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Some time ago, we introduced a route to provide confinement in the sense that particle excitations would
appear from condensates of fields that do not have physical asymptotic states [Phys. Rev. D 101, 094002
(2020)]. We envisaged this mechanism in an asymmetric vacuum phase of a complex gauge field theory.
More recently, we showed how to define a Becchi-Rouet-Stora-Tyutin operator to the broken phase of a
generic spontaneous broken field theory [Phys. Rev. D 105, 125007 (2022)]. Our intention here is to apply
these late concepts to the previous complex field theory in order to give a cohomological characterization of
those condensed states as actual physical observables of this theory in its broken phase.
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I. INTRODUCTION

In a recent work [1], we addressed the theme of the
Becchi-Rouet-Stora-Tyutin (BRST) characterization of
observables in the broken phase of a spontaneous sym-
metry breaking of a grand unified theory (GUT). This was a
question which imposed itself in an obvious way, as new
observables (as gauge field masses or independent cou-
plings) are the main objective of any spontaneous sym-
metry-breaking theory, and the BRST description of these
observables was still lacking. We accomplished this goal by
initially understanding that the symmetry-breaking process
demands a redefinition of the BRST symmetries taking
into account the displacement of the vacuum in the broken
phase. The first outcome of this reasoning leads to a
nilpotent operator (called sq in Ref. [1]) adapted to
the new vacuum. This operator appears when we isolate
the scalar degrees of freedom that are encompassed by the
gauge fields acquiring masses in the breaking process. This
system of symmetries is already sufficient to characterize

the new observables associated to new nontrivial invariant
objects of the sq cohomology. However, sq alone is not able
to link the renormalization of the coupling constants in
order to reach a unique value at the symmetry-breaking
scale, as is demanded by the fact that we intend to describe
a GUT phase transition based on a simple group. This
means that we must add new elements in such a way that,
as long as the energy increases close to the breaking scale,
the running couplings may converge to a common value.
These elements were called δ in Ref. [1]. The complete
symmetry operator sq þ δ is again nilpotent. It becomes
essential to the definition of the ’t Hooft gauge in this
regime, and in this sense we now interpret sq þ δ as the
BRST operator of the broken phase. Then, the role played
by δ seems to be just a constraint on the dynamics of the
broken theory in order to recover the symmetric theory at
the breaking scale. It still preserves the nontriviality of the
main cocycles already described by the cohomology of sq;
i.e., the independence of the couplings and gauge field
masses are not disturbed by δ [1].
This issue becomes relevant as we intend to apply this

development in the context of a phase transition process
now leading to confined states. Once an analogous sq
operator is defined, we envisage its use in the search of
possible condensate states which cannot be defined in any
other way. With this intent, let us describe the field theory
with a spontaneous symmetry breaking with attainable
confined states in the broken phase.
This theory was presented in our work [2]. There, we

argued that the previous progress of Gribov’s ideas on
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confinement [3] [in the same context, the Gribov-
Zwanziger (GZ) theory [4–6]] was naturally leading the
research toward theories where the loss of positivity should
take a prominent role. Regarding this point, we highlight
first the definition of the concept of i particles, fundamental
elements from which condensates satisfying the propagator
positivity criteria [7–10] would be possible [11–14]. Then,
when the construction of such condensates failed in the
standard GZ scenario, a new idea emerged associating
fundamental fields directly to i particles, the so-called
replica model [12,15]. In this work, the loss of positivity
appears as an inevitable outcome of Gribov’s approach to
gluon confinement. More than this, the replica model
contains a complex gauge field hidden in its structure,
and this was the guideline to our research. Another point to
be considered here is that, although the GZ model can be
obtained from the spontaneous symmetry breaking of a
trivial BRST term [16,17], following the former proposal
contained in Ref. [18], this is not enough to build i particles.
The missing ingredient is the breakdown of positivity,
naturally embedded within complex gauge theories. We
joined these ideas and studied a complex gauge field theory
symmetric under a complex group that undergoes a
spontaneous symmetry-breaking process [2]. In the asym-
metric phase, the propagators of the gauge fields associated
to the broken directions become i particles. Consequently,
these fundamental fields are not associated to asymptotic
particle states anymore, but a positive norm subspace can
still be reached if we look at condensates formed from these
fields. Such objects should propagate respecting Källén-
Lehmann (KL) spectral representation and then would
define candidates for observable states [14]. In Ref. [2],
we succeeded in presenting a possible observable meeting
these requisites.
On the other hand, if we expect this object to be a

