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A massive photon possesses a longitudinal polarization mode absent in its massless counterpart.
Transverse and longitudinal modes follow different dispersion relations, the latter being much less
attenuated than the former when passing through a conductor, suggesting the possibility of isolating
longitudinal modes by shining intense light on a conducting wall. We calculate the transmission rates for
normal incidence upon a semi-infinite medium and passage through a slab. For the second case we compare
the expected photon fluxes with those measurable in current and future light-shining-through-a-wall
experiments. Using a 1-MW microwave source as envisaged by the STAX project, a sensitivity at the level
ofmγ < 9.6 × 10−11 eV=c2 could be reached after a run time of an year, with a potential improvement by a

factor of ∼104 if radio waves of similar power are used.
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I. INTRODUCTION

The photon is the paradigm for a massless particle. In
fact, the invariance of electromagnetism under local gauge
transformations requires mγ ¼ 0, though the photon may
indeed acquire an effective mass in certain circumstances,
such as in the vicinities of collapsed stars [1,2], or in
superconductors [3]. The fundamental masslessness of the
photon is a theoretically pleasing hypothesis and is usually
taken for granted, but it must be thoroughly tested in the
laboratory and via astrophysical observations.
The most recent upper limits are listed by the Particle

Data Group [4], where the strongest limit quoted is
mγ ≤ 10−18 eV=c2, coming from the analysis of solar-wind
data collected by the Voyager missions [5]. Other strong
upper bounds were extracted using fast radio bursts [6–8],
solar-wind data at Earth’s orbit [9], Jovian magnetic-field
measurements [10], and tests of Coulomb’s law [11].
For reviews, see Refs. [12–16]. Terrestrial phenomena
may also be used to establish upper bounds. Fischbach
found mγ ≤ 8 × 10−16 eV=c2 using geomagnetic data [17]
and Kroll studied Schumann resonances to obtain mγ ≤
2.4 × 10−13 eV=c2 [18,19]; this limit has been recently
updated to mγ ≤ 2.5 × 10−14 eV=c2 [20].
Goldhaber and Nieto emphasized that measuring the

photon mass is only possible if the measuring apparatus or

dimension of the system under consideration are very large
or the measurement is very precise [13,15,16]. In particular,
the photon mass only appears squared and effects are
Oðm2

γd2Þ, where d is the typical size of the system under
consideration. The upper limits quoted above support this
statement and astrophysical limits are tighter than terrestrial
ones. It is nonetheless important to search for novel—and
exquisitely precise—laboratory experiments that could
allow us to reach the currently best terrestrial (and perhaps
astrophysical) limits with the added benefit of precisely
controlling the light source, the environment, and the
detector system.
One of the main features of a massive photon is the

existence of a third, longitudinal polarization mode.
Interestingly enough, this mode has a different dispersion
relation than the other two transverse modes when propa-
gating in a medium other than a vacuum. In a conductor, the
wave number of longitudinal modes is much more weakly
influenced by the finite conductivity than that of transverse
modes. This means that the reflection and transmission
properties will be significantly different depending on the
polarization of the incident wave.
In this work we explicitly calculate the reflection and

transmission rates of de Broglie–Proca waves when cross-
ing a single interface into a semi-infinite medium. More
importantly, we consider the experimentally interesting
case of propagation through a conducting slab. Given
the disparity between the in-medium behaviors of longi-
tudinal and transverse modes, we expect to find different
rates depending on the polarization mode in question. In
particular, we will show that good conductors are effec-
tively transparent to longitudinal waves, whereas transverse
waves behave very similarly to their massless counterparts,
being strongly reflected at the interface and experiencing
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exponential attenuation inside the conductor. This suggests
that, in a situation where all modes are present, a
conducting slab would strongly reflect the transverse
components while letting the longitudinal modes pass
unattenuated, thus acting as a filter. Placing a sensitive
enough photon detector behind the slab would then allow
us to detect the few longitudinal photons that successfully
go through, thereby effectively measuring massive light
shining through a wall.
The concept of a light-shining-through-a-wall (LSW)

experiment was first proposed in the 1980s to search for
hypothetical particles coupled to the electromagnetic
field, such as axions [21–23]. In these experiments a light
source—typically a high-power laser—shines onto an
optical barrier, the wall. Turning on a magnetic field in
the region before the wall allows some of the photons to be
converted into these hypothetical particles. Given their
weak coupling to matter, they transverse the barrier
unscathed. Placing an equally strong magnetic field behind
the wall stimulates part of these particles to reconvert into
photons with a small but finite probability [24,25].
Several implementations of LSW experiments have

been pursued, among them OSQAR [26–28] at CERN,
ALPS [29–32] at DESY, and LIPSS [33,34] at Jefferson
Laboratories; these experiments use lasers with wave-
lengths ∼Oð1000 nmÞ and powers ≲Oð100 WÞ. More
recently, though, the use of MW-power microwave (e.g.,
gyrotron and kylotron) sources has been proposed by the
STAX collaboration [35–39]. Independently of the hypo-
thetical particle being searched or the particular LSW
implementation, the greatest experimental challenge is
the extremely low number of signal photons to be detected,
since the conversion probability is ≲10−20 [40]. In order to
maximize the signal, the light source has to be very intense
and, most importantly, the photon detector behind the wall
must be as sensitive as possible.
Given the smallness of the photon mass and the expected

suppression of the transmission of de Broglie–Proca waves
through an optical barrier, the techniques employed in
LSWexperiments seem to be adequate (at least in principle)
to search for massive photons in the laboratory. We analyze
the transmission of massive waves normally incident upon
a conductor in two cases: a semi-infinite medium (one
interface) and a slab (two interfaces), the latter being more
interesting in the context of LSW setups. As we shall see, it
is the elusive longitudinal mode that may give us the best
chance of setting upper limits on the photon rest mass,
though reaching the level of other limits based on terrestrial
phenomena may be challenging.
This paper is organized as follows: in Sec. II we review

the de Broglie–Proca theory in matter. Next, we study the
cases of oblique and normal incidence onto a semi-infinite
medium in Secs. III and IV, respectively. In Sec. V we
analyze the passage of de Broglie–Proca waves through a
conducting slab, and in Sec. VI we discuss experimental

sensitivities in LSW-like setups. Our concluding remarks
are presented in Sec. VII. We use Systeme International
units throughout.

II. THE PROCA FIELD IN MATTER

A massive Abelian spin-1 boson, Aμ ¼ ðϕ=c;AÞ, propa-
gating in matter is described by the de Broglie–Proca
Lagrangian [41–45]

L ¼ −
1

4μ0
FμνGμν þ

μ2γ
2μ0

AμAμ − JμAμ; ð1Þ

where μγ ¼ mγc=ℏ is the reciprocal reduced Compton
wavelength, which may be expressed as

μγ ¼ 5.1 × 10−8 m−1
�

mγ

10−14 eV=c2

�
: ð2Þ

Here Jμ ¼ ðcρ; JÞ is the conserved four-current density
and the speed of light in vacuum is c ¼ 1=

ffiffiffiffiffiffiffiffiffi
ε0μ0

p
. The

antisymmetric field-strength tensor is Fμν ¼ ∂μAν − ∂νAμ

with the electric and magnetic fields given by F0i ¼ Ei=c
and Fij ¼ −εijkBk, respectively. The field-strength
tensor Gμν is analogous to Fμν, but with the substitutions
E → D and B → H, where D ¼ εE and H ¼ B=μ are
the usual constitutive relations for homogeneous and
isotropic media.
The field strengths are defined in terms of the scalar

potential ϕ and vector potential A as usual:

B ¼ ∇ ×A and E ¼ −∇ϕ −
∂A
∂t

; ð3Þ

and the inhomogeneous de Broglie–Proca equations read

∇ ·Dþ μ2γ
μc2

ϕ ¼ ρf; ð4aÞ

∇ ×H −
∂D
∂t

þ μ2γ
μ
A ¼ Jf: ð4bÞ

Here ρf is the density of free charges and Jf ¼ σE is
the ohmic current. The homogeneous equations, stemming
from the Bianchi identities, remain unchanged:

∇ ×Eþ ∂B
∂t

¼ 0 and ∇ ·B ¼ 0: ð5Þ

We are interested in the propagation of plane waves,
so let us consider the vector potential

Aðr; tÞ ¼ A0e−iðωt−k·rÞâ; ð6Þ

where A0 is a complex amplitude and â is a real unit vector
determining the polarization direction. The free-charge
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density and current are related by the continuity equation,
which implies the subsidiary, Lorentz-like condition on
the potentials:

ϕ ¼ ðc2=ωÞk ·A: ð7Þ
Note that it is the light speed in vacuum, c, that appears in
this relation, not the light speed in the medium. This allows
us to promptly identify the three polarization states of a
massive vector boson [46]. A transverse polarization vector
â describes a type-I polarization, from which a type-II
vector k̂ × â, also transverse, may be derived. A longi-
tudinal polarization is perpendicular to both, pointing in the
direction of k̂. It is worth noting that only longitudinal
modes have ϕ ≠ 0.
For the sake of convenience, let us derive a few important

results [18,46–48]. From the equations of motion and using
the subsidiary condition we find that the vector potential
satisfies (making ∂=∂t → −iω)�

∇2 þ
�
n2ω2

c2
− μ2γ

��
A ¼ ð1 − n2Þ∇ð∇ ·AÞ; ð8Þ

where the index of refraction is defined as

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εμ

ε0μ0

�
1þ i

σ

εω

�s
: ð9Þ

The complex term related to the finite conductivity leads
to attenuation. For the two transverse polarizations the
term on the right-hand side of Eq. (8) is zero, whereas for
longitudinal polarization we may use Eq. (7), so that we
have (setting ∇ → ik with k ¼ jkj)

ω2 ¼ c2

n2
ðk2T þ μ2γÞ and ω2 ¼ c2

�
k2L þ

μ2γ
n2

�
: ð10Þ

This shows that, unless in vacuum, transverse, and longi-
tudinal polarizations have different dispersion relations.
A finite conductivity affects the polarization states differ-
ently: in the limit of a perfect conductor (jnj → ∞), only
longitudinal modes propagate and do that at the speed of
light. In this case, the electric and magnetic fields are zero,
but not the potentials.
The total rate of work done by the fields in a continuous

charge distribution within a volume V is [49]Z
V
Jf · Ed3x: ð11Þ

Using Eq. (4b) and standard vector identities, we may write
this as

−
Z
V

�
∇ · SM þ ∂uM

∂t
−
μ2γ
μ
A ·E

�
d3x; ð12Þ

where the Maxwellian Poynting vector and energy density
are SM ¼ E ×H and uM ¼ ðB ·Hþ D ·EÞ=2, respec-
tively. Now, using Eq. (3) and the subsidiary condition,
Eq. (7), we obtain the statement of energy conservation for
massive electrodynamics

∂uP
∂t

¼ −Jf ·E −∇ · SP; ð13Þ

with the Proca Poynting vector and energy density
expressed in terms of fields and potentials as

SP ¼ E ×Hþ μ2γ
μ
ϕA; ð14aÞ

uP ¼ 1

2
ðB ·Hþ D ·EÞ þ μ2γ

2 μc2
ðϕ2 þ c2A2Þ: ð14bÞ

More interesting to our discussion are the respective time
averages, which may be conveniently written in terms of
the complex amplitudes as [49]

hSPi ¼
1

2
ReðE ×H⋆Þ þ μ2γ

2μ
ReðϕA⋆Þ; ð15aÞ

huPi ¼
1

4
ReðB ·H⋆ þ D · E⋆Þ þ μ2γ

4 μc2
Reðjϕj2 þ c2jAj2Þ:

ð15bÞ

Therefore, even in regions where both electric and
magnetic fields are zero (e.g., inside a perfect conductor),
there is a nonzero energy density due to the potentials.

III. SEMI-INFINITE MEDIUM:
OBLIQUE INCIDENCE

As a first step, let us consider the passage of a plane
wave from a medium with fσ1; ε1; μ1g to a medium with
fσ2; ε2; μ2g. We place the flat boundary at the x–y plane
with the normal pointing in the z direction. Requiring that
the phases match at the boundary, we find that the
frequencies of incident, reflected, and transmitted waves
are equal: ωi ¼ ωr ¼ ωt ¼ ω. Analogously, assuming that
the wave vectors are contained in the x–z plane, their
magnitudes satisfy

ki sin θi ¼ kr sin θr ¼ kt sin θt; ð16Þ

showing that θi ¼ θr, since ki is equal to kr because the
waves are propagating in the same medium.
We are interested in determining the properties of waves

moving through an interface and for this it is necessary to
establish the boundary conditions. Denoting components
parallel and perpendicular to the interface via the subscripts
k and ⊥, respectively, it can be shown that ϕ, A, B⊥, Ek,
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and Hk are continuous across the interface [18,48], though
these conditions are not necessarily all independent, as we
shall see shortly.
For the geometry described in the beginning of this

section (with the y direction pointing into the page), the
incident, reflected, and transmitted wave vectors are written
as ki ¼ kiðsin θi; 0; cos θiÞ, kr ¼ kiðsin θi; 0;− cos θiÞ,
and kt ¼ ktðsin θt; 0; cos θtÞ, respectively, cf. Eq. (16).
Furthermore, let us set the direction of the polarization
vector for type-I waves along the y direction, i.e., â ¼ ŷ,
parallel to the interface. For type-II waves we have
â ¼ k̂ × ŷ, whereas â ¼ k̂ for longitudinal modes. We
are now ready to analyze these cases separately.

A. Type-I polarization

The electric and magnetic fields are [cf. Eq. (3)]

E ¼ iωA0ŷ and B ¼ iA0k × ŷ; ð17Þ

that is, the electric field is polarized perpendicular to the
incidence plane. The scalar potential is zero and the vector
potentials have components only along the y direction,
so that

A0i þ A0r ¼ A0t; ð18Þ

which is also obtained via the continuity of B⊥ and Ek.
The continuity of Hk gives

ki cos θi
μ1

ðA0i − A0rÞ ¼
kt cos θt

μ2
A0t: ð19Þ

Combining these results in light of Eq. (16) we finally
obtain [47]

A0r

A0i
¼

ki cos θi −
μ1
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t − k2i sin

2θi
p

ki cos θi þ μ1
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t − k2i sin

2θi
p ; ð20aÞ

A0t

A0i
¼ 2ki cos θi

ki cos θi þ μ1
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t − k2i cos θi

p ; ð20bÞ

with the wave numbers determined by the transverse
dispersion relation for each medium, cf. Eq. (10). These
equations are the generalization of the Fresnel equations for
massive electrodynamics—also here there is no Brewster
angle for this polarization under normal circumstances
(μ1 ≈ μ2) [49]. Equations (20a) and (20b) reduce to the
results of Maxwell’s theory in the massless limit.

