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Nonstandard neutrino interactions (NSI) arising from light and heavy mediators probe different sectors
of the parameter space of models focusing on phenomena that require the extension of the standard model.
High-energy scattering experiments are not relevant on constraining the NSI hiding a light mediator at the
fundamental level, while flavor-universal NSI cannot be probed with neutrino oscillation experiments.
Currently the only way to measure flavor-universal NSI with a light mediator is to rely on coherent elastic
neutrino-nucleon scattering experiments, which we use to derive bounds for light mediator flavor-universal
NSI. For light NSI, we obtain εu ∈ ½−14.85; 14.79� and εd ¼ ½−13.19; 13.84� (90% CL.). We also derive
constraints on flavor-universal heavy NSI and find a 2σ tension. Finally, we discuss the implications of the
experiments on the allowed parameter space of a specific example model, called superweak extension of
the standard model.
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I. INTRODUCTION

The discovery of neutrino oscillations [1,2] kickstarted
a plethora of research efforts in neutrino physics. As the
standard model (SM) is devoid of neutrino masses, neutrinos
are an exciting option as a portal to new physics, which must
contain a mechanism to generate neutrino masses, and
therefore neutrino oscillations. One of the most popular
models of mass generation is the seesaw mechanism [3–14].
The type I mechanism introduces heavy right-handed
neutrinos that are sterile under the SM. As at least two of
the three active neutrinos are massive, the minimum exten-
sion includes two sterile neutrinos. In this paper we focus on
the type I mechanism; see Refs. [15–17] for reviews on other
types of neutrino mass generation mechanisms.
New physics effects are manifested at low energy scales

via effective operators, which are generated by integrating
out the heavy degrees of freedom from the high-energy

theory. In the context of neutrino physics, there are three
important operators:

O5 ¼
C5

Λ
ðLc ·HÞðH · LÞ; ð1Þ

O6a ¼
C6a

Λ2
ðLγμPLLÞðf̄γμPXfÞ; ð2Þ

O6b ¼
C6b

Λ2
ðL̄ ·HÞi=∂ðH† · LÞ; ð3Þ

where the dot represents the SUð2ÞL invariant product of
doublets and Λ is the scale of new physics. The first
operator is the Weinberg operator [18], which is the only
possible gauge invariant dimension-5 operator that can be
constructed from the SM fields. After spontaneous sym-
metry breaking this gives a Majorana neutrino mass term.
The second operator corresponds to nonstandard inter-
actions (NSIs) [19] of four charged leptons or charged NSI
that in general break flavor. The third operator arises from
active-sterile neutrino mixing. The latter two operators are
of dimension six.
The scale Λ is interpreted as the energy scale of new

physics, typically considered much higher than the electro-
weak scale, corresponding to a heavy NSI mediator at
the fundamental level. This expectation is based on the
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assumption that the couplings Ci are Oð1Þ coefficients.
However, quantum field theory does not a priori force the
couplings to be so large. In the SM, a prime example of
small couplings is the Yukawa coupling of the electron,
ye ≃ 3 × 10−6 ≪ 1. In the case when the couplings Ci ≪ 1,
the scale Λ can be as low as GeV or even MeV, and the
mass of the corresponding NSI mediator may be light or
similar when compared to the momentum transfer in the
experiment. While such scenarios do not support models
built on naturalness arguments, they are certainly not ruled
out, and are also predictive. Such new physics interactions
can be probed at high-intensity, low-energy experiments
that are planned for the next decades, at the European
Spallation Source [20] (ESS) for example. The ESS
promises an order of magnitude increase in neutrino flux
as compared to that of the Spallation Neutron Source where
the first successful detection of coherent elastic neutrino-
nucleon scattering (CEνNS) [21] was carried out by the
COHERENT experiment [22,23]. The increase in statistics
is the key to improve the bounds on the NSI parameters.
Neutrino interactions have very low cross sections.

Nonetheless neutrino-electron and neutrino-nucleon cross
sections have been measured during scattering experiments
where the averaged momentum transfer squared is large,
hq2i ¼ 20 GeV2 [24–26]. These measurements give strin-
gent bounds to new physics effects originating from the
effective operators, namely the NSI with new physics scale
Λ > ΛEW. The observation of CEνNS by COHERENT
allows us to test whether or not NSI effects exist with scale
Λ significantly below the electroweak scale.
Different extensions of the SM produce different NSI

textures. A subclass of these extensions is flavor conserv-
ing. Consequently, the NSI matrix is diagonal and real,
containing only three elements, which have contributions
from up-type quarks, down-type quarks, and charged
leptons. If in addition the extension is flavor universal,
then the NSI matrix is isotropic (proportional to the unit
matrix). In the bottom-to-top approach, current experimen-
tal bounds can be used to constrain the high-energy theory
parameters. In contrast, the top-to-bottom approach can be
used to predict the texture and region NSI available for a
particular UV complete model.
In this paper, we discuss the NSI formalism and both