physical observable, it should be characterized in the BRST
cohomology. This means that it must be invariant under the
action of the nilpotent BRSToperator and, at the same time,
it should not be written as a BRST variation (see Ref. [19]
for an introduction on the BRST renormalization). At the
time when Ref. [2] was written, we did not have the BRST
scheme developed to the broken phase. Then we based our
study on the nontrivial objects of the symmetric phase,
where the BRST operator was well known, and hope that
among them we could find at least an indication of a
condensate. In fact, this is one of the results shown in
Ref. [2]. Now, with the realization of the BRST symmetry
for the asymmetric vacuum described in Ref. [1], the sq
operator mentioned above, we can return to the complex
field theory and study in detail its broken phase. We will
show that our hint on the condensate in Ref. [2] is justified,
as the part of the invariant object of the symmetric phase
that has a KL propagation is actually a nontrivial cocycle of
this new broken phase BRST operator. Also, with this
machinery, we will be able to identify new contributions for

this broken phase observable. Finally, it is important
to highlight a point discussed in Ref. [2] that our model
allows the confinement of quarks and gluons in the same
theory. For the quarks, we considered the confining
potential criterion of ’t Hooft [20–22], which led to the
linear Cornell potential [23–25].
In what follows, in Sec. II we review the complex gauge

theory and the conceptual developments that lead to it, and
in Sec. III we construct the BRSToperator sq for its broken
phase. In Sec. IV, we show how this reveals the loss of
holomorphicity in this phase, a fact that we argue to be
behind the emergence of the gluon condensates which we
present and characterize as observables in the cohomo-
logical sense. Finally, our conclusions are shown in Sec. V.

II. THE COMPLEX GAUGE THEORY

Before reviewing our complex gauge theory, let us give
some context of the ideas that led us to the development
of Ref. [2].
The original implementation of the GZ theory had the

basic structure of a trivial BRST element added to a Yang-
Mills Lagrangian, with the intent that gluon confinement
would ultimately be perceived as an inevitable outcome
of pure Yang-Mills theory. However, in order to create
dynamics from this topological structure, a process of
fixation of BRST sources is embedded in Zwanziger’s
scheme [26]. This leads to a soft breaking of the BRST
invariance [27]. In fact, the instability of the BRST
symmetry in the nonperturbative regime was understood
a long time ago [18]. Although the renormalizability of the
GZ theory has been checked in the Landau gauge [28],
it soon became clear that this process implied a gauge-
dependent construction [29,30]. Each gauge fixing would
require a different horizon function, which would intrinsi-
cally carry this gauge dependence [31].
The acknowledgement of this inconsistency led to the

recovery of an older interpretation of the full GZ theory as a
spontaneous symmetry breaking of BRST starting from
pure Yang-Mills plus the trivial topological sector [32]. The
mechanism itself generating this phase transition is not
described, but the broken phase is characterized by the
existence of a non-null vacuum expectation value of a
BRST trivial element. Some problems with the derivation
of the GZ theory from this symmetry-breaking point of
view were then pointed out, mainly from the fact that
the whole approach depended explicitly on the spacetime
coordinate [6]. Since then, this criticism was circumvented
by different approaches. The implementation of a finite
volume quantization was carried out in Refs. [4,17], in a
way to avoid the inconsistency of the original Maggiore-
Schaden construction. And another spontaneous sym-
metry-breaking effect, also free from the explicit spacetime
dependence, again by the extension of the field content of
the theory, was presented in Ref. [33]. Nevertheless, these
options were developed only for the specific Landau gauge
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(as it was actually recognized in Ref. [33]) and so may
suffer from the same gauge dependence problem that
motivated the analysis in Refs. [29,30] (also the existence
of preferred directions on the resulting vacuum seems to be
another drawback).
These developments, although not successful, brought us

the impression that GZ could, in fact, be describing a phase
of a larger theory, when it is already confined. At the same
time, it is natural to expect that a process of spontaneous
symmetry breaking should play a major role, since this is
the mechanism that we find in theoretical physics that can
make this transition and at the same time preserve renor-
malizability and unitarity.
On the other hand, as it is clearly stressed in Ref. [33], the