B. Type-II polarization

The electric and magnetic fields are

E ¼ iωA0k̂ × ŷ and B ¼ −iA0kŷ ð21Þ

with the electric field polarized parallel to the incidence
plane. Here ϕ ¼ 0 and the continuity of the vector potential
(only nonzero in the x and z directions) gives

ðA0i þ A0rÞ sin θi ¼ A0t sin θt; ð22aÞ

ðA0i − A0rÞ cos θi ¼ A0t cos θt; ð22bÞ

with the continuity of Ek being redundant to Eq. (22b).
Now, the continuity of Hk implies

A0i þ A0r ¼
μ1kt
μ2ki

A0t; ð23Þ

which is inconsistent with Eq. (22a) in light of Eq. (16).
This indicates that pure type-II waves, unlike type-I waves,
are incompatible with the boundary conditions.

C. Longitudinal polarization

For this polarization mode we have B ¼ H ¼ 0. The
scalar potential is given by [cf. Eq. (7)]

ϕ ¼ c2k
ω

A0; ð24Þ

whose continuity implies that

A0i þ A0r ¼
kt
ki
A0t: ð25Þ

Using the longitudinal dispersion relation, cf. Eq. (10),
the electric field in each medium is

E ¼ iω
η2

n2
A0k̂; ð26Þ

where the dimensionless parameter η is given by

η ¼ μγc

ω
¼ mγc2

ℏω
: ð27Þ

The continuity of its components parallel to the flat
interface leads to

A0i þ A0r ¼
n21 sin θt
n22 sin θi

A0t; ð28Þ

which is at odds with Eq. (25). Therefore, purely longi-
tudinal waves, like type-II waves, are incompatible with the
boundary conditions.

D. Mixed-type polarization

As shown above and reported in Refs. [46–48], type-II
and longitudinal polarizations do not fulfil the boundary
conditions separately. We therefore consider a linear
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superposition of these two modes (identified by the super-
scripts ðIIÞ and ðLÞ), so that the potentials become1

ϕ ¼ ϕII þ ϕL ¼ c2kL
ω

AðLÞ
0 ; ð29aÞ

A ¼ AII þAL ¼ AðIIÞ
0 k̂ × ŷ þ AðLÞ

0 k̂: ð29bÞ

The different modes have different dispersion relations
and each field (or potential) is multiplied by an exponential
factor expðikL · rÞ or expðikT · rÞ. These are not identical
in general, but the matching conditions of the fields (and
potentials) along the flat interface also induces a matching
of these exponential factors. This occurs at z ¼ 0 and must
be valid for all the x–y plane, in particular at x ¼ y ¼ 0.
Therefore, for a single flat interface, the different expo-
nential factors related to the wave numbers may be safely
ignored. This is not so for two (or more) interfaces,
cf. Sec. V.
The continuity of ϕ and A lead to

AðLÞ
0i þ AðLÞ

0r ¼ kLt
kLi

AðLÞ
0t ; ð30aÞ

�
AðIIÞ
0i þ AðIIÞ

0r

�
sin θi þ

�
AðLÞ
0i − AðLÞ

0r

�
cos θi

¼ AðIIÞ
0t sin θt þ AðLÞ

0t cos θt; ð30bÞ

�
AðIIÞ
0i − AðIIÞ

0r

�
cos θi −

�
AðLÞ
0i þ AðLÞ

0r

�
sin θi

¼ AðIIÞ
0t cos θt − AðLÞ

0t sin θt; ð30cÞ

whereas the continuity of Ek gives [cf. Eq. (27)]

�
AðIIÞ
0i − AðIIÞ

0r

�
cos θi −

�
AðLÞ
0i þ AðLÞ

0r

�
ðη=n1Þ2 sin θi

¼ AðIIÞ
0t cos θt − AðLÞ

0t ðη=n2Þ2 sin θt: ð31Þ

Finally, from B⊥ we do not learn anything, since it is
identically zero for the longitudinal mode and B points
entirely in the y direction for the type-II polarization. Now,
Hk is equally zero for the longitudinal mode, but for the
type-II polarization we find

AðIIÞ
0i þ AðIIÞ

0r ¼ μ1kTt
μ2kTi

AðIIÞ
0t : ð32Þ

Let us now determine the ratios of reflected and trans-
mitted amplitudes relative to the incident ones. Subtracting
Eq. (31) from Eq. (30c) eliminates the type-II terms and,
using Eq. (16), we recover Eq. (30a). We are then allowed
to ignore Eq. (31) in favor of Eq. (30a). The solution to the
system of equations is

AðLÞ
0r

AðLÞ
0i

¼ ðαþ βÞ sin θi sin θt þ αβ cos 2θi þ cos θi½ðα − βÞ cos θt − 2αρ−1 sin θt� þ αβρ−1 sin 2θi − 1

ðαþ βÞ cosðθi þ θtÞ þ αβ þ 1
; ð33aÞ

AðIIÞ
0r

AðIIÞ
0i

¼ ðβ − αÞ cos θi cos θt þ αβ cos 2θi þ sin θt½ðαþ βÞ sin θi þ 2βρ cos θi� − αβρ sin 2θi − 1

ðαþ βÞ cosðθi þ θtÞ þ αβ þ 1
; ð33bÞ

AðLÞ
0t

AðLÞ
0i

¼ 2 cos θi½ρ−1ðβ sin θi − sin θtÞ þ β cos θi þ cos θt�
ðαþ βÞ cosðθi þ θtÞ þ αβ þ 1

; ð33cÞ

AðIIÞ
0t

AðIIÞ
0i

¼ 2 cos θi½ρðsin θt − α sin θiÞ þ α cos θi þ cos θt�
ðαþ βÞ cosðθi þ θtÞ þ αβ þ 1

; ð33dÞ

where we defined the following parameters:

α ¼ kLt
kLi

and β ¼ μ1kTt
μ2kTi

: ð34Þ

This shows that a linear combination of type-II and
longitudinal modes is compatible with the boundary

conditions at the interface. Furthermore, we defined the
ratio of the longitudinal and transverse type-II amplitudes as

ρ ¼ AðLÞ
0i

AðIIÞ
0i

: ð35Þ

Here ρ is a free parameter. Experimentally, however, there is
so far no clear sign of longitudinal photons and we may
safely assume that jρj ≪ 1, cf. Sec. VI.

1A second, orthogonal linear combination may be constructed,
but we shall not work out its details explicitly.
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IV. SEMI-INFINITE MEDIUM: REFLECTION
AND TRANSMISSION RATES AT

NORMAL INCIDENCE

The intensity of a monochromatic wave is given by the
average power per unit area. This may be expressed as
I ¼ hjSP · ẑji, cf. Eq. (15), and the reflection and trans-
mission rates are

R ¼ Ir
Ii

and T ¼ It
Ii
: ð36Þ

For normal incidence (θi ¼ θt ¼ 0) we have

I ¼ 1

2μ
Re½ðE × B⋆Þ · ẑ� þ μ2γ

2μ
Re½ϕðA⋆ · ẑÞ�; ð37Þ

and we may now study the transmission and reflection rates
for type-I and mixed-type waves.

A. Type-I polarization

For this polarization we have ϕ ¼ 0, so only the first
term in Eq. (37) contributes. From Eq. (17) we find

Ij ¼
ω

2μ
jA0jj2ReðkjÞ; ð38Þ

where j ¼ i, r, t and we are omitting the subscript T for
the transverse wave number, cf. Eq. (10). From Eqs. (20a)
and (20b) we get

R ¼
				A0r

A0i

				2 ¼ jμ2ki − μ1ktj2
jμ2ki þ μ1ktj2

; ð39aÞ

T ¼
				A0t

A0i

				2 ReðktÞReðkiÞ
¼ 4μ22jkij2

jμ2ki þ μ1ktj2
ReðktÞ
ReðkiÞ

: ð39bÞ

These results are general, but now we specialize them to
waves moving from vacuum fσ1 ¼ 0; ε1 ¼ ε0; μ1 ¼ μ0g,
into a nonpermeable medium fσ2 ¼ σ; ε2 ¼ ε; μ2 ¼ μ0g.
Under the conditions stated above, we find that

A0r

A0i
¼ 1 − β

1þ β
; ð40Þ

with β given by Eq. (34) with μ1 ¼ μ2 ¼ μ0. From Eq. (10)
we may expand β as

β ¼ nt

�
1þ 1

2
η2
�
þOðη4Þ; ð41Þ

where the photon mass is implicitly contained in η as
defined by Eq. (27) and a good conductor is assumed. Here
we neglect terms of orderOðη2=n2t Þ, since the effects of the
conductivity are already captured by the prefactor.