approaches by considering the constraints with light
and heavy NSI mediators. We derive bounds for flavor-
universally coupled NSI mediator in both the light and the
heavy case. We consider a specific example, the super-
weak extension of the standard model (SWSM) [27]
which exhibits tiny flavor-universal couplings to fermions.
A similar study, but in the context of different models, has
been recently carried out [28]. The SWSM contains an NSI
mediator that is light in scattering experiments and there-
fore it evades detection, but not so in CEνNS, which is
sensitive for NSI originating from SWSM. We derive
bounds on the new gauge coupling and ratio of the vacuum

expectation values in the SWSM based on the results of
COHERENT [22,23,29] and our previous analyses on dark
matter [30] in the SWSM.
Our paper is organized as follows. We introduce the NSI

formalism in Sec. II and present the bounds for flavor-
universal NSI parameters in the case of a light and heavy
mediator. We then discuss in Sec. III a particular example
of a model which exhibits flavor-universal NSI—the
superweak extension of the standard model. In Sec. IV
we present our results: on one hand, the bounds from
COHERENT constrain the gauge parameters of the super-
weak extension, while on the other the properties of the
model predict texture and correlations for the NSI para-
meters. We present our conclusions in Sec. V.

II. EXPERIMENTAL CONSTRAINTS
ON THE NSI PARAMETERS

A. NSI formalism

In our study we focus on the O6a operator of Eq. (1)
that is relevant to neutrino-matter interactions. In the usual
parametrization of the NSI Lagrangian the interaction
strength is set by the Fermi coupling GF,

LNSI ¼ −2
ffiffiffi
2

p
GF

X
f;X¼�;l;l0

εf;Xl;l0 ðν̄lγμPLνl0 Þðf̄γμPXfÞ ð4Þ

where εf;Xl;l0 parametrizes the strength of the new interaction
with respect to GF, with l, l0 denoting charged lepton
flavors and f being a charged fermion in the standard model.
When one matches the NSI Lagrangian (4) with the

effective Lagrangian obtained from a high-energy theory,
the NSI parameters are proportional to the propagator of the
mediator, i.e., to εf;Xl;l0 ∝ ðq2 −M2Þ−1, where qμ is the four-
momentum (q2 ¼ qμqμ) carried by the mediator and M is
its mass. In a neutrino scattering experiment, we may
approximate the propagator either as

εf;Xl;l0 ∝ þ 1

q2
if q2 ≫ M2; ð5Þ

or

εf;Xl;l0 ∝ −
1

M2
if q2 ≪ M2: ð6Þ

The first case in Eq. (5) corresponds to a “light NSI
mediator,” while the second one to a “heavy NSI mediator.”
For concreteness, let us consider M ¼ 50 MeV. Then the
mediator is considered heavy from the viewpoint of
neutrino oscillation experiments, but light for high- energy
neutrino scattering experiments, such as CHARM [24] and
NuTeV [25]. However, if q2 is similar in size to M2, as in
the case of CEνNS in our example, we cannot take any
of these limits. Nevertheless, we can still apply the NSI
formalism using the full propagator with q2 being the
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characteristic momentum transfer squared in the scattering
experiment. The resulting NSI couplings interpolate
smoothly between the light and heavy limits. We present
an example in Sec. IV B.

B. Global fit of the heavy NSI parameters

Most studies reporting the bounds on NSI parameters
simplify the fitting procedure to contain only one non-
vanishing NSI parameter. For flavor-universal models these
bounds cannot be considered, and a global fit instead is
required. This has been performed in Refs. [29,31] for
example.
The χ2-fitting in [29] follows the standard procedure,

where the function

χ2 ¼
X
i

�
Nexp

i − ð1þ αcÞNtheor
i þ ð1þ βcÞBi

σi

�

þ
�
αc
σαc

�
2

þ
�
βc
σβc

�
2

þ
�
ηc − 1

σηc

�
2

ð7Þ

is minimized with respect to the nuisance parameters αc, βc,
and ηc, corresponding to the systematic uncertainties due to
the signal rate, the background rate, and a quenching factor.
The factors σαc , σβc , σηc are the corresponding standard
deviations, and the σi are the uncertainties of the number of
events in an energy bin Nexp

i from Ref. [22], and Ntheor
i is

the theory estimate in the same bin.
In Ref. [31] the authors perform a global fit to current

experiments for the NSI couplings with heavy mediators
and in the absence of CP violation, that is, the NSI
parameters are assumed to be real. The authors performed
a χ2-test (their procedure for COHERENT assumes only
one nuisance factor, and the analysis predates the start of
the COHERENT experiment), minimizing the χ2-function,
and presented the dependence of the Δχ2-distributions (the
difference of a χ2-test value to χ2 best-fit value), that is, the
statistical significance of the NSI parameters. We repro-
duced those plots here in Fig. 1, with 2σ and 90% con-
fidence intervals exhibited. We read off the best-fit points
directly from these graphs, and presented those together
with the confidence intervals in Table I.

