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We present the calculation of the next-to-leading-order corrections for Higgs bosonþ jet production at
the Large Hadron Collider, that arise from the Higgs trilinear self-coupling (λHHH). We use the method of
large top-quark mass expansion to tackle the challenging two-loop virtual amplitude and apply the Padé
approximation to extend the region of convergence of this expansion. We find that the λHHH-related
corrections amount to 0.66% for the total cross section. For the invariant mass distribution and Higgs boson
transverse momentum distribution, the corrections are mostly in the range 0.5%–0.7%. Our results can be
used to set extra constraints on λHHH from the experimental data.
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I. INTRODUCTION

After the discovery of the Higgs boson [1,2], accurately
measuring its properties including various couplings has
become one of the top priorities of the LHC. The Higgs
boson is related to the spontaneous breaking of the
electroweak symmetry and is responsible for the masses
of all elementary particles. Also, the Higgs boson may
provide the leading portal to possible hidden sectors
beyond the Standard Model (SM). In particular, the
Higgs trilinear self-coupling (λHHH) is the key parameter
in the Higgs potential. The precise determination of its
value will give us a better chance to understand the
electroweak symmetry breaking mechanism as well as
possible new physics (NP) beyond the SM.
The λHHH coupling can be measured directly via the

double-Higgs boson production. The very recent observed

constraints from direct measurements are −0.6 < κλ ¼
λHHH=λSMHHH < 6.6 at 95% confidence level (CL) [3], where
λSMHHH is the Higgs trilinear self-coupling in the SM.
However, the double-Higgs production alone is not enough
to get precise constraints. On the one hand, because of the
accidental cancellation between the triangle- and box-type
Feynman diagrams at the leading order (LO) in the gluon
fusion channel, the total cross section of double-Higgs
production is heavily suppressed [4,5]. On the other hand,
when using the double-Higgs production to set the con-
straints, we need strong assumptions on the Higgs coupling
modifiers to other SM particles.
Apart from the double-Higgs production, λHHH can also

appear in the loop corrections to single-Higgs production
processes. The observed constraints on λHHH using the
combined single- and double- Higgs production are −0.4 <
κλ < 6.3 at 95% CL [3], which is better than the constraints
from double-Higgs production alone. More importantly,
using the single-Higgs production allows us to relax the
assumptions on the coupling modifiers to other SM
particles, e.g., the coupling modifier between the Higgs
boson and the top quark [3]. To investigate this kind of loop
effects, the so-called C parameters are introduced in the
literature [6,7], where different single-Higgs production
channels, including vector-boson fusion (VBF), VH, tt̄H,
and tHj production processes, are analyzed. Reference [7]
has found that the differential distributions of the
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single-Higgs production processes can provide extra sen-
sitivity to determine λHHH. However, the impacts of
differential distributions in the gg → H þ j process have
not been considered in Ref. [7] because of the highly
nontrivial two-loop Feynman integrals.
Recently, two-loop amplitudes for pp → H þ j involv-

ing internal electroweak bosons and light quarks were
investigated in Refs. [8–11]. There are no contributions
from λHHH included in these works. To include the effect of
λHHH, we need to consider the contribution from a class of
two-loop diagrams with internal Higgs propagators and a
massive top-quark loop. The calculation of these diagrams
is quite challenging, due to the appearance of two-loop
Feynman integrals with two different masses mt and mH
and two Mandelstam variables ŝ and t̂. These integrals are
still unknown analytically so far. In this case, various
approximations can be used to get reliable predictions in
certain kinematic regions. In particular, the large top-quark
mass approximation has proven to be quite reliable for
QCD corrections for H þ j production [12,13] and double-
Higgs production below the 2mt threshold [14,15]. For the
two-loop amplitudes of H → ggg and H → qq̄g with a
λHHH coupling, the analytic expressions in the large
top-quark mass expansion up to O½1=ðm2

t Þ3� are given
in Ref. [16] and are then used to study the effect of
κλ on the Higgs boson transverse momentum (pT)
distribution [16,17].
In this work, we focus on the calculation of the λHHH-

related next-to-leading order (NLO) corrections to pp →
H þ j at the LHC and extract the C parameter for the total
cross section as well as differential cross sections. We use
the method of large top-quark mass expansion to tackle the
challenging multiscale two-loop Feynman integrals. We
perform the expansion to much higher orders than in
Ref. [16]. Also, to extend the range of validity of the large
top-quark mass expansion, we adopt the Padé approxima-
tion [18–22]. This enables us to extend our predictions to
higher energy regions, which are more sensitive to NP
beyond the SM.
This paper is organized as follows. In Sec. II, we briefly

introduce our notations and present the λHHH-related NLO
corrections to pp → H þ j at the LHC. In Sec. III, we
show our numerical results and give the C parameter at the
levels of the total cross section and the differential cross
sections. The conclusion comes in Sec. IV. We leave the
lengthy expressions of the form factors for Appendix.

