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Large classes of nonsupersymmetric string models equipped with standard-model features have been
constructed, but very little of their phenomenology is known. Interestingly, their spectra exhibit scalar fields
whose only couplings to observed particles is through a multi-Higgs sector. On the other hand, bottom-up
models with Higgs portals offer still an acceptable framework for dark matter. We explore realizations of
such Higgs portals in promising heterotic orbifold models without supersymmetry. We find that a sample
model includes Higgs vacua that are stable at one-loop, in which the Higgs sector is compatible with
particle-physics observations and a scalar can account for the measured dark matter abundance. In such
vacua, interesting constraints on the masses of the dark matter candidate and the heavy Higgs sector are
uncovered. These compelling results are not limited to string models, as they can be embedded in similarly
motivated bottom-up schemes.
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I. INTRODUCTION

In the pursuit for connecting string theory with obser-
vations, the absence of low-energy supersymmetry (SUSY)
motivates the exploration of four-dimensional (4D) non-
SUSY string constructions. These can arise from the ten-
dimensional (10D) tachyon-free heterotic string theory
with no spacetime SUSY and gauge group SOð16Þ ×
SOð16Þ [1–3]. Efforts along these lines, include free
fermionic constructions [4–8], Calabi-Yau [9] and coor-
dinate-dependent compactifications [10,11], non-SUSY
vacua of Gepner models [12,13], and Abelian orbifold
compactifications of the heterotic string [14–17].
More generally, heterotic orbifolds have shown to

lead to phenomenologically viable models both with
SUSY [18–31], and without SUSY [32]. In these works,
it is shown that non-SUSY heterotic orbifolds yield large
classes of models with the gauge group and matter content
of the standard model (SM), including tachyon freedom at
perturbative level [33]. (Open questions in this and similar

kinds of models have been discussed in [10–13,34–38].)
This naturally motivates phenomenological studies of
non-SUSY heterotic orbifold models. One finds, among
other features, that they exhibit couplings between multiple
Higgs fields and some complex scalars that are neutral
under the SM gauge group. Interestingly, these ingredients
are the cornerstone of so-called Higgs portals [39].
Higgs portals are extensions of the SM in which one

additional field can account for the origin of dark matter
(DM) [40–44] and alleviate the stability of the Higgs
vacuum (see, e.g., [45]), among other cosmological fea-
tures (see, e.g., [46] for a review of Higgs portals in
cosmology). It is known that these scenarios are viable
candidates to describe the dynamics of DM and observable
physics. Moreover, precision or alternative analyses of
simple Higgs portals for DM seem to suggest that the
strongest observational constraints might be relaxed by
additional considerations [47–49]. In this sense, stringent
observational bounds on these frameworks are untightened
in the presence of two or more Higgs doublets [50,51]. This
implies that non-SUSY heterotic orbifolds might be nat-
urally equipped with successful DM phenomenology based
on Higgs portals.
From a bottom-up perspective, multi-Higgs models are

known to exhibit phenomenologically appealing features
for particle physics too. In particular, two-Higgs-doublet
models (2HDM) exhibit many interesting properties [52]
leading to successful compatibility with particle physics,
see, e.g., [53]. Some 2HDM with Higgs-portal DM have
been studied [54,55], where a scalar DM candidate seems
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to be preferred [56] and some extant particle-physics
anomalies can be explained [57]. Introducing a complex
scalar in this case leads to Higgs portals satisfying DM,
flavor and collider constraints [58]. The complexity of the
model and its phenomenology grows very fast in the
general case of N > 2 Higgs doublets, but it can still yield
results that can be confronted with observations, see,
e.g., [59–64] and references therein.
In this work, we aim at providing a proof of principle of

the existence of satisfactory Higgs-portal DM models
arising from non-SUSY heterotic orbifolds. We shall study
whether explicit 4D effective field theories arising from
Z2 × Z4 heterotic orbifolds endowed with basic properties
of the SM, can also yield Higgs-portal scenarios, where
(i) the relic density of a DM candidate complies with
current observational bounds [65], (ii) the Higgs vacuum is
stable, and (iii) it produces the right values for Higgs mass
and vacuum expectation value (VEV). If fulfilled, these
conditions should also lead to some predictions on the
mass of the DM candidate and the possible heavy Higgs
spectrum.
The content of this paper is organized as follows. In

order to fix our notation and set the general aspects of our
framework, we provide first a brief review of the relevant
features of orbifold compactifications of the non-SUSY
heterotic string in Sec. II and Higgs portal DM in Sec. III.
Then, we study the general features of sample string-
derived models with Higgs portals and six (Sec. IV) and
two (Sec. V) Higgs doublets. With the help of numeric
algorithms, we analyze the phenomenology of the sample
stringy 2HDM in Sec. VI, which then leads to our
conclusions in Sec. VII. We devote the appendices to
the details of the matter spectra of our models, and some
relevant computations.

II. NONSUPERSYMMETRIC ORBIFOLD
COMPACTIFICATIONS

Let us now spend some words on the framework that
represents the source of the models we study in this work.
A possible origin of (multi-)Higgs portals for scalar DM

is the 10D nonsupersymmetric heterotic string with gauge
group SOð16Þ × SOð16Þ [2,3] compactified on Abelian
toroidal orbifolds. Its massless, tachyon and anomaly-free
spectrum consists of 240 gauge bosons, 256 spinors and
256 cospinors. In addition, the massless gravity sector
includes the dilaton, the graviton, and the Kalb-Ramond
field.
In order to make contact with our 4D Universe, we can

compactify six spatial dimensions of this theory on a 6D
toroidal orbifold. These orbifolds can be defined as the
quotient of a 6D torus divided by a set of its isometries or,
equivalently, as the quotient of R6 and a space group S,
which is generated by the elements of a rotational point
group P ⊂ Oð6Þ, and some translations μ. Although the
absence of supersymmetry allows for a wider class of

orbifold compactifications,1 for simplicity we consider
here models arising only from the 138 Abelian geometries
used in our recent work [33], based on the classification
of Ref. [66]. In the notation of this reference, orbifold
geometries (i.e., space groups S) are labeled by the ZN or
ZN × ZM point group followed by two numbers which
label a compatible toroidal lattice, and a set of trans-
lations μ.
Modular invariance of string theory demands embedding

S into the 16D gauge degrees of freedom, which also
guarantees anomaly freedom of the resulting effective
theory in 4D. In orbifolds with ZN × ZM point group,
the embedding can be parametrized by eight 16D vectors:
two shift vectors V1 and V2 and six discrete Wilson lines
Wα, α ¼ 1;…; 6. These are subject to conditions to ensure
modular invariance and compatibility with the geometry
associated with the space group [32,67]. Once a space
group and its gauge embedding are chosen, there are
standard techniques used to arrive at their associated
low-energy effective 4D field theory, with a specific gauge
group G4D and a massless spectrum [32,68,69].
We are interested in SM-like models, which we define

by the following properties: (i) the SM gauge group
GSM ≔ SUð3Þc × SUð2ÞL × Uð1ÞY is included in G4D ¼
GSM × G0 × ½Uð1Þ0�n, where G0 has rank 12 − n and is a
product of non-Abelian gauge factors, and (ii) the massless
spectrum consists of the SM particles plus a number of
several kinds of exotic vectorlike fermions and scalars.
Modular invariance guarantees that at most one Uð1Þ0
exhibits chiral anomalies [70,71], which are canceled
by the Green-Schwarz mechanism [72]. Once this
(pseudo)anomalous Uð1Þ0 is identified, we build all other
gauge Abelian symmetries to be orthogonal to it and hence
nonanomalous. In particular, in our models the Uð1ÞY
hypercharge is nonanomalous and chosen to be compatible
with SU(5) grand unification, which can be achieved by the
proper normalization of the hypercharge generator, as was
explained in detail long ago [73] and has been extensively
used in the construction of promising heterotic orbifold
models ever since [20,22,24,27,33,74–76]. (For additional
details, see our example in appendix A 1.)
Recently, we performed a large search of SM-like

models from the SOð16Þ × SOð16Þ heterotic string by
using our own non-SUSY version of the orbifolder.
One of the main results in that work was the identification
of SM-like models that exhibit either no fermions or scalars
in the exotic sector, as reported in [ [33], Table 8]. We called
such promising constructions almost SM models. In those
models, which always include harmless scalar SM singlets,
if they lack exotic fermions, some scalar leptoquarks
appear; further, models without exotic scalars include extra
vectorlike pairs of lepton doublets and down-type quarks.
In 505 out of the 547 models identified as almost SM the

1There are 7103 admissible choices of P, see [ [66], Sec. 5].
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minimal number of Higgses is six. Outside the set of almost
SM, i.e., including additional exotic states, there do exist
non-SUSY compactifications with less Higgs doublets. For
example, there are 3,192 models with two Higgses, and
only 13 models with one Higgs. Due to the large number of
exotics in the models with one Higgs doublet, they are less
phenomenologically appealing than the non-SUSYorbifold
models with two or more Higgs fields.
For our study of DM Higgs portals arising from non-

SUSY heterotic orbifolds, we take here models based on
the space group Z2 × Z4 (2, 4). We choose this geometry
only because most of the phenomenologically viable
models arise from the point group Z2 × Z4 and the
geometry (2, 4) is especially fruitful, see [ [33], Table 1].
In Sec. IV we shall discuss the properties of one almost SM
based on this geometry and endowed with six Higgs
doublets. As we will see, fully analyzing such a model
will be too complicated, although some interesting features
can be captured under certain simplifications. Hence, it is
worthwhile to also choose a sample model based on the
same geometry, but that includes two Higgs doublets. As
we will see in Sec. V, the picked model exhibits vectorlike
scalar leptoquarks and down-type quarks.