From now on we work in the limit of high conductivity,
where σ ≫ ε0ω. In this case, the index of refraction
becomes [cf. Eq. (9)]

nt ≈ ð1þ iÞ c
ωδ0

; ð42Þ

where δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=μ0σω

p
is the skin depth for a good

conductor in the massless limit [49]. Taking copper with
σ ¼ 5.9 × 107 S=m as a reference, it may be conveniently
expressed as

δ0 ¼ 3.8 nm

�
5.9 × 107 S=m

σ

�
1=2

�
λsource

1000 nm

�
1=2

: ð43Þ

Moving on, in light of Eq. (42) we may write β ≈ ð1þ iÞβ̄
with

β̄ ¼ c
ωδ0

�
1þ 1

2
η2
�
; ð44Þ

where we once again neglected terms of order Oðη2=n2t Þ.
Inserting these results into Eq. (40) we are able to write the
reflection rate as

R ≈ 1 −
2ωδ0
c

�
1 −

1

2
η2
�
þ 2

�
ωδ0
c

�
2

ð1 − η2Þ: ð45Þ

It is clear from this result that the presence of a finite photon
mass slightly enhances the already high reflection rate of a
good conductor, that is, RðηÞ > Rð0Þ.
Let us now move on to the transmission rate, Eq. (39b),

which we write as T ¼ T1T2 with (μ1 ¼ μ2 ¼ μ0)

T1 ¼
4

j1þ βj2 and T2 ¼
ReðktÞ
ReðkiÞ

: ð46Þ

Returning to the dispersion relation for a type-I wave,
cf. Eq. (10), we see that ki is real, i.e., ReðkiÞ ¼ ki, since
ni ¼ 1 for medium 1, vacuum. For the transmitted wave the
wave number is complex due to the finite conductivity
term. We thus have ReðktÞ=ReðkiÞ ¼ Reðkt=kiÞ, that is
[cf. Eqs. (41) and (42)]

ReðktÞ
ReðkiÞ

¼ ReðβÞ; ð47Þ

implying that T2 ¼ β̄. Again taking the limit of a good
conductor, we finally obtain

T ≈
2ωδ0
c

�
1 −

1

2
η2
�
− 2

�
ωδ0
c

�
2

ð1 − η2Þ: ð48Þ

A finite photon mass causes the transmission to slightly
decrease, that is, TðηÞ < Tð0Þ. This reduction is the same
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as the increment in the reflection rate, so Rþ T ≈ 1,
as expected.

B. Mixed-type polarizations

Let us now consider mixed-type waves, where longi-
tudinal and type-II waves are combined in a linear super-
position. Once more, here we focus on waves moving from
vacuum fσ1¼0;ε1¼ ε0;μ1¼μ0g into a highly conducting,
nonpermeable medium fσ2 ¼ σ; ε2 ¼ ε; μ2 ¼ μ0g. From
Eq. (37) we have

Ij ¼
ω

2μ0

			AðIIÞ
0j

			2ReðkTj Þ þ ωη2

2μ0

			AðLÞ
0j

			2ReðkLj Þ; ð49Þ

with j ¼ i, r, t and the wave number of type-II waves being
denoted by kTj . The transverse type-II component only
contributes to the ∼E ×B term, since ϕ ¼ 0, whereas the
longitudinal mode only appears in the ∼ϕA term, which is
strongly suppressed by a factor of η2. The reflection and
transmission rates become

R ¼

			AðIIÞ
0r

			2ReðkTi Þ þ η2
			AðLÞ

0r

			2ReðkLi Þ			AðIIÞ
0i

			2ReðkTi Þ þ η2
			AðLÞ

0i

			2ReðkLi Þ ; ð50aÞ

T ¼

			AðIIÞ
0t

			2ReðkTt Þ þ η2
			AðLÞ

0t

			2ReðkLt Þ			AðIIÞ
0i

			2ReðkTi Þ þ η2
			AðLÞ

0i

			2ReðkLi Þ ; ð50bÞ

where we used that kr ¼ ki for both transverse and
longitudinal modes propagating in vacuum.
To progress further, we take the limit of normal incidence

in Eqs. (33a)–(33d), which neatly reduce to

AðLÞ
0r

AðLÞ
0i

¼ α − 1

αþ 1
and

AðLÞ
0t

AðLÞ
0i

¼ 2

αþ 1
; ð51aÞ

AðIIÞ
0r

AðIIÞ
0i

¼ β − 1

β þ 1
and

AðIIÞ
0t

AðIIÞ
0i

¼ 2

β þ 1
; ð51bÞ

with α ¼ kLt =kLi and β ¼ kTt =kTi established in Eq. (34).
We have already determined the parameter β, cf. Eqs. (41)
and (44), but we may follow an analogous strategy to
evaluate α. Again working in the limit of good conductivity,
we find

α ¼ 1þ 1

2
η2
�
1þ i

2

�
ωδ0
c

�
2
�
þOðη4Þ; ð52Þ

where we used that η2ðωδ0=cÞ2 ≫ η4 for the range of
photon masses and frequencies of interest. In fact, we have

ωδ0
c

¼ 2.4 × 10−2
�
5.9 × 107 S=m

σ

�
1=2

�
1000 nm
λsource

�
1=2

ð53Þ
and, from Eq. (27), we find that

η ¼ 8.1 × 10−15
�

mγ

10−14 eV=c2

��
λsource

1000 nm

�
: ð54Þ

The approximation is thus valid for λsource ≲ 100 m.
The imaginary term in Eq. (52) is small, but, contrary to

the approximation used to determine β, cf. Eq. (41), here
we choose to keep it, since it is the leading-order con-
tribution from the conductivity. Its smallness attests to the
fact that longitudinal waves barely experience any attenu-
ation when traversing a conductor. Keeping only leading-
order terms in η, we find					A

ðLÞ
0r

AðLÞ
0i

					
2

≈
1

16
η4 and

					A
ðLÞ
0t

AðLÞ
0i

					
2

≈ 1 −
1

2
η2: ð55Þ

These expressions further display the almost complete lack
of attenuation of the longitudinal modes.
For incident and reflected waves we have kLi ¼ kTi ¼ ki,

since ni ¼ 1. We may write R ¼ R1=R2 with R1 being
Eq. (45) plus a term ∼jρj2η6, which we promptly discard.
The denominator is R2 ¼ 1þ jρj2η2, with ρ defined by
Eq. (35). Ignoring terms of order Oðη4Þ and higher,
we obtain

R ≈ 1 −
2ωδ0
c

�
1 −

1

2
η2
�
þ 2

�
ωδ0
c

�
2

ð1 − η2Þ

− jρj2η2
�
1 −

2ωδ0
c

þ 2

�
ωδ0
c

�
2
�
: ð56Þ

The longitudinal component reduces the reflectivity,
whereas the transverse type-II component increases it.
Nonetheless, the overall effect of a finite photon mass is
not obvious without knowledge of jρj. Neglecting second-
order terms in γ ¼ ωδ0=c, Eq. (56) may be written as

