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We study a bottom-up, holographic description of a field theory yielding the spontaneous breaking of an
approximate SOð5Þ global symmetry to its SOð4Þ subgroup. The weakly coupled, six-dimensional gravity
dual has regular geometry. One of the dimensions is compactified on a circle that shrinks smoothly to zero
size at a finite value of the holographic direction, hence introducing a physical scale in a way that mimics
the effect of confinement in the dual four-dimensional field theory. We study the spectrum of small
fluctuations of the bulk fields carrying SOð5Þ quantum numbers, which can be interpreted as spin-0 and
spin-1 bound states in the dual field theory. This work supplements an earlier publication focused only on
the SOð5Þ singlet states. We explore the parameter space of the theory, paying particular attention to
composite states that have the right quantum numbers to be identified as pseudo-Nambu-Goldstone bosons
(PNGBs). We find that in this model the PNGBs are generally heavy, with masses of the same order as other
bound states, indicating the presence of a sizeable amount of explicit symmetry breaking in the field-theory
side. Nevertheless, we also find a qualitatively new, unexpected result. When the dimension of the field-
theory operator inducing SOð5Þ breaking is close to half the space-time dimensionality, there exists a
region of parameter space in which the PNGBs and the lightest scalar are both parametrically light in
comparison to all other bound states of the field theory. Although this region is known to yield metastable
classical backgrounds, this finding might be relevant to model building in the composite Higgs context.
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I. INTRODUCTION

It has been just over ten years since the discovery of the
Higgs boson [1,2], and in the intervening time composite
Higgs models (CHMs) [3–5], in which the Higgs fields
originate as composite, pseudo-Nambu-Goldstone bosons
(PNGBs) in a more fundamental theory have gained much
attention in the literature; see Refs. [6–8] and the summary
tables in Refs. [9–11]. Phenomenological and model-
building studies of realizations of this idea [12–58] have
been complemented by growing literature of dedicated
lattice calculations that analyze strongly coupled field
theories providing, at least partial, short-distance com-
pletions [59–78]. But providing a compelling microscopic
origin for CHMs with minimal SOð5Þ=SOð4Þ coset is
nontrivial; see, for instance, Ref. [79].

Within string theory and supergravity, it has been dis-
covered that gauge-gravity dualities, or holography [80–83],
provide an alternative way to study special field theories
in their nonperturbative regime. Applications include the
holographic description of confinement [84–87], the study
of the composite (glueball) mass spectra [88–99], chiral
symmetry breaking [100,101], and masses of mesons
[102–106]. But it is very challenging to embed within string
theory and supergravity fully realistic dynamical models
yielding the low-energy theories relevant to CHMs. A few
steps toward a top-down construction for CHMs with the
SOð5Þ=SOð4Þ coset have been taken recently [107]. A more
general, pragmatic, bottom-up approach to holography
exists, in which the gravity dual is constructed classically
on the basis of ad hoc simplifying assumptions. Indeed,
much work on the minimal SOð5Þ=SOð4Þ coset has been
developed in this context and makes it a quite compelling
scenario [108–115]. Other CHMs suitable for lattice explo-
rations have been the subject of recent bottom-up holo-
graphic studies [116–119].
In this paper, we outline a new bottom-up holographic

realization of the SOð5Þ=SOð4Þ paradigm needed for
minimal CHMs. The model is an extended version of the
very simple one that was studied in Ref. [120], admitting the
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same class of background geometries. While Ref. [120]
focuses on identifying regions of parameter space relevant
to understanding the physics of the dilaton, the approximate
Goldstone boson associated with scale invariance, along the
programmatic lines developed in Refs. [121–126],1 in this
publication, and in future ones [131,132], we are interested
in investigating whether the PNGB states associated with
the SOð5Þ=SOð4Þ coset have model-building potential in
the CHM context.
Let us first summarize the salient features of the model,

borrowing results from Ref. [120]. A single scalar field is
coupled to gravity in six dimensions, and its dynamics is
governed by a polynomial potential [133–139]. A free
parameter in the potential determines the dimensionality
of the operator (deformation) in the dual five-dimensional
field-theory interpretation of the gravity model. Further-
more, one of the spacelike dimensions is a circle, its size
shrinking along the holographic direction, which introduces
a smooth end of space in the regular geometry. As proposed
in Ref. [84], in the dual field-theory interpretation this
amounts to introducing a mass gap, in a way that mimics
what happens for confining theories. Notice that this is the
main differencewith respect to Refs. [108–115], namely, the
existence of a lift to a completely smooth geometry in six
dimensions, which imposes constraints on the bulk profiles
of the scalar fields of the five-dimensional gravity theory,
obtained after reduction on the circle.
It has been shown in Ref. [120] that a phase transition

occurs in the theory. This result was obtained by applying
holographic renormalization [140–142] to compute the free
energy. Whether the regular backgrounds are stable depends
on the magnitude of the field-theory deformation. As
explained in the body of the paper, the size of such a
deformation, and its associated condensate, are both
extracted from the profile of the bulk fields, but are not
independent of one another, as they are constrained by the
aforementioned regularity conditions.
The calculation of the spectrum of fluctuations of the bulk

fields has a natural holographic interpretation in terms of
bound states of the dual theory. Reference [120] reports this
spectrum for states that carry no SOð4Þ quantum numbers,
computed by exploiting the powerful algorithmic process
developed in Refs. [91–98,143,144]. Depending on the
region of parameter space of interest, the lightest scalar
fluctuation is found to be either a tachyon, or a generic,

massive spin-0 state, or a parametrically light dilaton only in
rather special cases. In particular, the light dilaton emerges
only in regions of parameter space for which the regular
backgrounds are metastable, while, in the region of param-
eter space in which the regular geometry is stable, the
lightest scalar may show some suppression of its mass, but
this is quantitatively a modest effect and never a parametric
one. In the body of this paper, we provide some technical
details that are necessary to the exposition, in the interest of
making the presentation self-contained, and of fixing the
notation, while referring instead to Ref. [120] for extensive
details and numerical results.
In this paper, we replace the singlet scalar with an SOð5Þ