preservation of a BRST symmetry does not guarantee that a
unitary description will be reached. One should in the end
verify if the theory allows for a positive norm subspace of the
confined degrees of freedom. As in a confined phase the
elementary excitations are expected not to have asymptotic
states, this subspace must be searched among the two-point
correlators of composite operators constructed from the basic
fields. In fact, it is very hard to describe correlators with this
property in the GZ theory. Several developments lead to the
foundation of the important concept of i particles, funda-
mental elements from which condensates satisfying posi-
tivity criteria would be possible [11–14]. Propagators of i
particles would be behind the formation of Gribov propa-
gators. However, the fact that the fundamental fields in GZ
do not precisely represent i particles led to the impossibility
of defining condensates with the necessary properties to
describe physical observables in the theory [5]. A new idea
to overcome this obstacle was the further development of the
replica model [15]. Created in order to associate fundamental
fields directly to i particles, it showed once more the loss
of positivity as an inevitable outcome in this confinement
scenario. But another ingredient appeared: A complex gauge
field is hidden in the replica model.
Then, we take complex gauge field theory as an

appropriate environment to the description of i particles.
As already mentioned, we will be led to the conclusion that
fundamental fields are not associated to asymptotic particle
states. This can be seen as a precept to the confinement,
but the main issue is that we must recover the physical
spectrum of excitations of the theory, or else such a theory
will remain physically meaningless. A possible path opens
if we assure the possibility of defining condensates from
such fields. In fact, the concept of i particles is born inside
the GZ theory as a building block for condensates. These
would be formed from vertices joining simultaneously pairs
of i particles and anti-i particles. Objects built in this way
would propagate respecting Källén-Lehmann spectral rep-
resentation and then would define candidates for observ-
able states. And, according to what is derived in the replica
model, this combination in pairs of i particles and anti-i
particles is essential for the success of the construction.

Our theory begins with the usual transformation of a
complex gauge field Aμ in the adjoint representation

Aμ → A0
μ ¼ G−1AμGþ i

g
G−1ð∂μGÞ; ð1Þ

and, in the case of a complex group, we have the possibility
of defining a conjugated field Āμ transforming distinctly as

Āμ → Ā0
μ ¼ G†ĀμG†−1 þ i

g
G†ð∂μG†−1Þ; ð2Þ

since in a complex groupG−1 ≠ G†. In the next step, we can
define covariant curvatures F μν and F̄ μν for Aμ and Āμ,
respectively. Thus, we immediately see that invariant objects
built exclusively from these curvatures will be holomorphic
in the sense that, onceAμ is found in a monomial, it will not
contain Āμ, and vice versa. For example, we will be able to
define curvature invariants as TrF 2 and TrF̄ 2. Therefore,
the inevitable loss of positivity. Positivity would be ensured
only in the nonholomorphic element TrFF̄ , which is not
invariant by the complex gauge transformations (1) and (2).
Naturally, an i particle will be associated to the Aμ field and
an anti-i particle to Āμ.
We also assumed that the GZ theory should be embedded

in a larger theory with a spontaneous symmetry-breaking
sector. The usual option is to add a scalar sector to the
theory. The first idea would be to work with a complex
scalar field and its conjugate, which would take us to a
holomorphic scalar sector. This route leads to difficulties in
the definition of gluon and fermion condensates. But there
is an alternative path.
This comes from the freedom that the complex

group gives us. The fact that G−1 ≠ G† allows us an
unorthodox proposition for an adjoint-inspired scalar field
transformation:

ϕ → ϕ0 ¼ G†ϕG ð3Þ

and also

ψ → ψ 0 ¼ G−1ψG†−1: ð4Þ

These scalar fields, in isolation, do not form invariants.
But joining them together, we find Trϕψ , which is invariant
under this action of the complex group.
Here, we need to take some care to understand what is

implied in the transformations (3) and (4). In these, a
left and a right action on the field is implicit, which
indicates that the field carries a representation of the
algebra, as it occurs in the traditional adjoint representation.
However, as the transformations in (3) and (4) involve G†

and not G−1, we can conclude that for a general group
these transformations are not closed inside the vectorial
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space of the algebra. This means that the admissibility
of this pattern of transformation will depend on specific
choices of the gauge group. Since G−1 ≠ G†, we know that
unitary groups are not eligible. Nevertheless, the trans-
formations (3) and (4) preserve Hermiticity; i.e., if ϕ and ψ
are Hermitians, then so will be ϕ0 and ψ 0. A Hermitian basis
for the algebra is characteristic of the real unitary groups,
but in the complex extension such a basis is acceptable
for the SLðN;CÞ groups. For instance, in the case of the
complex SLð2; CÞ, we can take the Pauli matrices as the
generator basis or Gell-Mann matrices for the complex
SLð3; CÞ. So, let us assume that we are working with a
complex SLðN;CÞ as the gauge group. Even so, it is not
still warranted that in (3) and (4) a Hermitian matrix of the
slðN;CÞ algebra will be rotated into another algebra matrix
by the action of the SLðN;CÞ. The minimal cost to obtain a
consistent construction is to impose that such matrices of
the slðN;CÞ algebra used to define the scalar fields belong
to the fundamental representation. In this case, we will have
a basis with N2 − 1 N × N matrices, and consistency will
be achieved in (3) and (4) if we suppose the existence of a
further ϕ0 component associated with the N × N identity
(and the same for ψ).
We used these building blocks in the construction of the

