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We highlight general issues associated with quality and naturalness problems in theories of light QCD
axions, axionlike particles, and relaxions. We show that the presence of Planck-suppressed operators
generically lead to scalar coupling of axions with the Standard Model. We present a new class of ZN QCD
relaxion models that can address both the QCD relaxion CP problem as well as its quality problem. This
new class of models also leads to interesting experimental signatures, which can be searched for at the
precision frontier.
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I. INTRODUCTION

The Standard Model of particle physics (SM) is an
extremely successful yet incomplete description of nature.
It cannot account for the observed neutrino masses and
mixings, the matter anti-matter asymmetry, and the origin
of dark matter (DM). Even within the framework of the
SM, we have the Higgs-hierarchy and the Strong CP
problems. On top of that, the effect of gravity is expected
to be significant at the Planck scale despite the lack of
knowledge about its quantum nature. In particular, quantum
gravity is expected to violate global symmetries in the UV,
implying the existence of symmetry-breaking operators
suppressed by powers of the Planck mass MPl ¼ 2.4 ×
1018 GeV in the framework of effective field theory (EFT).
For an axion field Φ with a global Peccei-Quinn (PQ)
symmetry [1], one for instance expects, among others,
operators of the form

L ⊃
1

2

�
cNΦN þ H:c:

MN
Pl

�
O ð1:1Þ

whereN is an integer, cN is a dimensionless EFT parameter,
and O is any dimension-four operator consistent with the
unbroken gauge symmetries. Expanding Φ ¼ feiϕ=f, this
Lagrangian generates a shift-symmetric potential of the form

VΔ ¼ jcN jΔN cos

�
Nϕ

f
þ β

�
O; ð1:2Þ

where Δ≡ f=MPl and β ¼ argðcNÞ is an arbitrary phase
which is genericallyOð1Þ. Note that, if CP is not broken by
gravity then β ¼ 0. The dimension N of the PQ-breaking
operator inEqs. (1.1)–(1.2) is dictated by the unbroken gauge
symmetries of the underlying theory.
The leading contribution to PQ breaking arises from a

constant operator multiplied by M4
Pl to match the dimen-

sion. This definition fixes N > 4 so that these operators are
suppressed in the limit MPl → ∞ (see, e.g., [2,3]). This
implies a contribution VΔ ¼ jcN jΔNM4

Pl cos ðNϕ=f þ βÞ to
the scalar field theory. If this field is identified with the
QCD axion [4–9], then the coefficient jcN jΔN in Eq. (1.2)
cannot be too large or else it will spoil the solution to the
strong CP problem; this is the so-called axion-quality
problem [10–12], and it can be solved by either (a) fine-
tuning, e.g., taking jcN j ≪ 1, (b) taking f very small
(which is constrained by measurements of axion couplings
to matter), or (c) forbidding operators of dimension N up to
some large value, for example, by imposing some unbroken
gauge symmetry (e.g., ZN).
We describe the constraints on these operators in greater

detail in the subsections below.

II. AXION PHENOMENOLOGY

A. Axionlike particles and naturalness

A general axionlike particle (ALP) which is not coupled
to QCD does not exhibit a quality problem related to the
vacuum structure (see next section), and therefore it might
seem that the presence of Planck-suppressed operators
would be harmless. However, these same operators can
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induce large contributions to the ALP mass, leading to a
fine-tuning problem.
Planck-suppressed operators can also generate ALP

couplings to the SM scalar operators, which we discuss
in Sec. II E. In the absence of any CP violation, ALPs
interact with the SM scalar operators quadratically at the
leading order, whereas if gravity does not respect CP, i.e.,
for β ≠ 0 in Eq. (1.2), these interactions are generated at
linear order.
An ALP is defined by its mass m and coupling with the

SM pseudoscalar operators. These couplings are associated
with an energy scale, which we will identify with f. To
analyze the effect of Planck-suppressed operators, we
consider an ALP potential of

VALPðϕÞ ¼ −m2f2 cos

�
ϕ

f

�
; ð2:1Þ

which defines the ALP mass m. However, the second
derivative of the potential induced by Planck-suppressed
operators in Eq. (1.2) is

V 00
ΔðϕÞ ¼ jcN jΔN−2M2

PlN
2 cos

�
Nϕ

f
þ β

�
: ð2:2Þ

Therefore, at leading order in ϕ=f ≪ 1, we have a bare
contribution to the mass m2 and a correction of order

δm2 ≃ jcN j cos βΔN−2N2M2
Pl: ð2:3Þ

Such corrections satisfy δm2 ≪ m2 only if���� jcN jcosβΔN−2N2M2
Pl

m2

����¼
���� jcN jcosβΔNN2M4

Pl

m2f2

����≪ 1: ð2:4Þ

Assuming cN ∼ cos β ∼ 1, one can translate the inequality
(2.4) into an upper bound on f as a function of N in order to
have negligible fine-tuning of the ALP mass. We illustrate
these limits for ALP masses m ¼ 1; 10−7; 10−14 eV using
the red, blue, and green dotted lines, respectively, in Fig. 1.

B. QCD-axion quality and naturalness

QCD axions [4–9] exhibit a quality problem when the
contribution of Planck-suppressed operators contribute
significantly to a shift in the low-energy vacuum of the
potential [10–12]. At low energy, QCD axions have a
potential of the form [13,14]

VaðϕÞ ¼ −Λ3
QCDðmu þmdÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2z
ð1þ zÞ2

�
1 − cos

�
ϕ

f
þ θ̄

��s
; ð2:5Þ

where z ¼ mu=md ≃ 0.485 [15,16] is the ratio of up and
down quark masses, ΛQCD ¼ hq̄qi1=3 is the QCD scale

defined by the quark condensate, and θ̄ is the effective CP
violating angle. At leading order in z ≪ 1 (and ignoring an
irrelevant constant), we have

VaðϕÞ ≃ −Λ4
a cos

�
ϕ

f
þ θ̄

�
; ð2:6Þ

where for simplicitywe defineΛa¼ðΛ3
QCDmuÞ1=4≃84MeV.

In the presence of the leading Planck-suppressed operator,
one can find the minimum of the QCD-axion potential as

0 ¼ V 0ðhϕiÞ
¼ jcN jΔNNM4

Pl sin ðNϵþ β0Þ þ Λ4
a sin ϵ

≈ jcN jΔNNM4
Pl sin β

0 þ Λ4
aϵ; ð2:7Þ

where ϵ≡ hϕi=f − θ̄ and β0 ≡ β − Nθ̄ which is generically
Oð1Þ. Nonobservation of the neutron electric dipolemoment
(EDM) implies that jϵj≲ 10−10 (see, e.g., [17,18]), so in the
last stepwehave expanded in small ϵ; Nϵ ≪ 1. In order to not
spoil the QCD axion solution to the strong CP problem, one
must require

jϵj ¼
���� jcN j sin β0ΔNNM4

Pl

Λ4
a

����≲ 10−10: ð2:8Þ

At leading order in N this gives (for cN ≃ sin β0 ≃ 1)

N ≳ log ð10−10ðΛa=MPlÞ4Þ
logðΔÞ ¼ 201

19 − log ðf=1010 GeVÞ ;

ð2:9Þ

see also [19]. So for PQ quality to be preserved, one needs to
forbid operators with N ≲ 10 (13) for f ¼ 1010 (1012) GeV.

0 10 20 30 40

104

108

1012

1016

FIG. 1. The value of fmax for a given operator dimension N
which satisfies the quality problem constraint for ordinary QCD
[Eq. (2.8), black solid] or ZN QCD [Eq. (2.15), black dashed],
compared to fmax to satisfy δm=m ≪ 1 in the ALP case for
m ¼ 1; 10−7; 10−14 eV [Eq. (2.4), red, blue, and green dotted
curves, respectively].
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A simple way to do this is with a gauged ZN symmetry (see
Sec. II C).
The inequality of (2.8) is illustrated by the black solid

line in Fig. 1. Comparing the QCD case to an ALP where
m2f2 ≃ Λ4

a, we observe a natural suppression of 10−10N in
the ALP naturalness condition in Eq. (2.4), relative to
Eq. (2.8). Further, ALPs can populate a wider space of
values form and f, allowing for more freedom in parameter
inputs. Still, it is intriguing that the requirement of natural
ALP mass given in (2.4) is nearly as restrictive as the
quality problem for QCD axions.
As we point out above, generically scalar fields acquire

large mass corrections from Planck-suppressed operators.
Therefore, in principle, there is another constraint on the
quality of the QCD axion, arising from fine-tuning of the
axion mass, though this is always weaker than the con-
straint above (this was also pointed out in [19]). Finally,
note that, in principle, one could satisfy Eq. (2.8) even at
small N by tuning the EFT coefficient jcN j ≪ 1 or the
phase parameter jβ0j ¼ jβ − Nθ̄j ≪ 1. However, this
quickly leads to a fine-tuning as bad as (or worse than)
the original strong CP problem.