vector multiplet, gauge the SOð5Þ symmetry in the six-
dimensional gravity geometry compactified on a circle,
adopt the Rξ gauge as in Ref. [143], and compute the mass
spectrum of new states carrying SOð4Þ quantum numbers.
In doing so, we make essential use of the fact that we
identify the single scalar field of Ref. [120] with the
absolute value of the SOð5Þ multiplet field, in such a
way that the latter obeys the same equations of motion as the
former, and hence we consider identical classical back-
ground solutions. The approximate, global symmetry-
breaking pattern SOð5Þ → SOð4Þ emerges in the dual field
theory. Despite our interest in CHMs, here we describe the
theory in isolation, and we do not couple it to external,
weakly coupled, elementary fields, deferring the actual
construction of CHMs to future publications [131,132].
While in the stable region of parameter space, none of the
composite states can be made parametrically light, interest-
ingly we find that there exists a metastable region in which
the spectrum contains parametrically light PNGBs accom-
panied by a light pseudo-dilaton. This is suggestive, as it
indicates the need to include a dilaton in the low-energy
effective theory [145–147]. Even taken in isolation, the
emergence of a dilaton has striking, potential phenomeno-
logical implications, and it is the subject of vast literature;
see, for example, Refs. [148–159] and references therein. If
one extends the chiral Lagrangian to the dilaton effective
field theory [160–173], then the dilaton field might have an
important role to play also in the construction of a viable
CHM; see, for instance, Refs. [53,56].
The paper is organized as follows. We present the model

in Sec. II, and describe the classical solutions of interest in
Sec. III, borrowing relevant results from Ref. [120], but
dispensing with repeating technical details and intermedi-
ate results. We then compute the mass spectrum of the
fluctuations of the system, focusing on the states carrying
SOð4Þ quantum numbers. We compare the results to those
for the singlets [120] by exploring the three-dimensional
parameter space. We summarize the main results and
outline future research directions in Sec. V. We relegate
to the appendices the technical details that are useful to
reproduce our main original results.

1The common theme to this sequence of papers is that a light
dilaton might emerge in the spectrum of strongly coupled models
if the dynamics brings them in proximity of (tachyonic) insta-
bilities, the simplest holographic realization of which is related to
the Breitenlohner-Freedman unitarity bound [127]. See also the
critical discussion in Ref. [128] that proposes a bottom-up model
in which the dilaton is not parametrically light, as well as the
models of the earlier Refs. [129,130] that do not yield a light
dilaton at all.

ELANDER, FATEMIABHARI, and PIAI PHYS. REV. D 107, 115021 (2023)

115021-2



II. THE MODEL

In this section, we provide the weakly coupled gravity
description of the model we want to analyze, which
is closely related to the one studied in Ref. [120].
The two-derivative bulk action describes gravity in D ¼
6 dimensions, coupled to a real scalar field X transforming
in the fundamental representation of a gauged SOð5Þ
symmetry. We add two boundaries in the radial direction
at ρ ¼ ρ1 and ρ ¼ ρ2, respectively, and hence the action
includes appropriate boundary-localized terms. The boun-
daries have the only purpose of acting as regulators:
Physical results can be recovered by extrapolating to the
limit in which the boundaries are removed.
The bulk, gauged SOð5Þ is broken to SOð4Þ by a

nontrivial vacuum expectation value (VEV) of the combi-
nation ϕ≡ ffiffiffiffiffiffiffiffiffiffiffi

XTX
p

; the field ϕ can be identified with the
one appearing in Ref. [120]. The (putative) dual four-
dimensional field theory has a global SOð5Þ symmetry
inherited from the bulk SOð5Þ. Its breaking is generically
interpreted as an admixture of spontaneous and explicit
breaking effects, due to the coupling and VEV of the
operator dual to the bulk field ϕ. In the treatment of the
bulk theory, we adopt the Rξ gauge, for which purpose we
follow the procedure (and notation) in Ref. [143], which
requires us to add both bulk and boundary terms, but we do
not report them in this section.

A. The six-dimensional action

We first write the model in D ¼ 6 dimensions. The field
content consists of gravity, scalar fields Xα transforming in
the 5 of the gauge group SOð5Þ, and SOð5Þ gauge fields
AM̂α

β. The six-dimensional space-time indexes are denoted
by M̂ ¼ 0, 1, 2, 3, 5, 6, while the components of the
fundamental representation of SOð5Þ are denoted by greek
indexes α ¼ 1;…; 5. The generators tA (A ¼ 1;…; 10)
of SOð5Þ are normalized so that TrðtAtBÞ ¼ 1

2
δAB. The

action is

S6 ¼ SðbulkÞ
6 þ

X
i¼1;2

S5;i; ð1Þ

SðbulkÞ
6 ¼

Z
d6x

ffiffiffiffiffiffiffiffi
−ĝ6

p �
R6

4
−
1

2
ĝM̂ N̂ðDM̂XÞTDN̂X

− V6ðXÞ − 1

2
Tr

�
ĝM̂ P̂ĝN̂ Q̂F M̂ N̂F P̂ Q̂

��
; ð2Þ

S5;i¼ð−Þi
Z

d5x
ffiffiffiffiffiffi
− ˜̂g

q �
K
2
þλiðXÞþfið ˜̂gM̂N̂Þ

�����
ρ¼ρi

; ð3Þ

where the bulk part is SðbulkÞ
6 , and the two boundary actions

S5;i, with i ¼ 1, 2, are localized at the values ρ ¼ ρ1;2 of the
radial coordinate. Our conventions are such that the six-
dimensional metric ĝM̂ N̂ has determinant ĝ6 and signature
mostly þ. The six-dimensional Ricci scalar is R6. The

induced metric on the boundaries is denoted as ˜̂gM̂ N̂ , the
extrinsic curvature is K, and it appears in the Gibbons-
Hawking-York term of the boundary actions. The terms
denoted with fi depend explicitly on the induced metric on
the boundary, as in Ref. [120].
The covariant derivatives are defined as follows:

ðDM̂XÞα ≡ ∂M̂Xα þ igAM̂α
βXβ; ð4Þ

and the field-strength tensors are

F M̂ N̂ α
β ≡ 2

�
∂½M̂AN̂�α

β þ igA½M̂α
γAN̂�γ

β
	
; ð5Þ

where antisymmetrization is defined as ½n1n2�≡
1
2
ðn1n2 − n2n1Þ. The coupling g is a free parameter.
Both the boundary potentials λiðXÞ, as well as the bulk

scalar potential V6ðXÞ, are taken to be SOð5Þ invariant, and
hence, functions of the single variable ϕ≡ ffiffiffiffiffiffiffiffiffiffiffi

XTX
p

. We
adopt the explicit form of V6ðϕÞ following Ref. [120] by
expressing it in terms of a superpotential W6 that satisfies
the relation

V6 ¼
1

2

X
α



∂W6

∂Xα

�
2

−
5

4
W2

6; ð6Þ

where the superpotential is given by

W6 ≡ −2 −
Δ
2
XTX ¼ −2 −

Δ
2
ϕ2; ð7Þ

and hence, one finds that

V6 ¼ −5 −
Δð5 − ΔÞ

2
ϕ2 −

5Δ2

16
ϕ4: ð8Þ

We retain this elegant formulation only for convenience,
even though the model itself is not supersymmetric (there
are no fermionic fields), nor do the backgrounds discussed
in this paper originate from solving first-order equations
derivable from the superpotential W6.