complex gauge theory presented in Ref. [2]. The action has
the form

S ¼
Z

d4x

�
i
4
F a

μνF a
μν −

i
4
F̄ a

μνF̄ a
μν þ TrðDμφÞðDμψÞ

þ Vðφ;ψÞ þ SGF

�
: ð5Þ

In this action, we find the complex gauge fieldAμ and its
associated ghost c transforming in the usual way under
BRST:

sAμ ¼ −ð∂μc − ig½Aμ; c�Þ;
sc ¼ −igc2; ð6Þ

and the complex conjugated gauge field Āμ and its asso-
ciated ghost c̄ transforming as

sĀμ ¼ −ð∂μc̄ − ig½Āμ; c̄�Þ;
sc̄ ¼ −igc̄2: ð7Þ

With them, we define the usual curvature F μν associated
to Aμ:

F μνðAÞ ¼ ∂μAν − ∂νAμ − ig½Aμ;Aν� ð8Þ

and its complex conjugate F̄ μν:

F̄ μνðĀÞ ¼ ∂μĀν − ∂νĀμ − ig½Āμ; Āν�: ð9Þ

The set of transformations (6) and (7) implies that only
holomorphic elements as TrF 2 and TrF̄ 2 are invariant.
Once more, the nonholomorphic element TrFF̄ is not
allowed by these BRST transformations.
A distinct feature of the model is the pair of scalar fields

φ and ψ transforming as

sφ ¼ igφc − igc̄φ;

sψ ¼ igψ c̄ − igcψ ; ð10Þ

following (3) and (4) and allowed by the complex group
structure. In Ref. [2], we chose SLð3; CÞ as the complex
gauge group, so that the scalar field φ ¼ φATA (and
analogously ψ) has components from A ¼ 0 to A ¼ 8,
with TA, A ¼ 1;…; 8, representing the eight Gell-Mann

matrices, and T0 ¼
ffiffi
1
6

q
I, with I the 3 × 3 identity matrix.

The gauge fields Aμ and Āμ then have eight complex
components each, projected also on the eight TA Gell-
Mann matrices.
From them, we define the covariant derivatives

Dμφ ¼ ∂μφþ igφAμ − igĀμφ;

Dμψ ¼ ∂μψ þ igψĀμ − igAμψ ; ð11Þ

the sense of covariance being understood by their
transformations

sDμφ ¼ igðDμφÞc − igc̄ðDμφÞ;
sDμψ ¼ igðDaμψÞc̄ − igcðDμφÞ: ð12Þ

Such special derivatives in Eq. (5) are responsible for
the i-particle generation after the symmetry breaking,
together with the production of an interquark confining
potential in the broken phase if we couple this system to
fermions [2].
Regarding the gauge fixing SGF, we remember that, in a

symmetry-breaking process, the adequate gauge fixing is
the ’t Hooft gauge. Then, to implement this, we introduced
two gauge conditions

G ¼ ∂μAμ þ
gα
2

�
ψμ − μφ −

1

3
Trfψμ − μφgI

�
;

Ḡ ¼ ∂μĀμ þ
gα
2

�
μψ − φμ −

1

3
Trfμψ − φμgI

�
; ð13Þ

where α is a gauge parameter, a pair of antighosts q and q̄,
and their respective Lagrange multipliers b and b̄, trans-
forming in BRST doublets

sq ¼ −ib; sb ¼ 0;

sq̄ ¼ ib̄; sb̄ ¼ 0: ð14Þ
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Then, our gauge fixing took the form

SGF ¼ s
Z

d4xðTrð−2qG − 2q̄ Ḡþαqbþ αq̄ b̄ÞÞ: ð15Þ

Finally, Vðφ;ψÞwas designed in analogy with a standard
scalar quartic potential

Vðφ;ψÞ ¼ −
m2

2
φAψA þ λ

4
ðφAψAÞ2; ð16Þ

which attains a local minimum at

hφAψAi ¼ m2

λ
: ð17Þ

In Ref. [2], we chose the following vacuum expectation
values (VEVs) for these scalars:

φ ↦ φþ μ;

ψ ↦ ψ þ μ;

μ ¼ 2νffiffiffi
3

p ð
ffiffiffi
2

p
T8 − T0Þ; ν ¼

ffiffiffiffiffiffi
m2

4λ

r
: ð18Þ

From now on, we follow the index notation established
in Ref. [1]. Lowercase letters from the middle of the
alphabet, such as i; j; k;…, will designate the directions
that commute and anticommute with that of the
vacuum (18). In other words, they will represent the
nonbroken directions i ¼ ð1; 2; 3Þ of the residual
SLð2; CÞ that remains a symmetry of the vacuum after
the phase transition. Accordingly, we obtained the free
propagators along these directions at this phase:

hĀi
μĀ

j
νi ¼

�
i
k2

θμν þ
iα
k2

ωμν

�
δij;

hAi
μA

j
νi ¼ −

�
i
k2

θμν þ
iα
k2

ωμν

�
δij; ð19Þ

where

θμν ¼ δμν −
kμkν
k2

;

ωμν ¼
kμkν
k2

: ð20Þ

Lowercase letters from the beginning of the alphabet
will designate the broken directions a ¼ ð4; 5; 6; 7Þ, and
along them we showed that i-particle propagators are
developed:

hĀa
μĀ

b
νi ¼

�
i

k2þ ig2ν2
θμνþ

iα
k2þ iαg2ν2

ωμν

�
δab;

hAa
μAb

νi ¼−
�

i
k2 − ig2ν2

θμνþ
iα

k2− iαg2ν2
ωμν

�
δab: ð21Þ

Along the last direction A ¼ 8, we found the mixed
propagators

hĀ8
μĀ

8
νi ¼

ik2 þ 4
3
g2ν2

k4
θμν þ

iαk2 þ 4
3
α2g2ν2

k4
ωμν;

hĀ8
μA8

νi ¼
4g2ν2

3k4
fθμν þ α2ωμνg;

hA8
μA8

νi ¼ −
ik2 − 4

3
g2ν2

k4
θμν −

iαk2 − 4
3
α2g2ν2

k4
ωμν: ð22Þ

It is important to remark that these last propagators
have a well-studied form, playing a special role in the
Wilson loop approach of fermion confinement. This prop-
erty was explored in Ref. [2] when we coupled this
theory to fermions. At the same time, the i-particle
propagators (21) promote the condensation of the three-
loop contribution of the object

OðxÞ ¼ 2ν2

3
F 8

μνF̄ 8
μν; ð23Þ

which turns out to have a KL-like propagation, character-
izing a massive positive norm composite particle state.
The simultaneous presence of both kinds of fermion and
gluon confinement in the same phase is another attractive
achievement that this theory enables.
We found the object (23) as part of the following

invariant cocycle of the symmetric phase BRST operator
s of (6), (7), and (10):

OðxÞ ¼ TrðφFψF̄ Þ: ð24Þ

When the scalar fields in Eq. (24) attain the VEV (18),OðxÞ
displays the contribution (23) which appears only at this
broken phase. But there are contributions to Eq. (24) other
than Eq. (23) that do not have a well-behaved propagation,
and actually the dimension of the operator (24) extrapolates
that of spacetime; even the element (23) has one- and two-
loop diagrams that do not lead to a KL propagation. These
observations are not unexpected, as the cocycle (24) is
characterized in the cohomology of the symmetric phase
BRST operator, but we are trying to describe an observable
of the broken phase. In order to evolve in this discussion, we
would need to discover what should be this BRST operator
in the asymmetric phase. With the further developments of
Ref. [1], we can now address this question.
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III. THE BROKEN PHASE BRST COHOMOLOGY
OPERATOR