RðηÞ ≈ Rð0Þ þ η2
�
2γ

�
jρj2 þ 1

2

�
− jρj2

�
: ð57Þ

This shows that RðηÞ > Rð0Þ, as in the case of type-I
waves, only if jρj2 ≲ γ=ð1 − 2γÞ.
For the transmission rate we first evaluate the ratios of

the real parts of the wave numbers:

ReðkTt Þ
ReðkiÞ

≈ ReðntÞ
�
1þ 1

2
η2
�
; ð58aÞ

ReðkLt Þ
ReðkiÞ

≈ 1þ 1

2
η2: ð58bÞ
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The last result stems from Eq. (52). Again assuming
good conductivity, we have ReðntÞ ≈ c=ωδ0, so that
T ¼ T1=T2 with T1 identical to Eq. (48) plus jρj2η2,
whereas T2 ¼ 1þ jρj2η2. Ignoring terms of order Oðη4Þ
and higher, we finally get

T ≈
2ωδ0
c

�
1 −

1

2
η2
�
− 2

�
ωδ0
c

�
2

ð1 − η2Þ

þ jρj2η2
�
1 −

2ωδ0
c

þ 2

�
ωδ0
c

�
2
�
; ð59Þ

satisfying Rþ T ≈ 1, as expected. Again, TðηÞ < Tð0Þ, as
for type-I waves, only if jρj2 ≲ γ=ð1 − 2γÞ with γ ¼ ωδ0=c.

V. PASSAGE THROUGH A CONDUCTING SLAB
AT NORMAL INCIDENCE

Here we consider a slab of thickness D made of a
nonpermeable material characterized by fσ2 ¼ σ ≫ ε0ω;
ε2 ¼ ε; μ2 ¼ μ0g surrounded by a vacuum. There are now
two interfaces at which waves will be reflected and trans-
mitted: the first is located at z ¼ 0 and the second at z ¼ D.
On the left side (z < 0) incident and reflected waves

have amplitudes A0i and A0r, respectively. Within the slab
(0 ≤ z ≤ D) transmitted waves propagate to the right (A0þ)
and the reflected (at the second interface) to the left (A0−).
On the right side (z > D), there are only waves propagating
to the right with amplitude A0t. As usual, all amplitudes
carry a expðik · rÞ dependence; waves moving in the
positive z direction have k ¼ þkẑ, whereas those moving
in the opposite direction have k ¼ −kẑ.

A. Type-I polarization

At the first interface (z ¼ 0), from the continuity of the
vector potential, we have

A0i þ A0r ¼ A0þ þ A0−; ð60Þ

which is reproduced by the continuity of Ek, whereas
B⊥ ¼ 0 and ϕ ¼ 0 are trivial. From Hk continuous we
obtain

A0i − A0r ¼
k0

k
ðA0þ − A0−Þ; ð61Þ

where we set ki¼kr¼kt¼k and kþ ¼ k− ¼ k0. Applying
the boundary conditions to the second interface and letting
ξ ¼ k0D, we have

A0þeiξ þ A0−e−iξ ¼ A0t; ð62aÞ

A0þeiξ − A0−e−iξ ¼
k
k0
A0t: ð62bÞ

We are not interested in the amplitudes within the slab,
A0�, so we eliminate them in favor of the rest. There are
four equations for four variables, since A0i is supposedly
known. Identifying β ¼ k0=k, we find

A0r

A0i
¼ −

ð1 − β2Þð1 − e2iξÞ
e2iξð1 − βÞ2 − ð1þ βÞ2 ; ð63aÞ

A0t

A0i
¼ −

4βeiξ

e2iξð1 − βÞ2 − ð1þ βÞ2 : ð63bÞ

Under the assumption of good conductivity, we may
write ξ ≈ nDω=c, but using Eq. (42), we have ξ ≈ ð1þ iÞξ̄
with

ξ̄ ¼ D
δ0

þOðη2=n2Þ: ð64Þ

The real part of ξ will give rise to an oscillating term,
whereas its imaginary part will result in an exponential
suppression factor expð−D=δ0Þ, showing that, for the
transverse modes, the associated skin depth is essentially
the same as in massless electrodynamics [49]. The reflec-
tion and transmission rates are given by

R ¼ jz1j2
jz2j2

and T ¼ jz3j2
jz2j2

; ð65Þ

where

jz1j2 ¼ ð1þ 4β̄4Þð1 − 2λ cosð2ξ̄Þ þ λ2Þ; ð66aÞ

jz2j2 ¼ ½1þ 2β̄ð1þ β̄Þ�2 þ λ2½1 − 2β̄ð1 − β̄Þ�2
− 2λð1 − 8β̄2 þ 4β̄4Þ cosð2ξ̄Þ
− 8λβ̄ð1 − 2β̄2Þ sinð2ξ̄Þ; ð66bÞ

jz3j2 ¼ 32λβ̄2; ð66cÞ

with β̄ defined in Eq. (44) and we used that
ReðktÞ=ReðkiÞ ¼ 1, since incident and transmitted waves
are propagating in the same medium. Here we defined

λ ¼ expð−2ξ̄Þ; ð67Þ

which is in general very small: for D ¼ 2δ0 we have
λ ¼ 0.02, going down to λ ¼ 2.1 × 10−9 for D ¼ 10δ0.
This steep decline with increasing thickness will effectively
suppress the oscillatory character of the rates.
In Sec. IV B we kept only terms up to second order in

ωδ0=c in the reflection and transmission rates. Our main
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interest is in the transmission rate, cf. Eqs. (66b) and (66c),
which may be approximated at this level by

jz3j2
jz2j2

≈ 8λ

�
ωδ0
c

�
2

ð1 − η2Þ; ð68Þ

showing that TðηÞ < Tð0Þ as in the case of a semi-infinite
medium, cf. Sec. IVA. In Fig. 1 we display the rates,
cf. Eq. (65), as functions of ξ̄ ¼ D=δ0 keeping all orders in
the small parameter ωδ0=c. In gray we have the trans-
mission rate (with η ¼ 0) as given by Eq. (68), showing that
the approximation is excellent for slabs thicker than a few
skin depths. The typical decline (saturation) of the trans-
mission (reflection) rate is visible. The effects of a finite
photon mass are minute, even for quite large (and unre-
alistic) values. From Fig. 1 we see that RðηÞ > Rð0Þ, and,
most importantly, we confirm that TðηÞ < Tð0Þ if we do
not use the approximate result above.
As a final remark we may check two opposing limits:

no intermediate medium (D → 0) and a semi-infinite
medium (D → ∞). In the former, there is no change in
the propagation and we find that T ¼ 1 and R ¼ 0, as it
should. In the latter limit, we find no transmission
“through” the slab, i.e., T ¼ 0, since it is now semi-infinite.
As for the reflection rate, it reduces to the expected result,
cf. Eq. (45). Given that there is no transmission, the fact
that R ≠ 1 indicates that energy is dissipated within the
medium—we only have R ¼ 1 in the limit of a perfect
conductor.