B. Dimensional reduction

One of the dimensions is a circle parametrized by the
angular variable 0 ≤ η < 2π. We adopt the (soliton) ansatz

ds26 ¼ e−2χdx25 þ e6χðdηþ χMdxMÞ2; ð9Þ

where the space-time index M ¼ 0, 1, 2, 3, 5. The five-
dimensional metric has the domain-wall form

ds25 ¼ dr2 þ e2AðrÞdx21;3 ¼ e2χðρÞdρ2 þ e2AðρÞdx21;3; ð10Þ
and we dimensionally reduce the theory, so that the reduced
action is then

S5 ¼ SðbulkÞ
5 þ

X
i¼1;2

S4;i; ð11Þ
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SðbulkÞ
5 ¼

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
R
4
−
1

2
gMN

�
6∂Mχ∂Nχ þ

X5
α¼1

ðDMXÞαðDNXÞα þ e−6χ
X10
A¼1

ðDMA6ÞAðDNA6ÞA
�

− e−2χV6 −
1

2
g2e−8χXTA2

6X −
1

16
e8χgMPgNQFðχÞ

MNF
ðχÞ
PQ −

1

2
e2χTr½gMPgNQFMNFPQ�

−gMNðigÞχMXTA6DNX − 2e2χgMNgOPχMTrðFNODPA6Þ

−
1

2
g2gMNχMχNXTA2

6X þ e2χgMPgNQχMχNTrðDPA6DQA6Þ−e2χgMNgPQχMχNTrðDPA6DQA6Þ
�
; ð12Þ

S4;i ¼ ð−Þi
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
K
2
þ e−χλiðXÞ þ e−χfiðχÞ

�����
ρ¼ρi

:

ð13Þ

The five-dimensional metric gMN has determinant g5,
the induced metric on the boundaries is g̃MN , the five-
dimensional Ricci scalar is R, and K is the extrinsic
curvature. The field strength for the vector χM is given by

FðχÞ
MN ≡ ∂MχN − ∂NχM. We defineA6 ≡AA

6 t
A, whereAA

6 is
a scalar that transforms in the adjoint representation of
SOð5Þ and originates from the sixth component of the
gauge field in six dimensions.
We are interested in background solutions in which

A6 ¼ 0, AM ¼ 0, χM ¼ 0, while the metric and the scalars
Xα and χ depend on the radial coordinate ρ only. The
background fields satisfy the equations of motion

∂
2
ρXα þ ð4∂ρA − ∂ρχÞ∂ρXα ¼

∂V6

∂Xα
; ð14Þ

∂
2
ρχ þ ð4∂ρA − ∂ρχÞ∂ρχ ¼ −

V6

3
; ð15Þ

3ð∂ρAÞ2 −
1

2
∂ρXα∂ρXα − 3ð∂ρχÞ2 ¼ −V6; ð16Þ

with boundary conditions given by



∂ρXα−

∂λi
∂Xα

�����
ρi

¼ 0;



6∂ρχþ λiþfi−

∂fi
∂χ

�����
ρi

¼ 0;



3

2
∂ρAþ λiþfi

�����
ρi

¼ 0: ð17Þ

For vanishing fi ¼ 0, one obtains solutions that lift to
domain walls in D ¼ 6 dimensions, for which

A ¼ A − χ ¼ 3χ: ð18Þ

The solutions which we will be interested in break the
SOð5Þ symmetry to SOð4Þ due to a nontrivial background
profile of ϕðρÞ ≠ 0. It is hence convenient to decompose
Xα as 5 ¼ 1 ⊕ 4 in terms of irreducible representations of

SOð4Þ, which we denote as ϕ and πÂ, respectively. We use
the parametrization

X ¼ exp

�
2iπÂtÂ

�
ϕX0; X0 ¼ ð0; 0; 0; 0; 1ÞT; ð19Þ

and adopt the decomposition

AM̂α
β ¼ AM̂

ĀðtĀÞαβ þAM̂
ÂðtÂÞαβ; ð20Þ

where tÂ (Â ¼ 1;…; 4) and tĀ (Ā ¼ 5;…; 10) are,
respectively, the broken and unbroken generators of
SOð5Þ with respect to X0. An example of such a basis of
generators is given in Appendix A. The generators obey the
normalization conditions TrðtĀtB̂Þ ¼ 0, TrðtÂtB̂Þ ¼ 1

2
δÂ B̂,

and TrðtĀtB̄Þ ¼ 1
2
δĀ B̄.

As the boundary potentials λiðϕÞ are SOð5Þ invariant, the
boundary conditions for Xα given in Eq. (17) become

0 ¼

�

∂ρϕ −
∂λi
∂ϕ

�
Xα

ϕ
þ 2i∂ρπÂðtÂÞαβX β

�����
ρi

; ð21Þ

which are solved by imposing

∂ρϕjρi ¼
∂λi
∂ϕ

����
ρi

; ∂ρπ
Âjρi ¼ 0: ð22Þ

These boundary conditions select background solutions in
which, without loss of generality, we choose πÂ ¼ 0.
Hence, the only background functions that are nonzero
are A, ϕ, and χ.

C. Truncation to quadratic order

As ϕ, A, and χ are the only functions that are nontrivial in
the background, it is convenient to simplify the reduced
action further by power expanding the other scalar and
gauge fields and truncating the expansion at the quadratic
order. The resulting action admits the same classical
solutions and still contains enough information to compute
the linearized equations of motion for the small fluctuations
of all the fields.
By treating the remaining degrees of freedom (other

than ϕ, χ, and gMN) as perturbations, at quadratic order the
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five-dimensional action can then be written as

Sð2Þ
5 ¼ Sðbulk;2Þ

5 þ
X
i¼1;2

S4;i; ð23Þ

where the bulk action is

Sðbulk;2Þ
5 ¼

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
R
4
−
1

2
gMNGab∂MΦa

∂NΦb − V5ðΦaÞ

−
1

2
gMNGð0Þ

ab ∂MΦð0Þa
∂NΦð0Þb −

1

2
mð0Þ2

ab Φð0ÞaΦð0Þb

−
1

2
gMNGð1Þ

ABH
ð1ÞA
M Hð1ÞB

N −
1

4
gMOgNPHð1Þ

ABFMN
AFOP

B

�
; ð24Þ

and the boundary actions are

S4;i ¼ ð−Þi
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
K
2
þ e−χλiðϕÞ þ e−χfiðχÞ

�����
ρ¼ρi

:

ð25Þ

The sigma-model metric for the active scalars Φa ¼ fϕ; χg
is Gab ¼ diagð1; 6Þ, and the potential is V5ðϕ; χÞ ¼
e−2χV6ðϕÞ. The scalars Φð0Þa ¼ fAĀ