III. HIGGS PORTALS

In order to fix our notation and provide some of the
elements used in our discussion, let us describe the main
features of Higgs portals in the context of DM models.
The simplest scenario of Higgs portals includes a new

scalar field S, which couples to a Higgs doublet only
quadratically. If S is real, it requires the introduction of an
ad hoc Z2 symmetry, under which S is odd, to stabilize the
vacuum while guaranteeing the portal. Alternatively, S can
be a complex scalar. Whereas this adds up a new degree of
freedom, note that all matter fields emerging from string
theories are complex, so this is the only scheme we realize
in string-derived constructions.
The potential of the SM model (or a SM-like model) that

includes the field S can be split as

V ¼ VY þ Vϕ þ VS þ VϕS; ð1Þ

where VY includes all Yukawa couplings, Vϕ contains all
Higgs field(s) self-interactions, VS depends only on the DM
candidate S, and VϕS provides the interactions between S
and the Higgs field(s) that determine the Higgs portal. In
the simplest case, with only one Higgs doublet ϕ, the
renormalizable S-dependent contributions to the SM poten-
tial take the form

VSðSÞ ¼ μ2SjSj2 þ λSðjSj2Þ2; ð2aÞ

VϕSðϕ; SÞ ¼ λϕSjϕj2jSj2; ð2bÞ

where jSj2 ≔ S�S and jϕj2 ≔ ϕ†ϕ, as usual. In general, we
take μS; λS > 0 in VS to ensure that S does not develop a
vacuum expectation value (VEV) and, hence, remains a
DM candidate as it does not mix with the Higgs. Note that
VS þ VϕS depends only on the norm of S and not on its
phase, as if S was charged under an additional U(1)
symmetry. In the models we study, this is indeed the case,
as we shall see in Secs. IV and V. However, such
symmetries are eventually broken and the pseudoscalar
associated with the phase of S develops some large mass
and can contribute to DM (see, e.g., [77]). For the sake of
simplicity, we assume here that the mass of this field is too
large (of order MPl, the scale of U(1) breakdown) and thus
decoupled from observations. Hence, our scenario is
effectively equivalent to a Higgs portal with a real scalar
DM candidate given by jSj.
There exist some models arising from string theory

endowed with only one Higgs doublet, but they typically
include additional exotic matter that makes them less
appealing [ [33], Table 8]. So, we are compelled to study
models with a larger number of Higgs doublets. In such a
case, the Higgs-portal potential reads in general

VϕSðϕi; SÞ ¼
X
i

λiSjϕij2jSj2 þ
X
i≠j

λijSϕ
†
iϕjjSj2; ð3Þ

where i, j label the Higgs doublets and jϕij2 ≔ ϕ†
iϕi. In the

dynamics of the DM candidate S, we must still consider
(2a). We assume that λijS ¼ λjiS, and that the couplings in
Eqs. (2) and (3) are real.
The associated freeze-out relic density ΩDM of jSj can

be directly computed for models based on Higgs portals.
One important assumption in those computations is that
DM thermalizes, which is only possible for large reheating
temperatures. One can verify that in these scenarios
ΩDMh2 ∝ hσvri−1. The thermally-averaged cross section
hσvri is determined by the DM relative velocity vr and the
annihilation cross section σ of DM scalars to SM fermions,
via the Higgs portal. From Eq. (3) it is clear that σ is in
general controlled by the product of the couplings λiS; λijS
and the Higgs VEV(s). Even though analytic expression of
ΩDM can be obtained at tree level in some examples, in
general cases and at 1-loop it becomes challenging. Instead,
one can use the program micrOMEGAs[78], which computes
the DM relic density at tree and 1-loop level and contrasts it
with observations for models defined in a specific format
that can be obtained from other computational tools.
In the standard calculation of the relic density only the

self-coupling μS (and other couplings associated with the
DM-candidate mass) in Eq. (2a) is relevant. However,
self-interactions lead to the self-thermalization of the dark
sector. If thermodynamic equilibrium is not achieved or
maintained within the dark sector, the standard way to
calculate the DM relic density is not valid and other
couplings may turn to be relevant, see, e.g., [79].

HIGGS-PORTAL DARK MATTER FROM NONSUPERSYMMETRIC … PHYS. REV. D 107, 115007 (2023)

115007-3



We assume here the simplest scenario, so that λS cannot be
constrained by DM data, but only by perturbativity bounds.

IV. MULTI-HIGGS PORTALS FROM STRING
THEORY

In this section we consider a non-SUSY model with six
Higgs doublets in which DM can arise from a scalar Higgs
portal (similar bottom-up DM approaches may not require
extra fields [80]). As mentioned earlier, models with six
Higgs fields are abundant in string compactifications with
no SUSY. This leads to a scenario with a very rich Higgs
sector with many still missing charged and uncharged
Higgs particles, and complicated mixing matrices. Clearly,
this also increases the complexity of Higgs portals with the

Higgs sector, making it too challenging to study in detail
the model. Nonetheless, we discuss it as a means (a) to
observe the generic properties of Higgs portals in these
models, and (b) to motivate the discussion of stringy
models with a smaller Higgs sector, which nevertheless
share the interesting properties of their more generic partner
models with six Higgses. Many features discussed here will
be also relevant in our simpler model with two Higgses
in Sec. V.
We choose the model arising from compactifying the

SOð16Þ × SOð16Þ heterotic string on the Z2 × Z4ð2; 4Þ
orbifold geometry (see [66] for details of the geometry),
whose gauge embedding is defined by the shift vectors and
Wilson lines

V1 ¼
�
0; 0; 0; 0; 0;

1

2
;
1

2
; 2

�
;

�
0; 0; 0; 0;

1

2
;
1

2
;
1

2
;
1

2

�
; ð4aÞ

V2 ¼
�
−
3

8
;−

1

8
;−

1

8
;−

1

8
;
3

8
;
1

8
;
9

8
;−

3

8

�
;

�
−
5

8
;−

1

8
;
1

8
;
1

8
;−

1

8
;−

1

8
;
1

8
;
5

8

�
; ð4bÞ

W3 ¼ W4 ¼ W6 ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ;
�
−
1

2
; 0;−

3

2
; 0;−

3

2
; 1;−1;

3

2

�
; ð4cÞ

W5 ¼
�
−
7

4
;−

1

4
;−

1

4
;
3

4
;
7

4
;−

3

4
;
9

4
;−

7

4

�
;

�
−
7

4
;
5

4
;−

5

4
;
9

4
;−

3

4
;
7

4
;
7

4
;
3

4

�
; ð4dÞ

and W1 ¼ W2 ¼ 0. The resulting 4D gauge group is

G4D ¼ GSM × G0 × ½Uð1Þ0�8; where G0 ¼ SUð3Þflavor × ½SUð2Þ × SUð2Þ�hidden ð5Þ

and one Uð1Þ0 is anomalous. Note that there is an additional
SU(3) gauge factor in G0 that acts as a flavor gauge
symmetry, as some of the quark and lepton fields as well
as the Higgs fields are charged under this symmetry. The
complete massless fermionic and scalar spectra are shown,
respectively, in Tables IV and V of appendix A. Table I
displays a summary of the spectrum of our model. We omit
here quantum numbers under the hidden gauge group, as
SM fields are not charged under it; we also avoid Uð1Þ0
charges for simplicity. In Table I and throughout this paper
we adopt the usual notation for fermions. In particular, L, R
denote left and right fermion projections, i.e., ψL;R ¼
PL;Rψ , where PL;R ¼ ð1 ∓ γ5Þ=2; further, ψ̄ ¼ ψ†γ0.
Before studying the Higgs portal, let us discuss some

aspects of the Yukawa sector of this model. We see that in
the fermion sector there are two (four) vectorlike pairs of
lepton doublets (down-quark singlets). These exotics can
be decoupled from low-energy physics if some SM singlets
si develop large VEVs and couplings of the type silL;jl

0
L;k

(sid̄L;jd0L;k) are admitted by all symmetries of the model.
This generates a large effective mass for these states. As an

example, let us analyze the masses of exotic lepton
doublets. Considering the invariant couplings arising from
the details shown in appendix A, the lowest-order mass
matrix for the leptonic sector is given by2

Ml ¼
�
0 0 0 c1 c2s�4
0 c3s15 c4s15 c5s�1 0

�
; ð6Þ

such that

l0Mllþ H:c: ⊂ L: ð7Þ

Here we defined l0 ≔
�
l0
L;1;l

0
L;2

�
and l ≔ ðlL;1;lL;21;

lL;22;lL;3;lL;4Þ⊺. The coefficients ci in Eq. (6) are some
coupling constants that are assumed to be real and of order
unity for simplicity. One can readily show thatMl has (full)
rank two. The two nontrivial eigenvalues of MlM