FIG. 1. Determinations of 2σ and 90% confidence intervals from minimized Δχ2-distributions given in [31]. Down-type quark NSI
above and up-type quark NSI below. The vertical black line ðΔχ2 ¼ 9Þ corresponds to the 3σ bound, used to find the values in Table II.
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We then combined the individual Δχ2-distributions
to test flavor-universal couplings by summing the three
Δχ2-distributions [32]:

Δχ2isotropic ¼ Δχ2ee þ Δχ2μμ þ Δχ2ττ: ð8Þ

We present the combined up- and down-type isotropic
heavy NSI coupling Δχ2-distributions in Fig. 2, with the
individual original distributions overlaid. The relative

incompatibility of different flavor distributions results in
tension with experimental data indicating that both the up-
and down-type quark isotropic NSI scenarios are excluded
at 2σ. We compare the individual and combined bounds in
Fig. 3. For isotropic NSI we have summarized our results in
Table II. These bounds are relevant for theories which are
accessible via high-energy experiments, where the mediator
has at least a mass of Oð10Þ GeV and couples to quark
flavors universally.
For leptonic NSI, one can use the constraints given

in Fig. 2 of Ref. [33], where the authors performed
both one-parameter- and flavor-conserving fits. Their χ2-
analysis takes into account the data from LEP experiments
(ALEPH, DELPHI, L3, and OPAL), LSND experiment,
reactor experiments (MUNU and Rovno), and CHARM II
experiment. The Borexino experiment has performed one-
parameter fits [34] leading to the loosest bound.

C. Flavor universal NSI
from the COHERENT experiment

For obtaining constraint on light NSI parameters
oscillation experiments can be utilized. However, those

TABLE I. Best-fit points for diagonal quark NSI parameters,
and also 90% and 2σ confidence intervals (CI) derived from using
Fig. 4 of [31]. The bounds apply only for heavy mediator NSI
(M2 ≫ 20 GeV2).

Parameter Best-fit point μi 2σ CI σ2;i 90% CI σ90;i

εdee 0.301 ½−0.015; 0.556� [0.019, 0.504]

εdμμ 0.003 ½−0.004; 0.010� ½−0.003; 0.009�
εdττ 0.006 ½−0.004; 0.073� ½−0.001; 0.044�
εuee 0.297 [0.006, 0.493] [0.044, 0.451]
εuμμ −0.001 ½−0.009; 0.006� ½−0.008; 0.005�
εuττ −0.001 ½−0.011; 0.067� ½−0.009; 0.035�

FIG. 2. Combined χ2-distributions and the individual components overlaid.

FIG. 3. Comparisons of 2σ and 90% confidence intervals for the diagonal elements, including best-fit value. Left: down-type quark
NSI; Right: up-type quark NSI. Isotropic NSI included. The best-fit of εee is not visible at this range.
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cannot observe the diagonal elements of the NSI matrix
themselves. Instead, they measure off-diagonal couplings
and differences of the diagonal couplings. In Ref. [35] the
authors have chosen the convention that εμμ is subtracted
from the effective Mikheyev-Smirnov-Wolfenstein neu-
trino oscillation Hamiltonian as a phase rotation, so the
observable parameters are εfee − εfμμ and εfee − εfττ.
Consequently, flavor-conserving NSI (that is, diagonal
NSI matrix) can be detected in neutrino oscillations only
if it is not flavor-universal. In a flavor-universal case the
NSI matrix is isotropic and manifests itself as an unphysical
phase rotation, undetectable in such experiments.
Another resource to test the light NSI couplings is

coherent elastic neutrino-nucleon scattering (CEνNS).
In this experiment the differential cross section in the
recoil energy T (T ≲ 10 keV) of the nucleus in this process
is given by

dσ
dT

¼ G2
FM
π

�
1 −

jqj2
4E2

ν

�
Q2

W ð9Þ

where M is the mass of the nucleus and jqj2 ¼ 2MT is
the momentum transfer squared. Eν is the energy of the
neutrino, while QW denotes the weak charge for a nucleus
of Z protons and N neutrons, which in the standard model
reads as

