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We study the cosmology of a 3-brane in a specific five-dimensional scalar-gravity (i.e., soft-wall)
background, known as the linear dilaton background. We discover that the Friedmann equation of the brane
world automatically contains a term mimicking pressureless matter. We propose to identify this term as
dark matter. This dark matter arises as a projection of the bulk black hole on the brane, which contributes to
the brane Friedmann equation via both theWeyl tensor and the scalar stress tensor. The nontrivial matterlike
behavior is due to an exact cancellation between the Weyl and scalar pressures. We show that the
Newtonian potential receives only a mild short-distance correction going as inverse distance squared,
ensuring compatibility of the linear dilaton brane world with observed 4D gravity. Our setup can be viewed
as a consistent cosmological description of the holographic theories arising in the linear dilaton
background. We also present more general scalar-gravity models where the brane cosmology features
an effective energy density whose behavior smoothly interpolates between dark radiation, dark matter, and
dark energy depending on a model parameter.
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I. INTRODUCTION

Five-dimensional (5D) gravity coupled to a scalar field
has proven to be a fecund playground, leading to a host
of theoretical results and models of the real world (see,
e.g., [1–13]). Our focus in this paper is a specific 5D scalar-
gravity background (i.e., a soft-wall background) which is
sometimes referred to as the “linear dilaton background.”
This model is known to have peculiar thermodynamic [2]
and field theoretical properties [8,11–13]. For example, all
quantum fields living on the linear dilaton background have
a spectral distribution that features a gapped continuum.
This feature has been recently used in extensions of the
Standard Model [14,15].
In this work, we put the linear dilaton background at

finite temperature and posit a flat 3-brane moving over the

background, in the spirit of brane-world models (see,
e.g., [16]). We discover a surprising property: From the
viewpoint of a brane observer, the local Friedmann equa-
tion automatically contains an effective energy term that
may be identified as dark matter. This dark matter emerges
as a nontrivial effect from the bulk physics projected on the
brane. It originates from a combination of the 5D Weyl
tensor and of the bulk scalar vacuum expectation value
(VEV), as we will demonstrate further below.
To bring this result into context, we remind that there is

a notorious analog in pure anti–de Sitter (AdS) back-
ground, that has been gradually uncovered and studied in
Refs. [17–21]. In pure AdS, the net effect of the bulk
physics projected on the brane gives rise to radiation,
which is identified as cosmological dark radiation in the
context of a brane world. This remarkable fact is in direct
connection with the fact that the bulk black hole in AdS-
Schwarzschild background corresponds to the thermal state
in the holographic CFT, perhaps one of the most fascinating
entries of the AdS=CFT correspondence [22]. In our case,
by performing the analogous calculation with the linear
dilaton background, we discover that the bulk black hole
gives rise to dark matter.
Decades of astronomical observations point to the

existence of dark matter. Determining its nature is a

*sfichet@caltech.edu
†emegias@ugr.es
‡quiros@ifae.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 115014 (2023)

2470-0010=2023=107(11)=115014(8) 115014-1 Published by the American Physical Society

https://orcid.org/0000-0002-6735-9013
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.115014&domain=pdf&date_stamp=2023-06-12
https://doi.org/10.1103/PhysRevD.107.115014
https://doi.org/10.1103/PhysRevD.107.115014
https://doi.org/10.1103/PhysRevD.107.115014
https://doi.org/10.1103/PhysRevD.107.115014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


pressing question in fundamental physics. While a common
hypothesis is that dark matter may be a new particle (that
remains so far elusive), our study leads to a fundamentally
different viewpoint. Our setup provides, in a sense, an
origin to cosmological dark matter via a modification of
gravity. See, e.g., [23] for a few other attempts to explain
dark matter via modified gravity.
In this paper, we present the derivation of our central

result, the effective Friedmann equation of the linear dilaton
brane world, that is shown to contain dark matter. We
present nontrivial consistency checks of this result. We also
compute the deviation to the Newtonian potential. We then
outline more general models featuring a variety of equa-
tions of state depending on a model parameter and discuss
some conceptual points and prospects. Extra developments
and technical details are laid out in Ref. [24], which can be
considered as a companion to this paper.