In Ref. [1], we established a recipe to access the BRST
structure of the broken phase of a GUT. Here, we will apply
this scheme to the complex gauge theory of Ref. [2] that we
summarized in the last section. Then, following Ref. [1],
our first step is to write the BRST operation (10) at the
transition point and define the sv operator:

svφ ¼ igðφþ μÞc − igc̄ðφþ μÞ;
svψ ¼ igðψ þ μÞc̄ − igcðψ þ μÞ; ð25Þ

when the scalar fields acquire the VEV (18). On the gauge
fields and ghosts, sv remains unchanged as

svAμ ¼ −ð∂μc − ig½Aμ; c�Þ;
svc ¼ −igc2;

svĀμ ¼ −ð∂μc̄ − ig½Āμ; c̄�Þ;
svc̄ ¼ −igc̄2: ð26Þ

Straightforwardly, sv is still a nilpotent operator and
becomes an exact symmetry of the action (5) after the
vacuum displacement of Eq. (18).
Now we proceed with the filtration of this sv operator in

order to identify the doublet field structure. The filter
selects the linear part of the transformations (25) and (26).
Our main interest is on the modifications brought by the
VEV (18) of the scalar fields at the phase transition, so we
explicitly write these new linear contributions:

s0φ0 ¼ a0ffiffiffi
3

p ðc8 − c̄8Þ; ð27Þ

s0ψ0 ¼ −
a0ffiffiffi
3

p ðc8 − c̄8Þ; ð28Þ

s0φ8 ¼ −
ffiffiffi
2

p
a0ffiffiffi
3

p ðc8 − c̄8Þ; ð29Þ

s0ψ8 ¼
ffiffiffi
2

p
a0ffiffiffi
3

p ðc8 − c̄8Þ; ð30Þ

s0φ1 ¼ s0φ2 ¼ s0φ3 ¼ s0ψ1 ¼ s0ψ2 ¼ s0ψ3 ¼ 0; ð31Þ

s0φ4 ¼
ffiffiffi
6

p
a0
4

ð−ic5 − ic̄5 − c4 þ c̄4Þ; ð32Þ

s0φ5 ¼
ffiffiffi
6

p
a0
4

ðic4 þ ic̄4 − c5 þ c̄5Þ; ð33Þ

s0φ6 ¼
ffiffiffi
6

p
a0
4

ð−ic7 − ic̄7 − c6 þ c̄6Þ; ð34Þ

s0φ7 ¼
ffiffiffi
6

p
a0
4

ðic6 þ ic̄6 − c7 þ c̄7Þ; ð35Þ

s0ψ4 ¼
ffiffiffi
6

p
a0
4

ð−ic5 − ic̄5 þ c4 − c̄4Þ; ð36Þ

s0ψ5 ¼
ffiffiffi
6

p
a0
4

ðic4 þ ic̄4 þ c5 − c̄5Þ; ð37Þ

s0ψ6 ¼
ffiffiffi
6

p
a0
4

ð−ic7 − ic̄7 þ c6 − c̄6Þ; ð38Þ

s0ψ7 ¼
ffiffiffi
6

p
a0
4

ðic6 þ ic̄6 þ c7 − c̄7Þ; ð39Þ

s0ci ¼ s0c̄i ¼ s0ca ¼ s0c̄a ¼ s0c8 ¼ s0c̄8 ¼ 0; ð40Þ

with

a0 ¼
2νigffiffiffi

3
p : ð41Þ

From Eqs. (27)–(30), we notice that the imaginary part
c8I of the complex ghost c8 is in a doublet with a linear
combination of the scalar fields φ0, ψ0, φ8, and ψ8. Also,
Eqs. (32)–(39) establish that the complex ghosts ca and c̄a

associated to the broken directions are in doublets with the
scalars φa and ψa. This is just the reflection at the BRST
level of the fact that these scalar degrees of freedom
migrated to the degrees associated to the i particles
appearing after the phase transition, as stated in Eq. (21).
This points out to us that these ghosts ca and c̄a, together

with c8I , should be isolated from the BRST structure after
the phase transition, as indicated in Ref. [1]. In this way,
we are led to the operator sq:

sqAi
μ ¼ −ð∂μci þ g1fijkA

j
μckÞ;

sqĀ
i
μ ¼ −ð∂μc̄i þ g1fijkĀ

j
μc̄kÞ; ð42Þ

sqAa
μ ¼ −ðg1fabiAb

μci þ g0fab8Ab
μc8RÞ;

sqĀ
a
μ ¼ −ðg1fabiĀb

μc̄i þ g0fab8Āb
μc8RÞ; ð43Þ

sqA8
Rμ ¼ −∂μc8R; sqA8

Iμ ¼ 0; ð44Þ

sqφ0 ¼ ig1ffiffiffi
6

p φiðc − c̄Þi;

sqψ0 ¼ −
ig1ffiffiffi
6

p ψ iðc − c̄Þi; ð45Þ

sqφ8 ¼ −
ig1
2

ffiffiffi
3

p φiðc − c̄Þi;

sqψ8 ¼ ig1
2

ffiffiffi
3

p ψ iðc − c̄Þi; ð46Þ
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sqφi ¼ ig1
2