⊺
l

2In Table V there are six copies of s15. Here we display only
one of them.
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correspond to the squared masses of the massive exotic
lepton fields l0

L;i and the two massive linear combinations
of lL;i.
In order to have specific states and masses, we must

assume a sufficiently general and simple singlet VEV
configuration. We consider that all singlets have vanishing
VEVs except for

fs1; s2; s3; s4; s6; s11; s16; s18; s23g; ð8Þ

which develop real and nontrivial VEVs. At this point, this
vacuum configuration is just ad hoc.3 Yet note that the
precise values of the VEVs is irrelevant for our discussion.
To simplify the notation, we use just si for the VEVs hsii.
So, in Eq. (6) we take s15 → 0. Hence, we obtain the
squared masses

1

2

�
c21þ c25s

2
1þ c22s

2
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc21þ c25s

2
1þ c22s

2
4Þ2 − 4c22c

2
5s

2
1s

2
4

q �
;

ð9Þ

for two massive exotic lepton doublets, which turn out to be
built by linear combinations of lL;3 and lL;4 (see Table IV).
The massless physical lL eigenstates ofM

⊺
lMl are given by

lL;1, lL;21, and lL;22. We relabel the massless eigenstates as
lL;1 → lL;1, lL;21 → lL;2, and lL;22 → lL;3. The physical
down-quark mass eigenstates, labeled from now on as d̄L;1,
d̄L;2, and d̄L;3, are obtained analogously. For the details of
the corresponding computations, see appendix B.
Considering the charges of SM states given in

appendix A, one can easily build the potential of the
model. In particular, taking into account the symmetric
singlet arising from the contraction 3 ⊗ 3̄ under
SUð3Þflavor, we find that, at leading order, the Yukawa
potential of the physical states is given by

VY ⊃ Yi
e;1ēL;Iϕ

†
iIlL;1 þ Yi

e;2ēL;Iϕ
†
iIlL;2 þ Yi

e;3ēL;Iϕ
†
iIlL;3

þ Yi
ν;13ν̄

0
L;13IϕiIlL;2 þ Yi

ν;26ν̄
0
L;26IϕiIlL;3

þ Yi
uϵ

IJKūL;IϕiJqL;K þ Yi
d;1d̄L;1ϕ

†
iIqL;I

þ Yi
d;jd̄L;jϕ

†
iIqL;I þ H:c:; ð10Þ

where I, J, K ¼ 1, 2, 3 are SUð3Þflavor indices whereas
i ¼ 1, 2 runs over the multiplicity of the Higgs and j ¼ 2, 3
over the indices of down-quark fields. Further, ϵIJK is the
Levi-Civita symbol, and Yi

e;1 and Yi
d;1 are dimensionless

coefficients. Furthermore,

Yi
d;j ¼ ζid;js18s

�
6s

�
16; ð11aÞ

Yi
e;2 ¼ ζie;2s23s

�
11s

�
16 þ ζ̃ie;2s18s

�
6s

�
16 and Yi

e;3 ¼ ζie;3s4s18s
�
6;

ð11bÞ

with ζid;j; ζ
i
e;j, and ζ̃

i
e;2 constants. As usual, summation over

repeated indices in Eq. (10) is understood. Notice that we
allow for s23 ≠ 0, in order to have a tool that may explain
the observed mass differences between the down-quark
and charged lepton sectors. The leading-order Yukawa
potential (10) does not provide a complete framework for
flavor physics. In particular, it does not produce masses for
all quarks. However, higher-order couplings with singlets si
can yield the missing masses and possibly fit the flavor
data. Since our focus is on the scalar sector, hereafter only
the couplings to the heaviest generation of fermions are
considered relevant.

A. Higgs sector and Higgs portals

Let us now discuss some aspects of the scalar sector of
this model. Using the charges in Table V, we find that there

TABLE I. Summary of the massless spectrum of a nonsuper-
symmetric string model with 6 Higgses. We display the quantum
numbers with respect to the gauge factors GSM × SUð3Þflavor,
where the hypercharge is indicated as subindex. The complete
spectrum is shown in Table IVand Vof appendix A, for fermions
and scalars respectively. Note that the two Higgs multiplets are
also charged under SUð3Þflavor, leading to a total of 6 Higgs
doublets. The multiplicity of some observable fermions is also
determined by this symmetry. L and R denote left and right
fermion projections and a bar over a fermion indicates the Dirac
conjugate. It is easy to verify that the model is free of chiral gauge
anomalies, as expected [70,71].

Number Fermionic irrep. Label

5 ð1; 2; 1Þ−1=2 lL;i

2 ð1; 2; 1Þ1=2 l0
L;i

1 ð1; 1; 3Þ1 ēL
1 ð3; 2; 3Þ1=6 qL
1 ð3̄; 1; 3Þ−2=3 ūL
7 ð3̄; 1; 1Þ1=3 d̄L;i
4 ð3; 1; 1Þ−1=3 d0L;i
69 ð1; 1; 1Þ0 νR;i
12 ð1; 1; 3̄Þ0 ν0R;i
2 ð1; 1; 3Þ0 ν00R;i

Number Scalar irrep. Label

2 ð1; 2; 3Þ1=2 ϕi
1 ð1; 1; 1Þ0 S
51 ð1; 1; 1Þ0 si
8 ð1; 1; 3Þ0 s0i

3Fixing these (and other) VEVs would require to solve the
longstanding question of the dynamics of all moduli (including
these singlets) in string model building, which is not the goal of
this work. However, due to the various charges of si (see
Table V), these fields develop a perturbative and nonperturbative
potential of their own, which has first to be fully determined and
then minimized.
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are singlets that satisfy the conditions of required by DM
candidates in Higgs-portal scenarios, as discussed in
Sec. III. For simplicity, we consider only the scalar field
S of Table V. Note that s10 has identical quantum numbers
and is thus, in principle, a second DM candidate. In the
spirit of [58], we ignore this possibility here. The Higgs-
portal interactions of S and the Higgs fields ϕi, i ¼ 1, 2, are
given at leading order, as in Eq. (3), by

VϕSðϕ1;ϕ2; SÞ ¼ λ1Sjϕ1j2jSj2 þ λ2Sjϕ2j2jSj2

þ
h
λ12Sðϕ†

1ϕ2ÞjSj2 þ H:c:
i
; ð12Þ

where ϕ†
iϕj ¼ ϕ†

i;Iϕj;I, with summation over I ¼ 1, 2, 3
implied.
Since we have six Higgs fields due to their trans-

formation under SUð3Þflavor, after electroweak symmetry
breakdown, besides the lightest (already) observed Higgs
boson and the three degrees of freedom that are “eaten up”
by the gauge bosons, our model includes 20 additional
effective degrees of freedom in the Higgs sector. Although
in principle the number of free parameters due such large
Higgs sector can be very large, the gauge flavor symmetry
reduces it. The self-interactions of the Higgs sector are
given at leading order by

Vϕðϕ1;ϕ2Þ ¼ μ211jϕ1j2 þ μ222jϕ2j2 þ λ1jϕ1j4 þ λ2jϕ2j4

þ λ12ϕ
†
1ϕ1ϕ

†
2ϕ2 þ

h
μ212ϕ

†
1ϕ2 þ λ5ðϕ†

2ϕ1Þ2

þ λ6ðϕ†
2ϕ1Þjϕ1j2 þ λ7ðϕ†

2ϕ1Þjϕ2j2 þ H:c:
i
:

ð13Þ

To express Vϕ in terms of the SUð3Þflavor components, we
must determine the two singlets arising from the product

ð3 ⊗ 3 ⊗ 3̄ ⊗ 3̄Þ1 ¼ ð3̄ ⊗ 3Þ1 ⊕ ð6 ⊗ 6̄Þ1 ð14Þ

for the quartic terms in Eq. (13). For all these terms but
jϕ1j2jϕ2j2 one of the singlets vanishes. In the exceptional
case the invariant products are proportional to (see, e.g., [81])

1ffiffiffi
2

p
�
ϕ†
1Iϕ1Iϕ

†
2Jϕ2J − ϕ†

1Iϕ2Iϕ
†
2Jϕ1J

�
and

1

2

�
ϕ†
1Iϕ1Iϕ

†
2Jϕ2J þ ϕ†

1Iϕ2Iϕ
†
2Jϕ1J

�
: ð15Þ

Hence, the terms in the potential (13) are explicitly given
by (up to some factors that are absorbed in the coupling
parameters)

Vϕðϕ1;ϕ2Þ ¼ μ211jϕ1Ij2 þ μ222jϕ2Ij2 þ λ1jϕ1Ij2jϕ1Jj2 þ λ2jϕ2Ij2jϕ2Jj2 þ λ3jϕ1Ij2jϕ2Jj2 þ λ4ϕ
†
1Iϕ2Iϕ