II. THE 5D SCALAR-GRAVITY SYSTEM

We consider the general scalar-gravity action in the
presence of a brane:

S ¼
Z

d5x
ffiffiffi
g

p �
M3

5

2
ð5ÞR −

1

2
ð∂MϕÞ2 − VðϕÞ

�

−
Z
brane

d4x
ffiffiffī
g

p ðVbðϕÞ þ ΛbÞ þ � � � : ð1Þ

ð5ÞR is the 5D Ricci scalar, ϕ is the scalar field, M5 is the
fundamental 5D Planck scale, ḡμν is the induced metric on
the brane, g≡ jdet gMN j and ḡ≡ jdet ḡμνj are the metrics
determinants, Λb is the brane tension, and V and Vb are the
bulk and brane-localized potentials for ϕ. We assume that
the brane potential sets the scalar field VEV to a nonzero
value hϕi ¼ vb, with VbðvbÞ ¼ 0. The bulk potential is
explicitly given further below. The ellipses encode the
Gibbons-Hawking-York term [25,26] and the action of
quantum fields living on the 5D background.
The 5D metric is written in a frame suitable for brane

cosmology as

ds2 ¼ gMNdxMdxN

≡ −n2ðrÞdτ2 þ r2

l2
dx2 þ b2ðrÞdr2: ð2Þ

We allow the existence of a black hole horizon encoded in
the nðrÞ and bðrÞ factors, the position of the horizon being
given by nðrhÞ ¼ 0 ¼ 1=bðrhÞ. Latin indices ðM;N;…Þ
refer to 5D coordinates, and Greek indices ðμ; ν;…Þ refer to
4D coordinates.
The 3-brane is localized at the position r ¼ rb. Our

frame (2) is appropriate to describe cosmology as seen from
the brane standpoint. The induced metric on the brane is

ds2 ¼ ḡμνdxμdxν ≡ −dt2 þ r2b
l2

dx2; ð3Þ

where we have introduced the brane cosmic time
dt ¼ nðrbÞdτ. According to this metric, if the brane moves
along r in the 5D background, the observer perceives
expansion of the four-dimensional (4D) universe with
Hubble parameter H ¼ _rb=rb, where _rb ≡ ∂trb. We choose
that rb equals l at present times, such that rb ¼ aðtÞl,
where aðtÞ is the standard scale factor. An overview of the
brane world is shown in Fig. 1.
The 5D equations of motion of the system are

ð5ÞGMN ¼ 1

M3
5

Tϕ
MN;

1ffiffiffi
g

p ∂Mð
ffiffiffi
g

p
gMN

∂NϕÞ ¼
∂V
∂ϕ

; ð4Þ

with ð5ÞGMN ¼ ð5ÞRMN − 1
2
gMN

ð5ÞR and Tϕ
MN ¼ ∂Mϕ∂Nϕ−

gMN ½12 ð∂AϕÞ2 þ VðϕÞ�. More explicitly, the equations of
motion for the 5D background in the cosmological frame
are [27]

n00ðrÞ
nðrÞ −

�
n0ðrÞ
nðrÞ −

1

r

��
b0ðrÞ
bðrÞ −

2

r

�
¼ 0; ð5Þ

n0ðrÞ
nðrÞ þ

b0ðrÞ
bðrÞ − rϕ̄0ðrÞ2 ¼ 0;

n0ðrÞ
nðrÞ þ

1

r
þ rb2ðrÞV̄ðϕ̄Þ − r

2
ϕ̄0ðrÞ2 ¼ 0;

ϕ̄00ðrÞ þ
�
n0ðrÞ
nðrÞ −

b0ðrÞ
bðrÞ þ

3

r

�
ϕ̄0ðrÞ − b2ðrÞ ∂V̄

∂ϕ̄
¼ 0;

FIG. 1. Overview of the scalar-gravity system. The brane and
the horizon are located, respectively, at r ¼ rb and r ¼ rh. The
scalar vacuum expectation value is fixed by a brane potential to a
value vb which remains constant when rb varies. The scalar VEV
(plain line) evolves in the bulk; the blackening factor of the metric
(dotted line) diverges at the horizon.
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with the dimensionless field ϕ̄≡ ϕ=ð3M3
5Þ1=2 and