�
2φ0ffiffiffi
6

p ðc − c̄Þi þ d8ijφ8ðc − c̄Þj

þ ifijkφjðcþ c̄Þk
�
; ð47Þ

sqψ i ¼ ig1
2

�
−
2ψ0ffiffiffi
6

p ðc − c̄Þi − d8ijψ8ðc − c̄Þj

þ ifijkψ jðcþ c̄Þk
�
; ð48Þ

sqci¼
g1
2
fijkcjck; sqc̄i¼

g1
2
fijkc̄jc̄k; sqc8R¼0: ð49Þ

This is the nilpotent operatorwhichwill effectively identify
the independent cohomological classes after the symmetry
breaking of the complex SLð3; CÞ gauge theory. Among
several features,wehighlight the residualSLð2; CÞ symmetry
of the new vacuum displayed by Eq. (42) with its new
coupling constant g1 and also the Abelian symmetry with
coupling g0 associated to the real part A8

Rμ of the complex
gauge component A8

μ as we see from Eq. (44). This
expression also shows that the imaginary part A8

Iμ now
becomes a vectorial matter field. This happens because the
imaginary component c8I ceases to be a ghost of the BRST
operator sq, and only the real component c8R appears as an
Abelian ghost after the phase transition. This frame is actually
responsible for the special mixed propagating pattern found
forA8

μ in Eq. (22), which, in turn, is behind the development
of a confining fermionic potential in the asymmetric phase
of the complex theory [2]. Equations (43) and (44) feature
another fundamental outcome of the phase transition: They
sign the breaking of the holomorphicity of the complex
theory. This has an amazing impact on the physics of this
theory and is ultimately responsible for the emergence of
gluoncondensates as composite particles.Wewill explain this
in detail in the next section.

IV. THE BREAKING OF HOLOMORPHICITY
AND GLUON CONDENSATES

The set of BRST transformations (6) and (7), typical
of a complex gauge theory, has a direct implication: the
holomorphicity of the invariant gauge theory, as can be
seen from the gauge sector of the action (5). In four
dimensions, there is no room for nonholomorphic pure
gauge elements as long as the symmetries (6) and (7) are
present. The relevance of this point must be well under-
stood. As long as nonholomorphic gauge elements are
forbidden, neither there is room for i-particle condensates.
Obviously, in the symmetric phase of the complex theory
where holomorphicity is preserved, we do not find
i particles whatsoever. But our point is that, even if the
i-particle propagators (21) were to be found in this phase,
holomorphicity would preclude i-particle condensates.
Let us show why this is so. The idea of i-particle

condensates is based on two main points. First, the theory
must develop gauge i particles hAa

μAa
νi and conjugate

i-particle hĀa
μĀ

a
νi propagators, such as those in Eq. (21).

Second, the theory must provide invariants with the two
kind of i-particle fields Aa

μ and Āa
μ in the same element. If

both conditions are met, we see the formation of con-
densates as presented in Fig. 1.
Such structures were studied in Refs. [11–14]. From these

works,weknow that the integral associated to the loop formed
from the simultaneous presence of i-particle and conjugate
i-particle propagators satisfies theKL spectral representation.
Thismeans that the condensate formed from the fieldsAa

μ and
Āa

μ propagates as a composite particle. But, in order to find
both fields in the same element, BRST must allow for
nonholomorphic invariant objects, or else these composite
particles will not be formed as physical observables of the
theory. Now we see the necessity for the breaking of
holomorphicity of the original symmetric complex field
theory. And the fact is that the breaking generated by
Eq. (18) leading to theBRSToperator sq of Eqs. (43) and (44)
is also breaking holomorphicity. Then, in the broken phase,
we verify the formation of several nonholomorphic nontrivial
elements of the sq cohomology. Some of them have the
necessary ingredients to generate condensates. We list now
the only three independent elements that were found:

θ0 ¼ f8abAa
μAb

νf8cdĀ
c
μĀ

d
ν ;

θ1 ¼ Aa
μAa

μĀ
b
νĀ

b
ν ;

θ2 ¼ Aa
μAa

νĀ
b
μĀ

b
ν : ð50Þ

Our first observation is that all of them require a three-
loop propagation structure, as in Fig. 2.
This makes the calculation of the KL spectral representa-

tion more involved than the one-loop example just men-
tioned. Anyway, the particular case of the θ0 object has
already been derived in Ref. [2]. In fact, θ0 is the interacting
element present in OðxÞ of Eq. (23). And, as previously
argued, it is part of the invariant cocycle of the BRST
operator s presented in Eq. (24). This point deserves to
be enlightened. This relation between the θ0 cocycle of
the broken phase sq operator and the OðxÞ cocycle of the
symmetric phase s operator is not spurious. It is a product of

