θ and ϕ as

csc2 δ ¼ csc2 ϕ −
3 sin2 2θ cot2 ϕ
ð3 − 2 sin2 θÞ2 : ð16Þ

The effective Majorana mass jMeej for the TM2 mixing
matrix can be written as

jMeej ¼
���� 13 ð2m1cos2θ þm2e2iα þ 2m3sin2θe2iβÞ

����: ð17Þ

The effective electron antineutrino mass can be expressed as

M2
ν ¼

1

3
ð2m2

1 þm2
2cos

2θ þ 2m2
3sin

2θÞ: ð18Þ

III. ONE VANISHING MINOR IN NEUTRINO
MASS MATRIX

There are six independent minors corresponding to six
independent elements in the neutrino mass matrix. We

denote the minor corresponding to ijth element of Mij as
Cij. The six possible patterns of one minor zero in the
neutrino mass matrix are listed in Table I. The condition for
one vanishing minor can be written as

MabMcd −MuvMwx ¼ 0: ð19Þ

More specifically, we can write Eq. (19) in terms of a
complex equation as

m1m2X3e2iα þm2m3X1e2iðαþβÞ þm3m1X2e2iβ ¼ 0; ð20Þ

where

Xk ¼ ðUaiUbiUcjUdj − UuiUviUwjUxjÞ þ ði ↔ jÞ; ð21Þ

with ði; j; kÞ as the cyclic permutation of (1,2,3). Using
Eq. (20), one can write the two mass ratios as

m1

m2

¼ ℜðX3e2iαÞℑðX1e2iðαþβÞÞ−ℜðX1e2iðαþβÞÞℑðX3e2iαÞ
ℜðX2e2iβÞℑðX3e2iαÞ−ℜðX3e2iαÞℑðX2e2iβÞ

;

m3

m2

¼ ℜðX3e2iαÞℑðX1e2iðαþβÞÞ−ℜðX1e2iðαþβÞÞℑðX3e2iαÞ
ℜðX1e2iðαþβÞÞℑðX2e2iβÞ−ℜðX2e2iβÞℑðX1e2iðαþβÞÞ :

ð22Þ

TABLE I. One minor zero patterns.

Pattern Constraining equation

I C33 ¼ 0
II C22 ¼ 0
III C31 ¼ 0
IV C21 ¼ 0
V C32 ¼ 0
VI C11 ¼ 0
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The value of m1, m2, and m3 can be calculated using
Eq. (22) and mass square difference Δm2

21. That is

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
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q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m1

m2

�
2

����1 −
�
m1

m2

�
2
����

vuuuut ;

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1����1 −
�
m1

m2

�
2
����
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vuuuut : ð23Þ

Similarly, the ratio of squared mass difference is defined as

r ≡
����Δm

2
21

Δm2
32

���� ¼
����
1 −

�
m1

m2

�
2

�
m3

m2

�
2
− 1

����; ð24Þ

where Δm2
21 and Δm2

32 represent solar and atmospheric
mass squared difference, respectively. Value of r ¼
ð2.950� 0.08Þ × 10−2 is determined by using the mea-
sured values of Δm2

21 and Δm2
32 reported in Ref. [55].

IV. RESULTS AND DISCUSSION

For our numerical analysis, we use the measured values
of the oscillation parameters reported in Ref. [55]. For
completeness, we report them in Table II. We wish to find
the value of the unknown parameters θ and ϕ. It is evident
from Eqs. (7) and (14) that the neutrino oscillation
parameters θ12 and θ13 depend only on θ. To find the best
fit value of θ, we perform a naive χ2 analysis. The relevant
χ2 is defined as

χ2ðθÞ ¼
X2
i¼1

ðθcali − θexpi Þ2
ðσexpi Þ2 ; ð25Þ

where θi ¼ ðθ12; θ13Þ. Here θcali represents the theoretical
value of θi and θ

exp
i represents measured central value of θi.

The corresponding uncertainties in the measured value of θi
is represented by σexpi .
For the TM1 mixing matrix, the best fit value of θ is

obtained to be 14.96°. The corresponding best fit values of
θ12 and θ13 are 34.33° and 8.57°, respectively. The 3σ
allowed range of θ is found to be (14.26°–15.64°). Using
the allowed range of θ, we obtain the allowed ranges of θ12
and θ23 to be (34.25°–34.42°) and (32.11°–57.88°), respec-
tively. We show in Fig. 1(a) the correlation of θ13 and θ12
for the TM1 mixing matrix. To see the variation of θ23 with
ϕ, we use the allowed range of θ and vary ϕ within its full
range from 0° to 360°. We show in Fig. 1(b) the variation of
θ23 as a function of the unknown parameter ϕ. We also
obtain the best fit value of ϕ by using the measured best fit
value of θ23. The best fit value is shown with a * mark in
Fig. 1(b). The best fit values of ϕ corresponding to the best
fit value of θ23 ¼ 49.2° are 69.43° and 290.57°, respec-
tively. We show the variation of J and δ as a function of ϕ in
Figs. 1(c) and 1(d), respectively. It is observed that the
Jarlskog rephasing invariant J and the Dirac CP violating
phase δ are restricted to two regions. The corresponding
best fit values of J and δ are ½−3.184 × 10−2; 3.185 × 10−2�
and [71.11°, 288.98°], respectively. We also obtain the 3σ
allowed ranges of J and δ to be ½0;�3.53 × 10−2� and
[(55.05, 124.95)°, (235.05, 304.95)°], respectively.
For TM2 mixing matrix, the best fit value of θ is obtained