C. High-quality, natural ZN QCD axion

It was shown in [20] that an extended sector with N
copies of the SM, related by a ZN symmetry, can lead to a
QCD-like axion of mass much smaller than that of a
canonical QCD axion, due to additional suppression by
∼zN in the effective QCD scale. This idea was further
investigated in [3] and shown to simultaneously admit a
viable ultralight axion DM candidate [21]. If this ZN
symmetry is gauged, it can protect the theory from
Planck-suppressed operators in Eq. (1.1).
Let us consider N copies of the SM which are related to

each other by a ZN symmetry which is nonlinearly realized
by the axion field ϕ, as

ZN∶ SMk → SMkþ1ðmod NÞ ð2:10Þ

ϕ → ϕþ 2πk
N

f; ð2:11Þ

with k ¼ 0;…; N − 1. The most general ZN symmetric
Lagrangian1 can be written as

L ¼
XN−1

k¼0

LSMk
þ αs
8π

�
ϕ

f
þ θ̄ þ 2πk

N

�
GkG̃k: ð2:12Þ

The axion will receive contributions from all the N sectors;
the combined potential can be written as

V totðϕÞ ¼
XN−1

k¼0

V

�
ϕ

f
þ θ̄ þ 2πk

N

�
; ð2:13Þ

where the axion potential in each sector is

VðxÞ ¼ −Λ3
QCDmu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cos x

p
;

as shown in Eq. (2.5).
At low energies, this theory differs from the generic

QCD case because the effective QCD scale is shifted. This
is apparent in the effective potential of the theory [3] [see
Eq. (2.30)]:

VNðϕÞ ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

πN

r
ð−zÞN−1Λ3

QCDmu cos

�
Nϕ

f
þ θ̄

�
:

ð2:14Þ

The requirement V 0ðϕÞ ¼ V 0
ΔðϕÞ þ V 0

NðϕÞ ¼ 0 implies

jϵj ¼
���� jcN j sin β0ΔNM4

Pl

Λ4
a

1

κ

����≲ 10−10; ð2:15Þ

where κ ≡ zN−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − z2Þ=ðπNÞ

p
.

The ZN axion case of Refs. [3,20,21] is illustrated by the
black dashed line in Fig. 1. The symmetry provides a
mechanism for suppressing operators up to some large N
relative to the vanilla QCD case; however, at any given N,
the inequality (2.15) has a natural enhancement of order
1=κ ≫ 1 relative to the minimal QCD axion [cf. Eq. (2.8)].

D. Challenges associated with the QCD relaxion idea

The relaxion framework, proposed in [22], provides a
new insight on the hierarchy problem, which does not
require TeV-scale new physics, but rather implies a non-
trivial cosmological evolution of the Higgs mass. The
original relaxion model was based on the QCD-axion
model [22].2

However, as the backreaction and the rolling potential
are sequestered, the relaxion stopping point corresponds to
a sizeable phase and generically cannot be set to zero. It
was noticed in the original paper [22] as well. Furthermore,
as was shown in [27], and further derived below for the
QCD-relaxion model, the peculiar nature of the relaxion
dynamics implies that the relaxion stops at a highly
nongeneric point in the field space. At this point, the mass
is parametrically suppressed, and the phase is predicted to
be very close to π=2, a mechanism dubbed the relaxed
relaxion. In [28] a solution was proposed to this problem;
however, it required nonclassical evolution of the relaxion

1Note that there could also be portal couplings between
sectors, though we postpone discussion of this to Sec. III D.

2See Ref. [23] this for a possible generalization of the back-
reaction potential and [24–26] for a noninflationary relaxation
mechanism.
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and thus, led to further problems associated with the
measure problem [29].
In addition to that, a successful relaxation of the Higgs

mass requires large hierarchy between the scales of the
rolling potential and the backreaction potential [30] and
thus, the relaxion setup relies on a carefully designed
potential derived from the clockwork mechanism [31–34],
which is based on a Uð1Þ global symmetry. The resulting
construction suffers from a fairly severe quality problem,
unless the relaxion is rather heavy [35]. In Sec. III, we
propose a new construction that addresses both of the above
challenges.

E. Axion/ALP couplings from unknown Planck physics

As mentioned previously, the Planck-suppressed PQ-
breaking operators in Eq. (1.2) give rise to SM couplings.
This is, as we discuss below, due to the fact that the
additional terms may be misaligned in a phase relative to
the terms induced by the IR QCD instantons. In the
presence of CP violation, the resulting couplings can be
linear in the field, whereas if CP is conserved the leading
couplings are quadratic. In addition to that, the QCD axion
always induces a scalar interaction with the nucleons at the
quadratic order of the axion field [36].
For low-energy phenomenology, we consider the ALP/

axion interaction with the electrons, photons, or gluons; the
Lagrangian of such interactions can be written as

L ⊃
ϕ

MPl

�
dð1Þmemeēeþ

dð1Þα

4
F2 þ dð1Þg βðgÞ

2g
G2

�

þ ϕ2

2M2
Pl

�
dð2Þmemeēeþ

dð2Þα

4
F2 þ dð2Þg βðgÞ

2g
G2

�
; ð2:16Þ

where e is the electron field, F2 ¼ FμνFμν, G2 ¼
1
2
TrðGμνGμνÞ, and Fμν (Gμν) is the electromagnetic

(QCD) field strength. Also, g is the QCD gauge coupling
and βðgÞ is the beta function. Such couplings can be
searched for via the equivalence principle violations and/or
fifth forces experiments [37–43] or oscillation of funda-
mental constants (for a review, see for example [44]; for
proposals, see Refs. [27,45–54]; and for experiments
providing bounds on oscillations see Refs. [55–66]).
Note that one can also consider the ALP/axion interaction
with mqq̄q, where q ¼ u; d denotes the light quarks; see,
e.g., [65] for bounds on such couplings.
To see how the above interactions are generated from

Eq. (1.2), one can expand the cosine part up to quadratic
order to find

cos

�
Nϕ

f
þ β

�
¼ cos β − sin β

Nϕ

f
−
cos β
2

�
Nϕ

f

�
2

þ � � � :

ð2:17Þ

Comparing Eqs. (1.2) and (2.17), we can easily identify

dð1ÞX ¼ jcN jN sin βΔN−1; dð2ÞX ¼ jcN jN2 cos βΔN−2;

ð2:18Þ

for X ¼ me; α; g, which we will refer to as the quality
couplings of the theory (due to their possible connection
with the quality problem). As discussed before, if gravity
respects CP, then β ¼ 0 and thus, there is no linear scalar
coupling between ALP and SM. However, the quadratic
interactions are present both for the CP-violating and CP-
conserving cases.
Experimental searches for equivalence principle viola-

tions and fifth forces [38–42] have led to stringent constraints
on light scalars with couplings dX as above. In particular, for

the linear gluon coupling dð1Þg ≲ 10−3 (10−6) for all particle
masses m≲ 10−6ð10−14Þ eV (see [42,65] and references

therein), for the linear electron coupling dð1Þme ≲ 1 (10−2) for
m≲ 10−6 ð10−14Þ eV, and for the linear photon coupling

dð1Þα ≲ 10−1 (10−4) for m≲ 10−6 (10−14 eV) (see [43] and
refs. therein). Constraints on the quadratic couplings are
weaker, but as we shall see below, still relevant.
One can also search for these couplings through the

direct detection of oscillation of fundamental constants
from the oscillation of the bosonic DM field [45,67]. This
variation is characterized at leading order by

δX
X0

≃
dðjÞX

j
ϕj

Mj
Pl

≃
dðjÞX

j

� ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mMPl

�
j

; ð2:19Þ

where ρDM is the density of DM in the vicinity of the
experiment, and j ¼ 1 (2) for linear (quadratic) coupling
to ϕ. The typical value for the local density is
ρlocal ¼ 0.4 GeV=cm3, though it can be larger if the field
becomes bound to the Earth or Sun [68,69]. Substituting
Eq. (2.18), we can write the above equations in a compact
form

δXðϕÞ
X0

≃
NjΔN−j

j

� ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mMPl

�
j

≃

8>>>>>><
>>>>>>:

2 × 10−18NΔN−1
�
10−13 eV

m

	 ffiffiffiffiffiffiffi
ρDM
ρlocal

q
ðfor j ¼ 1Þ

2 × 10−36N2ΔN−2
�
10−13 eV

m

	
2 ρDM
ρlocal

ðfor j ¼ 2Þ
ð2:20Þ

for X ¼ me; α; g, where we have taken jcN j ≃ sin β ≃
cos β ≃ 1. For comparison, present experimental sensitivity
to δme=me;0 is at the level of 10−16 formicrowave clocks, but
somewhat higher for molecular clocks with some prospect to
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improve to 10−21 in the coming years; for the α coupling,
current optical clock searches can achieve 10−18, and a
nuclear clock could potentially reach 10−23 (see [44] and
references therein). See Ref. [65] for a discussion about the
precision probes related to the gluons and quarks couplings.
For QCD axions, owing to the suppression required to

resolve the quality problem, direct searches for quality
couplings is challenging. The linear coupling (j ¼ 1) term
in Eq. (2.20) gives

�
δXðϕÞ
X0

�
QCD

∼ 10−98
�
10−13 eV

m

� ffiffiffiffiffiffiffiffiffiffi
ρDM
ρlocal

r
ð2:21Þ

for f ¼ 1010 GeV (N ¼ 10), and is even smaller for f ¼
1012 GeV (N ¼ 13) and/or for quadratic couplings (j ¼ 2).