QSM
W ¼ gnVNFnðqÞ þ gpVZFpðqÞ;

gnV ¼ −
1

2
; gpV ¼ 1

2
− 2 sin2 θW: ð10Þ

The functions Fn and Fp are nuclear form factors for the
neutron and the proton distribution in the nucleus, para-
metrized using Helm’s parametrization in Ref. [29]:

FxðjqjÞ ¼
3j1ðjqjRx;0Þ

jqjRx;0
e−jqj2s2=2;

R2
x;0 ¼ 5s2 −

5

3
R2
x; x ¼ n or p: ð11Þ

In this formula Rx;0 is obtained using the surface thickness
s ¼ 0.9 fm and the root mean square radii of the proton
and neutron distributions inside the nucleus. For instance,
Rpð133CsÞ ¼ 4.804 fm and Rnð133CsÞ ¼ 5.01 for Cesium
and Rpð127IÞ ¼ 4.749 fm and Rnð127CsÞ ¼ 4.94 for Iodine

used in the experiments. The function j1ðxÞ ¼ sin x
x2 − cos x

x is
the spherical Bessel function of the first kind, order 1.
CEνNS was predicted by Freedman in 1974 [21], and

finally observed for the first time in the COHERENT
experiment in 2017 [22]. The first run used Cesium-133
and Iodine-127 nuclei in 2017 and the second run liquid
Argon- 40 in 2020 [23].
The generalization of the weak charge in Eq. (10) to the

case of generic NSI is

Q2
W;e ¼ ððgpV þ 2εueeþ εdeeÞZFpðjqjÞ

þ ðgnV þ εueeþ 2εdeeÞNFnðjqjÞÞ2
þjð2εueμþ εdeμÞZFpðjqjÞþ ðεueμþ 2εdeμÞNFnðjqjÞÞj2
þjð2εueτ þ εdeτÞZFpðjqjÞþ ðεueτ þ 2εdeτÞNFðjqjÞÞj2

ð12Þ

where εfll0 ¼ εf;þll0 þ εf;−ll0 .
We remark that the leading order contribution to the

flavor-breaking NSI parameters εfll0 (l ≠ l0) is propor-
tional to the second order of those parameters, while the
flavor-conserving parameters contribute at both first and
second order (linear and square terms). If both flavor-
conserving and flavor-breaking NSI parameters have
approximately the same magnitude and are significantly
less than one, then we may neglect the second order terms.
Then, the flavor-conserving NSI parameters dominate the
distortion to the weak charge Q2

W :

Q2
W;e ¼ QSM

W;e þ 2ðgnVÞ2ðεuee þ 2εdeeÞN2F2
n

þ 6gnVg
p
Vðεuee þ εdeeÞNZFnFp

þ 2ðgpVÞ2ð2εuee þ εdeeÞZ2F2
p: ð13Þ

Presently large values (larger than one) for the light NSI
parameters are still allowed experimentally for both flavor-
conserving and flavor-breaking cases [29]. In such a case,
one should use the complete formula for the weak charge as
given in Eq. (12).
We may utilize the COHERENT limit given by [29] to

constrain εqee. Analogously, the same argument can be used
to demonstrate the dominance of the μμ elements on Q2

W;μ.
We performed the combination of Δχ2-distributions also

for the COHERENT experiment, which is sensitive to
εqee; ε

q
eμ, and εqμμ but not to εqττ, where q ¼ u, d. In isotropic

NSI models εqee ¼ εqμμ. We assume the COHERENT
measurements of these two couplings to be independent
and sum the Δχ2-distributions related to these parameters,
following the instruction of Ref. [32]. We then derive
the COHERENT bounds for isotropic NSI parameters.
We reproduce the individual Δχ2-distributions taken from
Ref. [29], and show them together with the combination

TABLE II. Best-fit points and 3σ confidence intervals for
isotropic NSI. The constraints from high-energy experiments
have been taken into account, hence the bounds apply only for
heavy mediator NSI (M2 ≫ 20 GeV2).

Parameter Best fit 3σ CI

εu −5.5 × 10−4 ½−0.0073; 0.0063�
εd 5.3 × 10−3 ½−0.0026; 0.0114�
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in Fig. 4. The corresponding confidence intervals are given
in Table III.
A somewhat similar analysis in Ref. [36] has provided

bounds for both diagonal and nondiagonal NSI couplings
for up- and down-type quarks. It has been completed with
the assumption that the NSI coupling is the same for both
oscillation and CEνNS experiments. This is true if the
momentum transfer q2 ≪ M2, whereM is the NSI mediator
mass (heavy NSI mediator). However, in the case of light
NSI this condition does not hold. Our analysis is performed
in the region where the NSI coupling is g2=ðq2 −M2Þ, in
contrast to oscillations, where the coupling is g2=q2.