to be 10.50°. The corresponding best fit values of θ12 and
θ13 are 35.72° and 8.56°, respectively. The 3σ allowed range
of θ is found to be (10.03°–10.99°). Using the allowed range
of θ, we obtain the allowed ranges of θ12 and θ23 to be
(35.68°–35.76°) and (39.50°–51.40°), respectively. It should
be noted that although the allowed range of θ12 obtained
with TM2 mixing matrix is consistent with the 3σ exper-
imental range, the best fit value obtained for θ12, however,
deviates from the experimental best fit value at more than 2σ
significance. This is quite a generic feature of TM2 mixing
matrix because, by default, value of θ12 will be greater than
or equal to the value obtained in case of TB mixing matrix.
We show in Fig. 2(a) the correlation of θ13 and θ12 for the
TM2 mixing matrix.

TABLE II. Neutrino oscillation parameters from NuFIT [55].

Normal ordering (best fit) Inverted ordering (Δχ2 ¼ 7.1)

Parameter bfp� 1σ 3σ ranges bfp� 1σ 3σ ranges

θ°12 33.44þ0.77
−0.74 31.27 → 35.86 33.45þ0.77

−0.74 31.27 → 35.87

θ°23 49.2þ1.0
−1.3 39.5 → 52.0 49.5þ1.0

−1.2 39.8 → 52.1
θ°13 8.57þ0.13

−0.12 8.20 → 8.97 8.60þ0.12
−0.12 8.24 → 8.98

δ° 194þ52
−25 105 → 405 287þ27

−32 192 → 361
Δm2

21

10−5 eV2
7.42þ0.21

−0.20 6.82 → 8.04 7.42þ0.21
−0.20 6.82 → 8.04

Δm2
3l

10−3 eV2
þ2.515þ0.028

−0.028 þ2.431 → þ2.599 −2.498þ0.028
−0.029 −2.584 → −2.413
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FIG. 1. (a) Correlation of θ13 and θ12, (b) variation of θ23 as a function of ϕ, (c) variation of J as a function of ϕ, and (d) variation of δ as
a function of ϕ for TM1 mixing matrix.

FIG. 2. (a) Correlation of θ13 and θ12, (b) variation of θ23 as a function of ϕ, (c) variation of J as a function of ϕ, and (d) variation of δ as
a function of ϕ for TM2 mixing matrix.
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To see the variation of θ23 with ϕ, we use the allowed
range of θ and vary ϕ within its full range from 0° to 360°.
We show in Fig. 2(b) the variation of θ23 as a function of the
unknown parameter ϕ. The best fit value is shown with a *
mark in Fig. 2(b). We obtain the best fit value of ϕ by using
the measured best fit value of θ23. The best fit values of ϕ
corresponding to the best fit value of θ23 ¼ 49.2° are 44.86°
and 315.19°, respectively. We get two best fit values of ϕ
because θ23 is invariant under the transformation ϕ →
ð2π − ϕÞ which is evident from Eqs. (7) and (14). We also
show the variation of J and δ as a function of ϕ in Figs. 2(c)
and 2(d), respectively. It is observed that the Jarlskog
rephasing invariant J and the Dirac CP violating phase δ
are restricted to two regions. The corresponding best fit
values of J and δ are ½2.37 × 10−2;−2.50 × 10−2� and
[45.48°, 314.44°], respectively. We also obtain the 3σ
allowed ranges of J and δ to be ½0;�3.60 × 10−2� and
[(0,90)°, (270,360)°], respectively.
In case of inverted mass ordering the 3σ allowed range of

θ are found to be (14.37°–15.64°) and (10.10°–10.99°) for
both TM1 and TM2 mixing matrix, respectively. Using the
3σ allowed range of θ, we obtain the 3σ allowed ranges of
θ12 to be (34.25°–34.41°) and (35.68°–35.76°), respectively
for both TM1 and TM2 mixing matrix. The 3σ allowed
ranges of θ23 to be (32.12°–57.87°) and (38.60°–51.39°),
respectively for both TM1 and TM2 mixing matrix. It is to
be noted that the mixing angles are almost similar for both
the normal and inverted mass ordering. So for our later
discussion we will use the values of mixing angles for the
normal mass ordering reported in Ref. [55].

V. PHENOMENOLOGY OF ONE
VANISHING MINOR

Wewish to investigate the phenomenological implication
of one vanishing minor in the neutrino mass matrix on the
total neutrino mass, the effective Majorana mass term and
the electron antineutrino mass. It is evident from Eq. (23)
that neutrino mass mi depends on θ, ϕ, α, β, and the mass
squared difference Δm2

21. We use the best fit value and the

3σ allowed range of θ and ϕ of Sec. IV that are determined
by the measured values of the mixing angles θ13, θ12, and
θ23. The two unknown Majorana phases α and β are varied
within their full range from 0° to 360°. Moreover, we use the
3σ allowed ranges of Δm2

21 and r to constrain the values of
the neutrino masses. Now we proceed to analyze all the six
patterns of one vanishing minor one by one.