The scale of these couplings is exceedingly small, even
for ALPs. For quadratic couplings (j ¼ 2), there is a simple
expression for the coupling of Eq. (2.18) such that it
satisfies the condition δm ≪ m of Eq. (2.4):

dð2ÞX ≪
m2

M2
Pl

¼ 10−56
�
m
eV

�
2

; ð2:22Þ

which is far out of reach of experimental searches for the
foreseeable future. For linear couplings (j ¼ 1), the con-
dition is more complicated but can be written as

dð1ÞX ≪
m2

M2
Pl

tan βΔ
N

; ð2:23Þ

which is suppressed by an additional factor of Δ=N ≪ 1.
Therefore, natural couplings are out of reach for now.
Relative to the case of QCD axions, where additional

fine-tuning of the phase parameter β0 spoiled the solution of
the strong CP problem (see Sec. II B), for ALPs the
problem is naturalness of the mass. Therefore it is more
compelling to ask what level of fine-tuning might be
required to produce an ALP with the desired properties.
Rather than β0 ≪ 1, here we may require β − π=2 ≪ 1 so
that cos β ≪ 1. Expanding in this limit, Eq. (2.4) is
equivalent to

jcN j ×
����β − π

2

���� ≪ m2f2

M4
Pl

MN
Pl

N2fN
; ð2:24Þ

i.e., one either tunes jcN j ≪ 1 or jβ − π=2j ≪ 1 or both.
The level of tuning of an ALP theory with a given N and m
is given in Fig. 2, where “tuning” is defined by the rhs of
Eq. (2.24). We see that there is a trade-off between the
level of tuning in the model (which prefers larger N and

108 1012 1016

10–110

10–70

10–30

1010

FIG. 2. Effective tuning of the ALP theory, given by the right-
hand side (rhs) of Eq. (2.24), for ALP mass m (solid and dashed)
and Planck-suppressed operator dimension N (red, blue, green,
and yellow) given in the legend, as a function of f. The shaded
region denotes “tuning” > 1.

FIG. 3. Sensitivity estimate for a nuclear clock with precision at the level of δα=α ≃ 10−23, assuming virial DM density (blue thick)
and a bound halo around the Earth or the Sun [68,69] (blue dashed). Also shown are the predicted quality couplings for 5 ≤ N ≤ 12 (as
labeled) and different choices of f ¼ 109 GeV (black) and f ¼ 1016 GeV (red). The gray shaded regions are constrained by EP tests
[38–42], and the blue shaded region is the region of technical naturalness of the scalar field mass.
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smaller f) and the possibility of direct detection (which
prefers smaller N and larger f).
It matters how the tuning of parameters is accomplished.

If jcN j ≪ 1, then all quality couplings dðjÞX are also strongly
suppressed [see Eq. (2.18)]. If jβ − π=2j ≪ 1, then the
quadratic couplings become suppressed whereas the linear

couplings remain of order dð1ÞX ≃ NΔN−1. Finally, one might
imagine a UV model with a bare mass term m2

0 < 0 and a
fine cancellation δm2 − jm2

0j≡m2 wherem is the ultralight
mass one searches for in experiment (this is analogous to
Higgs fine-tuning); in this case neither linear nor quadratic
couplings are necessarily suppressed by the tuning of the
theory.
The quality couplings to3 OSM ¼ FμνFμν for j ¼ 1

(linear coupling to SM) are shown in the left panel of
Fig. 3, and j ¼ 2 (quadratic couplings to SM) are shown in
the right panel. The region already ruled out by equivalence
principle (EP) tests is given in gray, and the natural region
of coupling space is highlighted in blue. The horizontal
lines correspond to Eq. (2.18) for the labeled values of N
and f, assuming cN ∼ β ∼Oð1Þ. We observe that even in
the case of a high-density solar halo or Earth halo [68,69], a
future nuclear clock with precision at the level of δα=α ∼
10−23 (blue dashed line) will still not be sufficient to probe
these Planck-suppressed couplings.

III. HIGH-QUALITY QCD RELAXION

We combine elements of the ZN QCD axion model with
the relaxion, in a way that can ameliorate the challenges
described in Sec. II D. The relaxation of the axion field will
preserve the QCD axion solution to the strong CP problem,
giving rise to a low-massZN QCD axion which also relaxes
the electroweak (EW) scale via the relaxion mechanism.
We again consider N copies of the SM related by a ZN

symmetry, with an effective potential given in Eq. (2.14).
We will use the fact that the QCD axion potential depends
on the Higgs vacuum expectation value (vev) through the
quark masses, and thus, it can be used as a trigger for the
relaxation of the Higgs mass [22,70]. Note that for our
purpose, we will only be interested in the shape of the
potential and its dependence on the Higgs vev.
Starting from a high-energy cutoff Λ, the EW scale is set

by the dynamics of an axionlike field, usually known as a
relaxion. The relaxion-Higgs potential can be written as

Vðϕ; HÞ ¼ ðΛ2 − gΛϕÞjHj2 þ λjHj4
þ VrollðϕÞ þ Vbrðϕ; hHiÞ; ð3:1Þ

whereVroll ¼ −gΛ3ϕ (g a dimensionless constant) andVbr is
called the “backreaction” potential as this backreacts to the
motion of the relaxion and is only active when hHi ≠ 0. In
our case, we will take Vbr ¼ VNðϕÞ in Eq. (2.14), which
depends linearly on the Higgs vev through mu ¼ yuhHi,
with yu the Yukawa coupling of the up quark, in contrast to
the quadratic case discussed in [27]. Note that with this
definition, the SMHiggs vevwould be hHi ¼ v ∼ 174 GeV.
See Appendix A for general details about the relaxion
mechanism and constraints.
In [27], the authors discussed the vacuum structure of the

relaxion near the EW scale in detail, and showed that the
rolling of the relaxion field stops at the first local minimum
of the potential it encounters. Furthermore, due to the
incremental change of the Higgs vev, the relaxion stops at a
very shallow part of the potential and thus, its mass is
suppressed compared to the naive expected value, a
mechanism known as relaxation of the axion field.
The relaxion stopping point is determined when the first

derivative of VbrðϕÞ is close to its maximum [27]. If, for
example, VbrðϕÞ ∝ cosðNθÞ, the relaxion stops around
Nθ0 ∼ 3π=2 for N even, and Nθ0 ∼ π=2 for N odd. In
the absence of some breaking of the ZN symmetry, this
leads to a Oð1Þ CP-violating phase in all sectors, and is
thus ruled out by the neutron EDM experiments
unless N ∼Oð1010Þ.
In order to successfully solve the strong CP problem, we

need to find at least one sector in which effective θ0 ≲
Oð10−10Þ and identify this sector as our SM (this amounts to
a linear tuning of 1=N). To do that, we will break the ZN
symmetry explicitly in the k ¼ 0 sector by a small param-
eter,4 by requiring y0u > ySMu ∼ 10−5; as a result, the confine-
ment scale Λ0

QCD would change as well [71–73]. A possible
second source ofZN breaking is a change to theHiggs vev in
the k ¼ 0 sector, where we assume v0 ≥ v. We parametrize
these two sources of breaking using the parameters

ϵb ≡ yuΛ3
QCD

y0uΛ03
QCD

; γ ≡ v
v0
: ð3:2Þ

Note that 0 ≤ fϵb; γg ≤ 1, and the ZN symmetry is restored
for ϵb, γ → 1.