III. NSI COUPLINGS DERIVED IN THE SWSM

In this section we provide an example of a model that
naturally yields an isotropic NSI matrix, namely, the super-
weak extension of the standard model [27]. We recall the
details of the SWSM only to the extent needed to derive
the NSI couplings. For more details on the model, we call
attention to Refs. [30,37–39] where various phenomeno-
logical aspects were studied.

A. Super-weak extension of the standard model

The SWSM is based on the SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞY ⊗ Uð1Þz gauge group. The U(1) gauge couplings
are denoted by gy and gz. The anomaly-free Uð1Þz charges
for the fermions are presented in Table IV. The SUð2ÞL ⊗
Uð1ÞY symmetry is broken by the vacuum expectation
value v of the usual Brout-Englert-Higgs field, while the
Uð1Þz symmetry is spontaneously broken by the vacuum

expectation value w of a complex scalar singlet (under
transformations of the SM), making the corresponding
neutral gauge bosons Z and Z0 massive. These bosons mix
weakly with mixing angle θZ.
The covariant derivative related to the Abelian sector of

the model is

Dμ ⊃ DUð1Þ
μ ¼ ∂μ − iðy; zÞ

�
gy −ηgz
0 gz

�
Rε

�
Bμ

B0
μ

�
ð14Þ

where Rε is an unphysical rotation matrix (whose rotation
angle can be absorbed in θZ), y and z are the U(1) charges,
and the parameter η is a convenient way to parametrize the
kinetic mixing between the U(1) gauge fields. It depends on
the renormalization scale μ mildly, and its value at the
electroweak scale will vary according to the free choice of
the scale μ0 where the mixing vanishes, ηðμ0Þ ¼ 0. For μ0
chosen in the range ½MZ;MGUT� one finds ηðMZÞ ∈
½0; 0.656� [37]. The largest value corresponds to a special
case, where we assume that the kinetic mixing vanishes
near the Planck scale.
The interaction vertices can be obtained using the

implementation of the model [38] in SARAH [40–42].
For the Z0-neutrino interactions, we find

−ieCL
Z0νiνk

¼ −
i
2

�X3
j¼1

ðUi;jÞðU†Þj;k
�

e
sin θW cos θW

sin θZ

þ ðη − 1Þgz cos θZ
�

ð15Þ

−gz cos θZ
X3
j¼1

Ui;jþ3ðU†Þjþ3;k

�
ð16Þ

FIG. 4. Combined Δχ2-distributions and the individual components overlaid. Only COHERENT data is taken into account.

TABLE III. Confidence intervals for isotropic NSI couplings
based on the COHERENT constraints.

Parameter 2σ CI 90% CI 1σ CI

εu ½−17.25; 17.16� ½−14.85; 14.79� ½−10.01; 9.42�
εd ½−15.31; 16.05� ½−13.19; 13.84� ½−8.61; 9.23�

TABLE IV. Charges of the extra U(1) symmetry of the fermions
in SWSM.

Field QL uR dR LL lR NR

Uð1Þz charge 1
6

7
6 − 5

6
− 1

2
− 3

2
1
2
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where θW is Weinberg’s angle and U is the neutrino mixing
matrix. The model contains three extra heavy sterile right-
handed neutrinos NR;i (i ¼ 1, 2, 3), so this matrix is a 6 × 6

unitary matrix. The sterile neutrinos of the SWSM are
much more massive than the active ones. We may safely
assume that active-sterile neutrino mixing is negligible (that
is, the off-diagonal 3 × 3 blocks vanish), and hence the
active neutrino mixing matrix is unitary (the 3 × 3 upper
left block of U, i.e., Pontecorvo-Maki-Nakagawa-Sakata
matrix). Using these conditions, we can perform the matrix
element sums and obtain the simplified expression:

−ieCL
Z0νν ≈ −

i
2

�
e

sin θW cos θW
sin θZ þ ðη − 1Þgz cos θZ

�
:

ð17Þ

The other Z0-fermion couplings (multiplied by i for easier
reading) are

eCL
Z0dd ≈ −

1

6
tan θWðeð3 cot2 θW þ 1Þ sin θZ

þ ðη − 1Þgz cot θW cos θZÞ ð18Þ

eCR
Z0dd ≈þ 1

6
ð2e tan θW sin θZ þ ð2η − 5Þgz cos θZÞ ð19Þ

eCL
Z0uu ≈ −

1

6
tan θWðeð1 − 3 cot2 θWÞ sin θZ

þ ðη − 1Þgz cot θW cos θZÞ ð20Þ

eCR
Z0uu ≈ −

1

6
ð4e tan θW sin θZ þ ð4η − 7Þgz cos θZÞ ð21Þ

eCL
Z0ee ≈ −

1

2
tan θWðeðcot2 θW − 1Þ sin θZ

− ðη − 1Þgz cot θW cos θZÞ ð22Þ

eCR
Z0ee ≈þ 1

2
ð2e tan θW sin θZ þ ð2η − 3Þgz cos θZÞ: ð23Þ

Now we may write the Feynman amplitude for virtual
Z0-mediated νlf → νlf-scattering. Then we obtain the NSI
couplings derived from the SWSM as

εf;Xðgz; η; tan βÞ ¼ −
v2

2ðq2 −M2
Z0 Þ ðeC

L
Z0ννÞðeCX

Z0ffÞ; ð24Þ

which interpolates smoothly between the limits of heavy or
light NSI couplings given by

εf;X ≈
1

2
ðeCL

Z0ννÞðeCX
Z0ffÞ ×

8<
:

v2

M2

Z0
; when M2

Z0 ≫ q2;

− v2

q2 ; when M2
Z0 ≪ q2:

ð25Þ

These NSI couplings are flavor universal, hence we have
suppressed the corresponding lower indices. Also, flavor is
conserved.
The mass of the Z0 in Eq. (24) is fixed according to

Eq. (A.14) of Ref [37], reproduced in an equivalent form
here:

M2
Z0 ðgz; η; tan βÞ ¼

g2zv2 tan2 β
1þ 1

e ð2 − ηÞgz sin θW cos θW
; ð26Þ

with tan β ¼ w=v being the ratio of the two VEVs. In
addition, the mixing angle θZ also depends on the same
parameters (see Eq. (A.13) of [37]),

tan 2θZ ¼
ð1 − η

2
Þ gz cos θWgL

1
4
− ðð1 − η

2
Þ2 þ tan2βÞðgz cos θWgL

Þ2 : ð27Þ

B. Numerical estimates

Solving the Eq. (26) for gz, we obtain for positive gz that

gz ¼
1

4ev2tan2β
×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z0 ð16e2v2tan2β þ ðη − 2Þ2M2
Z0sin2ð2θWÞÞ

q
− ðη − 2ÞM2

Z0 sin ð2θWÞ
�
≃
3.94 × 10−6

tan β
×

MZ0

MeV
ð28Þ

where we substituted η ¼ 0 and took into account only the leading order contribution. We justify this by noting that in our
investigation the dependence of η on other parameters is weak and its inclusion is manifested by multiplying the right-hand
side of Eq. (28) with a multiplicative factor of Oð1Þ. Similarly,

θZ ≈ ð2 − ηÞ cos θW
gz
gL

≃ 1.354ð2 − ηÞgz ¼ gz ×Oð1Þ: ð29Þ

Assuming θZ ≪ 1 (i.e., super-weak coupling), we can derive the following expressions for NSI couplings:
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εu ≃
1

2

�
v

MZ0

�
2
�
g2z
12

ð−5η2 þ 13η − 8Þ þ 0.2355gzθZð1.766 − ηÞ þ 0.0469θ2Z

�
; ð30Þ

εd ≃
1

2

�
v

MZ0

�
2
�
g2z
12

ðη2 − 5ηþ 4Þ − 0.0626gzθZð1.881þ ηÞ − 0.0885θ2Z

�
; ð31Þ

εe ≃
1

2

�
v

MZ0

�
2
�
g2z
4
ð3η2 − 7ηþ 4Þ þ 0.5335gzθZð1.338 − ηÞ − 0.00536θ2Z

�
: ð32Þ

Scanning over the possible η, we find

θZ ∈ ½1.820; 2.708�gz and jεfj ∈ inf

�
vgz
MZ0

�
2

; ð33Þ

with flavor dependent intervals

inu ¼ ½0.248; 0.402�; ind ¼ ½0.339; 0.651�;
ine ¼ ½0.4275; 1.486�: ð34Þ

Note that the NSI parameters are not independent of
each other, which can be seen by taking the ratio of up- and
down-type quark NSIs in SWSM,

R ¼ εu

εd

¼ eCL
Z0uu þ eCR

Z0uu

eCL
Z0dd þ eCR

Z0dd

¼ eð5 − 3 cot2 θWÞ sin θZ þ ð5η − 8Þgz cot θW cos θZ
eð3 cot2 θW − 1Þ sin θZ − ðη − 4Þgz cot θW cos θZ

;

ð35Þ

from which we can express η as

η ¼
e
gz
tan θW tan θZð3ðRþ 1Þ cot2 θW − R − 5Þ þ 4Rþ 8

Rþ 5
:

ð36Þ

FIG. 5. Histograms (containing 50 bins) of the scan (with total number of pointsN ¼ 106) corresponding toMZ0 , log10 θZ, log10 gz, tan β,
εu, εd, εeL, and εeR. Note that the first three histograms have linear vertical axis, while the last five ones have logarithmic vertical axis.
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It turns out that the resulting valid benchmark points are
confined to a very narrow region (see the next section).
Finally we remark that assuming a universal bound εmax

for the NSI couplings, we may present a simple analytic
bound in the ðMZ0 ; gzÞ plane, namely

gz <
ffiffiffiffiffiffiffiffiffi
εmax

p �
MZ0

v

�
×Oð1Þ: ð37Þ

IV. RESULTS

Our results are two-fold. First we present constraints
on the parameters of the SWSM and also on the NSI
parameters originating from the SWSM. Next we discuss
our predictions for those NSI couplings.

A. Free parameters and constraints

The NSI couplings depend on the gauge sector param-
eters gz, η and on tan β, which we choose as free parameters
in the model. For the neutrino masses we consider, we may
assume that the Pontecorvo-Maki-Nakagawa-Sakata matrix
is unitary, since nonunitary effects contributing to the NSI
are negligible [39].

We scanned the ðlog10 tan β; log10 jgzj; ηÞ right rectan-
gular prism by a uniformly distributed random sampling in
½−2; 2� × ½−10; 0� × ½0; 0.656� to determine the region con-
sistent with current bound on isotropic NSI couplings,
derived in Sec. II. 3. Larger values of tan β are possible in
principle, but in such cases the new scalar sector decouples
almost completely, and hence remains inaccessible. Also
values tan β ≳ 100 are disfavored by the overproduction
of dark matter if the SWSM is to explain the origin of
dark matter energy density observed in the Universe [43].
We used the 2σ limits for the NSI couplings as given in
Table III. We present the allowed values in histograms
in Fig. 5 and in Table V. We see that the model prefers
small values of MZ0 and tan β. The distribution of gz
(hence also θZ) is fairly flat within the allowed range gz ∈
5 · ½10−6; 10−4� (approximately), with the full allowed range
being somewhat larger. We note that the average value
(or also the median) of the asymmetric εu and εd distri-
butions are positive and negative, since they are skewed to
the respective values.

B. Predictions

The NSI couplings εu and εd derived from the SWSM
are anticorrelated, as can be seen on Fig. 6 obtained using
those in Eq. (24) with q2 ≃ ð51 MeVÞ2 as the characteristic
energy transfer squared in the COHERENT experiment.
The region between black lines is consistent with the 2σ
bounds from COHERENT. The data points are colored
according to the mass of the Z0. Three distinct Z0 mass
regions emerge. In the lower right sector two clearly
different Z0 mass regions can be identified: light (turquoise)
and heavy (red) areas. The region with red color in the left
plot is an inconsistent SWSM freeze-out dark matter
scenario, which requires that the mass of the Z0 boson
falls into the (10–135) MeV mass range [37]. Restricting
our scan to this constrained region, shown on the right
plot reveals additional predictions: if q ≲MZ0 ≤ mπ , then
εu < 0 < εd but if 10 MeV ≤ MZ0 ≲ q, then εd < 0 < εu.

TABLE V. Scan and benchmark point ranges corresponding 2
and 1σ allowed regions of the COHERENT experiment.

Parameter Scan range BP range (2σ) BP range (1σ)

η [0,0.656] [0,0.656] [0,0.656]
tan β [0.01,100] [0.02,100] [0.03,100]
log10 gz ½−10; 1� ½−6.38;−2.31� ½−6.38;−2.41�
MZ0=MeV [10,135] [10,135] [10,135]
log10 θZ � � � ½−6.09;−1.94� ½−6.09;−2.05�
εu ½−17.25; 17.16� ½−17.25; 17.16� ½−10.00; 9.42�
εd ½−15.31; 16.05� ½−15.31; 16.05� ½−8.606; 9.221�
εeL � � � ½−1.504; 1.462� ½−0.856; 0.808�
εeR � � � ½−19.87; 19.84� ½−10.91; 11.55�

FIG. 6. Left: Available parameter space in the ðεu; εdÞ plane corresponding to the scan ranges in Table Vexcept that for the mass of the
Z0, for which MZ0 ∈ ½1; 109� keV. Right: Benchmark points consistent with SWSM freeze-out dark matter scenario.