II. METHODS

We need to consider four partonic processes,
gaðp1Þ þ gbðp2Þ → gcðp3Þ þHðp4Þ, qaðp1Þ þ q̄bðp2Þ →
gcðp3Þ þHðp4Þ, qaðp1Þ þ gbðp2Þ → qcðp3Þ þHðp4Þ,
and q̄aðp1Þ þ gbðp2Þ → q̄cðp3Þ þHðp4Þ, where a, b,
and c are color indices; qðq̄Þ only refer to light (anti)
quarks; and pi are the external momenta with p2

1 ¼ p2
2 ¼

p2
3 ¼ 0 and p2

4 ¼ m2
H. In our calculation, we neglect the

masses of all light fermions except that of the top quark.
Hence, we do not consider the diagrams involving the
Yukawa couplings between the Higgs boson and the light
fermions. Take the gg channel as an example. At the LO, we
only consider the diagrams including a top-quark loop, as
shown in the upper plots of Fig. 1. Here, one can also
include the light-quark loops, e.g., the bottom- and charm-
quark loops. However, their contributions to C1 are sup-
pressed by the Yukawa couplings of the light quarks, i.e.,
mq=mt, with respect to the top-quark contribution, which
can be seen from the definition of C1 in the following. We
therefore do not consider these contributions for simplicity.
At the NLO (two-loop) level, we select the diagrams with
both a top-quark loop and a λHHH vertex. Note that the
diagrams with a light-quark loop and a λHHH vertex are
always suppressed by ðmq=mtÞ2 and negligible with respect
to the top-quark contribution. With these considerations,
there are 21 two-loop Feynman diagrams in the gluon
fusion channel, and two of them are shown in the lower
plots of Fig. 1. Note that these two-loop diagrams are IR
finite and we do not need to consider real emissions.
Before describing the calculation procedure, we first

review the definition of the C parameter mentioned in the
Introduction. Following Ref. [6], we consider a beyond-
the-SM scenario where the only modification is λSMHHH,
which can be parametrized by a single parameter κλ.
Therefore, the trilinear Higgs coupling term in the Higgs
potential after electroweak-symmetry breaking can be
written as κλλSMHHHvH

3, where v is the vacuum expectation
value and H is the physical Higgs field. In the presence of
the modified trilinear coupling, a generic NLO observable
ΣNLO (e.g., total or differential cross sections) for single
Higgs production can be written as

ΣNLO ¼ ZHΣLOð1þ κλC1Þ; ð1Þ

where ZH is the Higgs field renormalization constant, ΣLO
is the LO observable which is not modified with respect to
the SM, and C1 is the process- and kinematic-dependent
component. Note that the contribution coming from ZH is
universal and common to all single-Higgs production

FIG. 1. Typical one-loop (upper) and two-loop (lower) Feyn-
man diagrams for the gluon fusion channel. Dashed lines
represent Higgs bosons; solid lines are top quarks; curly lines
are gluons. l1 and l2 are the loop momenta.
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processes, whose effect can be considered by introducing a
C2 parameter as in Ref. [6]. In this paper, we focus on the
process-dependent C1 parameter. In the limit κλ → 1,
ZH ¼ 1þ δZH, and ΣNLO goes to its SM value

ΣSM
NLO ¼ ΣLOð1þ C1 þ δZHÞ; ð2Þ

where δZH is given by

δZH ¼ −
9

16
ffiffiffi
2

p
π2

�
2π

3
ffiffiffi
3

p − 1

�
GFm2

H; ð3Þ

with GF being the Fermi constant. Therefore, C1 can be
extracted as

C1 ¼
ΣSM
NLO − ΣLO − δZHΣLO

ΣLO

¼
P

i;j

R
dx1dx2fiðx1Þfjðx2Þ2ℜðMð0Þ�δMð1Þ

bareÞdΦ2P
i;j

R
dx1dx2fiðx1Þfjðx2ÞjMð0Þj2dΦ2

;

ð4Þ

where the sum goes over all possible partonic initial states i,
j; fjðxÞ is the parton distribution function of a parton jwith
a fraction x of the initial proton momentum; dΦ2 is the two-
body phase-space measure; Mð0Þ is the one-loop ampli-

tude; and δMð1Þ
bare is the two-loop amplitude without the

Higgs field renormalization.

We now turn to the calculation ofMð0Þ and δMð1Þ
bare. The

amplitudes for the gg and qq̄ channels are given by

Mgg
abc ¼

ffiffiffi
2

4
p ffiffiffiffiffiffiffi

GF

p ffiffiffiffiffiffiffiffiffiffi
4παs

p
Mμνρ

abcϵμðp1Þϵνðp2Þϵ�ρðp3Þ;
Mqq̄

abc ¼
ffiffiffi
2

4
p ffiffiffiffiffiffiffi

GF

p ffiffiffiffiffiffiffiffiffiffi
4παs

p
Mρ

abcϵ
�
ρðp3Þ; ð5Þ

where αs is the strong coupling constant. Note that
the amplitudes Mqg

abc for the qg channel and Mq̄g
abc for

the q̄g channel can be obtained by applying the crossing
symmetry to Mqq̄

abc. M
μνρ
abc and Mρ

abc can be written as
linear combinations of independent tensor structures,
respectively,