A. Toy model

We begin with a simplified example where the back-
reaction potential in the prime sector is of the form
VbrðϕÞ ∝ cosðϕ=fÞ to illustrate how the mechanism works.
In a realistic scenario, one must account for corrections to
the backreaction potential in the QCD0 sector, which we
consider in Sec. III B.
In the toy model, we take the backreaction potential to be

written as

3Analogous estimates for other SM operators, e.g., in
Eq. (2.16), are straightforward. Since neither the couplings
Eq. (2.18) nor the tuning constraint (2.4) depend on the SM
operator, our estimations of the magnitude of the coupling
strength are unchanged in such cases. 4We denote all quantities in the k ¼ 0 sector with a ðÞ0.
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FIG. 4. Parameter space for theZN QCD relaxion, using both the z0 ¼ 1model (panels a and b) and the z0 ¼ 1=2model (c)–(f). For the
purpose of illustration, we fix Λ0

QCD ¼ TeV, though smaller values are possible [see Eq. (3.14)]; we vary both θ10 and γ as labeled in
each panel. The two symmetry-breaking parameters ϵb and γ are defined in Eq. (3.2). The constraints shown in green, red, blue, and
purple are given in Eqs. (3.8)–(3.11), respectively; the higher-harmonic constraints in Eqs. (3.12) and (3.13) are shown in yellow, and
Λ < 4πv0 is given in black. The dashed line illustrates where the relaxion mass is equal to ðmϕÞQCD ≡ Λ4

a=f2; above the
line, mϕ < ðmϕÞQCD.
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VbrðϕÞ ∼ −Λ03
QCDy

0
uv0 cos

�
ϕ

f

�
ð1 − ϵbγÞ

− Λ3
QCDyuvκ cos

�
Nϕ

f

�
; ð3:3Þ

where we ignore θ̄ for the purposes of this section. If
ϵbγ ≪ 1, we can treat the term proportional to cosðNϕ=fÞ
as a perturbation and the relaxion stopping point can be
written as θ0 ¼ π=2 − δθ, with

δθ ≃
ϵ2

8
þ N2κϵbγ � δ −Oðδ2Þ; ð3:4Þ

where we define

ϵ2 ≡ Λ03
QCDy

0
u

v03
¼ Λ4

a

v4
γ3

ϵb
; ð3:5Þ

δ≡ ϵv0

Λ
¼ Λ2

a

v2

�
v
Λ

� ffiffiffiffiffi
γ

ϵb

r
: ð3:6Þ

We are assuming that the Higgs mass is relaxed starting
from some cutoff Λ to the value v0 ≳ v in the k ¼ 0 sector,
and to v in the SM sector. This amounts to a fine-tuning of
order γ2 ¼ ðv=v0Þ2.
The relaxion stopping point would be close to π=2 in the

k ¼ 0 sector which dominates the relaxion potential.
However in the kth sector the stopping point would be
shifted by 2πk=N as per the structure of the potential as
seen in Eq. (2.13). So, if we identify the SM at the
kSM ¼ ð3N=4Þ-th sector (which is shifted from the domi-
nating sector by 2πkSM=N ¼ 3π=2), then in our SM the
effective theta angle would be θ0 þ 3π=2 ∼ δθ. We reiterate
that selecting the SM out of N sectors as the one with
minimum at 3π=2 amounts to tuning of 1=N. This also
implies the constraint that N be a multiple of 4 in this
model, i.e., N mod 4 ¼ 0. In this sense, the underlying
symmetry of this theory is Z4N , with N ≡ N=4.5

In order to solve the strong CP problem successfully one
requires δθ ≲ θCP ¼ θ1010

−10, the limit on the CP-violating
phase from neutron EDM experiments; at present, θ10 ¼
1.4 [75] but is expected to improve in the future [76]. To
avoid any additional tuning, one would expect each term in
δθ, defined in Eq. (3.4), to be separately less than θCP. This
implies additional conditions, namely,

ϵ2 ≲ θCP ⇒
γ3

ϵb
≲ 1800θ10; ð3:7Þ

δ≲ θCP ⇒
γ

ϵb
≲ 6

�
Λ

106 GeV

�
2

θ10; ð3:8Þ

ϵbγ ≲ θCP
N2κ

¼ θ1010
−10

N2zN−1

ffiffiffiffiffiffiffiffiffiffiffiffi
πN

1 − z2

r
; ð3:9Þ

where we have taken Λa=v ≃ 5 × 10−4.
Note that, in additional to the QCD and relaxion

parameters, we have two additional free parameters ϵb
and γ, constrained by three inequalities. The cutoff of the
Higgs mass Λ is also constrained by the consistency of the
effective theory as f ≳ Λ≳ 4πv0. Other constraints from
the success of the relaxion mechanism are described in
Appendix A; the upshot is that a successful relaxation of
the EW scale requires the additional condition

ϵ5=2b ffiffiffi
γ

p ≲ 24π2
�
Λ10
a M4

Pl

Λ11v3

�
: ð3:10Þ

Finally, as mentioned above, we must ensure that the values
of ϵb and γ are consistent with the change of the QCD scale
as the Higgs vev changes, i.e., Λ0

QCD > Λ0
QCDðγÞ, which

roughly translates to the constraint [71–73]

ϵb ≲ γ: ð3:11Þ

B. Model including NLO corrections

In the toy model above, we only consider the first term of
the leading order (LO) QCD0 potential. However, there are
additional terms in the potential at LO, as well as the
higher-harmonic contributions coming from the non-lead-
ing-order (NLO) terms. Both of these contributions can
shift the vacuum of the SM sector and spoil the mechanism.
In this section we extend our analysis to include these
additional terms.
First, note that as the relaxion stopping point is determined

when the first derivative of VbrðϕÞ is close to its maximum,
the full LO QCD0 potential would lead to the relaxion
stopping point of θ0 ≃ cos−1½z0�, where z0 ¼ m0

u=m0
d. This

suggests that a stopping point close to π=2 would lead
to Oð1ÞθCP.
Furthermore, to obtain a ZN-symmetric potential at

LO, one needs to subtract a term of the form of
Λ3
QCDyuv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cosðθaÞ

p
[leading order expansion

of this term is shown by the second term of the first line
in Eq. (3.3)]. For z0 ≠ z, this term also shifts θ0 by an amount
proportional to the ratio of the amplitudes of QCD andQCD0
potentials and the phasemisalignment as shown in Eq. (3.12)
(see Appendix B for a detailed discussion).
NLO contributions to the potential are not aligned to the

LO contribution, and induce a shift to the stopping point of
OðRm0

u;d=Λ0
QCDÞ where R ∼Oð10−3Þ is the NLO coeffi-

cient [77]. Thus, to successfully solve the strong CP
problem we must require that OðRm0

u;d=Λ0
QCDÞ≲ θCP,

which in turn requires a large hierarchy between the SM
5See also [74] for a grand-unified-theory-related motivation for

this symmetry.
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and the hidden sector confinement scales, as shown in
Eqs. (3.13) and (3.14). One mechanism to accomplish this
is to introduce additional heavy vectorlike fermions, as
discussed in Appendix C.
Below we discuss two variants of the toy model, which

lead to suppression of the above discussed higher-order
contributions. These require additional breaking of the ZN ,
in addition to some flavor symmetry of the hidden sector.
We analyze the phenomenology of the above variants, in
detail, in Appendix B. Below, we summarize the main
results and how these terms affect the parameter space of
the model.
In the first, we consider the case where the prime (k ¼ 0)

sector possesses effective isospin or Zflav
2 , such that

z0 ≡ y0u=y0d ¼ 1, which is sometimes denoted as natural
flavor conservation.6 In this case, the potential of the prime
sector is minimized at ϕ=f ≃ π − δθ; as in the toy model,
we require each term in δθ be smaller than the CP angle
θCP. The kth sector will be shifted from the prime sector by
2πk=N, so in order to identify the SM with a sector having
θ0 ≃ 0, one needs an underlying symmetry of Z2N with
N ¼ N=2. In this case, in addition to Eqs. (3.7)–(3.11),
there are two new constraints [see Eqs. (B12) and (B13) in
Appendix B]:

ϵbγ ≲ θCP
1 − z
z

; ð3:12Þ

R
ϵbγ

≲
�Λ0

QCD

Λa

�
4

θCP; ð3:13Þ

where R ∼Oð10−3Þ is an NLO suppression factor [77].
Note that the constraint (3.12) is strictly stronger than (3.9)
for any N ≳ 2. For Λ0

QCD ≲ 1 TeV, the above constraints
can be simultaneously satisfied, for θCP ≳ 2 × 10−10 and
z ≃ 0.48 as usual [see Eq. (3.14)].
In the second variant, sketched below, we assume that

the hidden sector has an extended flavor symmetry leading
to z0 ¼ 1=2. In this case the minimum of the effective
potential is shifted to 2π=3. This leads to a further
suppression of the SM corrections to the stopping point,
as detailed in Appendix B. The upshot is that one can
obtain the results for this case using the substitution z=ð1 −
zÞ → 2Cz ≡ ðz=2Þð2 − 5zþ 2z2Þ=ð1 − zþ z2Þ3=2 above;
for the central value z ¼ 0.485 [15], one obtains
Cz ≃ 8 × 10−3, whereas for the 2σ limit (up) z ¼ 0.504
one obtains Cz ≃ 2 × 10−3 and for (down) z ¼ 0.466 one
obtains Cz ≃ 1.9 × 10−2. In this case, the underlying
symmetry must be Z3N with N ¼ N=3. Given these
inputs, the constraint (3.12) is weaker than (3.9) unless
N ≳ 9, 12, 15 for z ¼ 0.466, 0.485, 0.504.