CONSTRAINING FLAVOR-UNIVERSAL NONSTANDARD … PHYS. REV. D 107, 115020 (2023)

115020-9



In the left panel of Fig. 7 we can see that the parameter η
is almost a linear function of the ratio ðεu=εdÞ as one
expects based on the discussion after Eq. (35). This
information is visualized as a heat map in the right panel
of Fig. 7, which shows that the COHERENT limits are
compatible with ϵu > 0 at the 2σ confidence level only for
η≲ 0.3 at the electroweak scale. The region between dotted
lines corresponds to 1σ bounds from COHERENT.
We present additional benchmark points (BPs) in Fig. 8

over the ðgz; XÞ planes (X ¼ η, θZ and MZ0 ) as heat maps
depending on the mass of the Z0. All these plots are
relevant in the context of explaining dark matter within
the SWSM. The BPs do not exhibit any particular
dependence on the parameter η representing the kinetic
mixing. The second plot visualizes precisely the approxi-
mate relation in Eq. (29). We show the available param-
eter space in the ðtan β; gzÞ plane separately in Fig. 9
where we present approximate analytic bounds super-
imposed (green dashes). In addition we added the NA64
constraint obtained by searching for dark photons, iden-
tified here with the Z0 (red solid curve) [43]. For tan β we
find the lower bounds corresponding to NA64 slightly
depending on the value of the coupling gz. The gauge

FIG. 8. Benchmark points in ðgz; XÞ planes, with X ¼ η, θZ and MZ0 . The color corresponds to MZ0 in MeV units.

FIG. 7. Left: The η parameter as a function of εu=εd. Right: As in the Fig. 6 right panel, but the data points are colored according to η,
which corresponds to the azimuthal angle in the ðεu; εdÞ plane.

FIG. 9. Available parameter space in the ðtan β; gzÞ plane,
where color corresponds to MZ0 . Lower and upper analytic
bounds for MZ0 obtained from Eq. (28) using the allowed
region for MZ0 assuming the freeze-out dark matter scenario of
SWSM [37]. The solid red line represents the NA64 constraint on
direct dark photon search.
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coupling is constrained to 2σ confidence interval between
4.17 × 10−6 and 4.90 × 10−3, where the lower and upper
bounds correspond to MZ0 > 10 MeV and MZ0 < mπ . We
see that the mass of the Z0 does not significantly affect
this tan β bound, but the favored values of θZ increase
with MZ0 (see Fig. 8).
While large NSI couplings are still allowed, according to

Fig. 5 for the benchmark point distributions small cou-
plings are favored in εu; εd; εeL, and εeR. The corresponding
BPs are shown in Fig. 10.

V. CONCLUSIONS AND FUTURE PROSPECTS

We have considered an exciting possibility for NSI,
which escapes the high-energy experimental constraints
and detection by neutrino oscillation experiments. Former
experiments are unable to probe the interactions with a light
mediator, while flavor-universal couplings between the
mediator and a neutrino are manifested as an irrelevant
phase factor in the neutrino oscillation Hamiltonian. In the
presence of sterile neutrinos the factor does not disappear,
but is suppressed [44].
The only viable avenue to probe flavor-universal light

NSI couplings is then to consider CEνNS. We derived the
bounds for flavor-universal NSI both in light and heavy

mediator cases, and found that large NSI couplings (ε ≃ 10)
are allowed for the light NSI scenario, while ε≲ 10−2 for
the heavy case.
We then considered a specific model, the super-weak

extension of the standard model. We obtained the NSI
couplings in the SWSM, which allowed us to investigate
the parameter space of the SWSM as allowed by the
existing constraints of CEνNS on the NSI parameters. We
found that in this range the model prefers small values for
the mass of the new gauge boson and also for the ratio w=v
of the VEVs. The kinetic mixing parameter is weakly
constrained, but we found that its possible values are
compatible with εu=εd ∈ ½−1.17;−0.92�. This ratio of
NSI strengths is a testable prediction of the SWSM. If
we added the constraint set by the NA64 experiment on the
mass of dark photon, we could constrain further the viable
parameter space to tan β ≳ 2 and gz ∼ 10−6–10−3.
Our study demonstrated that even low-energy experi-

ments have significant potential on constraining new
physics discovery. Both higher-intensity and higher-energy
experiments are needed for the progressive discovery of
light and heavy NSI interactions. While the limits from
CEνNS are quite loose at present, their expected improve-
ment at the ESS [20] will constrain the parameter space of
the SWSM severely.

FIG. 10. Benchmark points in ðgz; log10ð�εuÞÞ and ðgz; log10ð�εdÞÞ planes. Note that different signs of the NSI parameters correspond
to two regions of parameter space:MZ0 < 51 MeV andMZ0 > 51 MeV. We separated the cases corresponding to positive and negative
values of εu and εd. The color corresponds to MZ0 .
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