A. Pattern I: C33 = 0

Let us first consider minor zero for the (3,3) element of
the neutrino mass matrix. The equation corresponding to
this pattern can be expressed in terms of the elements of the
neutrino mass matrix as

ðMνÞeeðMνÞμμ − ðMνÞeμðMνÞeμ ¼ 0: ð26Þ

Using Eq. (22), the two mass ratios for TM1 can be
expressed as

m1

m2

¼ A1 sin 2β þA2 cos 2β
ðA3 þA4Þ sin 2ðα − βÞ þ ðA5 −A6Þ cos 2ðα − βÞ ;

m3

m2

¼ A1 sin 2β þA2 cos 2β
A7 sin 2αþA8 cos 2α

; ð27Þ

Similarly, for TM2 mixing matrix, the mass ratios can be
expressed as

m1

m2

¼ ðÃ1 þ Ã2Þ sin 2ðβ − ϕÞ þ ðÃ3 þ Ã4Þ cos 2ðβ − ϕÞ
Ã5 sin 2ðα − βÞ − Ã6 cos 2ðα − βÞ ;

m3

m2

¼ ðÃ1 þ Ã2Þ sin 2ðβ − ϕÞ þ ðÃ3 þ Ã4Þ cos 2ðβ − ϕÞ
Ã7 sin 2ðϕ − αÞ − Ã8 cos 2ðϕ − αÞ :

ð28Þ

All the relevant expressions for Ai and Ãi are reported in
Eqs. (A1) and (A6) of appendix, respectively. We show the
variation of neutrino masses m1, m2, and m3 as a function
of ϕ in Figs. 3(a) and 4(a) for TM1 and TM2 mixing matrix,

FIG. 3. (a) Variation ofm1,m2, andm3 as a function of ϕ, (b) correlation of
P

mi andmee, and (c) correlation of
P

mi andmν for C33

pattern using TM1 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines are the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].
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respectively. It shows normal mass ordering for TM1

mixing matrix while for TM2 mixing matrix, it shows both
normal and inverted mass ordering. The correlation of Mee
and

P
mi for TM1 and TM2 mixing matrix are shown in

Figs. 3(b) and 4(b), respectively. The vertical red line shows
the upper bound of the total neutrino mass reported in
Ref. [3]. The black, green and blue lines are the exper-
imental upper bounds of the effective Majorana mass as
reported in Refs. [4–7]. In Figs. 3(c) and 4(c), we have
shown the correlation of Mν with

P
mi for TM1 and TM2

mixing matrix, respectively. It is observed that the total
neutrino mass

P
mi puts severe constraints on effective

Majorana mass and Mν.
The range of the absolute neutrino mass scale, the

effective Majorana neutrino mass and the effective electron
antineutrino mass obtained for both the mixing matrix are
listed in Table III. The calculated upper bound of mee is
obtained to be of Oð10−2Þ which is within the reach of
neutrinoless double beta decay experiment. The calculated
upper bound of mν < 0.06 eV may not be within the reach
of KATRIN experiment. It may, however, be within the
reach of next generation experiment such as Project 8. It
should, however, be mentioned that once the total neutrino
mass constraint is imposed, the calculated upper bound of
mee and mν is found to be less than 0.04 eV.

B. Pattern II: C22 = 0

The vanishing minor condition for this pattern corre-
sponding to element (2,2) is given by

ðMνÞeeðMνÞττ − ðMνÞeτðMνÞeτ ¼ 0: ð29Þ

The two mass ratios for TM1 and TM2 mixing matrix can
be expressed as

m1

m2

¼ B1 sin 2β þ B2 cos 2β
ðB3 þ B4Þ sin 2ðα − βÞ − ðB5 − B6Þ cos 2ðα − βÞ ;

m3

m2

¼ B1 sin 2β þ B2 cos 2β
B7 sin 2αþ B8 cos 2α

; ð30Þ

and

m1

m2

¼ ðB̃1 þ B̃2Þ sin 2ðβ − ϕÞ þ ðB̃3 þ B̃4Þ cos 2ðβ − ϕÞ
B̃5 sin 2ðα − βÞ − B̃6 cos 2ðα − βÞ ;

m3

m2

¼ ðB̃1 þ B̃2Þ sin 2ðβ − ϕÞ þ ðB̃3 þ B̃4Þ cos 2ðβ − ϕÞ
B̃7 sin 2ðϕ − αÞ − B̃8 cos 2ðϕ − αÞ :

ð31Þ

All the relevant expressions for Bi and B̃i are reported in
Eqs. (A2) and (A7) of appendix. We show the variation of
neutrino masses m1, m2, and m3 as a function of ϕ in
Figs. 5(a) and 6(a) for TM1 and TM2 mixing matrix,
respectively. It shows normal mass ordering for TM1

mixing matrix while for TM2 mixing matrix, it shows both
normal and inverted mass ordering. The correlation ofMee
and

P
mi for TM1 and TM2 mixing matrix are shown in

Figs. 5(b) and 6(b), respectively. In Figs. 5(c) and 6(c), we
have shown the correlation of Mν with

P
mi for TM1 and

TM2 mixing matrix, respectively. The phenomenology of
this pattern is quite similar to C33.
The allowed range of the absolute neutrino mass scale,

the effective Majorana mass and the effective electron

FIG. 4. (a) Variation ofm1,m2, andm3 as a function of ϕ, (b) correlation of
P

mi andmee , and (c) correlation of
P

mi andmν for C33

pattern using TM2 mixing matrix. The vertical red line represents the upper bound of
P

mi reported in Ref. [3]. The black, green, and
blue lines are the experimental upper bounds of Mee obtained from Refs. [4–7].