6 ;A
Â
6g have sigma-

model metric

Gð0Þ ¼

 e−6χ16×6

e−6χ14×4

�
ð26Þ

and mass matrix

mð0Þ2

g2
¼


 06×6
1
4
ϕ2e−8χ14×4

�
: ð27Þ

The 1-forms VM
A ¼ fχM;AM

Ā;AM
Âg have field strengths

FMN
A ¼ 2∂½MVN�A, and

Hð1Þ ¼

0
B@

1
4
e8χ

e2χ16×6
e2χ14×4

1
CA; ð28Þ

while the gauge-invariant combinations of derivatives

of the pseudo-scalars and 1-forms given by Hð1ÞA
M ¼

f0; 0; ∂MπÂ þ g
2
AM

Âg have

Gð1Þ ¼

0
B@

0

06×6
ϕ214×4

1
CA: ð29Þ

III. BACKGROUND SOLUTIONS

All calculations presented in this paper make use of
regular background solutions in which the size of the circle
shrinks to zero size. We refer to such solutions as confining,
with abuse of language, and borrow their characterization
from Ref. [120], to which we refer the reader for technical
details and expanded discussions. The space of the solutions
of interest depends on two parameters. The parameter Δ is
related to the dimension of the deforming parameter, or
operator, in the five-dimensional theory. An additional
parameter ϕI controls the behavior of the active scalars
in proximity of the end of space and ultimately controls the
size of the deformation.
The solutions of interest are not known in closed form,

but only numerically, and can be obtained starting from
the (IR) expansion of the background functions [120].
Assuming the space ends at some value ρo of the radial
direction, we can write the regular solutions as a power
expansion in the small difference ðρ − ρoÞ:

ϕðρÞ ¼ ϕI −
1

16
ΔϕIð20þ Δð5ϕ2

I − 4ÞÞðρ − ρoÞ2

þOððρ − ρoÞ4Þ; ð30Þ

χðρÞ ¼ χI þ
1

3
logðρ − ρoÞ þ

1

288
ð−80þ 8ðΔ − 5Þ

× Δϕ2
I − 5Δ2ϕ4

I Þðρ − ρoÞ2 þOððρ − ρoÞ4Þ; ð31Þ

AðρÞ ¼ AI þ
1

3
logðρ − ρoÞ þ

7

576
ð80þ Δϕ2

I ð40
þ Δð5ϕ2

I − 8ÞÞÞðρ − ρoÞ2 þOððρ − ρoÞ4Þ; ð32Þ

where χI , AI are additional integration constants, besides
the aforementioned ρo and ϕI. In order to avoid a conical
singularity in the plane described by ρ and η, we set χI ¼ 0,
and it is shown explicitly in Ref. [120] that the curvature
invariants up to quadratic order (in six dimensions) are
finite for these solutions.
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For asymptotically large values of the radial coordinate
ρ, all the backgrounds of interest approach the geometry
of AdS6. One can hence expand the functional form of
the background functions in powers of the small param-
eter z≡ e−ρ. The detailed form of such UV expansions
depends nontrivially on the value of Δ, and a (incomplete)
catalog of examples can be found in the Appendix of
Ref. [120], which we do not reproduce here. We denote
the five integration constants as ϕJ, ϕV , χU, χ5, and AU.
They appear in the background functions in the following
general way:

ϕðzÞ ¼ ϕJzΔJ þ � � � þ ϕVzΔV þ � � � ; ð33Þ

χðzÞ ¼ χU −
1

3
logðzÞ þ � � � þ ðχ5 þ � � �Þz5 þ � � � ; ð34Þ

AðzÞ ¼ AU −
4

3
logðzÞ þ � � � : ð35Þ

In these expressions, AU and χU can be set to zero without
loss of generality by trivial redefinitions of the metric and
coordinates in six dimensions, for example, following the
procedure adopted in Ref. [124]. As we are interested
only in computing the spectrum of fluctuations in units of
the mass of the lightest tensorial glueball, our results are
not affected by these two parameters, and we will not
discuss them any further. In the expansions in Ref. [120],
χ5 is conventionally defined in such a way that if χ5 ¼ 0,
then A ¼ 4χ. Finally, the two parameters ϕJ and ϕV appear
in ϕðzÞ, as the coefficients of the zΔJ and zΔV terms of
the expansion.2 We adopt the convention that ΔJ ¼
minðΔ; 5 − ΔÞ and ΔV ¼ 5 − ΔJ, hence, always interpret-
ing ΔV as the dimension of the operator in the dual field
theory corresponding to ϕ, and ΔJ as the dimension of its
coupling. We refer the reader to Ref. [120] for more details
and for the calculation of the free energy for a number of
choices of Δ and ϕI .

IV. MASS SPECTRUM OF FLUCTUATIONS

Reference [120] reports the spectrum of fluctuations of
the SOð5Þ singlets computed using the gauge-invariant
formalism of Refs. [91–98], which allows one to resolve
the mixing between fluctuations of the fields ϕ, χ, and the
metric. The resulting variables are denoted, respectively, as
a1, a2, and e. We denote as v1 the fluctuations associated
with χM. For the same background solutions, we now
consider the SOð5Þ multiplets AĀ

6 , A
Â
6 , A

Ā
M, A

Â
M, and πÂ.

None of these additional fields develop VEVs; hence, they
do not mix with the components of the background metric.
Yet, because of the presence of a bulk SOð5Þ gauge
symmetry, to compute the spectrum of their fluctuations

we elect to introduce the Rξ gauge and to identify gauge-
invariant physical combinations, borrowing the formalism
developed in Ref. [143] (see also Ref. [107]). The resulting
gauge-invariant fluctuations are denoted as a3, a4, v2, v3,
and p, respectively.
We restrict the discussion to the SOð5Þ multiplets, and

the equations they obey, rather than repeating details that
can be found in Ref. [120]. The equations of motion are the
following:

0 ¼
�
∂
2
ρ þ ð4∂ρA − 7∂ρχÞ∂ρ − e2χ−2Aq2

�
a3; ð36Þ

0 ¼
�
∂
2
ρ þ ð4∂ρA − 7∂ρχÞ∂ρ −

g2ϕ2

4
− e2χ−2Aq2

�
a4; ð37Þ

0 ¼
�
∂
2
ρ þ ð2∂ρAþ ∂ρχÞ∂ρ − e2χ−2Aq2

�
v2; ð38Þ

0 ¼
�
∂
2
ρ þ ð2∂ρAþ ∂ρχÞ∂ρ −

g2ϕ2

4
− e2χ−2Aq2

�
v3; ð39Þ

0 ¼
�
∂
2
ρ −



2∂ρAþ ∂ρχ þ

2∂ρϕ

ϕ

�
∂ρ −

g2ϕ2

4
− e2χ−2Aq2

�
p;