We now briefly sketch how to construct a flavor model,
leading to z0 ¼ 1=2. This is based on the model discussed in
[81], which generalizes the Zflav

2 symmetry to Zflav
5 , which

can be realized in extra dimensional constructions. The idea
is that there is a 5-plet ψ i (i ¼ 1::5), with ψ1 ¼ u, that
identifies with the up quark hidden singlet field, and the rest
of the four components of ψ i carry down-singlet hidden
quark quantum numbers. Assuming that the rest of the
hidden sector fields are singlets, and the only light down
field is made of an equal linear combination of the four ψ i’s,
onewould obtain amodel inwhich the effective hidden down
quark Yukawa for the light field is

ffiffiffi
4

p
times the up one, as

required above (for more detail see Ref. [81]).
We can combine the new constraints, Eq. (3.12) and

(3.13), in order to set a lower bound on Λ0
QCD in the model:

Λ0
QCD ≳ Λa

�ðr1 þ r2Þz
θ2CPð1 − zÞ

�
1=4

: ð3:14Þ

In what follows, we always choose Λ0
QCD large enough that

it satisfies this limit.
As discussed in [71,73] and Appendix C, we can only

obtain Λ0
QCD ∼OðGeVÞ, for γ ¼ v=v0 ∼ 10−3. Thus, to

achieve a larger Λ0
QCD, we need to introduce new states

both in the SM and the hidden sectors which are charged
under SUð3ÞC. The mass difference of these states explic-
itly breaks the ZN symmetry. Thus, in order for the ZN to
be a good symmetry for the axion, we require that the
Peccei-Quinn symmetry-breaking scale, f, be higher than
the mass of the heaviest new state. For our construction this
can be achieved for f ≳Oð1012 GeVÞ.
Intriguingly, the parameter space consistent with all

other constraints (3.8), (3.10), (3.12), and Λ≳ 4πv0, is
exceedingly predictive. The largest v0 allowed for a given
θCP can be determined by the intersection of (3.8), (3.12),
and saturating v0 ¼ Λ=4π, which gives

v0 ≲ v
�

1

ð4πÞ2θ3CP

�
Λa

v

�
4 z
1 − z

�
1=4

: ð3:15Þ

Note that the intersection of Eqs. (3.8), (3.10), and (3.12)
implies

v0 ≳
��

z
1 − z

�
3 1

θ14CP

Λ12
a

24π2M4
Pl

�
1=8

: ð3:16Þ

In the z0 ¼ 1 model, θ10 ¼ 1 (10), the vev in the prime
sector can be as small as v0min ¼ 2400 (45) TeV, whereas in
the z0 ¼ 1=2 model using the 2σ value of z, we find v0min ¼
314 (5.6) TeV.
Another way to explore the parameter space is to inquire

into the lowest allowed value of θCP. The two above
constraints on v0 are simultaneously saturated at the mini-
mum allowed θCP, which is

6For a discussion related to such constructions, see,
e.g., [78–80] and references therein.
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θCP;min ¼
�
25π2

3

z
1 − z

�
1=8

ffiffiffiffiffiffiffiffi
Λa

MPl

s

≃ 3.33 × 10−10
�

z
1 − z

�
1=8

: ð3:17Þ

Substituting this result into Eq. (3.15), the corresponding
Higgs vev in the prime sector is

v0

v

����
θCP;min

¼ Λ5=8
a M3=8

Pl

2v

�
33

215π22

�
1=32

�
z

1 − z

�
5=32

≃ 1750

�
z

1 − z

�
5=32

: ð3:18Þ

For the z0 ¼ 1=2 model, as before, z=ð1 − zÞ → 2Cz ≈ 4 ×
10−3 (for the up 2σ value of z), implying θCP;min≃
1.67 × 10−10.
The strongest limit on θCP comes from the nonobserva-

tion of a neutron electric dipole moment; the current upper
bound is θCP ≲ 1.4 × 10−10 (90% confidence) [75]. We
have shown above that our model can achieve θCP=10−10 ∼
1–2 at the lowest, implying some tension with existing
constraints. Note that Cz → 0 for z → 1=2, and in this case
θCP is strongly suppressed [see Eq. (3.17)]; this value z ¼
1=2 lies in the 2σ window of the current best-fit value of z
[15]. The particle data group (PDG) value of z has a larger
error bar compared to those used here [16], and leads to the
same conclusion.
In Fig. 4, we illustrate the parameter space for each of the

above models: z0 ¼ 1 (panels a and b); and z0 ¼ 1=2 with
z ¼ 0.485 (c and d), or with z ¼ 0.504 (e and f). (The
individual constraints are described in the figure caption.)
As noted above, the parameter space is exceedingly
predictive, as we find the cutoff scale Λ ≃ 106–107 GeV
and θ10 ≳ 1.6. Note that the ϵ2 inequality (3.7) does not
appear, as this constraint is always much weaker than the
others.
After the rolling stops, the mass of the relaxion will be

relaxed to a value modified from the naive expectation; it
can be written as

m2
ϕ ¼ Λ03

QCDy
0
uv0

f2a
× δ

¼ ðm2
ϕÞQCD

δ

ϵbγ
; ð3:19Þ

where ðm2
ϕÞQCD ≡ Λ4

a=f2. In particular, it is suppressed by
δ ≪ 1 but enhanced by ðϵbγÞ−1 ≫ 1 relative to the naive
QCD expectation. Note that one can express δ in terms of
theory parameters as

δ ≃ 4 × 10−11
�
106 GeV

Λ

� ffiffiffiffiffi
γ

ϵb

r
: ð3:20Þ

So, finally the (rel)-axion mass can be written as

m2
ϕ

ðm2
ϕÞQCD

≃ 1.3 × 10−7
�
10−7

ϵ3bγ

�
1=2

�
106 GeV

Λ

�
: ð3:21Þ

In Fig. 4, the pink dashed lines denote the parameter space
satisfying mϕ ≃ ðmϕÞQCD.

C. Quality of the ZN QCD relaxion

As before, we combine the low-energy axion potential
with that induced by Planck-suppressed operators in
Eq. (1.2) to see whether the latter will spoil the solution
to the strong CP problem. The combined potential at
leading order is

VðϕÞ ¼ jcN jΔNM4
Pl cos

�
Nϕ

f
þ δ0

�
−m2

ϕf
2 cos

�
ϕ

f

�

¼ jcN jΔNM4
Pl cos

�
Nϕ

f
þ δ0

�
−
δΛ4

a

ϵbγ
cos

�
ϕ

f

�
:

ð3:22Þ

The first derivative is

0 ¼ V 0ðhϕiÞ ≈ jcN jΔNNM4
Pl sin δ

0 þ δΛ4
a

ϵbγ
ϵ; ð3:23Þ

which implies the constraint

jϵj ¼
���� jcN j sin δ0ΔNNM4

Pl

Λ4
a

ϵbγ

δ

����≲ 10−10: ð3:24Þ

The constraint in Eq. (3.24) is identical to Eq. (2.15)
except for the additional factor of ϵbγ=δ on the left-hand
side (lhs). This factor is at most 103 in the parameter space
we consider, and the constraint on N depends on it
logarithmically. Therefore, for our purposes we can treat
the quality of our QCD relaxion as very similar to the ZN
axion considered in Refs. [3,20,21] (see black dashed line
in Fig. 1).
As discussed above, one way to realize our mechanism is

to introduce new heavy fermions which are charged under
SUð3ÞC. These heavy states contribute to additional ZN
breaking, leading to the additional requirement that the
decay constant of the QCD relaxion be heavier than such
states, e.g., f ≳ 1012 GeV. Comparing to Fig. 1, this would
imply a lower limit on N in our model of order Nmin ¼ 12.
This result depends on the mechanism for enhancing Λ0

QCD,
and thus there may be ways to modify the model to achieve
a lower f, and therefore a lower N, consistent with the
mechanism.