Mμνρ
abc ¼ fabc

X4
i¼1

T μνρ
gg;iAgg;iðŝ; t̂; mH;mtÞ; ð6Þ

Mρ
abc ¼ itcab

X2
i¼1

T ρ
qq̄;iAqq̄;iðŝ; t̂; mH;mtÞ; ð7Þ

where the Mandelstam variables are defined as

ŝ ¼ ðp1 þ p2Þ2; t̂ ¼ ðp1 − p3Þ2; û ¼ ðp2 − p3Þ2;
ð8Þ

which satisfy ŝþ t̂þ û ¼ m2
H. The four tensor structures in

Eq. (6) are given by

T μνρ
gg;1 ¼ −

1

2
ŝpρ

1g
μν þ pμ

2p
ν
1p

ρ
1 þ

ŝ t̂pρ
2g

μν

2û
−
t̂pμ

2p
ν
1p

ρ
2

û
;

T μνρ
gg;2 ¼

1

2
t̂pν

1g
μρ þ pμ

3p
ν
1p

ρ
1 þ

ŝ t̂pν
3g

μρ

2û
þ ŝpμ

3p
ν
3p

ρ
1

û
;

T μνρ
gg;3 ¼

1

2
ûpμ

2g
νρ þ pμ

2p
ν
3p

ρ
2 þ

ŝpμ
3p

ν
3p

ρ
2

t̂
þ ŝ ûpμ

3g
νρ

2t̂
;

T μνρ
gg;4 ¼ −

1

2
ŝpμ

3g
νρ þ 1

2
ŝpν

3g
μρ −

1

2
t̂pμ

2g
νρ þ 1

2
t̂pρ

2g
μν

þ 1

2
ûpν

1g
μρ −

1

2
ûpρ

1g
μν − pμ

2p
ν
3p

ρ
1 þ pμ

3p
ν
1p

ρ
2: ð9Þ

And the two tensor structures in Eq. (7) are given by

T ρ
qq̄;1 ¼

t̂
2
v̄ðp2Þγρuðp1Þ þ v̄ðp2Þ=p3uðp1Þpρ

1;

T ρ
qq̄;2 ¼

û
2
v̄ðp2Þγρuðp1Þ þ v̄ðp2Þ=p3uðp1Þpρ

2: ð10Þ

Note that these tensor structures are organized such that the
form factors Agg;i and Aqq̄;i are gauge invariant. To calculate
the form factors, we generate the relevant Feynman dia-
grams using FeynArts [23]. The resulting amplitudes are
further manipulated with FeynCalc [24–26]. Finally, two sets
of projection operators constructed from Eqs. (9)
and (10) are used to extract Agg;i and Aqq̄;i from the
amplitudes Mμνρ

abc and Mρ
abc respectively, which can be

found in Ref. [27]. The form factors can be perturbatively
expanded according to

Aggðqq̄Þ;i ¼
αs
4π

�
Að0Þ
ggðqq̄Þ;i þ

GF

2
ffiffiffi
2

p
π2

Að1Þ
ggðqq̄Þ;i þOðG2

FÞ
�
; ð11Þ

where Að0Þ
ggðqq̄Þ;i are the one-loop contributions which are

known exactly and Að1Þ
ggðqq̄Þ;i are the two-loop contributions

which involve the two-loop Feynman integrals with four

independent scales ŝ, t̂, m2
t , and m2

H. For Að1Þ
ggðqq̄Þ;i, we

only calculate the contributions coming from the two-loop

Feynman diagrams with a λHHH vertex, denoted by Að1Þ;bare
ggðqq̄Þ;i.

A straightforward calculation of these two-loop Feynman
diagrams is very challenging for two reasons. First, it is
very difficult to perform the integration-by-parts (IBP)
reduction for the nonplanar integral family. Second, the
analytic results of the relevant master integrals are by far
unknown. To tackle these challenging calculations, we

apply the large top-quark mass expansion to Að1Þ;bare
ggðqq̄Þ;i.

Based on the method of expansion by regions, the inte-
gration domain of the loop momenta ðl1; l2Þ is divided
into four regions: hard-hard, hard-soft, soft-hard, and soft-
soft. According to the definition of l1 and l2 shown in
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Fig. 1, only hard-hard and hard-soft regions contribute.
Combining the contribution from these two regions, we
obtain the final results of the Feynman integrals in the
limit m2

t ≫ ŝ; jt̂j; m2
H.