ð40Þ

where q2 ≡ ημνqμqν, and qμ is the four-momentum.
We study numerically the solutions of these linearized

fluctuations in the range ρ1 ≤ ρ ≤ ρ2, with ρ1 > ρo. In
principle, in order to recover the physical results, we should
apply boundary conditions at ρ ¼ ρ1 and ρ ¼ ρ2, and then
repeat the process by taking the ρ1 → ρo and ρ2 → þ∞
limits separately. To be more specific, for the scalars a3 and
a4, we impose Dirichlet boundary conditions at ρ ¼ ρ1 and
ρ ¼ ρ2: a3;4jρi ¼ 0. For the vectors v2 and v3, we impose
Neumann boundary conditions at ρ ¼ ρ1 and ρ ¼ ρ2:
∂ρv2;3jρi ¼ 0. Conversely, the pseudo-scalar p obeys
Dirichlet boundary conditions for ρ ¼ ρ1 and Neumann
for ρ ¼ ρ2 [107,118]. In practice, in order to improve the
numerical convergence of this process, we make use of
the asymptotic expansions, both in the IR and UV, of the
general solutions of the fluctuation equations; see an
example in Appendix B. We impose upon them the
aforementioned boundary conditions and require continuity
of the functions and their derivatives with the expansions
thus constrained. The system is overconstrained, yielding a
discrete spectrum of values of M2 ¼ −q2. We will discuss
in a future publication how these conclusions are modified
in the presence of nontrivial boundary terms [131], which
nontrivially parametrize the effect of coupling the theory to
external fields.
In order to discuss our new results and provide an

interpretation for them, we must first pause and explain the
physical meaning of the parameters ϕI and g. The former is

2The limiting case Δ ¼ 5=2 requires a generalization. The
expansion in this case is written explicitly in Ref. [120].
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the parameter controlling the size of SOð5Þ symmetry-
breaking effects. Interestingly, despite the fact that ϕ obeys
a second-order, nonlinear differential equation, the require-
ment of regularity of the geometry at the end of the space
imposes a nontrivial relation between the two free param-
eters that appear in a generic confining solution. For
concreteness, we can think of them as the coefficients
ϕJ and ϕV appearing in the UV expansions related to the
explicit and spontaneous breaking of the symmetry on the
field-theory side. The numerical study in Ref. [120] dem-
onstrates that for 0 < Δ < 5, there is a critical value of ϕI
denoted ϕIðcÞ, such that when ϕI > ϕIðcÞ there exists an
alternative classical solution that has a lower value of the
free energy for the same value of the source. This result
demonstrates the existence of a phase transition. We choose
to display ϕI ¼ ϕIðcÞ in the plots because this choice
minimizes the mass of the lightest spin-0 state.
The parameter g controls the self-coupling of the bulk

gauge fields. It is related to the coupling (and decay) of the
composite vector mesons to two PNGBs in the effective
description of the dual field theory. But these statements
require some more qualification, in view of the notational
conventions we adopted. In the action S6, we ignored a
multiplicative factor of 2=κ2. In this paper, we are only
solving classical background equations and linearized
equations for the fluctuations around the chosen back-
ground solutions. In this process, 2=κ2 is just an overall
factor that disappears from the final results. These classical
results are exact if one takes the limit κ → 0 while holding
fixed g and ϕI. Close to the classical regime, perturbative
corrections can be organized in loop diagrams, provided the
coupling g is not too strong. A naive estimate of the upper

bound yields 3g2κ2

256π3
≪ 1 [174].3

We show in Figs. 1 and 2 examples of mass spectra for
selected choices of Δ < 5=2 and Δ ≥ 5=2, respectively.
Hence, for each representative choice of Δ, we produce one
plot in which we fix g ¼ 5 and vary ϕI, and a second plot in
which we fix ϕI ¼ ϕIðcÞ and vary g. We show all the states
of the system, differentiating them by color, and the shape
of the markers [for different SOð4Þ representations]. We
also reproduce the results for the SOð5Þ singlet for
completeness of the presentation, but also to set up their
physics implication. More examples of the numerical
results are presented in Appendix C.
For any value of Δ, we find that the mass of the axial-

vector states, transforming as 4 of SOð4Þ, is larger than that
of the vectors, and the difference grows with g. Also, the
mass of the lightest PNGBs grows with g. When varying ϕI
for Δ≲ 2 and fixed g, the mass of the spin-0 states
transforming as 4 of SOð4Þ grows with ϕI. In field-theory
terms, in this regime we are enhancing the effect of explicit

symmetry breaking compared to the spontaneous breaking,
and there is no real sense in which these states are genuine
PNGBs, despite having the right quantum numbers. But for
Δ ≥ 2.5, we see that the mass of the lightest spin-0 states
transforming as 4 of SOð4Þ can be made arbitrarily light by
choosing large values of ϕI. Unfortunately though, the
critical values of ϕI are rather small, and such large choices
fall into the tachyonic part of the spectrum. The general
conclusion of this exercise is that for all choices of Δ and g,
if we restrict attention to the stable region of parameter
space with ϕI ≤ ϕIðcÞ, then the mass of the PNGBs shows
no indications of being suppressed.
Interestingly, we find something new when we focus our

attention on the case where 2≲ Δ < 2.5. Reference [120]
found the existence of a metastable region of parameter
space with large ϕI, in which the lightest scalar is a dilaton.
Here, we find that also the PNGBs transforming as a 4 of
SOð4Þ are light in this region of parameter space, their
masses being suppressed with respect to the scale of all
other bound states. This can be seen in the bottom-left panel
of Fig. 1.
To demonstrate that the mass of these two states can be

dialed to be arbitrarily small, compared to the typical mass
scale of all other bound states represented by the mass of
the spin-2 particles, in Fig. 3, we display some more
information about the choices Δ ¼ 2.35, Δ ¼ 2.40, and
Δ ¼ 2.45. We show in the left panels of the figure the
dependence on g of the spectrum, for a choice of ϕI ¼ 3,
large enough to fall in the portion of parameter space that
contains a light dilaton together with a light set of PNGBs
transforming as the 4 of SOð4Þ.
While Ref. [120], for such large values of ϕI , found that

the confining background solutions are metastable, we
produce here three expanded and detailed plots showing
that the free energy is almost degenerate with another
branch of solutions. The plots on the right panels of Fig. 3
show the free energy F̂ computed using holographic
renormalization, as a function of the source ϕ̂J, and
normalized appropriately. The plots are expanded versions
of those in Ref. [120], and for these choices, are obtained
with the following relations:

F ¼ −
1

40
e4AU−χU



16Δ



5

2
− Δ

�
ϕJϕV − 75χ5

�
; ð41Þ

Λ−1 ≡
Z

∞

ρo

dρeχðρÞ−AðρÞ; ð42Þ

and the rescaling F̂ ≡ F=Λ5, ϕ̂J ≡ ϕJ=ΛΔ. We do not
repeat the details here, except for specifying that in the plots
the choice ϕI ¼ 3 is equivalent to confining solutions with
ϕ̂J ¼ 6.78 for Δ ¼ 2.35, ϕ̂J ¼ 6.83 for Δ ¼ 2.40, and
ϕ̂J ¼ 6.88 for Δ ¼ 2.45. The reason why we show these

3The factor of 3 in this expression is the second Casimir of the
adjoint C2ðAdjÞ ¼ 3 for SOð5Þ; it would be C2ðAdjÞ ¼ Nc for
SUðNcÞ.
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plots is that, besides the confining solutions, the analysis of
the free energy carries over also for (singular) solutions
respecting five-dimensional Poincaré invariance, and we
can show a graphical comparison. In particular, one can
explicitly see that for ϕI ¼ 3, in all three examples
reported here, the confining solutions do not minimize

the free energy. In the limit of large ϕI , the metastable
solutions might be long-lived. Whether there are regions of
parameter space that allow for the construction of a viable
CHM relying on the existence of a long-lived metastable
vacuum is an important question that would require a
dedicated study.

FIG. 1. Mass spectrum M2

jMj of fluctuations computed for confining backgrounds, with various choices of Δ, as a function of the IR
parameter ϕI for g ¼ 5 (left) and as a function of g for ϕI ¼ ϕIðcÞ (right). For each Δ, we show the spectrum of scalar (blue), pseudo-
scalar (purple), vector (black), and tensor (red) states. The values of the IR and UV cutoffs in the calculations are, respectively, given by
ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5 in all of the cases. The different symbols refer to the quantum numbers with respect to the unbroken
SOð4Þ symmetry: Disks are used for singlets and have already been reported in Ref. [120]; diamonds represent the 6 of SOð4Þ, and
crosses the 4 of SOð4Þ. All masses are normalized to the mass of the lightest spin-2 state. Because the masses of the SOð5Þ singlets do
not depend on g, we do not repeat them in the right panels, which display only nontrivial SOð5Þ multiplets.
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While for small ϕI one could argue that the choice of
potential adopted in this paper is as good as any, because it
can be obtained as a power expansion of more complicated
potentials in the regime of small ϕ, one expects model
dependence to affect the large ϕI region. Top-down models
are not affected by this limitation. For example, Fig. 7 of
Ref. [107] shows the spectrum of a top-down model with

SOð5Þ symmetry breaking to SOð4Þ. The results at large ϕI
qualitatively resemble, for large values of the VEV, the case
Δ ≥ 5=2 of this paper, as for arbitrarily large values of ϕI
the PNGBs become arbitrarily light, but also other states,
including a tachyon, persist and their masses appear to be
suppressed compared to the typical scale of the other bound
state masses. We do not know if top-down models showing

FIG. 2. Mass spectrum M2

jMj of fluctuations computed for confining backgrounds, with various choices of Δ, as a function of the IR
parameter ϕI for g ¼ 5 (left) and as a function of g for ϕI ¼ ϕIðcÞ (right). For each Δ, we show the spectrum of scalar (blue), pseudo-
scalar (purple), vector (black), and tensor (red) states. The values of the IR and UV cutoffs in the calculations are, respectively, given by
ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5 in all of the cases. The different symbols refer to the quantum numbers with respect to the unbroken
SOð4Þ symmetry: Disks are used for singlets and have already been reported in Ref. [120]; diamonds represent the 6 of SOð4Þ, and
crosses the 4 of SOð4Þ. All masses are normalized to the mass of the lightest spin-2 state. Because the masses of the SOð5Þ singlets do
not depend on g, we do not repeat them in the right panels, which display only nontrivial SOð5Þ multiplets.
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the feature we uncovered here exist, namely, in which both
dilaton and PNGBs are parametrically light, but there is no
tachyon. Nevertheless, this is a new, unexpected result,
which might have important phenomenological implica-
tions that are worth studying in the future.

V. OUTLOOK

In this paper, we studied the spectrum of bound states
carrying SOð5Þ quantum numbers in a strongly coupled,
confining field theory modeled by its higher-dimensional,
weakly coupled gravity dual. We paid particular attention to

FIG. 3. Mass spectrum M2

jMj of fluctuations computed for confining backgrounds for Δ ¼ 2.35 (top), Δ ¼ 2.40 (middle), and Δ ¼ 2.45
(bottom), and ϕI ¼ 3 as a function of g (left), and free energy F̂ a function of the normalized source ϕ̂J (right). For the spectrum, scalar
(blue), pseudo-scalar (purple), vector (black), and tensor (red) states are displayed as disks for SOð4Þ singlets, as diamonds to represent
the 6 of SOð4Þ, and crosses for the 4 of SOð4Þ. The values of the IR and UV cutoffs in the calculations are, respectively, given by
ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5. All masses are normalized to the mass of the lightest spin-2 state. The definition of (normalized) free
energy F̂ and (normalized) source ϕ̂J can be found in Ref. [120]. The black (stable), gray (metastable), and dashed black (tachyonic)
regions of the curve refer to the confining solutions of interest, while red and blue curves refer to singular solutions. The black dots on
the right panels denote the solutions with ϕI ¼ 3.

ELANDER, FATEMIABHARI, and PIAI PHYS. REV. D 107, 115021 (2023)

115021-10



the states that have the correct quantum numbers to be
identified as PNGBs, as the SOð5Þ global symmetry of the
field theory is broken both explicitly and spontaneously to
its SOð4Þ subgroup. We studied the spectrum as a function
of three parameters. Δ is the parameter that, for Δ > 5=2, is
interpreted in the field theory as the dimension of the scalar
operator controlling SOð5Þ breaking, and for Δ < 5=2 as
the dimension of the coupling of the operator. ϕI is the
parameter controlling the size of the symmetry breaking,
and g controls the self-coupling of vector fields, as well as
their coupling to the PNGBs.
The main results of our analysis are twofold. First, we

showed that if we restrict our attention to the region of
parameter space in which the confining solutions are stable,
as identified in Ref. [120], then neither the scalar SOð5Þ
singlet nor the SOð4Þmultiplets are parametrically light for
any value of ϕI ≤ ϕIðcÞ, Δ, and g that we considered.
Second, we identified a metastable region of parameter
space with 2≲ Δ < 2.5 and large ϕI , for which both the
scalar SOð5Þ singlet and the lightest spin-0 states trans-
forming as 4 of SOð4Þ become arbitrarily light when
approaching Δ → 5=2. In this case, the former is a dilaton,
and the latter is a multiplet of PNGBs. The existence of this
region of parameter space, and the fact that both types of
particles are parametrically light, are both new and unex-
pected results, deserving further investigation.
This is the first step toward the construction of a

composite Higgs model, in which the Higgs fields emerge
as the PNGBs of a new strongly coupled theory. The next
step requires one to couple the system to the standard
model gauge fields and to study vacuum alignment in the

theory as a function of the strength of additional symmetry-
breaking parameters, which in the gravity theory corre-
spond to boundary-localized terms. Whether or not this will
allow one to explore other, enlarged regions of parameter
space as viable for CHM model building is not known,
as is not known whether the presence of the dilaton in the
metastable region of parameter space has phenomenologi-
cally relevant implications. These interesting questions will
be addressed in future research.