†
2Jϕ1J

þ
h
μ212ϕ

†
1Iϕ2I þ λ5ϕ

†
2Iϕ1Iϕ

†
2Jϕ1J þ λ6ϕ

†
2Iϕ1Ijϕ1Jj2 þ λ7ϕ

†
2Iϕ1Ijϕ2Jj2 þ H:c:

i
: ð16Þ

Here, we have defined jϕiIj2 ≔ ϕ†
iIϕiI , with fixed i ¼ 1, 2,

and summation over I ¼ 1, 2, 3 implied. We also defined
for future convenience λ3 ≔

λ12
2
ð1þ ffiffiffi

2
p Þ and λ4 ≔

λ12
2
ð1 − ffiffiffi

2
p Þ. Notice that the Hermicity of the potential

implies μ211 ¼ ðμ211Þ�, μ222 ¼ ðμ222Þ�, λ1 ¼ λ�1, λ2 ¼ λ�2, and
λ12 ¼ λ�12. There are thus five real and four complex
parameters, hence altogether 13 parameters in the Higgs
sector. Note that demanding CP conservation, as we will do
henceforth, implies that the four complex parameters also
become real, reducing the counting to nine real parameters
in this sector.
To discuss some aspects of the electroweak symmetry

breakdown in this model, recall that all ϕiI are doublets of
SUð2ÞL. Following the standard convention Q ¼ Y þ T3,
we can express them as

ϕiI ¼
�
ϕþ
iI

ϕ0
iI

�
; ð17Þ

where only the uncharged components acquire VEVs viI.
Close to the vacua defined by the VEVs, the resulting
Higgs perturbations can be parametrized by

ϕ1I →

 
ϕþ
1I

1ffiffi
2

p ðv1I þ σ1IÞ

!
and ϕ2I →

 
ϕþ
2I

1ffiffi
2

p ðv2I þ σ2IÞ

!
:

ð18Þ

Hence, in the Higgs vacuumwe naturally obtain the tadpole
contributions

Vϕðσ1I; σ2IÞ ⊃
1

2
ðv1Iζ þ v2IγÞσ1I þ

1

2
ðv1Iγ þ v2IκÞσ2I;

ð19Þ

where we defined

ζ ≔ μ211 þ λ1v1Jv1J þ
1

2
λ3v2Jv2J þ λ6v1Jv2J; ð20aÞ

γ ≔ μ212 þ
1

2
λ6v1Jv1J þ

1

2
λ7v2Jv2J þ

1

2
ðλ4 þ 2λ5Þv1Jv2J;

ð20bÞ

κ ≔ μ222 þ
1

2
λ3v1Jv1J þ λ2v2Jv2J þ λ7v1Jv2J: ð20cÞ
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Note that λ3 and λ4 are not independent here. Assuming
linear independence of the components of the fields σ1 and
σ2 leads to the tadpole-cancellation conditions4

v1Iζ þ v2Iγ ¼! 0 and v1Iγ þ v2Iκ ¼! 0 for I ¼ 1; 2; 3:

ð21Þ

Since further explicit computations can become insur-
mountable, we make a number of strong ad hoc simplifying
assumptions. We will work in the so-called Higgs basis,5

where v2I ¼ 0 for I ¼ 1, 2, 3. In addition, we impose
the hierarchy v11 ≫ v12 ≫ v13, by introducing the new
parameter ϵ ≪ 1, such that ϵv11 ¼ v12, ϵv12 ¼ v13 and
ϵ2 ¼ v13=v11 ∼ 0. A similar hierarchy has been studied
in [62,82] in models with three Higgs doublets. Our last
simplification is to assume that v1I are real as the complex
phase of each VEV can be absorbed by the phase of the
uncharged fields.
With these assumptions, our discussion simplifies

somewhat. In particular, in the Higgs basis, the tadpole-
cancellation conditions (21) become

ζ ¼ μ211 þ λ1v1Jv1J ¼! 0 and γ ¼ 2μ212 þ λ6v1Jv1J ¼! 0;

ð22Þ

which allow for simple restricting relations among some of
the Higgs parameters and the remaining VEVs.
To proceed further, we will expand each uncharged

scalar field in its real and imaginary parts corresponding
to real scalar fields, e.g., σiI ¼ ρiI þ iηiI. Under our
assumptions, the resulting 6 × 6 symmetric mass matrix
for ðρ11; ρ12; ρ13; ρ21; ρ22; ρ23Þ⊺ takes the form

M2
ρ ¼

0
BBBBBBBB@

Ω1 ϵΩ1 0 P ϵP 0

ϵΩ1 0 0 ϵP 0 0

0 0 0 0 0 0

P ϵP 0 Ω2 þ ξ=2 ϵΩ2 0

ϵP 0 0 ϵΩ2 ξ=2 0

0 0 0 0 0 ξ=2

1
CCCCCCCCA
; ð23Þ

where the coefficients are given in Eq. (C3) of our
appendix C. The squared eigenmasses are

m2
h;H ¼ 1

2

�
2Ω1 þ 2Ω2 þ ξ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4PÞ2 þ Ω̃2

q �
;

m2
Gi

¼ 0; m2
Di

¼ ξ; ð24Þ

with i ¼ 1, 2 and Ω̃ ≔ 2ðΩ2 −Ω1Þ þ ξ. The states in
Eq. (24) correspond to the four massive Higgs states
h;H;D1;2 and two massless Goldstones G1;2. The lightest
eigenstate h is identified with the observable Higgs boson,
whose mass is constrained to bemh¼125.25ð17ÞGeV [83].
H and the degenerate states D1;2 are heavier Higgs fields,
which have not been detected yet. Hence, their masses are
considered predictions of these kind of models.
We require that the nonvanishing squared eigenmasses

be positive, which also ensures that the minimum is stable.
The mass eigenstates are given by

h ¼ nþð−rþρ11 − ϵrþρ12 þ 4Pρ21 þ 4Pϵρ22Þ;
H ¼ n−ð−r−ρ11 − ϵr−ρ12 þ 4Pρ21 þ 4Pϵρ22Þ;
D1 ¼ −ϵρ21 þ ρ22; D2 ¼ ρ23;

G1 ¼ −ϵρ11 þ ρ12; G2 ¼ ρ13; ð25Þ

where r� ≔ Ω̃�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4PÞ2 þ Ω̃2

q
and n� ≔ ð2ð4PÞ2þ

2Ω̃r�Þ−1=2.
On the other hand, the quadratic terms of the pseudo-

scalar fields η are

Vϕðη21;η22;η23Þ⊃
�
1

2
ξδIJþ

1

2
ω2;IJ−

1

2
κ2;IJ

�
η2Iη2J; ð26Þ

where ω2;IJ and κ2;IJ are given in Eq. (C2). There are three
Goldstone bosons η11, η12, and η13. We denote the massive
states as η̃1, η̃2 and η̃3. Their squared eigenmasses are

m2
η̃1
¼ ξþ Ω0

2 − jΩ0
2j; m2

η̃2
¼ ξþΩ0

2 þ jΩ0
2j and

m2
η̃3
¼ ξ: ð27Þ

Notice that eitherm2
η̃1
orm2

η̃2
will be equal tom2

η̃3
depending

on the sign of Ω0
2, so that two states are degenerate. The

mass eigenstates are

η̃1 ¼ N−ðq−η21 þ η22Þ; η̃2 ¼ Nþðqþη21 þ η22Þ;
η̃3 ¼ η23; ð28Þ

where

q� ≔
1� sgnðΩ0

2Þ
2ϵ

; N� ≔ ðq2� þ 1Þ−1
2 and

Ω0
2 ≔

1

2
v211

�
1

2
λ4 − λ5

�
: ð29Þ

Admittedly, this is a very rich chargeless Higgs spec-
trum. One can in principle follow analogous steps for the

4Note that this also ensures that the expansion around the VEV
is a critical point. The minimum condition is satisfied when we
demand the mass matrices to be positive definite.

5The angle that mixes the doublets ðϕ1I;ϕ
†
2IÞ⊺ is the same

angle that rotates the charged components. Note, however, that
there are many more mixings in this multifield case, which we do
not consider.
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charged Higgs fields and gain a full picture of the Higgs
sector.
On the bright side, we observe that the general scenario

of a six-Higgs model based on non-SUSY heterotic
orbifold compactifications leads to a rich Higgs sector
with a plausible scalar DM candidate built in a Higgs
portal, which seems to be a generic feature. Since the model
includes 9 free parameters within the Higgs sector and 14 if
we also count those of the Higgs-portal sector demanding
CP conservation, it appears quite simple to dial these
parameters to fit Higgs and DM observable constraints. On
a less positive note, even with the strong ad hoc assump-
tions we imposed, it is precisely the richness of the Higgs
sector, with its large chargeless and charged Higgs mass
spectrum, what challenges the predictivity of the model. On
the one hand, this introduces plenty of unobserved par-
ticles; on the other, studying their couplings to the DM
candidate S requires an analysis that seems at best very

difficult. Of course, addressing the most general case, with
no simplifications, would further lead to a scenario which
can only be studied numerically and which most likely will
face severe computational constraints. It seems then natu-
ral, as a starting point, to turn to study string models with a
smaller number of Higgses, even though the price to pay
shall be to have to deal with additional exotic particles.