V̄ ≡ V=ð3M3
5Þ. Importantly, even though one of these

differential equations seems redundant, it cannot be
ignored, because it still implies a nontrivial algebraic
relation between the integration constants. Also notice that
the integration constants can depend on rb through the
boundary conditions; the brane location, thus, influences
the 5D background.
We turn to gravity from the brane viewpoint. The

effective 4D Einstein equation seen by a brane observer
is computed from the 5D Einstein equation by projecting
on the brane via the Gauss equation together with the Israel
junction condition [17]. Introducing the unit vector nM
normal to the brane that satisfies nMnM ¼ 1 and ḡMN ¼
gMN − nMnN , the 4D Einstein equation on the brane is

ð4ÞGμν ¼
1

M2
Pl

ðTb
μν þ Teff

μν Þ þO

�
T2
b

M6
5

�
ð6Þ

with ð4ÞGμν ¼ ð4ÞRμν − 1
2
ḡμνð4ÞR and Tb

μν the stress tensor of
brane-localized matter. The “holographic” effective stress
tensor Teff

μν ¼ τWμν þ τϕμν þ τΛμν contains the following.
(i) The projection of the 5D Weyl tensor ð5ÞCM

NPQ on
the brane

1

M2
Pl

τWμν ¼ −ð5ÞCM
NPQnMnPḡμNḡνQ; ð7Þ

leading to corresponding values of the energy
density ρW and pressure PW given by

ρW ¼ 3

2

M2
Pl

b2ðrbÞrb

�
n0ðrbÞ
nðrbÞ

−
1

rb

�
;

PW ¼ 1

2

M2
Pl

b2ðrbÞrb

�
n0ðrbÞ
nðrbÞ

−
1

rb

�
; ð8Þ

where we have made use of Eqs. (5).
(ii) The projection of the bulk stress tensor

1

M2
Pl

τϕμν

¼ 2

3M3
5

�
Tϕ
MNḡμ

MḡνNþ
�
Tϕ
MNn

MnN −
1

4
Tϕ;M
M

�
ḡμν

�

¼ 3

2

�
ϕ̄0ðrbÞ2
2b2ðrbÞ

− V̄

�
ḡμν; ð9Þ

leading to the values of ρϕ and Pϕ, after using the
equation of motion (5),

ρϕ ¼ −
3

2

M2
Pl

b2ðrbÞrb

�
n0ðrbÞ
nðrbÞ

þ 1

rb

�
;

Pϕ ¼ 3

2

M2
Pl

b2ðrbÞrb

�
n0ðrbÞ
nðrbÞ

þ 1

rb

�
: ð10Þ

(iii) The contribution from the brane tension

1

M2
Pl

τΛμν ¼ −
Λ2
b

12M6
5

ḡμν; ð11Þ

which yields the values of ρΛ and PΛ as

ρΛ ¼ −PΛ ¼ M2
PlΛ2

b

12M6
5

: ð12Þ

The brane tension is ultimately tuned to set the
effective 4D cosmological constant to zero.

We work in the low-energy regime

jTb
μνj ≪

M6
5

M2
Pl

; ð13Þ

which justifies neglecting the higher-order terms in Eq. (6).
This restriction implies further simplifications below.

III. DARK MATTER FROM THE LINEAR
DILATON BLACK HOLE

The linear dilaton background is defined by the bulk
(super)potential

W̄ðϕ̄Þ ¼ 2

l
eϕ̄; V̄ðϕ̄Þ ¼ −

3

2l2
e2ϕ̄: ð14Þ

Solving the equations of motion (5) with the potential (14),
we find for the 5D background