The data generated for this manuscript can be down-
loaded from the Zenodo repository [175].
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APPENDIX A: BASIS OF SOð5Þ GENERATORS

For concreteness, we present here an example of a
basis of SOð5Þ generators, which we chose so that the
first four generators tÂ, with Â ¼ 1;…; 4, span the coset
SOð5Þ=SOð4Þ, with the conventions in Eq. (19), while the
unbroken SOð4Þ is generated by tĀ, with Ā ¼ 5;…; 10,

t1 ¼ i
2

0
BBBBBB@

0 0 0 0 −1
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1
CCCCCCA
; t2 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 −1
0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

1
CCCCCCA
; t3 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1
0 0 0 0 0

0 0 1 0 0

1
CCCCCCA
; t4 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1
0 0 0 1 0

1
CCCCCCA
;

t5 ¼ i
2

0
BBBBBB@

0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; t6 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1
CCCCCCA
; t7 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0

1
CCCCCCA
;

t8 ¼ i
2

0
BBBBBB@

0 0 −1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; t9 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; t10 ¼ i

2

0
BBBBBB@

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
: ðA1Þ
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APPENDIX B: ASYMPTOTIC EXPANSIONS OF THE FLUCTUATIONS

The linearized equations governing the dynamics of the small fluctuations around the classical solutions are subject to
boundary conditions that, as explained in the body of the paper, can be implemented by matching to the asymptotic
expansion of the solutions in a way that resembles the process of improvement in lattice field theory. It is hence useful to
report here such asymptotic expansions. We find it convenient to include also the SOð5Þ singlets, together with the SOð4Þ
multiplets.

1. IR expansions

We start from the IR expansion of the fluctuations. For convenience, we put ρo ¼ 0 and AI ¼ 0 in this subsection,4 while
setting χI ¼ 0 in order to avoid a conical singularity. We then expand the solutions of the linearized equations in powers of
small ρ. We can write the expansion for a general value of Δ.
For the scalar fluctuations, we find

a1 ¼ a1I;0 þ a1I;l logðρÞ þ
1

4
ρ2
�
−
1

4
Δða1I;0ðΔð15ϕ2

I − 4Þ þ 20Þ þ 6ϕIða2I;0 − a2I;lÞðΔð5ϕ2
I − 4Þ þ 20ÞÞ

þ q2ða1I;0 − a1I;lÞ −
1

48
a1I;lðΔð25Δϕ4

I þ 20ð10 − 11ΔÞϕ2
I þ 48ðΔ − 5ÞÞ þ 400Þ

þ logðρÞ


a1I;l



−
15Δ2ϕ2

I

4
þ ðΔ − 5ÞΔþ q2

�
−
3

2
a2I;lΔϕIðΔð5ϕ2

I − 4Þ þ 20Þ
��

þOðρ4Þ; ðB1Þ

a2 ¼ a2I;0 þ a2I;l logðρÞ þ
1

4
ρ2
�
−
1

4
ΔϕIða1I;0 − a1I;lÞðΔð5ϕ2

I − 4Þ þ 20Þ þ q2ða2I;0 − a2I;lÞ

−
3

8
a2I;0ðΔϕ2

I ðΔð5ϕ2
I − 8Þ þ 40Þ þ 80Þ þ 13

48
a2I;lðΔϕ2

I ðΔð5ϕ2
I − 8Þ þ 40Þ þ 80Þ

þ logðρÞ


−
5

4
a1I;lΔ2ϕ3

I þ a1I;lðΔ − 5ÞΔϕI þ a2I;l



−
15

8
Δ2ϕ4

I þ 3ðΔ − 5ÞΔϕ2
I þ q2 − 30

���
þOðρ4Þ; ðB2Þ

a3 ¼ a3I;0 þ ρ2


1

2
a3I;0q

2 logðρÞ þ a3I;2

�
þOðρ4Þ; ðB3Þ

a4 ¼ a4I;0 þ ρ2


1

2
a4I;0



q2 þ g2ϕ2

I

4

�
logðρÞ þ a4I;2

�
þOðρ4Þ: ðB4Þ

For the pseudo-scalar fluctuations, we find

p ¼ pI;0 þ ρ2
�
pI;2 þ

1

2
pI;0



q2 þ g2

4
ϕ2
I

�
logðρÞ

�
þOðρ4Þ: ðB5Þ

For the vector fluctuations, we find

v1 ¼ v1I;−2ρ
−2 þ 1

2
q2v1I;−2 logðρÞ þ v1I;0 þ

1

12288
ρ2½1536q2v1I;0 þ 80Δ2v1I;−2ϕ

4
I ð2ð8Δ2 − 50Δþ 75Þ − 3q2Þ

þ 128ðΔ − 5ÞΔv1I;−2ϕ2
I ð−3ðΔ − 5ÞΔþ 3q2 − 50Þ − 64ð9q4 þ 60q2 − 500Þv1I;−2 þ 125Δ4v1I;−2ϕ

8
I

− 1000ðΔ − 2ÞΔ3v1I;−2ϕ
6
I þ 768q4v1I;−2 logðρÞ� þOðρ4Þ; ðB6Þ

v2 ¼ v2I;0 þ v2I;l logðρÞ þ
1

96
ρ2½24q2ðv2I;0 − v2I;lÞ þ v2I;lð−5Δ2ϕ4

I þ 8ðΔ − 5ÞΔϕ2
I − 80Þ

þ 24q2v2I;l logðρÞ� þOðρ4Þ; ðB7Þ

4The dependence on ρo and AI can be reinstated by making the substitutions ρ → ρ − ρo and q2 → e−2AI q2 in the expressions.
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v3 ¼ v3I;0 þ v3I;l logðρÞ þ
1

96
ρ2½ð24q2 þ 6g2ϕ2

I Þv3I;0 þ ð−80 − 24q2 − 6g2ϕ2
I − 40Δϕ2

I þ Δ2ð8ϕ2
I − 5ϕ4

I ÞÞv3I;l
þ ð24q2 þ 6g2ϕ2

I Þ logðρÞv3I;l� þOðρ4Þ: ðB8Þ

For the tensor fluctuations, we find

e ¼ eI;0 þ eI;l logðρÞ þ
1

192
ρ2½48q2ðeI;0 − eI;lÞ − 25Δ2eI;lϕ4

I þ 40ðΔ − 5ÞΔeI;lϕ2
I − 400eI;l þ 48eI;lq2 logðρÞ� þOðρ4Þ:

ðB9Þ

2. UV expansions

The expansions for large ρ in the UV regime of the dual field-theory interpretation depend nontrivially on the parameter
Δ. For illustration purposes, in this subsection we set Δ ¼ 3, and AU ¼ 0 ¼ χU.