V. A STRINGY REALIZATION OF HIGGS
PORTALS WITH TWO HIGGSES

Let us now discuss a SM-like model arising from
heterotic orbifolds with geometry Z2 × Z4 (2, 4) that
shares some properties with the previous model, but
presents a simpler scalar sector with only two Higgs
doublets. As in the previous section, we shall assume
CP conservation. The model is defined by the shift vectors
and Wilson lines

V1 ¼
�
−
5

4
;−

1

4
;
1

4
;
1

4
;
1

4
;
1

4
;
1

4
;
1

4

�
;

�
−
7

4
;−

7

4
;−

1

4
;−

1

4
;−

1

4
;−

1

4
;
1

4
;
1

4

�
; ð30aÞ

V2 ¼
�
5

8
;−

3

8
;−

7

8
;−

1

8
;−

1

8
;
1

8
;
1

8
;
5

8

�
;

�
−
7

8
;−

3

8
;−

1

8
;
1

8
;
1

8
;
7

8
;−

7

8
;
5

8

�
; ð30bÞ

W3 ¼ W4 ¼ W6 ¼
�
−
7

4
;
5

4
;
5

4
;
3

4
;
3

4
;−

3

4
;
1

4
;
5

4

�
;

�
1

4
;
1

4
;
7

4
;
1

4
;
3

4
;
5

4
;
9

4
;
9

4

�
; ð30cÞ

W5 ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ; ð0; 1;−2; 1; 1; 1; 2;−2Þ; ð30dÞ

and W1 ¼ W2 ¼ 0. The resulting 4D gauge group is

G4D ¼ GSM × G0 × ½Uð1Þ0�8; where G0 ¼ SUð2Þflavor × ½SUð3Þ × SUð2Þ�hidden ð31Þ

and one Uð1Þ0 is anomalous. The massless spectrum with
respect to GSM × SUð2Þflavor is shown in Table II, where we
follow the same notation as in the previous section. The
detailed spectrum under the full 4D gauge group G4D in
Eq. (31) is presented in Tables VI and VII of appendix D for
the fermion and scalar particles, respectively. We observe
that this model exhibits two Higgs doublets, and an exotic
sector including some scalar leptoquarks and vectorlike
down quarks, all of which can develop masses as some
scalars spontaneously break the symmetries of the hidden
sector.
The renormalizable G4D-invariant Yukawa couplings are

given at leading order by

VYðϕi;lL;i;…Þ ¼ Yi
e;33ēL;3ϕ

†
i lL;3 þ Yj

ν;ikϵ
abν̄L;14iϕjalL;kb

þ Yi
d;33d̄L;3ϕ

†
i qL;3 þ Yi

u;IJϵ
abūL;IϕiaqL;Jb

þH:c: with Yi
u;IJ ¼ Yi

uϵIJ; ð32Þ

where i, j ¼ 1, 2 and k ¼ 1, 2, 3 are multiplicity
indices, a, b ¼ 1, 2 are SUð2ÞL indices and I; J ¼ 2, 3
are SUð2Þflavor indices. Further Yukawa couplings appear
at higher orders suppressed by scalar singlet VEVs. Note
that d̄L;3 is one of the mass eigenstates of the model, as
discussed in appendix E. On the other hand, the interaction
potential for the scalar leptoquarks xi with SM fermions is
given by

Vxðxi;…Þ ¼ Γi
qlϵ

IJϵabq̄CR;Iaxi;JlL;3b þ Γi
ue3δ

IJūCL;Ixi;JeR;3

þ Γi
u3eδ

IJūCL;3xi;IeR;J þ Γν
ijd̄

C
L;iðx1;c þ x2;cÞ

× δcdν0R;12 jd þ Γi
qq3δ

IJϵabq̄CR;Iax
†
i;JqL;3b

þ Γi
ud3

ϵIJūCL;Ix
†
i;JdR;3 þ H:c:; ð33Þ

where the superscript C stands for charge conjugation, such
that q̄CR is a left handed fermion. Further, i, j ¼ 1, 2, 3, 4, a,
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b ¼ 1, 2 are SUð2ÞL indices, and I; J ¼ 1, 2 are SUð2Þflavor
indices. We give explicitly the gauge invariant SUð2Þflavor
components, whose detailed charges are given in Table VI
of appendix D. We omit here a detailed analysis of the
flavor sector of the model and assume that the couplings of
leptoquark interactions (33) are suppressed with respect to
all other interactions because we are rather interested in the
properties of the Higgs sector. However, note that this
feature must be studied with great care as it might lead to
undesirable observations [84–86].
Let us now study the details of the Higgs sector.

Fortunately, as we shall see, the results here turn out to
be special cases of our previous discussion in the model
with six Higgses. The only difference is that, in this case,
the two Higgs doublets

ϕ1 ¼
�
ϕþ
1

ϕ0
1

�
and ϕ2 ¼

�
ϕþ
2

ϕ0
2

�
; ð34Þ

are singlets under G0. To start with, we must now determine
its potential.

Taking into account all charges given in appendix D, one
finds that the interaction potential for the two Higgs
doublets is6

Vϕðϕ1;ϕ2Þ ¼ μ211jϕ1j2 þ μ222jϕ2j2 þ λ1jϕ1j4 þ λ2jϕ2j4
þ λ3jϕ1j2jϕ2j2 þ λ4ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ

þ
h
μ212ϕ

†
1ϕ2 þ λ5ðϕ†

1ϕ2Þðϕ†
1ϕ2Þ

þ λ6jϕ1j2ðϕ†
1ϕ2Þ þ λ7jϕ2j2ðϕ†

1ϕ2Þ þ H:c:
i
;

ð35Þ

where we can assume that CP is conserved, allowing us to
take λ5, λ6, λ7, and μ12 as real parameters. For the scalar DM
candidate we choose the singlet denoted by S from the
scalar spectrum shown in Table VII of appendix D. This
scalar is a singlet under GSM × G0. We assume that S does
not acquire a VEV so that it does not mix with the detected
Higgs field(s). The potential for the scalar DM candidate S
is again

VSðSÞ ¼ μ2SjSj2 þ λSjSj4; ð36Þ

and the interaction potential of the scalar DM with the two
Higgs doublets takes the form (see

VϕSðϕ; SÞ ¼ λ1Sjϕ1j2jSj2 þ λ2Sjϕ2j2jSj2

þ λ12S
h
ðϕ†

2ϕ1ÞjSj2 þ H:c:
i
; ð37Þ

where we take λ12S to be real since we assume a CP -
conserving scalar sector. In the Higgs-DM scalar sector we
have then 15 real parameters, ten from Eq. (35), two from
Eq. (36) and three from Eq. (37). Note that the counting of
real parameters exceeds by one the number of free parameters
in the model with six Higgses. This arises from considering
λ3 and λ4 independent here, which we do for generality.
Recalling that the cancellation of tadpoles implies

conditions to minimize the potential at tree level, we study
the expansion of Vϕ in Eq. (35) close to the vacuum defined
by the VEVs of the Higgses. In the vacuum the Higgs
doublets are parametrized as

ϕ1 →

 
ϕþ
1

1ffiffi
2

p ðv1þ σ1Þ

!
and ϕ2 →

 
ϕþ
2

1ffiffi
2

p ðv2þ σ2Þ

!
; ð38Þ

where v1;2 are taken to be real, and σ1;2 ¼ ρ1;2 þ iη1;2.
We substitute Eq. (38) in Eq. (35) and split it as Vϕ ¼
Vϕ;1 þ Vϕ;2, where Vϕ;1 includes only the linear terms in

TABLE II. Massless spectrum for the SM-like model with two
Higsses with quantum numbers under GSM × SUð2Þflavor, where
the hypercharge is displayed as subscripts. L and R denote left
and right fermion projections and a bar over a fermion indicates
the Dirac conjugate. The fermion families in lL;i and d̄L;i are
distinguished by a Uð1Þ0 charge. The complete spectrum under
G4D ¼ GSM × G0 × Uð1Þ08, where GSM ¼ SUð3Þc × SUð2ÞL ×
Uð1ÞY and G0 ¼ SUð2Þflavor × SUð3Þ × SUð2Þ, is presented in
Table VI and VII of appendix D, for the fermions and scalars,
respectively. As in the previous model, chiral fermions do not
yield anomalies, as expected from its string nature [70,71].