In our work, Að1Þ;bare
ggðqq̄Þ;i are expanded up to O½1=ðm2

t Þ6�
(N6LP). The most time-consuming part is the IBP reduction
of a huge number of Feynman integrals after expansion by
regions. Up to N6LP, there are about 10 million Feynman
integrals before IBP reduction. In the large top-quark mass

limit, the structures of the form factors Að1Þ;bare
ggðqq̄Þ;i are very

simple. Schematically, we present the O½1=ðm2
t Þ0� (LP)

contributions to Að1Þ;bare
gg;i as

A⃗ð1Þ;bare
gg ¼ m2

H

12
ð−12Lm þ 4

ffiffiffi
3

p
π − 23Þ

×

�
1

t̂
;
1

ŝ
;−

1

ŝ
;
1

ŝ
þ 1

t̂
þ 1

û

�
; ð12Þ

where Lm ¼ lnðm2
t =m2

HÞ, the
ffiffiffi
3

p
π terms come from the

hard-soft region of the two-loop integrals, and Að1Þ;bare
gg;i is

the ith element of A⃗ð1Þ;bare
gg . Note that there are no UVand IR

divergences in the form factors.
To investigate the validity of large top-quark mass

expansion, we also expand the one-loop amplitudes up
to O½1=ðm2

t Þ12�, which is essential for constructing the
½6=6� Padé approximation used in the next section. We will
compare the approximate results with the exact results at
LO in the next section. For the exact results at LO, we
evaluate the one-loop scalar Feynman integrals using
program libraries LOOPTOOLS [28] and QCDLOOP [29].
We have checked that our LO integrated cross sections
are in good agreement with those of MadGraph5_AMC@NLO

[30] where the relative errors from Monte Carlo integration
are about 0.5%.

At NLO, the form factors Að1Þ;bare
ggðqq̄Þ;i have been given up to

N3LP in Ref. [16]. It should be noted that the conventions
for the form factors are different between Ref. [16] and our
work, because of the different choices of tensor structures
and normalization factors. After the necessary transforma-
tion to arrive at their convention, we find that our results
agree with those given in Ref. [16]. For reference, we show

the analytic results of Að1Þ;bare
ggðqq̄Þ;i up to N4LP in the Appendix

and give Að1Þ;bare
ggðqq̄Þ;i up to N

6LP in an electronic file attached to

the arXiv submission, together with Að0Þ
ggðqq̄Þ;i up to N12LP

used in our work.
Note that the large top-quark mass approximation is

formally valid only below the 2mt threshold. To extend our
predictions beyond that region, we adopt the Padé approxi-
mation [18–22]. Following Ref. [18], we apply Padé
approximation to the series expansion in terms of the
variable

w≡ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s0=ð4m2

t Þ
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s0=ð4m2

t Þ
p ; ð13Þ

instead of the variable 1=m2
t . Note that s0 ¼ ŝ for the gg

channel and qq̄ channel and s0 ¼ t̂ for the qg channel. The
form factors can therefore be expanded in w as

AðjÞ
i ðwÞ ¼

X∞
n¼0

aðjÞi;nw
n: ð14Þ

We insert Eq. (14) into Eq. (5) and calculate the interference
with the unexpanded one-loop amplitudes, which is
given by

h
M�ð0ÞMðjÞ

i
ðwÞ ¼

X∞
n¼0

bðjÞn wn: ð15Þ

Note that bðjÞn receive contributions not only from aðjÞi;n for
various i but also from M�ð0Þ, which is not expanded in w.
The resulting ½m=n� Padé approximation for the squared
amplitudes takes the form

h
M�ð0ÞMðjÞ

i
½m=n�

¼ cðjÞ0 þ cðjÞ1 wþ � � � þ cðjÞm wm

1þ dðjÞ1 wþ � � � þ dðjÞn wn
; ð16Þ

where the coefficients cðjÞi and dðjÞi can be uniquely

determined by the first mþ nþ 1 coefficients bðjÞi .
½M�ð0ÞMðjÞ�½m=n� can now be use to calculate the Padé
approximated cross sections. With the above knowledge,
we can give our numerical predictions for the C1 parameter
defined in Eq. (4).

III. NUMERICAL RESULTS

In this section, we present our numerical predictions
for the total cross section, the mjh distribution, and the pT

distribution, where mjh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3 þ p4Þ2

p
¼ ffiffiffî

s
p

is the
invariant mass of the Higgs boson and the final state jet,
and pT is the transverse momentum of the Higgs boson. We
choose the input parameters as mt ¼ 172.5 GeV, mH ¼
125.25 GeV, and GF ¼ 1.1663787 × 10−5 GeV−2 [31].
The hadronic center-of-mass energy is chosen asffiffiffi
s

p ¼ 13.6 TeV. We use CT18NNLO_as_0118[32] for
the evaluation of both LO and NLO cross sections through
the LHAPDF interface [33]. For the strong coupling
constant, we use the value provided by CT18NNLO_as_
0118: αsðmZÞ ¼ 0.118. The default factorization scale μf
and renormalization scale μr are chosen as μf ¼ μr ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