B. Mixed-type polarizations

Let us now analyze the richer case of mixed-type waves.
The boundary conditions at z ¼ 0 give us the following
relations from the continuity of ϕ and A:

AðLÞ
0i þ AðLÞ

0r ¼ k0L
k

�
AðLÞ
0þ þ AðLÞ

0−
�
; ð69aÞ

AðIIÞ
0i − AðIIÞ

0r ¼ AðIIÞ
0þ − AðIIÞ

0− ; ð69bÞ

AðLÞ
0i − AðLÞ

0r ¼ AðLÞ
0þ − AðLÞ

0− : ð69cÞ

Furthermore, the continuity of Hk gives

AðIIÞ
0i þ AðIIÞ

0r ¼ k0T
k

�
AðIIÞ
0þ þ AðIIÞ

0−
�
; ð70Þ

while the information from the continuity of B⊥ is trivial.
The continuity ofEk does not deliver new constraints, since
it merely reproduces Eq. (69b). Here we have used that, in
vacuum, both polarization modes have the same dispersion
relation: kL;Ti ¼ kL;Tr ¼ kL;Tt ¼ k. Moreover, within the slab
we have kLþ ¼ kL− ¼ k0L and kTþ ¼ kT− ¼ k0T. Applying the
boundary conditions to the second interface at z ¼ D we
obtain the following set of equations:

AðLÞ
0þe

iξL þ AðLÞ
0− e−iξL ¼

k
k0L

AðLÞ
0t ; ð71aÞ

AðIIÞ
0þe

iξT − AðIIÞ
0− e−iξT ¼ AðIIÞ

0t ; ð71bÞ

AðLÞ
0þe

iξL − AðLÞ
0− e−iξL ¼ AðLÞ

0t ; ð71cÞ

AðIIÞ
0þe

iξT þ AðIIÞ
0− e−iξT ¼

k
k0T

AðIIÞ
0t : ð71dÞ

In the expressions above we have ξT ¼ ð1þ iÞξ̄,
cf. Eq. (64), and ξL ¼ k0LD. The latter may be expanded
to give [cf. Eqs. (10) and (42)]

ξL ¼ Dω

c

�
1þ i

4

�
ωδ0
c

�
2

η2
�
; ð72Þ

which contains a small, though finite, imaginary term. The
real part of ξL will produce an oscillatory contribution
independent of the photon mass, whereas the imaginary
piece will generate a suppression term, cf. Eq. (67).
Incidentally, we may write ImðξLÞ ¼ D=δL with

δL ¼ 4c
ω

�
c

ωδ0

�
2 1

η2
ð73Þ

being the skin depth of the longitudinal mode, an impres-
sively large number starkly contrasting to the sub-μm skin
depth of its transverse counterparts.
We are not interested in the amplitudes within the

slab, only in the reflected and transmitted amplitudes.

FIG. 1. Type-I wave: reflection and transmission rates for a
finitely thick slab. We assumed ωδ0=c ¼ 2.4 × 10−2, cf. Eq. (53),
and exaggerated the size of the photon mass for illustration
purposes. Note that RðηÞ > Rð0Þ and TðηÞ < Tð0Þ. In gray we
show the approximation to the transmission rate as given by
Eq. (68), with η ¼ 0.
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With k0T=k ¼ β, cf. Eqs. (41) and (44), and k0L=k ¼ α,
cf. Eq. (52), the solution to the system of equations is

AðLÞ
0r

AðLÞ
0i

¼ ð1 − α2Þð1 − e2iξLÞ
e2iξLð1 − αÞ2 − ð1þ αÞ2 ; ð74aÞ

AðIIÞ
0r

AðIIÞ
0i

¼ ð1 − β2Þð1 − e2iξTÞ
e2iξTð1 − βÞ2 − ð1þ βÞ2 ; ð74bÞ

AðLÞ
0t

AðLÞ
0i

¼ −
4αeiξL

e2iξLð1 − αÞ2 − ð1þ αÞ2 ; ð74cÞ

AðIIÞ
0t

AðIIÞ
0i

¼ −
4βeiξT

e2iξTð1 − βÞ2 − ð1þ βÞ2 : ð74dÞ

These ratios have the same structure as those found for
type-I waves, cf. Eqs. (63a) and (63b).
The squared amplitudes of the type-II component are

given by the familiar expressions

				A
ðIIÞ
0r

AðIIÞ
0i

				2 ¼ jz1j2
jz2j2

and

				A
ðIIÞ
0t

AðIIÞ
0i

				2 ¼ jz3j2
jz2j2

; ð75Þ

with z1, z2, z3 from Eqs. (66a)–(66c). Moreover, keeping
only the leading-order contributions in η2, we find

				A
ðLÞ
0r

AðLÞ
0i

				2 ≈ sin2ðDω
c Þ

4

η4

1þ η2
and

				A
ðLÞ
0t

AðLÞ
0i

				2 ≈ 1; ð76Þ

where we used that expð−2D=δLÞ ≈ 1, cf. Eq. (73).
Neglecting terms of order Oðjρj4η4Þ or higher, we finally
obtain

R ≈
jz1j2
jz2j2

− jρj2η2
�jz1j2
jz2j2

�
η¼0

; ð77aÞ

T ≈
jz3j2
jz2j2

− jρj2η2
�jz3j2
jz2j2

�
η¼0

þ jρj2η2: ð77bÞ

These rates are displayed in Fig. 2 where, as in Sec. VA,
we kept all orders in the small parameter ωδ0=c. The
saturation caused by the last term in Eq. (77b) is visible—it
is expected as longitudinal photons always pass through,
maintaining a minimal flux irrespective of the length
traversed. Furthermore, we remark that TðηÞ < Tð0Þ only
if 8λðωδ0=cÞ2 ≳ jρj2, as can be seen by plugging Eq. (68)
into Eq. (77b). In fact, using the parameters from Fig. 2
we see that the sign change occurs at ξ̄ ¼ D=δ0 ≈ 0.3, as
visible in the figure.
We conclude that a conducting slab effectively acts as a

filter that reflects and absorbs transverse modes, letting

longitudinal waves pass and leading to the saturation of the
dashed green curve shown in Fig. 2. We thus expect that,
behind a thick enough slab, only longitudinal waves will
be left. The thickness D⋆ beyond which the last term of
Eq. (77b) dominates is

D⋆ ≈ −
δ0
2
ln

�
1

8

�
c

ωδ0

�
2

jρj2η2
�
; ð78Þ

which is shown in Fig. 3 with jρj ¼ η, cf. Sec. VI. Like in
Maxwell’s theory, de Broglie–Proca waves with longer
wavelengths need thicker slabs to have its transverse
components effectively blocked. Incidentally, for the
parameters assumed in Fig. 2 we find D⋆ ≈ 2.5 nm, or

FIG. 2. Mixed-type wave: reflection and transmission rates for
a finitely thick slab. We used ωδ0=c ¼ 2.4 × 10−2, cf. Eq. (53),
and jρj ¼ 0.05. The magnitude of the photon mass is exaggerated
for illustration purposes. Note the change of sign of Tð0Þ − TðηÞ
near ξ̄ ¼ D=δ0 ≈ 0.3.

FIG. 3. Slab thickness beyond which the longitudinal compo-
nent dominates the transmission rate, cf. Eq. (78). Here we used
the parameters quoted in Tables I and II. The dashed lines
represent the threshold thickness where the two components of
the background are equal, cf. Eq. (80b).
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ξ̄ ≈ 0.7, which marks the onset of the saturation displayed
by the dashed green curve.
Last, but not least, let us again look into the limiting

behavior of the rates. For D → 0 we have jz1j2 ¼ 0,
so R ¼ 0; similarly, T ¼ 1þOðη4Þ, as expected.
Equations (77a) and (77b), however, are not applicable
at the limit D → ∞. In fact, T ¼ jρj2η2 > 0. This is
actually an artifact, since we have expð−D=δLÞ ≈ 1 for
any finite (and physically meaningful) slab thickness.