Number Fermionic irrep. Label

3 ð1; 2; 1Þ−1=2 lL;i

1 ð1; 1; 2Þ1 ēL
1 ð1; 1; 1Þ1 ēL;3
1 ð3; 2; 2Þ1=6 qL
1 ð3; 2; 1Þ1=6 qL;3
1 ð3̄; 1; 2Þ−2=3 ūL
1 ð3̄; 1; 1Þ−2=3 ūL;3
5 ð3̄; 1; 1Þ1=3 d̄L;i
2 ð3; 1; 1Þ−1=3 d0L;i

131 ð1; 1; 1Þ0 νR;i
14 ð1; 1; 2̄Þ0 ν0R;i

Number Scalar irrep. Label

2 ð1; 2; 1Þ1=2 ϕi
1 ð1; 1; 1Þ0 S

107 ð1; 1; 1Þ0 si
8 ð1; 1; 2Þ0 s0i
2 ð3̄; 1; 2Þ1=3 xi

6To provide some insight also valid for bottom-up models, we
retain here λ3 ≠ λ4 as in such constructions, even though they are
in principle equal in string-derived models. This should not alter
the final results.
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σ1;2, and Vϕ;2 denotes the quadratic terms for the charged
fields ϕ�

1;2, the neutral scalars ρ1;2 (CP -even) and the
neutral pseudoscalars η1;2 (CP -odd). Then, the tadpole-
cancellation conditions are obtained by requiring the
absence of linear terms in σ1;2, and the physical masses
for the Higgses are obtained by diagonalizing the mass
matrices that enter in the quadratic terms for the fields ϕ�

1;2,
ρ1;2, and η1;2.
The linear terms in σ1;2 of the potential contain the

tadpole contributions

Vϕ;1 ¼ ðv1ζ þ v2γÞρ1 þ ðv1γ þ v2κÞρ2; ð39Þ

which must be canceled by imposing the conditions
[analogous to Eq. (21)]

v1ζ þ v2γ ¼! 0 and v1γ þ v2κ ¼! 0; ð40Þ

where, equivalently to our findings in the six-Higgs case,
see Eq. (20),

ζ ¼ μ211 þ λ1v21 þ
1

2
λ3v22 þ λ6v1v2; ð41aÞ

γ ¼ μ212 þ
1

2
ðλ4 þ 2λ5Þv1v2 þ

1

2
λ6v21 þ

1

2
λ7v22; ð41bÞ

κ ¼ μ222 þ λ2v22 þ
1

2
λ3v21 þ λ7v1v2: ð41cÞ

From Eq. (40) we conclude that ζκ ¼ γ2 and ζ=κ ¼ v22=v
2
1.

The mass matrix for the charged fields is obtained from
the quadratic terms in ϕ�

1;2,

Vϕ;2ðϕ�
1 ;ϕ

�
2 Þ ¼

�
−μ212 −

1

2
ðλ4 þ 2λ5Þv1v2 −

1

2
λ6v21 −

1

2
λ7v22

�
ðϕ−

1 ;ϕ
−
2 Þ
 v2

v1
−1

−1 v1
v2

!�
ϕþ
1

ϕþ
2

�
: ð42Þ

The mass or physical eigenstates correspond to a massless charged Goldstone bosonGþ, which gets eaten by theWþ boson,
and a massive charged Higgs Hþ with squared mass

m2
Hþ ¼

�
−μ212
v1v2

−
1

2
ðλ4 þ 2λ5Þ −

1

2
λ6

v1
v2

−
1

2
λ7

v2
v1

�
ðv21 þ v22Þ: ð43Þ

These physical states are given by the orthogonal combinations

Gþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p ðv1ϕ�
1 þ v2ϕ�

2 Þ and Hþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p ð−v2ϕ�
1 þ v1ϕ�

2 Þ; ð44Þ

where tan β ≔ v2=v1 defines the Higgs mixing angle β.
For the neutral pseudoscalar fields we obtain

Vϕ;2ðη1; η2Þ ¼
1

2

�
−μ212 − 2λ5v1v2 −

1

2
λ6v21 −

1

2
λ7v22

�

× ðη1; η2Þ
 v2

v1
−1

−1 v1
v2

!�
η1

η2

�
: ð45Þ

We get one massless Goldstone boson G, which gives mass
to the Z boson, and one massive neutral pseudoscalar A
whose squared mass is

m2
A ¼

�
−μ212
v1v2

− 2λ5 −
1

2
λ6

v1
v2

−
1

2
λ7

v2
v1

�
ðv21 þ v22Þ: ð46Þ

The physical states are given by

G ¼ ðcos θÞη1 þ ðsin θÞη2 and

A ¼ −ðsin θÞη1 þ ðcos θÞη2: ð47Þ

Further, for the neutral scalars we have

Vϕ;2ðρ1; ρ2Þ ¼
1

2
ðρ1; ρ2Þ

�
B C

C D

��
ρ1

ρ2

�
; ð48Þ

where

B ¼ −μ212
v2
v1

þ 2λ1v21 þ
3

2
λ6v1v2 −

1

2
λ7

v32
v1

; ð49aÞ

D ¼ −μ212
v1
v2

þ 2λ2v22 þ
3

2
λ7v1v2 −

1

2
λ6

v31
v2

; ð49bÞ

C ¼ μ212 þ λ3v1v2 þ λ4v1v2 þ 2λ5v1v2 þ
3

2
λ6v21 þ

3

2
λ7v22:

ð49cÞ
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In this case, we obtain two physical massive neutral scalars

h¼ ðcosαÞρ1 − ðsinαÞρ2 and H ¼ ðsinαÞρ1þðcosαÞρ2:
ð50Þ

The angle α is defined by tan 2α ¼ 2C=ðD − BÞ. The
squared masses are

m2
hðHÞ ¼

1

2
ððBþDÞ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB −DÞ2 þ 4C2

q
Þ; ð51Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB−DÞ2 þ 4C2

p
¼ ðD−BÞ= cos2α¼ 2C= sin2α.

The expressions (43), (46), and (51) give the tree-level
masses for the charged scalars H�, the pseudoscalar A, and
the light h and heavy H scalars, respectively. We identify
the light scalar h as the SM Higgs whose mass must be
constrained to be mh ≈ 125 GeV, as observed at the LHC.
Using Eq. (36) and Eq. (38) in the DM-Higgs potencial

(37), we obtain the squared mass for the scalar DM
candidate S,

m2
S ¼ μ2S þ

1

2
λ1Sv21 þ

1

2
λ2Sv22 þ λ12Sv1v2: ð52Þ

This analytical treatment can bring us just this far. In
order to arrive at phenomenological predictions, involving
both the Higgs and DM sectors, we must proceed with a
numerical study, which is straightforward for this model.

VI. FITTING DM AND HIGGS DATA
IN STRING-DERIVED HIGGS PORTALS

Given the properties of the model described in the
previous section, we are now ready to analyze its phe-
nomenological viability. The study presented in this section
can be considered to be valid also for other bottom-up
inspired models with analogous properties. We perform
an increasingly detailed scan of the parameter space of the
model in order to arrive at a best fit to some observable
data. In particular, we aim at the best parameters that yield
(1) Higgs-vacuum stability at 1-loop, avoiding metasta-

ble (and unstable) vacua;
(2) Admissibly heavier states in the Higgs sector; and
(3) Compatibility with the Higgs and DM observables

given by [65,83]

mh ¼ 125.25ð17Þ GeV; v¼ 246.219640ð63Þ GeV
and ΩDMh2 ¼ 0.120ð1Þ; ð53Þ

where the electroweak VEV arises from the Fermi
constant via v ¼ ð ffiffiffi

2
p

GFÞ−1=2 and in our model is
given by v2 ¼ v21 þ v22.

For the stability of the Higgs potential, we must verify that
with the chosen parameters the potential exhibits a global
minimum, so that quantum transitions do not affect the

vacuum. Note that this demands us to identify the param-
eter region free of tachyons. On the other hand, for our goal
number 2, we impose for the scalar masses mH;mH� and
for the pseudoscalar mass mA a conservative lower limit of
50 GeVabove the massmh of the lightest (observed) Higgs
field h, as admissible in most scenarios contrasted with
data [83].
Let us now make a couple of useful observations about

the Yukawa sector. Spontaneous electroweak symmetry
breakdown, parametrized by Eq. (38), implies that the
leading-order interactions of Eq. (32) yield large masses for
SM fermions of the third generation. Incidentally, at this
level the two heavier up-type quarks are degenerate, which
can only be prevented by carefully choosing the Yu;IJ

couplings, the Higgs VEVs and subleading couplings
arising à la Froggatt-Nielsen [87] to due some scalar
VEVs. The details of flavor phenomenology are beyond
the scope of this work and will be assumed in the following
to be suitable. For our discussion on Higgs portals, it will be
important to regard only the interactions between the two
Higgs doublets and the heaviest fermions governed by their
associated Y couplings, in turn fixed by the observed
fermion masses. Since third-generation couplings are the
largest in the SM, it is safe to consider in the annihilation
process of the DM candidate S to SM fermions that these
couplings dominate the contributions to the DM annihila-
tion cross section.
Let us examine the parameters to scan. As in the models

with six Higgs doublets, we consider the parameters of the
Higgs potential Eq. (35) and the Higgs portal Eq. (37):

μ212; λi with i ¼ 1;…; 7; ð54aÞ

μ2S; λS; λ1S; λ2S; λ12S: ð54bÞ

Notice that μ211 and μ222 have been omitted here. Instead,
we include tan β ¼ v2=v1 and the electroweak VEV v as
parameters. An advantage of this choice is that v is directly
fixed (is not free) by observations and, as we shall see,
is numerically accessible too. Further, the tadpole-
cancellation conditions (40) constrain the original param-
eters at tree level. Since in addition we demand CP
invariance, we end up with nine real free parameters arising
from the Higgs potential, and five more from the Higgs
portal of the model.
Prior to our scan, we can set a couple of constraints over

some of the parameters. We shall explore the parameter
space with μ212 < 0 and λ4 < 0. The former condition is
required to arrive at nontrivial VEVs for the Higgs doublets
while the latter is found to be relevant to prevent tachyonic
masses in the Higgs sector. In addition, the constraints
μ2S; λS > 0 have to be imposed so that the scalar DM
candidate has a trivial VEV and its potential is bounded
from below.
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In order to numerically analyze the parameter space of our
stringy 2HDM, we define its symmetries, matter content,
parameters and Lagrangian in the SARAH 4.14.5 [88–90]
package for Mathematica. This package produces input
files for7

(i) VevaciousPlusPlus [91] (the C++ version of Vevacious

[92]), which we use to determine the Higgs VEVs
ðv1; v2Þ at several identified vacua (minima of the
Higgs potential) and their stability status;

(ii) SPHENO 4.0.5 [93,94], used here to compute the mass
spectrum, in particular the masses of the Higgs
sector, including 1-loop corrections; and

(iii) micrOMEGAs 5.3.35 [78], that helps us compute the
freeze-out DM relic abundance, including 1-loop
annihilation processes.