nðrÞ ¼ r
l

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r3h
r3

s
; ð15Þ

bðrÞ ¼ l
rb

e−v̄bffiffiffiffiffiffiffiffiffiffiffi
1 − r3h

r3

q ; ð16Þ

ϕ̄ðrÞ ¼ v̄b − log

�
r
rb

�
; ð17Þ

where rh (an integration constant) is the location of the
black hole horizon in the brane cosmology frame. The
domain of the variable r is the interval ½0;l�, where r ¼ 0 is
the metric singularity and r ¼ l is the value of the brane
location today, while 0 ≤ rh ≤ rb ≤ l. Importantly, we can
notice that a power of 3 appears in the Schwarzschild
factors, in contrast with pure AdS5 where, instead, there
would be a power of 4.
We then evaluate the brane effective Einstein equation by

plugging the bulk solutions into Eq. (6) and deduce the
Friedmann equation. The mass scale that naturally appears
in the physical quantities is
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η ¼ M3
5

M2
Pl

¼ ev̄b

l
: ð18Þ

Using the low-energy assumption (13) which here becomes

ρb ≪ η2M2
Pl; ð19Þ

we obtain the first Friedmann equation on the brane:

3M2
Pl

�
_rb
rb

�
2

¼ ρb þ ρeff þO

�
ρ2b

η2M2
Pl

�
ð20Þ

with

ρeff ¼ 3η2M2
Pl
r3h
r3b

: ð21Þ

The ρeff energy density term is the critical result. It is a
nontrivial effect from the bulk physics: a combination of
theWeyl tensor and of the scalar stress tensor contributions.
This holographically induced ρeff scales as r−3b ; therefore, it
behaves as a nonrelativistic matter term in the 4D
Friedmann equation. (The analogous calculation in AdS
would instead give a r−4b scaling, i.e., radiation.)
In the brane-world paradigm, we identify the Standard

Model fields as brane-localized modes that give rise to the
brane energy density ρb. The effective energy density ρeff in
Eq. (20) is then naturally identified as the dark matter
energy density. In other words, the linear dilaton brane
world automatically features dark matter.
From the expression of ρeff in Eq. (21), the fraction of

dark matter energy in the Universe ΩDM ¼ ρDM=ρcrit (with
ρcrit ¼ 3H2M2

Pl) induced by the linear dilaton background
is then

ΩDM ¼
�
η

H

�
2
�
rh
rb

�
3

: ð22Þ

At present times, we have rb ¼ l, ΩDM;0 ¼ 0.26, and
H0¼1.47×10−42GeV. This provides a constraint between
the model parameters given by

rh ≃ 0.64l
�
H0

η

�
2=3

: ð23Þ

As in the standard cosmology, this dark matter dominates
the Universe for temperatures T ≲ 0.7 eV and is subdomi-
nant with respect to radiation for higher temperatures.
The origin of the r−3b scaling is better understood as

follows. The effective energy density and pressure, which
appear in the Friedmann and continuity equations, are
defined as

ρeff ¼ ρW þ ρϕ þ ρΛ; Peff ¼ PW þ Pϕ þ PΛ; ð24Þ

where ρW and PW are given by Eq. (8), ρϕ and Pϕ by
Eq. (10), and ρΛ and PΛ, after imposing the condition for
cancellation of the cosmological constant, Λb ¼ 6η2M2

Pl,
are given by

ρΛ ¼ −PΛ ¼ 3η2M2
Pl: ð25Þ

A straightforward application of the black hole solutions
(15) and (16) yields

ρW þ ρϕ ¼ −3η2M2
Pl

�
1 −

r3h
r3b

�
; ð26Þ

which, combined with ρΛ from Eq. (25), yields the result
which appears in Eq. (21).
On the other hand, for the effective pressure Peff using

again Eqs. (15) and (16), we get

PW þ Pϕ ¼ 2M2
Pl

b2ðrbÞrb

�
n0ðrbÞ
nðrbÞ

þ 1

rb

�
¼ 3η2M2

Pl; ð27Þ

which combined with Eq. (25) yields Peff ¼ 0, leading to
the equation of state weff ¼ Peff=ρeff ¼ 0.
This explains the r−3b scaling and ensures that the

4D conservation equation, i.e. the 4D Bianchi identity
Dμð4ÞGμν ¼ 0, is satisfied. The cancellation we report here
is nontrivial, as it is unclear if there exists a symmetry that
enforces it.
Another nontrivial consistency check is at the level of the