VI. EXPERIMENTAL SENSITIVITY

We have calculated the reflection and transmission rates
for de Broglie–Proca waves propagating through a slab of
conducting material. For the purely transverse type-I modes
we found that the rates are essentially the same as in
Maxwell’s theory, particularly since η ≪ 1, cf. Fig. 1. For
mixed-type waves the situation is different and the most
important modification is the presence of the last term in
Eq. (77b). Albeit potentially very small, it is barely
attenuated, being therefore insensitive to the thickness of
the slab.
In our context, signal photons are those whose flux

(measured in photons per second) are compatible with the
calculations of Sec. V with η ≠ 0; these represent “new
physics.” Background photons, on the other hand, are
associated with no “new physics” and are divided here
in two main categories. The first is that of massless photons
whose flux is controlled by the transmission rates with
η ¼ 0, i.e., the standard Maxwell theory. We are therefore
trying to discriminate the two cases based on the number of
photon counts by a detector during a certain time interval.
There are, however, other sources of radiation that would
provide for extra photon counts, in particular blackbody
emissions. Cooling the system to cryogenic temperatures
≲Oð100 mKÞ helps mitigate the problem, though remain-
ing thermal photons would still add to the dark count rate,2

the second contribution to the background.
Typical LSW setups deal with very low signal rates due

to the regeneration probability ≲10−20 [40], thus requiring
single-photon detectors. For example, a 2-W laser at
1000 nm provides ∼1019γ=s with an expected photon flux
behind the wall of ≲0.1γ=s. A very promising option for
single-photon detection are transition-edge sensors (TESs),
whose dark count rate can be as low as ndc ∼ 10−6γ=s for
near-infrared photons, as assumed for the ALPS II experi-
ment [30–32,50,51]. For the STAX proposal [35–39] it is
estimated that it can be lowered to ndc ∼ 10−9γ=s in its
second stage (STAX II) by using a dedicated microwave-
sensitive TES [38]. In what follows we neglect noise from
other sources (e.g., cosmic rays, ambient radiation, etc) and

take the aforementioned dark count rates as the main
detector-related contribution to the background. For the
sake of concreteness, in Table I we list benchmark values
for latest LSW proposals based on lasers (ALPS II) and
microwaves (STAX II).
Assuming that the beam emitted by the source keeps a

constant profile throughout its passage within the slab,
the number of transmitted photons is Nt ¼ TðηÞNi. The
number of photons of energy ℏω produced at the source
during a time τ is Ni ¼ ðPi=ℏωÞτ, so that we have
Nt ¼ TðηÞðPi=ℏωÞτ. The count rate, nt ¼ Nt=τ, can be
expressed as

ntðηÞ ¼ 5.0× 1018 Hz ·TðηÞ×
�

Pi

1W

��
λsource

1000 nm

�
; ð79Þ

and the numbers of signal and background photons are,
respectively,

Ns ¼ TðηÞ
�
Pi

ℏω

�
τ; ð80aÞ

Nb ¼ Tð0Þ
�
Pi

ℏω

�
τ þ ndcτ: ð80bÞ

The expected transmission rates are very low, so any LSW
experiment will have to detect single photons. We are thus
effectively conducting a counting experiment with an
expected number of signal photons Ns ¼ nsτ and back-
ground photons Nb ¼ nbτ. The number of signal photons is
reduced by two factors. The first is the so-called quantum
efficiency, which is determined assuming that the signal
consists of usual massless photons. Both teams report nearly
maximal expected efficiencies for their respective TESs.
Our signal, however, is composed of longitudinal photons,
whose detection is not the design target of current or future
detection devices. Therefore, the number of signal photons
is Ns → deffNs, where deff ≤ 1 models the efficiency of

TABLE I. Key parameters of LSW experiments. Here we take
the ALPS II setup [31,32] as a typical laser-based implementa-
tion, whereas the STAX II proposal is based on high-power
microwave sources [35–39]. These experiments include produc-
tion and regeneration cavities to increase the effective power;
the numbers quoted here do not include such refinements. The
quantum efficiency of TESs has been demonstrated to reach
≳95% for near-infrared photons [51,52], with a similar figure
for microwave signals [38], and is assumed to be maximal in
this work.

Power Photon energy λsource ndc

ALPS II 30 W 1.2 eV 1064 nm 10−6 γ=s
STAX II 1 MW 124 μeV 10 mm 10−9 γ=s

2The dark count rate measures the rate of photon recordings
when no signal is expected. It is influenced by the properties of
the detector, as well as by the environment.
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the detector device in measuring longitudinal photons.
Following Refs. [53–55], the statistical significance is

S12 ¼ 2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nb þ deffNs

p
−

ffiffiffiffiffiffi
Nb

p �
: ð81Þ

For a 95% C.L. limit we use S12 < 2.
From now on we consider the parameters in Table I, as

well as the calculated values summarized in Table II. Using
Eq. (68) with η ¼ 0 we may compare the two contributions
to the background, cf. Eq. (80b). For the laser source from
ALPS II we find that the count rates are equal for
D ≈ 107 nm, whereas for STAX II we have D ≈ 14 μm,
cf. Fig. 3. For slabs thicker than these values, the dark count
rate dominates and Nb ¼ ndcτ. In what follows we will be
working under this scenario.
In Sec. VAwe found that TðηÞ < Tð0Þ for type-I waves,

so the signal Ns is smaller than the first term in Nb,
cf. Eq. (80b), which is itself smaller than the dark count
rate, i.e., Ns ≪ Nb for type-I waves. For mixed-type
waves we found that the thickness-independent term
in the transmission rate will be dominant for any
thickness D≳D⋆, cf. Eq. (78), so Ns ∼ jρj2η2, which is
extremely small. We may then safely assume Ns ≪ Nb
also in this case. The signal count rate will be then
ns < ðS12=deffÞ

ffiffiffiffiffiffiffiffiffiffiffi
ndc=τ

p
, or more explicitly

ns < 6.8 × 10−6 Hz

�
S12
2

��
1

deff

�

×
�

ndc
10−6 Hz

�
1=2

�
1 day
τ

�
1=2

: ð82Þ

From Eq. (68) we see that the limit for type-I waves
scales with λ−1 ¼ exp ð2D=δ0Þ, worsening dramatically
fast for thicker slabs. The possibility of working instead
with thinner barriers is attractive, but it is nonetheless
problematic. Most critical is the heating of the barrier due to
the strong incident radiation, which would produce poten-
tially overwhelming noise in the form of backbody radi-
ation, as well as pose integrity risks for the thin metal sheet.
Another issue might be the difficulty to shield the detector
region behind the barrier against stray light. Moreover, the
fabrication of nm-thick metal sheets is not trivial, as these

must be homogeneous and sufficiently strong to withstand
pressure gradients, since the apparatus is assumed to be in
vacuum. Overall, the task of constraining the photon mass
using type-I waves in a minimally feasible LSW setup
seems hopeless.
Let us now move on to the more interesting case of

mixed-type waves. Here the transmission rate has essen-
tially two parts: one stemming from the transverse type-II
component, scaling with λ, and one independent of the slab
thickness originating from the longitudinal mode. This last
feature means that the aforementioned problems related to
the measurement of type-I waves are much less relevant
here. In fact, the wall may be as thick as necessary to
avoid issues with heating of the detector region, also
facilitating the shielding from unwanted light from the
source. The transverse part of the transmission rate will not
contribute for any macroscopic thickness, leaving us with
TðηÞ ≈ jρj2η2, cf. Eq. (77b).
So far we have not presented an estimate for the

magnitude of ρ, leaving it as an unknown parameter. In
reality, it is fixed by the composition of the incident light,
meaning that ρ is determined by the emission mechanism
in the source, where atoms undergo transitions between
certain energy states. As pointed out by Goldhaber and
Nieto [13], quantum mechanical transition amplitudes
are of the form Tfi ∼ ϵαhfjJαjii, where Jα is a conserved
four current and ϵα is the polarization four-vector of the
photon. For longitudinal photons we have ϵα ∼ ðkL=μγ; 0;
0;ω=μγcÞ, whereas ϵα ∼ ð0; 1; 0; 0Þ for transverse ones
polarized in the x direction. This leads to TL