TABLE III. Allowed range of
P

mi, mee, and mν for C33 pattern.

Mixing matrix Mass ordering
P

mi (eV) mee (eV) mν (eV)

TM1 NO [0.059, 0.288] ½1.955 × 10−5; 0.048� ½8.889 × 10−3; 0.053�
TM2 NO [0.056, 0.310] ½1.462 × 10−5; 0.057� ½8.575 × 10−3; 0.099�

IO [0.094, 0.425] [0.014, 0.116] [0.044, 0.144]
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antineutrino mass for this pattern are listed in Table IV. It is
evident from Figs. 5 and 6 that the upper bound of

P
mi <

1.2 eV put severe constraint on the value of the effective
Majorana mass term mee and the value of the effective
electron antineutrino mass mν. The estimated upper bound
of mee and mν is found to be less than 0.04 eV.

C. Pattern III: C31 = 0

This pattern corresponds to the matrix element (3,1) of
the neutrino mass matrix. The vanishing minor condition is
given by

ðMνÞeμðMνÞμτ − ðMνÞeτðMνÞμμ ¼ 0: ð32Þ

Using the elements from the neutrino mass matrix, one can
write the neutrino mass ratios for this pattern. With TM1

mixing matrix, we have

m1

m2

¼ C1 sin 2β þ C2 cos 2β
C3 sin 2ðα − βÞ − C4 cos 2ðα − βÞ ;

m3

m2

¼ C1 sin 2β þ C2 cos 2β
C5 sin 2αþ C6 cos 2α

; ð33Þ

and for TM2 mixing matrix, we have

m1

m2

¼ C̃1 sin 2ðβ − ϕÞ þ C̃2 cos 2ðβ − ϕÞ
C̃3 sin 2ðα − βÞ − C̃4 cos 2ðα − βÞ ;

m3

m2

¼ C̃1 sin 2ðβ − ϕÞ þ C̃2 cos 2ðβ − ϕÞ
C̃5 sin 2ðϕ − αÞ þ C̃6 cos 2ðϕ − αÞ ; ð34Þ

where all the relevant Ci and C̃i are reported in Eqs. (A3)
and (A8) of appendix. We show in Figs. 7(a) and 8(a) the
correlation of neutrino masses m1, m2 and m3 with the
unknown parameter ϕ for TM1 and TM2 mixing matrix. It
shows both normal and inverted mass ordering for TM1 and
TM2 mixing matrix. Similarly, the correlation ofMee againstP

mi for TM1 and TM2 mixing patterns are shown in
Figs. 7(b) and 8(b), respectively. Moreover, in the Figs. 7(c)
and 8(c), we have shown the correlation of Mν with

P
mi

for TM1 and TM2, respectively.
The allowed ranges of the absolute neutrino mass, the

effective Majorana mass and the effective electron anti-
neutrino mass for both the maxing matrix are listed in the
Table V.

D. Pattern IV: C21 = 0

The vanishing minor condition for this pattern corre-
sponding to element (2,1) of the neutrino mass matrix is
given by

ðMνÞμeðMνÞττ − ðMνÞτeðMνÞμτ ¼ 0: ð35Þ

The two neutrino mass ratios for this pattern for TM1 and
TM2 mixing matrix are given by

m1

m2

¼ D1 sin 2β þD2 cos 2β
D3 sin 2ðα − βÞ þD4 cos 2ðα − βÞ ;

m3

m2

¼ D1 sin 2β þD2 cos 2β
D5 sin 2αþD6 cos 2α

; ð36Þ

and

FIG. 5. (a) Variation ofm1,m2, andm3 as a function of ϕ, (b) correlation of
P

mi andmee, and (c) correlation of
P

mi andmν for C22

pattern using TM1 mixing matrix. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines are the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

TABLE IV. Allowed range of
P

mi, mee, and mν for C22 pattern.

Mixing matrix Mass ordering
P

mi (eV) mee (eV) mν (eV)

TM1 NO [0.059, 0.425] ½2.097 × 10−5; 0.127� [0.011, 0.139]
TM2 NO [0.056, 0.350] ½4.185 × 10−6; 0.081� ½8.415 × 10−3; 0.113�

IO [0.098, 0.427] [0.015, 0.082] [0.045, 0.145]
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FIG. 6. (a) Variation ofm1,m2, andm3 as a function of ϕ, (b) correlation of
P

mi andmee, and (c) correlation of
P

mi andmν for C22

pattern using TM2 mixing matrix. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines show the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

FIG. 7. (a) Variation ofm1,m2, andm3 as a function of ϕ, (b) correlation of
P

mi andmee, and (c) correlation of
P

mi andmν for C31

pattern using TM1 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines are the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

FIG. 8. (a) Variation ofm1,m2, andm3 as a function of ϕ, (b) correlation of
P

mi andmee, and (c) correlation of
P

mi andmν for C31

pattern using TM2 mixing matrix. The vertical red line represents the upper bound of the total neutrino mass reported in Ref. [3]. The
black, green, and blue lines represent the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

TABLE V. Allowed range of
P

mi, mee, and mν for C31 pattern.