In order for the files produced by SARAH to be useful for
these other packages and for our analysis, a few relevant
flags must be activated [95]:

(i) RGEs are calculated to 1-loop order,
(ii) Calculate 1-loop corrections to masses,
(iii) Assume real mixing matrices (micrOMEGAs does not

handle complex entries),
(iv) Print tree-level values of parameters involved in

tadpole equations (VevaciousPlusPlus makes use of
those values), and

(v) Check if tree-level unitarity constraints are re-
spected.

In our scan, the routines have to be executed as follows.
First, with a dedicated routine we assign random values
for the parameters to set a point p in the parameter space;
these values are given to VevaciousPlusPlus and SPHENO.
VevaciousPlusPlus yields the minimum characterized by the
values ðv1; v2Þ, the stability status of the identified vacuum,
and its lifetime (for metastable vacua). The conditions to
consider admissible an outcome are: (i) the quotient v2=v1
must be consistent with the input random value of tan β,
(ii) the value of v2 ¼ v21 þ v22 must be within a few σ close
to the observable value (53), and (iii) the vacuum must be
stable. Taking the values of p and the VEVs provided by
VevaciousPlusPlus, SPHENO is run to yield the masses and
mixings of the various Higgs fields, and the mass of the DM
candidate. The parameters are considered still suitable ifmh
is within a few σ from its central observable value and
mH;H�;A are at least 50 GeV above mh. Finally, if these
conditions are met, the data is run by micrOMEGAs, which
reads from the spectrum file generated by SPHENO all
promising parameters, and utilizes the routines built auto-
matically by SARAH to compute the freeze-out DM relic
density. In the case that it is found close to the observed
value of ΩDMh2 of Eq. (53), p is considered a viable point.

The massesmH;H�;A andmS produced by SPHENO as well as
the chosen value of tan β are considered predictions of the
scheme.
Our scan is split in two stages. The first stage consists in

a coarse scan that should allow us in a limited amount of
time to roughly identify the most promising parameter
regions, focused on the Higgs parameters and observables.
In the second fine scan, we perform a global search in
promising areas, including now the parameters of Eq. (54),
with the use of algorithms of χ2 minimization to arrive at
models that reproduce the observable values in Eq. (53) and
predict additional observables in the Higgs and DM sectors.
In our analysis, we define χ2 as usual in terms of its
components

χμ ¼
ymeas
μ − ymodel

μ ðpÞ
σμ

; such that χ2 ≔
X3
μ¼1

χ2μ; ð55Þ

where μ counts the three observables in Eq. (53), ymeas
μ

denote their measured values, ymodel
μ ðpÞ are the values

predicted by the model associated with the point p in
the parameter space, and σμ are the corresponding exper-
imental errors.
The first step of our coarse scan is to randomly set values

to the parameters in Eq. (54a) and tan β, leaving the Higgs-
portal parameters in Eq. (54b) at arbitrary (though reason-
able) values. In detail, after choosing random values for all
free parameters but tan β, we use a bisection method to find
values of tan β yielding stable vacua and admissible values
of v and mh. At this stage we aim at the 6σ region
(125.25� 1 GeV) of the Higgs mass. Two relevant obser-
vations arise at this stage. First, as illustrated in the left
panel of Fig. 1, there are points p for which the dependence
on tan β of the lightest neutral Higgs scalarmh is such that it
is compatible with observations for some values around
tan β ∼ 1 and tan β ∼ 100. Yet χ2 can be as large as 104 in
such cases. For p yielding χ2 ≲ 9, we find that the observed
and predicted values of mh are compatible as long as
tan β ≳ 10, cf. right panel of Fig. 1 illustrating the result of
a point with χ2 ∼ 10−4. The second observation of the
coarse scan is the constraint 0.1 ≤ λ2 ≤ 0.2, so that stable
vacua with correct mh are possible (lower bound), and all
heavier Higgs fields are well above mh (upper bound).
As mentioned earlier, in the fine scan we inspect all the

parameters of the model, Eq. (54) and tan β, with greater
precision. We make use of the optimization methods
available in the PYTHON package LMFIT [96], evaluating
χ on each chosen point in the preferred region obtained
from the coarse scan. Most methods available with LMFIT

minimize the χμ components as they explore the parameter
space. We performed several iterations of scans choosing
different methods since it is easy to switch between them.
By alternating between the differential evolution and the
least squares methods, we are able to transit from χ2 ∼ 104

7The relevant files used to define the model in SARAH, the input
files and routines generated for SPHENO, micrOMEGAs and Veva-
ciousPlusPlus are available upon request. Please, send your inquir-
ies preferably to omar_perfig@ciencias.unam.mx.
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to 7.6. The former method consists on an algorithm to let
“evolve” a population of candidate solutions. New elements
are added to the population and older ones are discarded by
comparing their fitness to the solution. The latter method
uses the trust region reflective least squares algorithm.
These two approaches proved to be complementary: with
the differential evolution method we perform a global
exploration of the manually constrained parameter space,
while the least squares method is used to search locally for
a better solution starting from an initial point which is
previously chosen.
To refine the search around the best-fit point so far, we

chose the “emcee” method which is a Markov Chain
Monte Carlo (MCMC) ensemble sampler [97]. Its objective
is not the optimization of the parameters to minimize χ2,
but the exploration of the neighborhood of promising
points found before. After refining the initial point for
the MCMC scans a couple of times and collecting the
points being explored by the sample, we obtained the best
fit with χ2 ¼ 1.23 × 10−4 at the parameter point defined by
the values given in Table III.
We plot the ensemble of points with a χ2 ≤ 10 in 2D

slices of the parameter space. We display first in Fig. 2 the
values of λ2 and tan β, which are the best constrained
Higgs parameters. We can regard our observations in
particular for tan β as predictions about the mixing of
both Higgs fields. We see that 102.75≲ tan β ≲ 103.75
is preferred to obtain phenomenological results within
χ2 ≲ 4. Acceptable values for other Higgs-potential param-
eters are found in Fig. 3. In Fig. 4 we display the values of
the best values of the Higgs-portal parameters. Colors are
used to illustrate the χ2 precision of each associated fit.
Points in green correspond to better fits to the observables
than yellow and red points. In every plot the best-fit point
is marked with a black star.
For most plots green and red points are neighbors

because of the high dimensionality of the parameter space.

However, close to the best-fit point we find χ2 < 4 in
general. Interestingly, even though there is a markedly
preferred region for λ2 and tan β, our model does not seem
to set clear preferences for other parameters.
Once the best-fit point is identified, we find a number of

predictions. In Fig. 5 we plot the predicted values of the

FIG. 1. Comparison of the predicted (continuous curve) and the observed (dashed line) Higgs mass for different tan β values for two
choices of parameters. For a generic point in the Higgs parameters (54a) (left panel), we observe a proper Higgs mass for tan β of either
order one or order 100. In our best-fit scenario (right panel), the correct Higgs mass is predicted for tan β > 10.

TABLE III. Best fit of a 2HDM arising from heterotic orbifolds.
In this case, tan β ¼ 102.84.

Higgs parameter Value

λ1 3.63 × 10−4

λ2 1.24 × 10−1

λ3 5.03 × 10−1

λ4 −1.7 × 10−1

λ5 9.35 × 10−3

λ6 5.52 × 10−4

λ7 3.76 × 10−4

μ212 −1.45 × 103 GeV2

v1 2.394 GeV
v2 246.21 GeV

Higgs-portal parameter Value

μ2S 7.77 × 104 GeV2

λS 8.33 × 10−3

λ1S 4.52 × 10−1

λ2S 1.18 × 10−1

λ12S 9.95 × 10−4

Observable Value

mh 125.25 GeV
mH 381.41 GeV
mH� 386.82 GeV
mA 379.82 GeV
ΩDMh2 0.12
mS 286.01 GeV
χ2 1.23 × 10−4
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heavier Higgs sector, the DM relic abundance and tan β of
our stringy 2HDM. We observe a general quasilinear
correlation, anticipated by Eqs. (43) and (46), between
the masses of all heavier Higgs fields, mH;H�;A, which lie
between 370 and 400 GeV. Their best-fit values, as
presented in Table III, are found to be mH¼381.41GeV,
mH� ¼ 386.82 GeV and mA ¼ 379.82 GeV, compatible
with observational bounds for a very large value of
tan β ¼ 102.84. Finally, Fig. 6 shows the preferred
range of scalar DM mass in our scan which is roughly
270–300 GeV, with a best fit value for 286.01 GeV. Note
finally that the relic abundance coincides precisely with
observations, lying in the interval 0.118≲ ΩDMh2 ≲ 0.122
for χ2 ≤ 4.