BANERJEE, EBY, and PEREZ PHYS. REV. D 107, 115011 (2023)

115011-10



D. Direct searches for the ZN QCD relaxion

Here we outline the phenomenological implication of
our QCD relaxion. In our model, the axion has a CP-
violating phase of δθ. Like the usual relaxion models, due
to the relaxion-Higgs mixing angle

sin θhϕ ≃
Λ4
a

v3f
δθ; ð3:25Þ

the QCD-axion also has scalar interaction with the SM. See
Refs. [27,82,83] for a detailed discussion of relaxion
phenomenology.
The QCD axion also induces a linear scalar interaction

with nucleons (N), through the pion-nucleon sigma term in
the presence of a CP-violating phase as [84–87]

L ⊃ −gϕNNϕN̄N; ð3:26Þ

where gϕNN denotes the scalar coupling strength of the
QCD axion with the nucleons. Using ∂ lnmN=∂ lnm2

π ≃
0.06 [36,88], and mumd=ðmu þmdÞ2 ≃ 0.22, we obtain

gϕNN ≃ 1.3 × 10−2
mN

f
δθ; ð3:27Þ

where δθ ∼Oð10−10Þ is the total CP-violating phase in our
case as discussed in Eq. (3.4). In our model, the range of
the total CP-violating phase is 1≲ ðδθ=10−10Þ ≲ 10; thus,
the strength of the scalar interaction of the QCD axion
to the SM is

10−24

f12
≲ gϕNN ≲ 10−23

f12
; ð3:28Þ

where f12 ¼ f=ð1012 GeVÞ and we have used
mN ∼ 1 GeV. The strongest bound on gϕNN comes from
the experiments looking for the existence of fifth force and/
or violation of the equivalence principle (EP) [38–42]. The
bound from EP violation searches, for the axion mass
around 10−6 eV, is gϕNN ≲ 10−21, which becomes stronger
as we go to the lower masses. Note that, in our model, the
mass of the QCD relaxion is slightly lighter than the QCD
axion. Thus, for a given f, one should be careful about
analyzing the EP bounds.
The QCD axion also has pseudoscalar interaction with the

SM fermions as L ⊃ −gaψaψ̄iγ5ψ with gaψ ¼ Cψmψ=f. The
coefficient Cψ depends on QCD axion models [4–9,14].
Many experimental efforts are concentrated on probing the
QCD axion through its pseudoscalar interaction with the SM
(see, e.g., [89] and references therein). In our model, the
product of the scalar and the pseudoscalar coupling of the
QCD relaxion to the nucleon can be written as

gaNgϕNN ¼ 1.3 × 10−2
CNm2

N

f2
δθ; ð3:29Þ

where CN is some model dependent coefficient of the
nucleons arising from the pseudoscalar interaction of the
axion to protons and/or neutrons [14]. In our model,
the strength of the axion-nucleon scalar interaction is bounded
and using Eq. (3.28) one can more specifically limit the
product of axion-proton pseudoscalar and axion-nucleon
scalar coupling as

6 × 10−37

f212
≲ jgapgϕNN j≲ 6 × 10−36

f212
: ð3:30Þ

Note that, in the above estimate, we use the axial coupling
strength of proton Cp ¼ −0.47 which is obtained in the
KSVZQCDaxionmodel.AnotherQCDaxionmodel such as
DFSZ may provide a different value of Cp [14]. The above
parameter rangewill be probed by theARIADNE experiment
whose projected reach is jgapgϕNN j≲ 10−38 − 10−37 for f ∼
1012 GeV [90,91].
The QUAX experiment is also looking for similar scalar-

pseudoscalar interaction, using the pseudoscalar electron
coupling gae rather than gap. They provide the current
constraint on jgaegϕNN j≲ 5.7 × 10−32 in the mass range
of 10−5 ≳mϕ=eV≳ 6 × 10−13 by updating their previous
result byOð102Þ [92,93]. We estimate the range of jgaegϕNN j
in our model as

2 × 10−40

f212
≲ jgaegϕNN j≲ 2 × 10−39

f212
; ð3:31Þ

where we use Ce ¼ 1=3; this parameter is model depen-
dent, and this value is on the larger side of model-parameter
possibilities [94]. Although our predicted range is beyond
the current experimental reach, our model presents an
opportunity for scalar and pseudoscalar searches to work
together to confirm (or refute) the existence of such axions
in a complementary way.

IV. DISCUSSION

In this work we analyzed how Planck-suppressed (qual-
ity) operators affect the low-energy dynamics of theories
involving QCD axions or ALPs. For the QCD axion, the
quality operators lead to the well-known QCD axion-
quality problem, whereas for ALPs, they may lead to an
equally severe fine-tuning problem. Quality operators also
induce scalar interaction between the SM fields and QCD
axions/ALPs. In the absence of CP violation, we obtain
SM-ALP scalar interaction in quadratic order of the ALP
field, whereas if CP is broken by gravity, ALP-SM scalar
interactions are generated even at linear order. These
interactions can be probed by various precision experi-
ments. The strength of the scalar and pseudoscalar
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interactions are closely related, and therefore these search
strategies can complement one another.
We also provide a framework for addressing both the

Higgs hierarchy and the strong CP problems together. We
invoke a relaxation mechanism where the Higgs mass is
scanned during inflation and the QCD axion plays the role
of the relaxion. We show that aZN-symmetric backreaction
potential which is broken explicitly by a small parameter
can address both of these problems simultaneously.
Depending on the symmetry of the dominant sector, one
can accomplish this mechanism with underlying sym-
metries of Z2N or Z3N , with interesting implications for
the resulting parameter space. We show that one of the
sectors, identified with the SM, has effective CP-violating
phase θ0 ≲Oð10−10Þ. The tuning in the model is linear and
of OðNÞ. Our model cannot fully ameliorate the hierarchy
problem, as it leaves a little hierarchy to address. The mass
of the QCD relaxion obtained in our model can also be
lighter than that of the canonical QCD axion.
Our model can accommodate a CP-violating phase of

1≲ θ0=10−10 ≲ 10. This range of CP-violating phase is
already being probed by neutron electric dipole moment
experiments [75], and will be fully probed within the next
five years [76]. Because of the underlying ZN symmetry
which can be gauged, this model exhibits better protection
against quality operators than the vanilla QCD axion/
relaxion models. Because of the predicted narrow range
of the CP-violating phase, our model can also be used as
target of experiments like ARIADNE [90,91] and/or
QUAX [92,93], which are sensitive to the product of scalar
and pseudoscalar interaction of the QCD axion to the SM.
In the case of QCD relaxion dark matter, precision searches
can also be applied. However, further investigation of this
possibility is beyond the scope of the current work.
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Note added.—Recently, [95] appeared, which also address
issues related to the QCD relaxion by changing the relaxion

evolution during inflation. We also note the recent work
[96], which discusses the relationship of Planck-suppressed
operators and fifth forces.

APPENDIX A: REVIEW OF THE
RELAXION MECHANISM

In this section we discuss the relaxation of the Higgs
mass parameter. For the case of the QCD relaxion, the
backreaction potential depends linearly on the Higgs vev as
opposed to the quadratic case discussed in [27]. A generic
backreaction potential which depends linearly on the Higgs
vev can be written as

Vbr ¼ −Λ3
bhHi cosðϕ=fÞ; ðA1Þ

where Λb is the backreaction scale. Following the notation
of the main text, Eq. (3.1), the total relaxion potential can
be written as

Vðϕ; HÞ ¼ ðΛ2 − gΛϕÞjHj2 þ λjHj4
− gΛ3ϕ − Λ3

bhHi cosðϕ=fÞ: ðA2Þ

Below we set the Higgs quartic coupling λ ¼ 1 for nota-
tional convenience. We are interested in understanding the
evolution of the relaxion close to the EW scale (v) Higgs
mass. In that case, the minimum of the potential can be
found by solving two equations: ∂Vðϕ; HÞ=∂jHj ¼ 0 and
∂Vðϕ; HÞ=∂ϕ ¼ 0. If j∂2V=∂2Hj ≫ j∂2V=∂2ϕj, then one
can set the Higgs at its instantaneous minimum by solving
∂Vðϕ; HÞ=∂jHj ¼ 0. Using perturbation theory around the
EW vacuum, one finds the relaxion-dependent Higgs vev as

v2ðθaÞ ¼
v2

2

�
−
Λ2

v2
þ gΛfθa

v2
þ Λ3

b

2v3
cos θa

�
þO

�
Λ6
b

v6

�
;

where we write θa ¼ ϕ=f. The perturbative expansion of
the Higgs vev is valid as long as

Λ3
b ≪ v3: ðA3Þ

From Eq. (2.6) one can see that the above condition is
easily satisfied for QCD axion. Setting the Higgs to its
relaxion dependent vev, we obtain the effective potential of
the relaxion as