Mixing matrix Mass ordering
P

mi (eV) mee (eV) mν (eV)

TM1 NO [0.057, 0.253] ½1.003 × 10−4; 0.073� [0.011, 0.080
IO [0.096, 0.329] [0.014, 0.087] [0.044, 0.112]

TM2 NO [0.057, 0.294] ½3.658 × 10−5; 0.092� ½8.624 × 10−3; 0.094�
IO [0.092, 0.548] [0.014, 0.126] [0.045, 0.185]
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m1

m2

¼ D̃1 sin 2ðβ − ϕÞ þ D̃2 cos 2ðβ − ϕÞ
D̃3 sin 2ðα − βÞ þ D̃4 cos 2ðα − βÞ ;

m3

m2

¼ D̃1 sin 2ðβ − ϕÞ þ D̃2 cos 2ðβ − ϕÞ
D̃5 sin 2ðϕ − αÞ − D̃6 cos 2ðϕ − αÞ ; ð37Þ

where all the relevant Di and D̃i are reported in Eqs. (A4)
and (A9) of appendix. In Figs. 9(a) and 10(a) we have
shown the correlation of neutrino masses m1, m2, and m3

with the unknown parameter ϕ for TM1 and TM2 mixing
matrix. It shows both normal and inverted mass ordering
for TM1 and TM2 mixing matrix. The correlation of Mee
against

P
mi for TM1 and TM2 mixing patterns are shown

in Figs. 9(b) and 10(b), respectively. In the Figs. 9(c)

and 10(c), we have shown the correlation ofMν with
P

mi
for TM1 and TM2, respectively.
We also report the allowed ranges of the absolute

neutrino mass, the effective Majorana mass and the
effective electron antineutrino mass for both the maxing
matrix in Table VI. The phenomenology of this pattern is
very similar to that of C31.

E. Pattern V: C32 = 0

The condition of vanishing minor for this pattern is
given by

ðMνÞeeðMνÞμτ − ðMνÞμeðMνÞeτ ¼ 0: ð38Þ

FIG. 9. (a) Variation ofm1,m2, andm3 as a function of ϕ, (b) correlation of
P

mi andmee, and (c) correlation of
P

mi andmν for C21

pattern using TM1 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines are the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

FIG. 10. (a) Variation of m1, m2, and m3 as a function of ϕ, (b) correlation of
P

mi and mee, and (c) correlation of
P

mi and mν for
C21 pattern using TM2 mixing matrix. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. [3]. The
black, green, and blue lines show the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

TABLE VI. Allowed range of
P

mi, mee, and mν for C21 pattern.

Mixing matrix Mass ordering
P

mi (eV) mee (eV) mν (eV)

TM1 NO [0.080, 0.249] ½2.213 × 10−3; 0.076� [0.017, 0.079]
IO [0.101, 0.720] [0.014, 0.125] [0.044, 0.241]

TM2 NO [0.066, 0.569] ½1.655 × 10−4; 0.095� [0.010, 0.187]
IO [0.097, 0.458] [0.015, 0.137] [0.045, 0.154]
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For this pattern, the two neutrino mass ratios for TM1 and
TM2 mixing matrix are given by

m1

m2

¼ E1 sin 2β þ E2 cos 2β
E3 sin 2ðα − βÞ þ E4 cos 2ðα − βÞ ;

m3

m2

¼ E1 sin 2β þ E2 cos 2β
E5 sin 2αþ E6 cos 2α

; ð39Þ

and

m1

m2

¼ Ẽ1 sin 2ðβ − ϕÞ þ Ẽ2 cos 2ðβ − ϕÞ
Ẽ3 sin 2ðα − βÞ þ Ẽ4 cos 2ðα − βÞ ;

m3

m2

¼ Ẽ1 sin 2ðβ − ϕÞ þ Ẽ2 cos 2ðβ − ϕÞ
Ẽ5 sin 2ðϕ − αÞ − Ẽ6 cos 2ðϕ − αÞ ; ð40Þ

respectively. The relevant expressions for Ei and Ẽi are
reported in Eqs. (A5) and (A10) of appendix. The corre-
lation of neutrino massesm1,m2, andm3 with the unknown
parameter ϕ are shown in Figs. 11(a) and 12(a), respec-
tively for TM1 and TM2 mixing matrix. It is observed that,
it shows normal mass ordering for TM1 mixing matrix,
whereas, for TM2 mixing matrix, it shows both normal and
inverted mass ordering. The correlation of Mee and

P
mi

are shown in Figs. 11(b) and 12(b), respectively using TM1

and TM2 mixing matrix. In Figs. 11(c) and 12(c), we have
shown the correlation of Mν with

P
mi using TM1 and

TM2 mixing matrix, respectively.
The allowed ranges of all the relevant parameters such as

the absolute neutrino mass, the effective Majorana mass
and the effective electron antineutrino mass under normal
and inverted ordering for both the mixing matrix are
reported in Table VII.