H

p
þ pTÞ=2. Last but not least, we choose the

cut pT ≥ 20 GeV to get finite predictions for the total cross
section as well as the mjh distribution.
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We first present LO results. We show in Fig. 2 the LO
differential cross sections for mjh. To see the performance
of large top-quark mass expansion clearly, we present the
exact distribution and the distribution up to O½1=ðm2

t Þn�
(NnLP). The upper plot employs a logarithmic scale for the
vertical axis to give the distributions in the broad range
140 GeV ≤ mjh ≤ 2000 GeV. The lower plot shows the
ratios to the exact values of the LO differential cross
section. As we expected, the distributions in the region
mjh ≤ 2mt show excellent convergence of the large top-
quark mass expansion. The relative errors of N3LP are
already smaller than 0.3%. However, the distributions at
N3LP and N6LP blow up beyond 2mt threshold, which are
clear in the lower plot of Fig. 2. To get reliable estimations
in the mjh ≥ 2mt region, we apply the Padé approximation
to the series expansion in w. Using the expansion up to
N12LP, we can construct ½m=n� Padé approximation with
mþ n ≤ 12. We show the distributions with ½2=2�, ½3=3�,
½4=2�, and ½6=6� Padé approximation in Fig. 2. We have also
calculated the distributions with ½2=3�, ½3=2�, ½2=4�, and
½3=4� Padé approximations and find that they lie within the
area between ½3=3� and ½4=2� in almost the whole phase-
space region. We therefore do not show these curves in
Fig. 2. We can find that the relative errors of ½4=2� are
smaller than 1% for mjh ≤ 2000 GeV.
We now turn to the pT distribution at the LO. We have

again attempted different combinations of m and n. We
show only the representative curves of ½2=2�, ½3=3�, ½4=2�,
and ½6=6� Padé approximations in Fig. 3. In the small pT
region, the performance of large top-quark mass expansion

with the Padé approximation is very similar to that in mjh

distribution. All the results with Padé approximations may
serve as reliable estimations of the exact results. However,
in the large pT region, the predictions with Padé approxi-
mation show as much as 10% relative errors, which is
significantly different from the case of the mjh distribution.
Specifically, the relative errors of ½4=2� Padé approximation
reach 1% in the region pT ∈ ½340; 360� GeV and reach
10% in the region pT ∈ ½500; 520� GeV. It is possible to
further improve the Padé approximation by including
higher power corrections in w. Indeed, the ½6=6� Padé
approximation gives better predictions than those of the
½4=2� Padé approximation in the large pT region.
The Padé approximation works better in the large mjh

region than in the large pT region, which can be partly
attributed to the following fact. The distribution in the large
pT region only receives the contributions from the large
mjh region, while the one in the large mjh region receives
dominant contributions from the small pT region. Because
of this, the validity range of the approximations for the pT
distribution is much smaller than the naive guess pT < mt,
which can be seen from the lower plot of Fig. 3. To show
the significant influence from the large ŝ region to the pT

distribution, we further impose an ŝ cut
ffiffiffî
s

p
≤ 2000 GeV in

the calculations. The results are shown in Fig. 3 as dashed
lines. We find that this ŝ cut can improve the convergence to
some extent, which can be clearly seen from the N4LP
curves with/without the ŝ cut. Because the dominant
contributions to the total cross section come from the
small mjh region, the ŝ cut should not give significant

FIG. 2. The LO differential cross sections of pp → H þ j with
respect to the invariant mass mjh of the Higgs boson and the jet.
The lower plot shows the ratios to the LO exact values.

FIG. 3. The LO differential cross sections of pp → H þ j with
respect to the transverse momentum pT of the Higgs boson. The
solid lines show the distributions without the ŝ cut, while the
dashed lines show the distributions with the ŝ cut. The lower plot
shows the ratios to the LO exact values without the ŝ cut.
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influence on the integrated cross sections. We show the LO
integrated cross sections for pT ≥ 20 GeV with and with-
out the ŝ cut in Table I. We find that the contribution from
the region above the ŝ cut is only about 0.2%. As is
expected, the ŝ cut makes the approximate results, e.g.,
N3LP, more compatible with the exact one. The ½4=2� and
½6=6� Padé approximations show precise estimations of the
exact result.
We now move to the main results of this paper, i.e., the

NLO corrections proportional to λHHH. As is clear from
Eq. (2), the information about the NLO corrections is fully
encoded in the C1 parameter (note that δZH is kinematics
independent). Therefore, in the following, we give our
predictions for the C1 parameter using Eq. (4). In Fig. 4, we
give the C1 parameter in its differential form with respect to
mjh. We find that the N6LP and Padé approximations give
consistent results in the mjh ≤ 2mt region, where the large
top-quark mass expansion is valid. These are similar to the
cases at the LO. However, there are two significant
differences between C1 and the LO differential cross
sections. One is that the LP contribution is dominant at
LO, while the LP only accounts for about half of C1. The
other is that the trends of NnLP (e.g., n ¼ 3 and n ¼ 6)
curves for C1 are opposite to the corresponding LO ones
when mjh > 2mt. Because of these two differences, the
approximation scheme to the full theory (FTapprox) [34],
which is a remarkably reliable method for NLO QCD
corrections to pp → H þ j [12,13], is not applicable in our
case. We use the ½4=2� Padé approximation as our best