FIG. 1. Two-point condensate function.
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the general theorem of cohomology which states that the
cohomology of a nilpotent operator S is contained inside the
cohomology of any nilpotent operator obtained as a filtration
of S (see [19] for this demonstration). In our case, the sq of
Eqs. (42)–(49) can be obtained as a filtration of the s in

Eqs. (6), (7), and (10) on the ghosts ca, c̄a, and c8I . This
explains why an invariant object of the asymmetric phase,
θ0, is related to another invariant OðxÞ of the symmetric
phase. This has a physical implication, as we understand that
observables of a phase of a theory can be found as part of
observables of a previous phase. In Ref. [2], we found a
condensate with the right KL propagation only by inspec-
tion, and the connection with an observable of the broken
phase of the theory was just guessed by identifying it as part
of an observable of the symmetric phase. Here, we see why
this was possible and prove how the condensate θ0 is, in fact,
an observable.
The other two candidates, θ1 and θ2, are being identified

now only after studying the cohomology of sq. It is not
difficult to see that they will also contribute to the condensate
once we write the integral of the three-loop graph, where we
consider (α ¼ 1) in Eq. (15), describing their propagation:

Iðθ1Þ ¼
2

π

Z
d4k
4π2

d4q
4π2

d4n
4π2

d4l
4π2

δðn − ½p − q − k − l�ÞhAa
μðkÞAd

ρð−kÞihAa
μðqÞAd

ρð−qÞi

hĀc
νðlÞĀb

σð−lÞihĀc
νðnÞĀb

σð−nÞi

¼ 2

ðπÞ9
Z

d4kd4qd4nd4lδðn − ½p − q − k − l�Þ
1

k2 − im2

1

q2 − im2

1

l2 þ im2

1

n2 þ im2
;

Iðθ2Þ ¼
1

4
Iðθ1Þ: ð51Þ

A general proof stated in Ref. [11] establishes that this
integral leads to a KL propagation, allowing to interpret θ1
and θ2 as condensates. Even more, we can see that this
integral displays the same integrand as that calculated in
Ref. [2] for θ0. In this way, we understand that all three
objects in Eq. (50) contribute to the same particle state.
Another point that we must call attention is that θ1 and θ2

also lead to nontrivial elements in the cohomology of
the BRST operator s of the symmetric phase. They are,
respectively,

O1 ¼ ½TrðDμφÞðDμψÞ�2; ð52Þ
O2 ¼ ½TrðDμφÞðDνψÞ�½TrðDμφÞðDνψÞ�: ð53Þ

It is interesting to notice that OðxÞ, O1, and O2, although
belonging to the symmetric phase cohomology, cannot be
present in the symmetric phase action (5), as they extrapolate
the four-dimensional bound. No term in Eq. (5) is actually the
origin of any condensate in the broken phase in this theory.

V. CONCLUSION

In this work, we applied the recent development of the
concept of a BRST operator of the asymmetric phase of a

spontaneous broken field theory [1] in the cohomological
characterization of condensate observables. Here, we stud-
ied the complex field theory introduced in Ref. [2]. We
showed how the condensate θ0 in Eq. (50), presented for
the first time in Ref. [2], is associated to a nontrivial
cohomological class of the nilpotent BRST operator sq
[Eqs. (42)–(49)]. Therefore, we establish it as a BRST
observable of the broken phase of the complex field theory.
Furthermore, we found out here two other independent
nontrivial classes associated to θ1 and θ2. As these three
objects in Eq. (50) have a KL propagation given by the
same integral (51), we find that they all contribute to the
same condensed particle state.
Another observation is that the origin of these elements

is traced to nontrivial cocycles [Eqs. (24), (52), and (53)]
of the BRST operator of the symmetric phase written in
Eqs. (6), (7), and (10). The interesting point here is that they
are all objects which extrapolate the dimensionality of the
four-dimensional spacetime. As an open question is still the
immersion of the starting action (5) inside a larger theory
where the symmetry-breaking mechanism could evolve, it
is tempting to imagine that a higher-dimensional theory
could be behind this scenario.

FIG. 2. Two-point condensate function with momentum
P ¼ kþ qþ lþ n. Dashed lines correspond to hAAi and
continuous lines to hĀ Āi.
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