FIG. 11. (a) Variation of m1, m2, and m3 as a function of ϕ, (b) correlation of
P

mi and mee, and (c) correlation of
P

mi and mν for
C32 pattern using TM1 mixing matrix. The vertical red line represents the upper bound of the total neutrino mass reported in Ref. [3]. The
black, green, and blue lines represent the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

FIG. 12. (a) Variation of m1, m2, and m3 as a function of ϕ, (b) correlation of
P

mi and mee, and (c) correlation of
P

mi and mν for
C32 pattern using TM2 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines are the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

TABLE VII. Allowed range of
P

mi, mee, and mν for C32 pattern.

Mixing matrix Mass ordering
P

mi (eV) mee (eV) mν (eV)

TM1 NO [0.061, 0.261] ½1.309 × 10−4; 0.063 [0.011, 0.082]
TM2 NO [0.056, 0.507] ½6.054 × 10−5; 0.164� [0.084, 0.166]

IO [0.101, 0.346] [0.017, 0.078] [0.045, 0.118]
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F. Pattern VI: C11 = 0

The vanishing minor condition for this pattern is
given by

ðMνÞμμðMνÞττ − ðMνÞτμðMνÞμτ ¼ 0: ð41Þ

The two neutrino mass ratios can be obtained using the
elements from the neutrino mass matrix. For TM1 mixing
matrix, we have

m1

m2

¼ 2 sin 2β
cos2 θ sin 2ðα − βÞ ;

m3

m2

¼ −
tan2 θ sin 2β

sin 2α
; ð42Þ

and for TM2 mixing matrix, we have

m1

m2

¼ 2 cos2 θ sin 2β
sin 2ðα − βÞ ;

m3

m2

¼ −
2 sin2 θ sin 2β

sin 2α
: ð43Þ

Using Eq. (42), we obtain the mass relation for TM1

mixing matrix as

m1 sin 2ðα − βÞ − 2m2 sin 2β þm3 sin 2α ¼ 0 ð44Þ

and using Eq. (43), we obtain the mass relation for TM2

mixing matrix as

m1 sin 2ðα − βÞ − 2m2 sin 2β −m3 sin 2α ¼ 0: ð45Þ

This pattern gives a clear inverted mass ordering for both
TM1 and TM2 mixing matrix. The correlation of the
neutrino masses m1, m2 and m3 for both the mixing
patterns with the unknown parameter ϕ is shown in
Figs. 13(a) and 14(a), respectively. The correlation of
Mee with

P
mi for TM1 and TM2 are shown in Figs. 13(b)

and 14(b), respectively. In Figs. 13(c) and 14(c), we have
shown the correlation of Mν with

P
mi for TM1 and TM2

mixing matrix, respectively.
The allowed ranges of the absolute neutrino mass, the

effective Majorana mass and the effective electron anti-
neutrino mass obtained for both the mixing matrix are listed
in the Table VIII.

FIG. 13. (a) Variation of m1, m2, and m3 as a function of ϕ, (b) correlation of
P

mi and mee, and (c) correlation of
P

mi and mν for
C11 pattern using TM1 mixing matrix. The vertical red line represents the upper bound of the total neutrino mass reported in Ref. [3]. The
black, green, and blue lines represent the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].

FIG. 14. (a) Variation of m1, m2, and m3 as a function of ϕ, (b) correlation of
P

mi and mee, and (c) correlation of
P

mi and mν for
C11 pattern using TM2 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. [3]. The black,
green, and blue lines are the experimental upper bounds of the effective Majorana mass reported in Refs. [4–7].
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VI. DEGREEOF FINE TUNING IN THE NEUTRINO
MASS MATRIX

In this section, we wish to determine whether the
entries of the neutrino mass matrix are fine tuned or
not. In order to determine the degree of fine tuning of the
mass matrix elements, we define a parameter dFT [19,56]
which is obtained as the sum of the absolute values of the
ratios between each parameter and its error. We follow
Refs. [19,56] and define the fine tuning parameter as

dFT ¼
X��� pari

erri

���; ð46Þ

where pari ¼ ðθ12; θ13; θ23;Δm2
21;Δm2

31Þ is the best fit
values of the parameters. The error erri for each parameter
is obtained from the shift of best fit value that changes the
χ2min value by one unit keeping all other parameters fixed at
their best fit values. To determine the best fit values of all
the parameters, we perform a χ2 analysis of all the classes
of one minor zero and find the χ2min. We define the χ2 as
follows:

χ2 ¼
X3
i¼1

ðθcali − θexpi Þ2
ðσexpi Þ2 þ

X
j¼21;3l

ðΔmcal
j − Δmexp

j Þ2
ðσexpj Þ2 ; ð47Þ

where θi ¼ ðθ12; θ13; θ23Þ and Δmj ¼ ðΔm2
21;Δm2

31Þ. Here
θcali and Δmcal

j represent the theoretical value of θi and
Δmj, respectively, whereas θexpi and Δmexp

j represent
measured central value of θi and Δmj, respectively. It
should be noted that θcali and Δmcal

j depend on four
unknown model parameters, namely θ, ϕ, α, and β.