5 We write the expansions in terms
of z≡ e−ρ.
For the scalar fluctuations, we find

a1 ¼ a12z
2 þ a13z

3 þ 1

2
a12q

2z4 þ 1

6
a13q

2z5 þ 1

48
a12ð2q4 − 99ϕ2

JÞz6 þOðz7Þ; ðB10Þ

a2 ¼ a20 −
1

6
a20q

2z2 þ 1

24
a20q

4z4 þ a25z
5 þ 1

144
a20q

2ðq4 − 14ϕ2
JÞz6 þOðz7Þ; ðB11Þ

a3 ¼ a30 −
1

2
a30q

2z2 þ a33z
3 −

1

8
a30q

4z4 þ 1

10
a33q

2z5 −
1

144
a30q

2ðq4 þ 10ϕ2
JÞz6 þOðz7Þ; ðB12Þ

a4 ¼ a40 −
1

2
a40q

2z2 þ a43z
3 þ 1

16
a40ðg2ϕ2

J − 2q4Þz4 þ 1

20
ða40g2ϕJϕV þ 2a43q

2Þz5

−
1

288
a40ð2q6 þ ð20þ g2Þq2ϕ2

J − 4g2ϕ2
VÞz6 þOðz7Þ: ðB13Þ

For the pseudo-scalar fluctuations, we find

p ¼ p0 þ p1zþ


p0q2

2
þ p1ϕV

ϕJ

�
z2 þ 2p0q2ϕJϕV þ p1q2ϕ2

J þ 2p1ϕ2
V

6ϕ2
J

z3

þ
p0



q4ϕJ þ g2ϕ3

J
2

�
þ 4p1q2ϕV

24ϕJ
z4 þOðz5Þ: ðB14Þ

For the vector fluctuations, we find

v1 ¼ v10 −
1

6
q2v10z

2 þ 1

24
q4v10z

4 þ v15z
5 þ 1

144
q2v10ðq4 − 14ϕ2

JÞz6

þ 1

70
q2ð70v10χ5 − 2v10ϕJϕV þ 5v15Þz7 þOðz8Þ; ðB15Þ

v2 ¼ v20 −
1

2
q2v20z

2 þ v23z
3 −

1

8
q4v20z

4 þ 1

10
q2v23z

5 −
1

144
q2v20ðq4 þ 10ϕ2

JÞz6

þ 1

1400
ð5ðq4 þ 45ϕ2

JÞv23 þ 6q2v20ð75χ5 − 26ϕJϕVÞÞz7 þOðz8Þ; ðB16Þ

v3 ¼ v30 −
1

2
q2v30z

2 þ v33z
3 −

1

8
v30



q4 −

g2

2
ϕ2
J

�
z4 þ 1

10



q2v33 þ

g2

2
v30ϕJϕV

�
z5 þOðz6

�
: ðB17Þ

5The dependence on χU and AU can be reinstated by making the substitution q2 → e2χU−2AUq2 in the expressions.
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For the tensor fluctuations, we find

e ¼ e0 −
1

6
e0q2z2 þ

1

24
e0q4z4 þ e5z5 þOðz6Þ: ðB18Þ

The choice Δ ¼ 3 yields a particularly simple expansion
in powers of z. In the process of carrying out the numerical
calculations for this paper, we computed the UVexpansions
for all values of Δ for which we plot the spectrum. We do

not report all of these expansions here, but we notice that
for special choices of Δ the formal expansion changes to
include also logarithmic terms in the form zn logmðzÞ.

APPENDIX C: MORE MASS SPECTRA

In this appendix, we report a few additional examples
of spectra in Figs. 4–6. The choices of Δ are such as to

FIG. 4. Mass spectrum M2

jMj of fluctuations computed for confining backgrounds with various choices of Δ, as a function of the IR
parameter ϕI for g ¼ 5. For eachΔ, we show the spectrum of scalar (blue), pseudo-scalar (purple), vector (black), and tensor (red) states.
The values of the IR and UV cutoffs in the calculations are, respectively, given by ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5 in all of the cases.
The different symbols refer to the quantum numbers with respect to the unbroken SOð4Þ symmetry: Disks are used for singlets and have
already been reported in Ref. [120], diamonds represent the 6 of SOð4Þ, and crosses the 4 of SOð4Þ. All masses are normalized to the
mass of the lightest spin-2 state.
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FIG. 5. Mass spectrum M2

jMj of fluctuations computed for confining backgrounds with various choices of Δ, as a function of the IR
parameter ϕI for g ¼ 5. For eachΔ, we show the spectrum of scalar (blue), pseudo-scalar (purple), vector (black), and tensor (red) states.
The values of the IR and UV cutoffs in the calculations are, respectively, given by ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5 in all of the cases.
The different symbols refer to the quantum numbers with respect to the unbroken SOð4Þ symmetry: Disks are used for singlets and have
already been reported in Ref. [120], diamonds represent the 6 of SOð4Þ, and crosses the 4 of SOð4Þ. All masses are normalized to the
mass of the lightest spin-2 state.
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FIG. 6. Mass spectrum M2

jMj of fluctuations computed for confining backgrounds with various choices of Δ, as a function of the IR
parameter ϕI for g ¼ 5. For eachΔ, we show the spectrum of scalar (blue), pseudo-scalar (purple), vector (black), and tensor (red) states.
The values of the IR and UV cutoffs in the calculations are, respectively, given by ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5 in all of the cases.
The different symbols refer to the quantum numbers with respect to the unbroken SOð4Þ symmetry: Disks are used for singlets and have
already been reported in Ref. [120], diamonds represent the 6 of SOð4Þ, and crosses the 4 of SOð4Þ. All masses are normalized to the
mass of the lightest spin-2 state.
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include the entirety of the catalog in Ref. [120]. We fix the indicative value g ¼ 5 in all plots. Qualitatively, all these plots
resemble at least one of those in the main body of the paper, though quantitative features may be amplified or suppressed by
changes in Δ.
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