fi ∼
ðμγc=ωÞhfjJzjii and TT

fi ∼ hfjJxjii, so that

jTL
fij2

jTT
fij2

∼ η2: ð83Þ

The number of photons emitted by the atoms in the source
is proportional to the emission cross section,N ∼ σem, which
is itself proportional to the squared transition amplitude.
From Eq. (83) we have NL=NT ∼ η2, where NL (NT)
denotes the number of longitudinal (transverse) photons
emitted. Finally, the amplitude of the electric field (∼A0i) is
proportional to

ffiffiffiffi
N

p
, implying that

jρj ∼ η: ð84Þ

Therefore, we expect longitudinal photons to be extremely
rare, unless the respective matrix elements are much larger
than those for transverse photons. Incidentally, a similar
argumentation may be used to estimate the detection
efficiency for longitudinal photons, deff . A real detector
will only measure a fraction of the incident flux and the
detection probability is determined by the absorption cross
section, σabs. For longitudinal photons we just argued that
σem ∼ η2, leading to Eq. (84), and we may naively expect

TABLE II. Basic parameters evaluated using the benchmark
values for the ALPS II [30–32] and STAX II setups [35–39] as
given in Table I. Here we take the conductivity of copper
σ ¼ 5.9 × 107 S=m and a photon mass mγ ¼ 10−14 eV=c2 as
references. The scalings for different values may be obtained by
using Eqs. (43), (53), and (54).

η δ0 ωδ0=c

ALPS II 8.6 × 10−15 3.9 nm 2.3 × 10−2

STAX II 8.1 × 10−11 380 nm 2.4 × 10−4
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that emission and absorption cross sections are similarly
large, so σabs ∼ η2 and consequently

deff ∼ η2: ð85Þ

Equations (84) and (85) show that longitudinal photons
are scarcely emitted and are even less likely to be detected
with standard devices. These issues will have a strong
impact on the experimental sensitivities: putting together
Eqs. (80a) and (82), and using Eqs. (84) and (85), we
finally obtain

mγ < 1.3 × 10−4 eV=c2
�
S12
2

�
1=6

�
1 day
τ

�
1=12

×

�
ndc

10−6 Hz

�
1=12

�
1 W
Pi

�
1=6

�
1000 nm
λsource

�
7=6

: ð86Þ

The result above assumes that the matrix elements are
of similar magnitude, i.e., hfjJxjii ≈ hfjJzjii, as well as
jρj ¼ η and deff ¼ η2 (these are worst-case scenarios). We
may now specialize Eq. (86) for the two benchmark setups
considered here, cf. Table I. Assuming a total measurement
time τ ¼ 1 year, we find

ALPS II∶ mγ < 4.2 × 10−5 eV=c2; ð87aÞ

STAX II∶ mγ < 9.6 × 10−11 eV=c2; ð87bÞ

both at 95% C.L.

VII. CONCLUDING REMARKS

In this paper we focused on the transmission of massive
de Broglie–Proca waves from vacuum onto a nonper-
meable, conducting material. We determined the amplitude
ratios for oblique incidence onto a semi-infinite medium,
subsequently specializing these results to normal incidence.
Furthermore, we analyzed the more interesting case of a
slab of conducting material, also obtaining the associated
reflection and transmission rates.
We showed that type-I waves satisfy the boundary

conditions, but type-II and longitudinal modes separately
do not (a linear combination of these solves the issue). By
symmetry, there is no distinction between type-I and -II
modes for normal incidence, thus indicating that it is the
longitudinal mode that needs a transverse mode to support
its passage through an interface. We also found that the
contributions from type-I and -II transverse modes to the
rates are identical for a semi-infinite medium or a slab. In
fact, these are altogether not very different from those in
Maxwell’s theory.
Particularly interesting is the disparity between the skin

depths for transverse and longitudinal modes. While the
former behave similarly to their massless counterparts,
having δT ≈ δ0, the skin depth of the latter is practically

infinite: longitudinal waves can barely distinguish a good
conductor from vacuum. The longitudinal components are
effectively unmodified by the passage through a conducting
material medium. This, in turn, leads to the all-important
term ∼jρj2η2 in the transmission rates, which is indepen-
dent of other system parameters, such as slab thickness,
wave frequency or conductivity.
It is this longitudinal contribution that could provide a

constraint of the photon mass. Unfortunately, the nature
of the measurement and the low signal rate expected
imply that data will be dominated by background noise.
The very low dark count rates necessary for operating
existing and future LSW experiments are a technological
challenge, but even large improvements would have
limited impact on the sensitivity due to the weak scaling
displayed in Eq. (86). Similarly, overextending the run
time of the experiment would not be very effective. The
best leverage is, in fact, the wavelength of the radiation.
Scaling the sensitivity (87b), we see that using 10-m radio
waves (30 MHz) instead of 10-mm microwaves (keeping
everything else fixed) would improve the sensitivity by a
factor of ∼104, reaching the ballpark of other limits based
on terrestrial phenomena [4,19,20].
In Sec. VI we estimated the magnitude of the proportion

of longitudinal and transverse photons, finding that jρj ∼ η.
The exact numerical factor strongly depends on the micro-
scopic details of the light source, in particular which atomic
transitions are allowed for longitudinal photons and how
fast these take place in comparison with those resulting in
the emission of transverse photons. Incidentally, better
understanding these issues would allow us to more pre-
cisely quantify the detector efficiency when measuring
longitudinal photons, deff , potentially helping optimize
existing—or design future—devices. In this sense, the
sensitivities obtained are pessimistic, since it is possible
that the proportionality factors in Eqs. (84) and (85)
weaken their dependence on η. Altogether, our final results,
Eqs. (87a) and (87b), could be made more precise by means
of a careful study of the quantum mechanical interaction of
atoms with photons in the context of massive electrody-
namics. These topics will be addressed elsewhere.
Finally, it is worth mentioning that a superconducting

material could be used to construct the optical barrier.
An immediate consequence of having a massive photon
within a superconductor is a modification of the London
penetration depth. In London’s model the current density is
J ¼ −ðe2n=mecÞA, where e and me are the charge and
mass of the electron, and n is the number density of the
superconducting carriers [56]. Inserting this into Eq. (4b)
and ignoring the displacement current leads to the modified
London equation

∇ ×B ¼ −
�
μ2γ þ μ0

e2n
mec

�
A; ð88Þ
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i.e., the London penetration depth is reduced if μγ ≠ 0 and
the magnetic field is even more strongly expelled.
In order to study the consequences of shining (massive)

light through a superconducting slab, it is necessary to
analyze the subtleties of reflection and transmission at the
interfaces, where adequate boundary conditions must be
applied. This is a very interesting and nontrivial topic
which deserves due attention. It lies beyond the scope of the
present paper, but we shall pursue this investigation in a
forthcoming paper.
In conclusion, the fact that effects of a finite photon

mass are quadratic in mγ makes the study of massive
electrodynamics quite challenging. Transverse compo-
nents are severely attenuated over macroscopic distances
and using thin barriers pose several difficulties. The
possibility of measuring longitudinal modes would be

the best chance to constrain mγ , though impressive
technological improvements in source power for long
wavelengths and corresponding single-photon detection
capabilities would be required to reach limits competitive
with other techniques based on terrestrial phenomena.
Overall, our calculations support Goldhaber and Nieto’s
claim that the observation of longitudinal photons will be
very difficult, if not impossible [13].
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