predictions at NLO in mjh distribution. We note that the
dependence of the differentialC1 parameter on the invariant
mass mjh is very weak, with its values being around 0.6%
across the whole phase-space region. According to the
behavior of the ½4=2� Padé approximation at LO, we believe
that the predictions at NLO are quite accurate in the
convergent region and are reliable in the high-energy
region with their relative errors being at the level of a
few percent. The small humps near 2mt threshold region
are expected to come from the large top-quark mass
expansion with Padé approximation and will be flattened
when higher-order Padé approximations are considered.
Similar behaviors are observed at the LO.
We then show in Fig. 5 the differential C1 parameter with

respect to pT . We emphasize that in the large pT region,
results from Padé approximations can only be used to get a
rough estimation of the exact result, with relative errors at
the level of 10%. Based on the analyses at LO, we believe
that the ½4=2� Padé approximation is a reasonable approxi-
mation at NLO as well. It is consistent with the ½3=2� and
½3=3� approximations in the small pT region. The expansion
at the NLO shows a slower convergence than that at the LO.
In the small pT region, the ½2=2� approximation has large
deviations from other curves and is not reliable. In the large
pT region, the predictions of the ½4=2� Padé approximation
are consistent with those of the ½3=2� and ½3=3� approx-
imations within the relative errors estimated according to
the LO results. Across the whole range, the values of C1 is
around 0.6%, similar to the case in the mjh distribution.

TABLE I. The LO integrated cross sections (in pb) for
pT ≥ 20 GeV. σexact is the exact result. σNnLP are the results
with the large top-quark mass expansion up toO½1=ðm2

t Þn�. σ½m=n�
are the results using ½m=n� Padé approximations. The error of
each number from Monte Carlo integration is given in paren-
theses.

ŝ cut σexact σLP σN3LP σ½4=2� σ½6=6�
No 13.651(5) 13.304(5) 13.089(5) 13.647(3) 13.652(5)
Yes 13.628(1) 13.280(1) 13.563(1) 13.624(3) 13.628(1)

FIG. 4. The C1 parameters with respect to the invariant mass
mjh of the Higgs boson and the jet.

FIG. 5. The C1 parameters with respect to the transverse
momentum pT of the Higgs boson. The ŝ cut is not applied.

TABLE II. Values of C1 for total corrections. CNnLP
1 corre-

sponds to large top-quark mass expansion up to O½1=ðm2
t Þn�.

C½m=n�
1 corresponds to the prediction of the ½m=n� Padé approxi-

mation. The relative error of each number from Monte Carlo
integration is less than 0.5%.

ŝ cut CLP
1 CN3LP

1 C½3=3�
1 C½4=2�

1

No 0.0036 0.0067 0.0066 0.0066
Yes 0.0036 0.0065 0.0066 0.0066
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These behaviors show that C1 has only a very mild
kinematics-dependence.
Finally, we give the C1 parameter for total corrections

which is defined as the ratio between NLO corrections and
LO total cross section in Table II. Our best prediction at
NLO gives C1 ¼ 0.66%.

IV. CONCLUSION

In this work, we calculate the corrections proportional to
the Higgs trilinear self-coupling λHHH for Higgs boson plus
one jet production at the LHC. We perform an asymptotic
expansion in the large top-quark mass limit with the
method of expansion by regions. The prediction is then
extended to high-energy regions by applying the Padé
approximation. We use the ½4=2� Padé approximation as our
best prediction at the NLO. We find the values of C1 at the
differential level have a mild dependence on the kinematic
variables mjh and pT and are mostly in the range
0.5%–0.7%. As for the C1 parameter for total corrections,
the value is 0.66%.
The values of C1 is small, which is common for λHHH-

related corrections. Similar effects have been found in
gg → H, VBF, and VH production channels and also in
various decay channels of the Higgs boson [6,7]. The
expected experimental precisions for these production
channels are also similar at the high-luminosity large
hadron collider [35,36]. On the other hand, these channels
are not expected to be used alone but should be combined
altogether with double-Higgs production channels, as is
done in Ref. [3]. Hence, our results provide an additional
channel to set extra constraints on λHHH from the exper-
imental data.
The high-energy behavior of the approximation at NLO

can be further improved by including higher-order Padé
approximation, which needs higher power expansion in the
large top-quark mass limit. The calculation is straightfor-
ward, while the IBP reduction, which is the most time-
consuming part as mentioned before, would take much
more time. For example, to calculate N7LP corrections at
NLO, we still need to perform IBP reduction on about
12 million Feynman integrals. This is much more difficult
than N6LP and is expected to take several months. Note that
constructing the ½6=6� Padé approximation requires the
two-loop Feynman integrals to be expanded up to N12LP.
However, the ½6=6� Padé approximation is still not accurate
enough especially in the large pT region, as observed at
the LO. Therefore, in the large pT region, it is necessary
to employ a more efficient method, for example, the
high-energy expansion of Refs. [37–40] or the small
mass expansion of Refs. [41–43]. The latter method is
applicable in the whole phase-space region of interest, as
was shown in the cases of gg → H þH and gg → H þ Z
processes. Alternatively, one may evaluate the two-loop
integrals numerically using the auxiliary mass flow
method [44–48]. These are left for future investigations.
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APPENDIX: THE ANALYTIC RESULTS FOR THE
FORM FACTORS