5D conservation equation projected on the brane, which
takes the general form [21,28]

_ρeff þ 4Hρeff þHTeffμ
μ ¼ −2TMNuMnN: ð28Þ

Notice the 4H factor arising due to 5D spacetime. On the
rhs, nN is the unit vector normal to the brane and outward-
pointing, and uM is the brane velocity vector satisfying
uMuM ¼ −1 [21,28]. In the low-energy regime, we have

uM ≈
�
1

n
; 0; Hrb

�
; nM ≈

�
Hrb

b
n
; 0;

1

b

�
ð29Þ

up to OðH2=η2Þ. Using the explicit expression of TMN
obtained from our scalar-gravity solutions [Eqs. (15)–(17)],
it turns out that TMNuMnN ¼ 0 in the low-energy regime.
The calculation involves again beautiful cancellations, and
it is detailed in Ref. [24]. One can then easily verify that the
5D conservation equation is satisfied by the effective
energy density (21), ensuring that the framework is fully
consistent.
The low-energy regime Eq. (19) implies H ≪ η, since

the total energy density is ρ ∼H2M2
Pl; it is the only

assumption made throughout the calculations. We worked
at first order inH=η. The cancellations observed in Teff

μν and
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in the 5D conservation equation occur up to small
OðH2=η2Þ factors.

IV. THE NEWTONIAN POTENTIAL

The Newtonian potential for the linear dilaton (LD)
model at present times can be deduced from the graviton
brane-to-brane propagator G2 using the optical theo-
rem [24]. We find the discontinuity of this propagator to be

Discs½G2ð
ffiffiffi
s

p Þ� ¼ 2πδðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffis
σ2
− 1

p
s

θðs ≥ σ2Þ; ð30Þ

where σ ¼ 3η=2 is the mass gap. The δ term corresponds to
the 4D graviton. The second term, which encodes the rest
of the 5D graviton fluctuations, forms a gapped continuum
characteristic of the linear dilaton background [12]. From
this discontinuity, we deduce that the Newtonian potential
of the linear dilaton brane world is

VNðRÞ ¼ −
m1m2

M2
PlR

ð1þ ΔðRÞÞ; ð31Þ

with

ΔðRÞ ≈
� 4

3πσR if R ≪ 1
σ ;

Oðe−σRÞ if R ≫ 1
σ :

ð32Þ

We see that the deviation from the Newtonian potential
appears essentially below the distance scale 1=σ corre-
sponding to the inverse mass gap. The deviation to the
potential goes as ∝ 1=R2, unlike the AdS case, where it
goes as 1=R3. Micron-scale fifth force experiments such as
Ref. [29] mildly constrain the σ scale as σ ≳ 10 meV. This
constraint, along with Eq. (23), translates into an upper
bound on the location of the bulk black hole horizon,
rh ≲ 2.3 × 10−21l.

V. EXTENSIONS AND UNIQUENESS OF THE
LINEAR DILATON BRANE WORLD

In the previous sections, we have seen that the bulk black
hole from the LD brane-world model characterized by the
exponential potential Eq. (14) leads to a pressureless matter
term on the brane. We may wonder whether such a behavior
of ρeff is specific to the LD model or if it appears in other
5D scalar-gravity solutions. In the next subsections, we
provide hints of uniqueness by extending the model in two
different directions. We consider a model with an expo-
nential superpotential (like that of the LD model) but with a
different exponent and a model where a constant is added to
the exponential superpotential. In both cases, the scalar-
gravity solutions will depend on a parameter which
reproduces the LD model for particular values but general-
izes it. These more general scalar-gravity solutions are
interesting per se. We leave an extended investigation for

future work. Our focus here is mostly on illustrating the
uniqueness of the behavior of ρeff in the LD model.