Similarly, the uncertainties in the measured value of θi
and Δmj are represented by σexpi and σexpj , respectively.
The central values and the corresponding uncertainties in
each parameter are reported in Table II.
We first compute dData which is defined as the sum of the

absolute values of the ratios between the measured values of
each parameter and its error from Table II. We obtain the
value of dData to be around 200 for both normal and inverted
ordering case. The degree of fine tuning can be roughly
estimated from the value of dFT because if the dFT value is
large then a minimal variation of the corresponding param-
eters give large difference on the value of χ2. Hence a large
value of dFT corresponds to a strong fine tuning of the mass
matrix elements and vice versa. The χ2min value and the
corresponding best fit values of the unknown parameters of
the neutrino mass matrix θ, ϕ, α, β and the value of dFT
parameter for each patterns are listed in the Tables IX and X
for the TM1 and TM2 mixing matrix respectively. We also
report the best fit values of several observables such as θ12,
θ13, θ23, Δm2

21, and Δm2
31 for each pattern. For the patterns

C33, C22, C31, C32, and C21, the results are for NO case
and for the patternC11, the results are for the IO case. As the
pattern C11 follows the IO, the χ2min value obtained for
this pattern is large for both TM1 and TM2 mixing matrix.
The best fit values of the mixing angles θ23, θ12, θ13 and the
mass squared differences Δm2

21, Δm2
31 obtained for each

pattern are compatible with the experimentally measured
values reported in Table II.
In case of TM1 mixing matrix, pattern C23 shows very

good agreement with the data with a very small dFT value.
Although, the pattern C31 also have same χ2 as pattern C23,
it, however, has a much larger dFT value compared to
pattern C23. It can be concluded that for the pattern C31,
there is a strong fine tuning among the elements of the mass

TABLE VIII. Allowed range of
P

mi, mee, and mν for C11 pattern.

Mixing matrix Mass ordering
P

mi (eV) mee (eV) mν (eV)

TM1 IO [0.092, 0.111] [0.013, 0.050] [0.043, 0.053]
TM2 IO [0.091, 0.112] [0.014, 0.052] [0.044, 0.054]

TABLE IX. The values of χ2min, dFT, the best fit values of θ
°
13, θ

°
12, θ

°
23, θ

°, ϕ°, α°, β°, Δm2
21ð10−5 eV2Þ, and Δm2

3lð10−3 eV2Þ for TM1

mixing matrix.

Type χ2min dFT θ°13 θ°12 θ°23 θ° ϕ° α° β° Δm2
21 (10−5 eV2) Δm2

3l (10
−3 eV2)

C33 2.66 8.38 × 103 8.48 34.35 48.59 14.80 287.67 290.89 320.72 7.51 2.42
C22 2.80 2.35 × 105 8.46 34.36 48.77 14.77 251.38 313.24 74.37 7.48 2.45
C31 1.69 8.43 × 103 8.57 34.33 48.83 14.96 108.69 7.46 338.00 7.47 2.44
C32 1.69 83.72 8.60 34.33 49.56 15.02 76.68 84.95 357.14 7.47 2.44
C21 3.24 1.36 × 105 8.67 34.31 50.00 15.07 63.50 269.82 216.81 7.47 2.41
C11 4.05 4.88 × 102 8.41 34.37 49.33 14.68 291.60 188.42 83.27 7.40 −2.46
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matrix. Similarly, C22, C21, and C33 have larger dFT value
compared to C11 pattern, although they have less χ2 value
than C11. For C22, C21, and C33 also the degree of fine
tuning among the mass matrix elements is very strong.
Moreover, it is very clear from Table IX that all these
patterns prefer the atmospheric mixing angle θ23 to be
greater than π=4. Based on the dFT values, it is clear that it
requires less fine tuning of the mass matrix elements for
patterns C23 and C11.
For the TM2 mixing matrix, the fine-tuned parameter dFT

is small for the patterns C33, C22, C32, and C11. Among all
these patterns C32 has the lowest dFT value. However, for
patterns C31 and C21, dFT value is quite large and hence the
degree of fine tuning among the elements of the mass
matrix is quite strong for these patterns. All the patterns
prefer the best fit value of θ23 to be larger than π=4.

VII. SYMMETRY REALIZATION

The symmetry of one vanishing minor can be realized
through type-I seesaw mechanism [57,58] along with
Abelian symmetry. One vanishing minor in the neutrino
mass matrix can easily be obtained if one element in the
Majorana matrix MR is zero along with diagonal Dirac
mass matrix MD. In order to fulfill this condition, we need
three right-handed charged lepton lRp (p ¼ 1, 2, 3), three
right-handed neutrinos νRp and three left-handed lepton
doublets DLp. We present the symmetry realization of
pattern V. The symmetry of this pattern can be realized
through the Abelian symmetry group (Z12 × Z2) that is
discussed in Refs. [27,59].
The leptonic fields under Z12 transform as

l̄R1 → ωl̄R1; ν̄R1 → ων̄R1; DL1 → ωD̄L1;

l̄R2 → ω2l̄R2; ν̄R2 → ω2ν̄R2; DL2 → ω3D̄L2;

l̄R3 → ω5l̄R3; ν̄R3 → ω5ν̄R3; DL3 → ω8D̄L3; ð48Þ

where ω ¼ expðiπ
6
Þ. The bilinears l̄RpDLq and ν̄RpDLq,

where p, q ¼ 1, 2, 3, relevant for ðMlÞpq and ðMDÞpq
transform as l̄RpDLq → ΩlRpDLq, where