In this Appendix, we provide the analytical results for

Að1Þ;bare
ggðqq̄Þ;i up to N4LP. First, we present the form factors of

the gluon fusion channel. For the Að1Þ;bare
gg;i;NLP, we have

Að1Þ;bare
gg;1;NLP ¼ −

m4
H

m2
t t̂
a1;

Að1Þ;bare
gg;4;NLP ¼

m2
H

m2
t ŝ

�
m2

H

t̂ û
½t̂2 þ û2 −m2

Hðt̂þ ûÞ�a1

þm2
Ha2 − ðt̂þ ûÞa3

�
; ðA1Þ

where

a1 ¼
7Lm

10
−

7π

20
ffiffiffi
3

p þ 259

240
;

a2 ¼
31Lm

40
−

17π

40
ffiffiffi
3

p þ 1487

1200
;

a3 ¼
3Lm

40
−

ffiffiffi
3

p
π

40
þ 4

25
: ðA2Þ

For the Að1Þ;bare
gg;i;N2LP

, we have

Að1Þ;bare
gg;1;N2LP

¼ −
m2

H

m4
t t̂
½m4

Hb1 þ t̂ ûb2�;

Að1Þ;bare
gg;4;N2LP

¼ m4
H

m4
t ŝ

�
m2

H

t̂ û
½t̂2 þ û2 −m2

Hðt̂þ ûÞ�b1

þm2
Hb3 − ðt̂þ ûÞb4

�
; ðA3Þ

where
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b1 ¼
349Lm

1008
−

23π

240
ffiffiffi
3

p þ 464419

1058400
;

b2 ¼
Lm

140
−

π

280
ffiffiffi
3

p þ 37

50400
;

b3 ¼
1853Lm

5040
−

179π

1680
ffiffiffi
3

p þ 1092101

2116800
;

b4 ¼
3Lm

140
−

ffiffiffi
3

p
π

280
þ 54421

705600
: ðA4Þ

For the Að1Þ;bare
gg;i;N3LP, we have

Að1Þ;bare
gg;1;N3LP

¼ −
m2

H

m6
t t̂
½m6

Hc1 þm2
Ht̂ ûc2 − t̂ ûðt̂þ ûÞc3�;

Að1Þ;bare
gg;4;N3LP

¼ m2
H

m6
t ŝ

�
m6

H

t̂ û
½t̂2 þ û2 −m2

Hðt̂þ ûÞ�c1
þm6

Hc4 þm4
Hðt̂þ ûÞc5

þ ½ŝð2t̂2 þ 3t̂ ûþ 2û2Þ þ ðt̂þ ûÞ3�c6
�
; ðA5Þ

where

c1 ¼
1741Lm

10800
−

13π

525
ffiffiffi
3

p þ 31795373

190512000
;

c2 ¼
1717Lm

126000
−

533π

126000
ffiffiffi
3

p þ 254311

79380000
;

c3 ¼
113Lm

42000
−

521π

126000
ffiffiffi
3

p þ 188969

45360000
;

c4 ¼
18541Lm

126000
−

407π

18000
ffiffiffi
3

p þ 9462017

52920000
;

c5 ¼
233Lm

25200
þ π

360
ffiffiffi
3

p −
142763

9072000
;

c6 ¼
1817Lm

378000
−
23

ffiffiffi
3

p
π

14000
þ 1825337

476280000
: ðA6Þ

For the Að1Þ;bare
gg;i;N4LP

, we have

Að1Þ;bare
gg;1;N4LP

¼ m2
Hû
m8

t

�
m8

H

t̂ û
d1 −m2

Hðt̂þ ûÞd2 þm4
Hd3

þ ðt̂2 þ û2Þd4 þ t̂ ûd5

�
;

Að1Þ;bare
gg;4;N4LP

¼ m2
H

m8
t ŝ

�
m8

H

t̂ û
½t̂2 þ û2 −m2

Hðt̂þ ûÞ�d1
þm4

Ht̂ ûd6 þm4
Hðt̂2 þ û2Þd7 þm8

Hd8

− ðt̂þ ûÞ½m2
Hðt̂2 þ û2Þd9 þm2

Ht̂ ûd10

− t̂ ûðt̂þ ûÞd11 −m6
Hd12�

�
; ðA7Þ

where

d1 ¼
10817Lm

138600
−

1789π

277200
ffiffiffi
3

p þ 40370773

614718720
;

d2 ¼
55249Lm

8316000
−

1067π

252000
ffiffiffi
3

p þ 106841597

25613280000
;

d3 ¼
35473Lm

2079000
−

4573π

1386000
ffiffiffi
3

p þ 240175891

57629880000
;