A. A generalized exponential potential

In this section, we generalize the (super)potential of the
LD model given by Eq. (14) to

W̄ðϕ̄Þ ¼ 2

l
eνϕ̄; V̄ðϕ̄Þ ¼ −

4 − ν2

2l2
e2νϕ̄; ð33Þ

where the LD model is reproduced for the value ν ¼ 1
while the AdS model is reproduced for the value ν ¼ 0.
The solution to the 5D equations of motion (5) is

given by

nðrÞ ¼ r
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
rh
r

�
4−ν2

s
; ð34Þ

bðrÞ ¼
�
r
l

�
ν2−1

�
l
rb

�
ν2 e−νv̄bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðrhr Þ4−ν
2

q ; ð35Þ

ϕ̄ðrÞ ¼ v̄b − ν log

�
r
rb

�
; ð36Þ

and the relation between the 5D and 4D Planck scales is
given by

M3
5 ¼

1

2
W̄bM2

Pl ¼ ηM2
Pl; η≡ 1

l
eνv̄b : ð37Þ

After using the relation for vanishing of the cosmological
constant Λb ¼ 3M3

5W̄b ¼ 6ηM3
5, one readily gets the brane

vacuum energy and pressure as

ρΛ ¼ −PΛ ¼ 3η2M2
Pl: ð38Þ

Using the solution (34) and (35), one easily gets

ρeff ¼ 3η2M2
Pl
r4−ν

2

h

r4−ν
2

b

; Peff ¼ η2M2
Plð1− ν2Þ r

4−ν2
h

r4−ν
2

b

; ð39Þ

which yields an equation of state

weff ¼
1 − ν2

3
: ð40Þ

We can see that the dark matter behavior (weff ¼ 0) appears
only for ν ¼ 1.
Interestingly, the “holographic” effective energy density

in this model interpolates from dark radiation behavior
(weff ¼ 1=3) for ν ¼ 0 to dark energy behavior (weff ¼ −1)
for ν ¼ 2. For 0 ≤ ν ≤ 2, the solution satisfies the con-
tinuity equation automatically; cf. Eq. (28). Finally, let us
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point out that the singularity at r ¼ 0 is a good one for
ν ≤ 2 [8].1 Detailed investigation is left for future work.

B. Asymptotically AdS linear dilaton model

We can also define a slightly different model interpolat-
ing between AdS and the linear dilaton background. The
model is defined by the bulk potential

V̄ðϕ̄Þ ¼ 1

8
W̄0ðϕ̄Þ2 − 1

2
W̄ðϕ̄Þ2; ð41Þ

where W̄ðϕ̄Þ ¼ 2ð1þ eϕ̄Þ=l [12,13]. In the brane cosmol-
ogy frame, the behavior of the effective energy term depends
on the parameter c ¼ expð−v̄b þ e−v̄bÞ≡ ðηlÞ−1. We find
that ρeff behaves as in AdS in the limit c → ∞ and as in the
linear dilaton background in the limit c → 0, with

ρeff ≃

8<
:

3η2M2
Pl

r3h
r3b

if c ≪ 1;

3
l2 M

2
Pl

r4h
r4b

if c ≫ 1:
ð42Þ

We can recognize the dark radiation behavior for c ≫ 1 and
the dark matter behavior [Eq. (21)] for c ≪ 1.
We confirm all these results via numerical solving of the

5D conservation equation (28). More details are given in
Ref. [24], where we also discuss the transition region.
We find that, for arbitrary values of c, the equation of
state smoothly interpolates between matter and radiation
behavior: ρeff ∝ a−3½1þweffðcÞ� with Peff=ρeff ¼ weffðcÞ. The
numerical value of the equation-of-state parameter weffðcÞ
is exhibited in Fig. 2, where a continuous transition appears
between weff ¼ 0 for dark matter and weff ¼ 1=3 for dark
radiation.
In summary, we find that the asymptotic AdS and linear

dilaton background, created by the potential in Eq. (41),
gives rise to a cosmological brane world in which the
behavior of the holographic effective energy density can
range from dark radiation to dark matter, as controlled by
the c parameter.

VI. DISCUSSION

We now discuss a few conceptual points and relations to
the literature.