Ω ¼

0
B@

ω2 ω4 ω9

ω3 ω5 ω10

ω6 ω8 ω

1
CA ð49Þ

and the bilinears ν̄RpCν̄TRq relevant for ðMRÞpq transform as
ν̄RpCν̄TRq → Λν̄RpCν̄TRq, where

Λ ¼

0
B@

ω2 ω3 ω6

ω3 ω4 ω7

ω6 ω7 ω10

1
CA: ð50Þ

For each nonzero element in MR, we need a scalar singlet
χpq and for each nonzero element in ðMlÞpq or ðMDÞpq,
we need Higgs scalar ϕpq or ϕ̃pq, respectively. The scalar
singlets get the vacuum expectation values (vevs) at the
seesaw scale, while Higgs doublets get vevs at the electro-
weak scale. Under Z2 transformation, the sign of ϕ̃pq and
νRp changes, while other multiplets remain invariant. The
diagonal charged lepton mass matrix can be obtained by
introducing only three Higgs doublets namely ϕ11, ϕ22, and
ϕ33, similarly, the diagonal Dirac neutrino mass matrix can
be obtained by introducing three Higgs doublets ϕ̃11, ϕ̃22,
and ϕ̃33. The nonzero elements of MR can be obtained by
introducing scalar fields χ11, χ12, χ13, χ22, and χ33 which
under Z12 transformation gets multiplied byω10, ω9, ω6, ω8,
and ω2, respectively. The Majorana mass matrixMR can be
written as

MR ¼

0
B@

a b c

b d 0

c 0 e

1
CA: ð51Þ

This provides minor zero corresponding to (3,2) element in
the neutrino mass matrix. Other patterns can also be realized
similarly for different MR.

TABLE X. The values of χ2min, dFT, the best fit values of θ
°
13, θ

°
12, θ

°
23, θ

°, ϕ°, α°, β°, Δm2
21ð10−5 eV2Þ, and Δm2

3lð10−3 eV2Þ for TM2

mixing matrix.

Type χ2min dFT θ°13 θ°12 θ°23 θ° ϕ° α° β° Δm2
21ð10−5 eV2Þ Δm2

3l ð10−3 eV2Þ
C33 8.87 5.86 × 102 8.57 35.72 48.95 10.52 310.43 178.66 169.70 7.42 2.43
C22 9.08 4.31 × 102 8.59 35.72 48.85 10.54 230.78 63.70 184.68 7.37 4.43
C31 9.23 4.78 × 104 8.55 35.72 48.50 10.49 234.75 185.56 217.34 7.37 2.44
C32 9.29 1.09 × 102 8.56 35.72 48.94 10.51 310.43 355.65 82.48 7.50 2.44
C21 9.12 2.07 × 103 8.54 35.70 49.80 10.47 142.15 279.77 59.23 7.40 2.43
C11 9.82 2.29 × 102 8.65 35.73 50.55 10.62 25.81 341.08 103.82 7.42 −2.49

ONE VANISHING MINOR IN THE NEUTRINO MASS MATRIX … PHYS. REV. D 107, 115023 (2023)

115023-15



VIII. CONCLUSION

We explore the implication of one minor zero in the
neutrino mass matrix obtained using trimaximal mixing
matrix. There are total six possible patterns and all the
patterns are found to be phenomenologically compatible
with the present neutrino oscillation data. The two unknown
parameters θ and ϕ of the trimaximal mixing matrix are
determined by using the experimental values of the mixing
angles θ12, θ23, and θ13. It is found that TM1 mixing matrix
provides a better fit to the experimental results than TM2

mixing matrix. The Jarlskog invariant measure of CP
violation is nonzero for all the pattern, so they are
necessarily CP violating. Patterns I, II, and V show normal
mass ordering for TM1 mixing matrix while these patterns
show both normal and inverted mass ordering for TM2

mixing matrix. Patterns III and IV show both normal and
inverted mass ordering for both TM1 and TM2 mixing
matrix. Pattern VI predicts inverted mass ordering for both
the mixing matrix. We predict the unknown parameters such
as the absolute neutrino mass scale, the effective Majorana

mass and the effective electron antineutrino mass using both
TM1 and TM2 mixing matrix. The effective Majorana mass
obtained for each pattern is within the reach of neutrinoless
double beta decay experiment. Similarly, the value obtained
for the effective electron antineutrino mass may be within
the reach of future Project 8 experiment. We also discuss the
fine tuning of the elements of the mass matrix for all the
patterns by introducing a new parameter dFT. We observe
that for the pattern C23, the fine tuning among the elements
of the mass matrix is small compared to other patterns.
Moreover, we also discuss the symmetry realization of
pattern V using Abelian symmetry group Z12 × Z2 in the
framework of type-I seesaw model which can be easily
generalized to all the other patterns as well.

APPENDIX

The coefficients in the mass ratios for the TM1 mixing
matrix can be expressed in terms of the two unknown
parameters θ and ϕ as
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Similarly, the coefficients in the mass ratios for the TM2 mixing can be written as
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Ã5 ¼
1

18
sin2θ þ 1

6
cos2θ cos 2ϕ −

1

6
ffiffiffi
3

p sin 2θ cosϕ;
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