VeffðθaÞ ¼ −gΛ3fθa − ðv2ðθaÞÞ2 −
Λ3
bv
2

cos θa: ðA4Þ

Thus, the relaxion encounters the first minimum when
V 0
effðθaÞ ¼ 0 and we find

−gΛ3f − 2v2ðθÞv2ðθÞ0 þ Λ3
bv
2

sin θa ¼ 0: ðA5Þ
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By setting the EW scale as gΛ3f ≃ Λ3
bv, and defining a

small parameter δ2 ¼ Λ3
b=ðvΛ2Þ ≪ 1, we find that the

Higgs vev changes only incrementally as

Δv2

v2
¼ v2ðθa þ 2πÞ − v2ðθaÞ

v2
¼ π

gΛf
v2

¼ πδ2: ðA6Þ

Following the calculation of [27], by realizing θa → 2πmþ
θa where m ∈ Z and θa ∈ ½0; 2πÞ and then properly
adjusting m we find

v2mðθaÞ ¼ v2
�
1þmπδ2 þ 1

2
δ2θa þ

Λ3
b

4v3
cos θa

�
: ðA7Þ

From Eq. (A5) we get

sin θa
2

�
1þ v2

v2mðθaÞ
�

¼ v2

v2mðθaÞ
þ v2

Λ2
: ðA8Þ

Note that, the effective potential written before and the
above equation is valid only when the Higgs vev is close to
v. By expanding vmðθaÞ close to v we find that the above
equation admits a solution when

sin θa ¼ 1 −
mπ

2
δ2 −

1

4
δ2θa −

Λ3
b

8v3
cos θa þ

v2

Λ2
: ðA9Þ

It is easy to see that the above equation has two solutions
close to θa ∼ π=2. As the Higgs vev only increases
incrementally with a small parameter δ, we find the relaxion
stopping point as

θa − π=2≡ δθ ¼
Λ3
b

8v3
þ δ2

4
∓ αδ; ðA10Þ

where α is some Oð1Þ number. The mass of relaxion at the
first minimum can be written as

m2
ϕ ¼ Λ3

bv
f2

× δ; ðA11Þ

significantly reduced by the small parameter δ compared to
the naive expected value.
Constraints: For a successful relaxation of the Higgs

mass we require the following conditions:

f ≳ Λ ≳ Λmin ¼ 4πv: ðA12Þ

Here we are considering scanning of the Higgs mass during
inflation. We require that a separate inflaton sector domi-
nates the energy of the Universe during inflation and the
classical evolution of the relaxion dominates over quantum
spreading during inflation. These two requirements lead,
respectively, to the constraints

3H2
IM

2
Pl ≳ Λ4 and ðΔϕÞcl ¼

gΛ3

3H2
I
≳HI

2π
; ðA13Þ

where HI is the Hubble scale during inflation.
We also want the relaxion to be cosmologically stable in

the first minima. This leads to the following constraint:

8π2

3
ðgΛ3fÞδ3 ≳H4

I : ðA14Þ

In the case of a QCD relaxion, the backreaction potential
depends on the temperature and thus, it is only significant
when HI < ΛQCD. In this section we only consider infla-
tionary based-relaxation of the Higgs mass with a back-
reaction potential which depends linearly on Higgs vev.
Now let us consider the back-reaction potential of our

interest as given in Eq. (3.3),

VbrðϕÞ ∼ −Λ03
QCDy

0
uv0 cosðθaÞð1 − ϵbγÞ

− Λ3
QCDyuv κ cosðNθaÞ: ðA15Þ

Note that, as discussed in the main text, the relaxation is
happening at the k ¼ 0 sector where all the quantities are
denoted by ðÞ0. We see that in Vbr the coefficient of the
cos θa term is responsible for relaxion whereas the coef-
ficient of the cosðNθaÞ term has a contribution independent
of the relaxing Higgs. To use the result of a previous
discussion, we can make the following replacements:

v → v0;

Λ3
b → Λ03

QCDy
0
uð1 − ϵbγÞ;

VeffðθaÞ → VeffðθaÞ − Λ3
QCDyuvκ cosðNθaÞ: ðA16Þ

In the limit, Λ3
QCDyuvκ ≪ Λ03

QCDy
0
uv0ð1 − ϵbγÞ, using the

above substitution, one obtains the relaxion stopping point
as θa − π=2 ¼ δθ where

δθ ¼
y0uΛ03

QCD

8v03
þ N2κyuΛ3

QCDv

y0uΛ03
QCDv

0 ∓ αδþOðδ2Þ: ðA17Þ

In the above equation we also use ð1 − ϵbγÞ ≃ 1. In the
main text, for all the purposes we set α ¼ 1. With the
definition of ϵb ¼ Λ3

QCDyu=ðΛ03
QCDy

0
uÞ and γ ¼ v=v0, we get

back Eq. (3.4).
Using the substitution (A16), we obtain the expression

for relaxion mass

m2
ϕ ¼ y0uΛ03

QCDv
0

f2
× δ ¼ yuΛ3

QCDv

f2
×

δ

ϵbγ
: ðA18Þ

All the constraints discussed before translate to this case
with proper substitution given in Eq. (A16). The additional
constraint in this scenario comes from the fact that, as we
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consider both QCD and QCD0 potential are temperature-
dependent, we need

HI < ΛQCD;Λ0
QCD: ðA19Þ

Written explicitly, Eq. (A12) becomes

f ≳ Λ≳ 4πv0: ðA20Þ

The form of Eqs. (A13) and (A14) do not change. However,
now one needs to replace

gΛ3f ≃ y0uðΛ0
QCDÞ3v0 ¼

Λ4
a

ϵbγ
: ðA21Þ

Recall we define Λa ¼ ðΛ3
QCDmuÞ1=4 ¼ ðΛ3

QCDyuvÞ1=4 in
the main text. Also, with the prime notation,

δ2 ¼ y0uðΛ0
QCDÞ3

v0Λ2
¼ Λ4

a

v2Λ2

γ

ϵb
: ðA22Þ

In our parameter estimation, the constraints arising from
a separate inflaton sector which dominates the energy of the
Universe during inflation, Eq. (A13) (left side), as well as
stability of the first minimum, Eq. (A14), were the most
important. To estimate this constraint (the blue lines in
Fig. 4), we used Eq. (A21) to fix gΛ3f, and Eq. (A13) (left
side) to fixHI; substituting both into Eq. (A14) and solving
for ϵb recovers Eq. (3.10).
It is straightforward to see that Eqs. (A13) (right side)

and (A19) are trivially satisfied. Observe from Eq. (A14)
that H4

I ≲ 8πΛ4
aδ

3=ð3ϵbγÞ; this is at most HI ∼ keV for the
largest δ values we achieve, which are Oð10−10Þ, and even
if ϵbγ → 1. Then Eq. (A13) (right side) implies
H3

I ≲ 2πΛ4
a=ð3ϵbγfÞ, which is satisfied even if f → MPl.

Thus, in our case the requirement of classical evolution of
the relaxion dominates over quantum spreading during
inflation, and provides a weaker constraint than the one
provide by the cosmological stability of the relaxion.

APPENDIX B: FULL LEADING ORDER AND
HIGHER HARMONIC CORRECTIONS

In this section we investigate the backreaction potential
in greater detail. The backreaction potential written in
Eq. (3.3) is

VbrðϕÞ ∼ −Λ03
QCDy

0
uv0 cos

�
ϕ

f

�
ð1 − ϵbγÞ

− Λ3
QCDyuvκ cos

�
Nϕ

f

�
; ðB1Þ

which is only the leading order approximation of the full
QCD-axion potential. Next we include the next-to-leading
order corrections to the axion potential in the hidden sector

(k ¼ 0 sector). We will consider below two possibilities for
the relation between the up and down quark masses. The
first is the isospin symmetric case, y0u ¼ y0d ¼ y0q and
further below we shall comment on the case where yd ¼
2y0u (both can be achieved in limit of flavor models).
For the y0u ¼ y0d ¼ y0q case, including the NLO terms, the

potential of the k ¼ 0 sector can be written as

VQCD0 ¼ −2Λ03
QCDy

0
qv0

�
cos

θa
2
þ y0qv0

Λ0
QCD

R cos θa

�
;

¼ −Λ3
bv

0 cos
θa
2
− α2 cos θa; ðB2Þ

where we define

Λ3
b ¼ 2y0qΛ03

QCD; α2 ¼ 2y0q2Λ02
QCDR; ðB3Þ

and where R ∼Oð10−3Þ denotes the NLO low-energy
efficient factors (see Ref. [77] and references therein).
The total backreaction factor can be written as

VbrðϕÞ ¼ VQCD0 þ Λ3
QCDyuv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cosðθaÞ

q
− Λ3

QCDyuvκ cos ðNθaÞ: ðB4Þ

Note that theNLOcorrection to the SMQCD-axion potential
is suppressed by a factor of order OðRmu;d=ΛQCDÞ ∼
Oð10−5 − 10−4Þ compared to the LO SM term, and thus
have been neglected here. As before, the full potential is
obtained by adding in the scanning and Higgs-dependent
potentials,

Vr ¼ ðΛ2 − gΛϕÞjHj2 þ jHj4 − gΛ3ϕ; ðB5Þ
where we set λ ¼ 1 as before.
To determine the relaxation of v0, one finds the relaxion-

dependent vev using ∂V=∂jHj ¼ 0, which implies

v02ðθaÞ ¼
v02

2

�
−
Λ2

v02
þ gΛfθa

v02
þ Λ3

b

2v03
cos

θa
2
þ α2

v02
cos θa

�
:

ðB6Þ
The perturbative expansion is valid near the vev as long as

α ≪ Λb ≪ v0: ðB7Þ

Expanding the effective potential at v0ðθaÞ, we obtain

VeffðθaÞ¼−gΛ3fθa− ðv02ðθaÞÞ2−
Λ3
bv

0

2
cos

θa
2

þΛ3
QCDyuv

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2þ2zcosðθÞ

q
− κcosðNθaÞ

i
:

The first relaxion minima can be found when
V 0
effðθaÞ ¼ 0, and can be written as
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sin θa=2
2

�
1þ v02

v02ðθaÞ
�
¼ v02

Λ2
þ 2α2v0

Λ3
b

sin θa þ
v02

v02ðθaÞ
�
1 − Nκϵbγ cosðNθaÞ þ

ϵbγz cos θaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cosðθÞ

p �
;

where ϵb; γ ≪ 1 were defined in Eq. (3.2).
Expanding near the vev, it has been shown that one can write [27]

v02ðθaÞ
v02

≃
�
1þ βδ2 þ δ2

4
θa þ

Λ3
b

4v03
cos

θa
2
−

α2

2v02
cos θa

�

where we neglected terms of the order of Oðα2Λ3
b=v

05Þ and β ∈ ð0; 1Þ denotes some Oð1Þ number.
Plugging everything back, we get

sin
θa
2
≃ 1 −

β

2
δ2 −

δ2

8
θa −

Λ3
b

8v03
cos

θa
2
þ α2

2v02
cos θa − Nκϵbγ sinðNθaÞ þ

ϵbγz sin θaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cos θa

p þ v02

Λ2
þ 2α2v0

Λ3
b

sin θa:

The above equation admits a solution when θa ¼ π − δθ with

δθ ≃
Λ3
b

4v03
þ N2κϵbγ ∓ βδþ z

1 − z
ϵbγ þ

2α2v0

Λ3
b

: ðB8Þ

The upshot is that we need

ϵ2 ¼ y0uΛ03
QCD

v03
≲ θCP; ðB9Þ

N2κϵbγ ¼
N2κyuΛ3

QCDv

y0qΛ03
QCDv

0 ≲ θCP; ðB10Þ

δ2 ¼ y0qΛ03
QCD

v0Λ2
≲ θ2CP; ðB11Þ

z
1 − z

ϵbγ ¼
z

1 − z

yuΛ3
QCDv

y0qΛ03
QCDv

0 ≲ θCP; ðB12Þ

R
m0

q

Λ0
QCD

≲ θCP: ðB13Þ

Observe that the first three constraints are similar to the
ones discussed for the toy model equations (3.7)–(3.9)
coming from the relaxation requirement and the ZN-
symmetric part of the backreaction potential. As discussed
before, both the SM QCD potential and the NLO con-
tributions of the QCD0 potential shift the relaxion stopping
point and these two constraints are shown by Eqs. (B12)
and (B13), respectively. Note also that Eq. (B10) provides a
weaker constraint than Eq. (B12) for any N ≥ 2.
Saturating Eq. (B12) and substituting into Eq. (B11)

gives

Λ≳
�

z
1 − z

1

θ3CP

Λ4
a

v02

�
1=2

: ðB14Þ

Saturating (B12) and substituting this into the relaxion
constraint of (3.10) gives

Λ≲
�
24π2

�
z

ð1 − zÞθCP

�
5=2

�
Λ10
a M4

Pl

v03

��
1=11

: ðB15Þ

Combining Eqs. (B14) and (B15) gives

v0 ≳
��

z
1 − z

�
3 1

θ14CP

Λ12
a

24π2M4
Pl

�
1=8

: ðB16Þ

All the constraints can be satisfied for

θCP ¼ 10−9;
v
v0

¼ 4 × 10−3;
ΛQCD

Λ0
QCD

¼ 7 × 10−4;

where we saturated the inequalities of Eqs. (B16)–(3.14). If
we vary y0qv0Λ03

QCD, then we can get v0 ∼ 20 TeV.
An even smaller v0 ∼ TeV − 10 TeV can be achieved if

the QCD0 sector has some flavor symmetry which protects
the ratio of the hidden quark masses to be 1=2. In this case,
by repeating the same procedure as above, one obtains the
stopping point be close to 2π=3 in the hidden sector. The
LO SM correction to the stopping point can be calculated as
for θa ¼ 2π=3 − δθ

ϵbγz sin θaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 þ 2z cos θa

p ≃ ϵbγδθ
zð2− 5zþ 2z2Þ
4ð1− zþ z2Þ3=2

¼ ϵbγδθ

8>><
>>:

8× 10−3 for z ¼ 0.485

2× 10−3 for z ¼ 0.504

1.9× 10−2 for z ¼ 0.466

ðB17Þ
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where z is the SM ratio of the up and the down quark
masses. The values above are the central value (z ¼ 0.485)
and 2σ (z ¼ 0.504, 0.466) results reported in [15]. Then the
constraint Eq. (B12) changes to

z
1 − z

yuΛ3
QCDv

y0qΛ03
QCDv

0 ≲ θCP → 2Cz

yuΛ3
QCDv

y0qΛ03
QCDv

0 ≲ θCP; ðB18Þ

with Cz ¼ ð0.008; 0.002; 0.019Þ. As such, one can use the
substitution z=ð1 − zÞ → 2Cz in the results above to deter-
mine the parameter range relevant for this case.
By saturating Eqs. (B13) and (3.10) we find that all the

constraints are satisfied for

θCP ¼ 10−9; z ¼ 0.485; v0 ¼ 9 TeV

θCP ¼ 10−9; z ¼ 0.504; v0 ¼ 6 TeV

θCP ¼ 10−9; z ¼ 0.466; v0 ¼ 13 TeV: ðB19Þ

APPENDIX C: GENERATING LARGE
HIERARCHY BETWEEN THE CONFINEMENT

SCALES OF THE HIDDEN AND VISIBLE
SECTORS

In this section we discuss how to generate a large
hierarchy between the confinement scales of the hidden
sector and the SM. To achieve this, we add additional ΔNf
number of heavy vectorlike fermions with mass m0

NP and
mNP in the k ¼ 0 sector and the SM respectively. Adding
additional fermions with different masses requires breaking
of the ZN symmetry. Thus, in order for the ZN symmetry to
be realized for the axion, we require

m0
NP; mNP ≲ f; ðC1Þ

where f is the Peccei-Quinn symmetry-breaking scale.
Let us first consider the k ¼ 0 (hidden) sector. With the

additional vectorlike fermions whose mass is larger than
the hidden top quark mass, m0

t, we consider the running of
αs. For the energy scale μ, mt0 ≲ μ ≲m0

NP, we can write at
the one-loop order,

2π

αsðm0
t þ ϵÞ ¼

2π

αsðfÞ
− bðnf þ ΔnfÞ ln

f
m0

t

−
2Δnf
3

ln
m0

NP

m0
t
;

with bðnÞ ¼ 11 − 2n=3. Now for a scale Λ > m0
u; m0

d, we
can write

2π

αsðΛÞ
¼ 2π

αsðm0
tÞ
− bðnfÞ ln

m0
t

Λ
−
8

3
ln
v0

Λ

¼ 2π

αsðfÞ
− bðnf þ ΔnfÞ ln

f
m0

t
−
2Δnf
3

ln
m0

NP

m0
t

− bðnfÞ ln
mt

Λ
−
8

3
ln
v0

Λ
: ðC2Þ

Thus, one obtains the confinement scale, Λ0
IR when

α−1s ðΛ0
IRÞ → 0 as

Λ0
IR ∼ f

�
v0

f

�
α1
�
m0

NP

f

�
α2
exp½−2π=αsðfÞ�; ðC3Þ

with

α1 ¼
8
3

bð6Þ þ 8
3

≃ 0.28; α2 ¼
2Δnf
3

bð6Þ þ 8
3

¼ 2Δnf
29

: ðC4Þ

We repeat the same exercise for the SM sector and obtain
the same result with v0 → v and m0

NP → mNP. We also
assume mNP > mt where mt ∼ 175 GeV is the SM top
quark mass. So the ratio of the confinement scale can be
obtained as

Λ0
QCD

ΛQCD
∼
Λ0
IR

ΛIR
¼

�
v0

v

�
0.28

�
m0

NP

mNP

�
2Δnf=29

; ðC5Þ

where Δnf is the number of extra vectorlike fermions that
we are adding. For, Δnf ¼ 4, mNP=m0

NP ¼ 10−9, v=v0 ¼
10−3 one obtains

ΛQCD

Λ0
QCD

∼
ΛIR

Λ0
IR

¼ 4.8 × 10−4: ðC6Þ

The current bound on the vectorlike fermion mass scale
mNP is at the level of 1–2 TeV, though this is somewhat
model dependent (see, e.g., [97]).
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