A. Birth of the bulk black hole

In a typical cosmological scenario, analogously to the
AdS brane world, the bulk horizon is created by energy
leaked from the brane into the continuum of bulk gravitons
and other bulk fields. See Refs. [19–21] for a consistent
analysis in AdS and Ref. [30] for the rate in arbitrary
background. The radiation feeds the bulk black hole, which
typically grows with time. This feeding mechanism is
efficient at early times, while at late times the radiation
is negligible; hence, the horizon does not evolve anymore.
This corresponds to the low-energy regime in our analysis.
The process of dumping energy into the bulk, known since
Ref. [31], is either similar or truly equivalent (via
AdS=CFT) to the process of heating up a CFT sector
(see, e.g., [19,31–34]).

B. What is the dark matter made of?

The dark matter arising in our linear dilaton brane world
is purely made of the curvature of spacetime. However, this
curvature is the result of populating the bulk with gravitons.
Deep in the bulk, these gravitons are strongly interacting,
and their net effect is the presence of the bulk horizon,
which is seen by the brane observer. Since the continuum of
gravitons is involved, our result shares, in a sense, some
similarity with the proposal of “continuum dark matter”
made in Refs. [14,15,35]. It is plausible that our analysis
provides the consistent framework needed to understand
cosmology in such models.

VII. PROSPECTS

Overall, the results reported in this paper hint at an
alternative view of dark matter which certainly deserves
further investigation. We thus end with a discussion of
future directions.
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FIG. 2. Plot of the equation-of-state parameter weff ≡ Peff=ρeff
as a function of c, within the asymptotically AdS linear dilaton
model.

1For ν ¼ 2, the solution to the 5D equations of motion (5) is
nðrÞ¼r=l, bðrÞ¼cbðl=rbÞðr=rbÞ3, and ϕ̄ðrÞ¼ v̄b−2logðr=rbÞ,
where cb is an arbitrary constant. This corresponds to a
solution with no black hole for which ρeff ¼ −Peff ¼
3η2M2

Plð1 − 1=ðcbηlÞ2Þ þ Λ4M2
Pl, where we have not assumed

cancellation of the cosmological constant. If one fixes cbηl ¼ 1,
then ρeff ¼ −Peff ¼ Λ4M2

Pl consistently with the 4D Einstein
equations.
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A. Cosmological perturbations

The key calculation presented in this paper shows that
the linear dilaton background could explain dark matter in
the homogeneous universe. Computing perturbations and
structure formation is a task beyond the present work;
however, the road map is clear: The study of cosmological
perturbations in our model belongs to the realm of the fluid-
gravity correspondence [36,37]. The dark matter of our
brane-world model amounts to a (nonconformal) holo-
graphic fluid, whose properties such as viscosities need to
be carefully computed and compared to observations.

B. Dark matter at galactic scales

Our brane-world model may explain dark matter at the
cosmological scale; however, nothing is said about galactic
scales. To understand how the dark matter emerging in our
model behaves at galactic scales, we would have to
compute less symmetric solutions of the 5D scalar-gravity
system, as needed to describe, e.g., halos. One should, thus,
investigate SOð3Þ-symmetric solutions, possibly assisted
by matter sources on the brane. This is left for future
investigation.

C. Dark matter decay

In analogy with AdS, the bulk black hole may, in
principle, be able to decay via Hawking radiation into
the brane; see Refs. [38,39] for an analysis in AdS. Since
the bulk black hole is the origin of dark matter, Hawking
decay amounts in our model to “dark matter decay.” It
would be very interesting to study this mechanism and its
observational consequences, as well as its implications for
holography. We leave it as an open question to investigate.

D. Continuum signatures

In our model, the graviton is accompanied by a
gapped continuum that can be experimentally tested, as

exemplified by the correction to the Newtonian potential
Eq. (32). Standard Model fields can be included in the
model by introducing 5D bulk fields and identifying the
brane-localized modes as the Standard Model fields.
Analogously to the graviton, each Standard Model field
is accompanied with a gapped continuum which has
generally mild coupling to the brane. Such a setup looks
typically like a dark sector [33]. The phenomenology of
continuum sectors is an active topic of investigation; see,
e.g., [14,15,35,40–46]. The present study reinforces the
motivation for such models and, in a sense, starts to explore
their cosmology.
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