d4 ¼
227Lm

1663200
−

19π

184800
ffiffiffi
3

p þ 272233

23051952000
;

d5 ¼
2Lm

17325
þ π

11550
ffiffiffi
3

p −
9083

34303500
;

d6 ¼
82219Lm

2772000
−

13007π

924000
ffiffiffi
3

p þ 86605417

5488560000
;

d7 ¼
53971Lm

2772000
−

26539π

2772000
ffiffiffi
3

p þ 367056113

32931360000
;

d8 ¼
993907Lm

16632000
−

29401π

5544000
ffiffiffi
3

p þ 2544943799

41912640000
;

d9 ¼
53971Lm

5544000
−

26539π

5544000
ffiffiffi
3

p þ 367056113

65862720000
;

d10 ¼
59021Lm

5544000
−

23389π

5544000
ffiffiffi
3

p þ 243249443

65862720000
;

d11 ¼
101Lm

221760
þ π

3520
ffiffiffi
3

p −
4126889

4390848000
;

d12 ¼
7111Lm

831600
þ π

275
ffiffiffi
3

p −
1058129

1707552000
: ðA8Þ

Because of the crossing symmetry, we have

Að1Þ;bare
gg;2;NjLP ¼ Að1Þ;bare

gg;1;NjLPðŝ ↔ t̂Þ;
Að1Þ;bare
gg;3;NjLP ¼ −Að1Þ;bare

gg;2;NjLPðt̂ ↔ ûÞ: ðA9Þ
Then, we give the form factors of the quark-antiquark

annihilation channel. For the Að1Þ;bare
qq̄;i;LP , we have

Að1Þ;bare
qq̄;1;LP ¼

m2
H

ŝ

�
Lm

2
−

π

2
ffiffiffi
3

p þ 23

24

�
: ðA10Þ

For the Að1Þ;bare
qq̄;1;NLP, we have

Að1Þ;bare
qq̄;1;NLP ¼

m2
H

ŝ
ðm2

Ha
q
1 þ ŝaq2Þ; ðA11Þ

where

aq1 ¼
7Lm

20
−

7π

40
ffiffiffi
3

p þ 259

480
;

aq2 ¼
11Lm

90
−

11π

120
ffiffiffi
3

p þ 863

7200
: ðA12Þ

For the Að1Þ;bare
qq̄;1;N2LP, we have

Að1Þ;bare
qq̄;1;N2LP

¼ m2
H

ŝ
ðm2

Hŝb
q
1 þm4

Hb
q
2 þ ŝ2bq3Þ; ðA13Þ
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where

bq1 ¼
1271Lm

10080
−

167π

3360
ffiffiffi
3

p þ 266837

2116800
;

bq2 ¼
349Lm

2016
−

23π

480
ffiffiffi
3

p þ 464419

2116800
;

bq3 ¼
11Lm

420
−

11π

840
ffiffiffi
3

p þ 17

5040
: ðA14Þ

For the Að1Þ;bare
qq̄;1;N3LP

, we have

Að1Þ;bare
qq̄;1;N3LP

¼ m2
H

ŝ
ðm6

Hc
q
1 þm4

Hŝc
q
2 þm2

Hŝ
2cq3 þ ŝ3cq4Þ;

ðA15Þ
where

cq1 ¼
1741Lm

21600
−

13π

1050
ffiffiffi
3

p þ 31795373

381024000
;

cq2 ¼
125863Lm

1512000
−

9109π

504000
ffiffiffi
3

p þ 1480511

19440000
;

cq3 ¼
19483Lm

504000
−

731π

72000
ffiffiffi
3

p þ 1296991

79380000
;

cq4 ¼
301Lm

54000
−

ffiffiffi
3

p
π

1750
−

5466617

1905120000
: ðA16Þ

For the Að1Þ;bare
qq̄;1;N4LP, we have

Að1Þ;bare
qq̄;1;N4LP

¼ m2
H

ŝ
ðm8

Hd
q
1 þm6

Hŝd
q
2 þm4

Hŝ
2dq3

þm2
Hŝ

3dq4 þ ŝ4dq5Þ; ðA17Þ

where

dq1 ¼
10817Lm

277200
−

1789π

554400
ffiffiffi
3

p þ 40370773

1229437440
;

dq2 ¼
28151Lm

594000
−

4999π

924000
ffiffiffi
3

p þ 17411038151

461039040000
;

dq3 ¼
52319Lm

1512000
−
1051

ffiffiffi
3

p
π

616000
þ 8206234093

461039040000
;

dq4 ¼
184463Lm

16632000
−

2813π

1848000
ffiffiffi
3

p −
557260999

461039040000
;

dq5 ¼
997Lm

831600
−

79π

277200
ffiffiffi
3

p −
29741

28459200
: ðA18Þ

Because of the crossing symmetry, we have

Að1Þ;bare
qq̄;2;NjLP ¼ Að1Þ;bare

qq̄;1;NjLP.
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