VII. CONCLUSIONS

In order to arrive at a proof of concept of interesting DM
phenomenology in non-SUSY orbifold compactifications
of the heterotic string, we have shown that Higgs-portal

FIG. 3. Some 2D projections of the most promising Higgs-potential parameter region of a stringy 2HDM, with χ2 ≤ 10with respect to
the observables in Eq. (53). The black star corresponds to our best fit with χ2 ¼ 1.23 × 10−4.

FIG. 2. Best values of the Higgs parameters λ2 and tan β of a
stringy 2HDM with χ2 ≤ 10 with respect to the observables in
Eq. (53). The black star corresponds to our best fit with
χ2 ¼ 1.23 × 10−4, given in Table III.
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scenarios arise naturally in this context and that they can
readily accommodate observations on DM and Higgs
physics.
We recall that the most common SM-like string models

without leptoquarks and a minimum of vectorlike exotics

exhibits six Higgs fields and some continuous gauge flavor
symmetry. Even though the number of Higgses is large, the
flavor symmetry reduces the degrees of freedom. We have
inspected the structure of a sample model of this type. It
displays promising Higgs-portal DM scenarios, i.e., scalar

FIG. 4. 2D projections of the viable Higgs-portal parameter region of our model with χ2 ≤ 10 compatibility with observations. For
some parameters the validity region is much wider than for others. The best fit is given by the point highlighted with the black star.

FIG. 5. Predictions of a stringy 2HDM with Higgs portals on tan β and the masses of the heavier Higgs sector. We observe a
quasilinear dependence in the masses of the heavier (scalar and pseudoscalar) Higgs fields, which are constrained to lie between 370 and
400 GeV for an accuracy of χ2 ≤ 10. The best fit is highlighted by the black star.
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DM candidates coupling only to multi-Higgs sectors at
leading order. This feature is quite general in this type of
constructions. However, the complexity of the structure of
Higgs vacua forces one to adopt very strong ad hoc
constraints that weaken the predictivity of the model.
Hence, we have studied in more detail a simpler sample

2HDM arising from heterotic orbifolds. We find that the
appearance of Higgs portals is generic in this kind of
models too. The resulting effective field theory has the
advantage that the Higgs vacuum is more tractable. Hence,
we have used various numeric tools to scan the parameter
space for phenomenologically viable regions, including
1-loop corrections. We have identified vast promising
neighborhoods (with χ2 ≤ 10) endowed with (i) stable
Higgs vacua, (ii) lightest Higgs mass and VEV compatible
with experiments, and (iii) freeze-out DM relic abundance
consistent with observational data. Further, we have found
that in those cases, as illustrated in Fig. 5, tan β ∼ 100,
the heavier (scalar and pseudoscalar) Higgs fields have
masses around 380 GeV, and the scalar DM candidate
displays mS ∼ 285 GeV. We have identified a best fit to
data of our stringy 2HDM with χ2 ¼ 1.23 × 10−4. Its
details are given in Table III. All of these results can be

considered predictions of models like ours, independently
of whether they are motivated by top-down or bottom-up
considerations.
There are various challenges to be addressed elsewhere

in order to complete the study of this and similar models in
the context of non-SUSY string compactifications. They
include the phenomenology of the leptoquarks appearing in
our 2HDM and other similar string models; their flavor
structure and phenomenology, involving all gauge, tradi-
tional, and modular flavor symmetries of the model (see,
e.g., [28,30,31,98–100]); the possibility of Higgs portals
with multiple DM candidates, including the likely existence
of extra pseudoscalars; and the stringy computation of the
couplings and their RGE running from the compactification
scale. In particular, the appearance of a few leptoquarks and
their (possibly negligible) couplings to the SM must be
further studied as they may be relevant for extant questions
in the SM [101] and even for richer DM scenarios [102].
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APPENDIX A: SPECTRUM OF THE STRINGY
MODEL WITH SIX HIGGSES

1. Hypercharge generator

The generator QY of Uð1ÞY in GSM ⊂ G4D is given by
(cf., e.g., [68,69,103])

QY ¼
X16
I¼1

tIYHI; ðA1Þ

in terms of the SOð16Þ × SOð16Þ Cartan generators HI .
Frequently, the 16D vector tY is also called Uð1ÞY gen-
erator. For our six-Higgs model, we identify

FIG. 6. Predictions for the mass mS of the scalar DM candidate
and its relic abundance. The preferred mass is 286.01 GeVand the
best fit of ΩDMh2 coincides with the observed value 0.12.

TABLE IV. Spectrum of massless fermions for the non-SUSY stringy model with six Higgs doublets introduced in Sec. IV. The first
column corresponds to the multiplicity of the fields. We show the quantum numbers with respect to the 4D gauge group,
G4D ¼ GSM × G0 × Uð1Þ08, where GSM ¼ SUð3Þc × SUð2ÞL × Uð1ÞY and G0 ¼ SUð3Þflavor × SUð2Þ × SUð2Þ. The first Uð1Þ0, associated
with the charges q1, is (pseudo-)anomalous. In the column labeled as SU(3) we list the SUð3Þflavor representations.
Number GSM SU(3) SU(2) SU(2) q1 q2 q3 q4 q5 q6 q7 q8 Label

1 ð1; 2Þ−1=2 1 1 1 −3 3 −27 −9 −9 9 −9 42 lL;1

2 ð1; 2Þ−1=2 1 1 1 2 3 1 25 −13 13 −13 32 lL;2i

1 ð1; 2Þ−1=2 1 1 1 0 −18 −6 −2 −2 2 −2 −48 lL;3

1 ð1; 2Þ−1=2 1 1 1 2 0 −56 6 6 −6 6 −28 lL;4

(Table continued)
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TABLE IV. (Continued)

Number GSM SU(3) SU(2) SU(2) q1 q2 q3 q4 q5 q6 q7 q8 Label

1 ð1; 2Þ1=2 1 1 1 0 18 6 2 2 −2 2 48 l0
L;1

1 ð1; 2Þ1=2 1 1 1 0 0 0 −74 2 −2 2 48 l0
L;2

1 ð1; 1Þ1 3 1 1 1 −1 9 3 3 −3 3 −14 ēL
1 ð3; 2Þ1=6 3 1 1 1 −1 9 3 3 −3 3 −14 qL
1 ð3̄; 1Þ−2=3 3 1 1 1 −1 9 3 3 −3 3 −14 ūL
1 ð3̄; 1Þ1=3 1 1 1 −3 3 −27 −9 −9 9 −9 42 d̄L;1
4 ð3̄; 1Þ1=3 1 1 1 2 3 1 25 −13 13 −13 32 d̄L;2i
1 ð3̄; 1Þ1=3 1 1 1 2 0 −56 6 6 −6 6 −28 d̄L;3
1 ð3̄; 1Þ1=3 1 1 1 0 0 0 0 76 2 −2 −48 d̄L;4
2 ð3; 1Þ−1=3 1 1 1 −2 −3 −1 −25 13 −13 13 −32 d0L;1i
1 ð3; 1Þ−1=3 1 1 1 0 0 0 −74 2 −2 2 48 d0L;2
1 ð3; 1Þ−1=3 1 1 1 0 0 0 0 −76 −2 2 48 d0L;3
1 ð1; 1Þ0 1 1 1 −1 −9 25 −41 35 −35 −47 −10 νR;1
1 ð1; 1Þ0 1 2 2 1 9 −25 41 −35 −4 4 10 νR;2
1 ð1; 1Þ0 1 1 1 −1 −9 25 −41 35 43 39 −10 νR;3
1 ð1; 1Þ0 1 1 1 1 −3 27 9 9 −9 9 130 νR;4
1 ð1; 1Þ0 1 1 1 1 −9 −31 39 39 39 −39 10 νR;5
1 ð1; 1Þ0 1 1 1 1 9 31 −39 −39 39 −39 10 νR;6
1 ð1; 1Þ0 1 2 2 1 −9 −31 −35 −35 −4 4 10 νR;7
1 ð1; 1Þ0 1 1 1 −1 −9 25 33 −43 −35 −47 −10 νR;8
1 ð1; 1Þ0 1 1 1 1 9 −25 −33 43 −43 −39 10 νR;9
1 ð1; 1Þ0 1 2 2 −1 9 31 35 35 4 −4 −10 νR;10
1 ð1; 1Þ0 1 1 1 −1 −9 25 33 −43 43 39 −10 νR;11
1 ð1; 1Þ0 1 1 1 1 9 −25 −33 43 35 47 10 νR;12
2 ð1; 1Þ0 3̄ 1 1 0 −5 17 −19 19 −19 19 −60 ν0R;13;i
2 ð1; 1Þ0 1 1 1 5=2 0 14 −20 −39 −39 −2 −5 νR;14;i
2 ð1; 1Þ0 1 1 1 3=2 0 14 54 35 −35 −6 −15 νR;15;i
2 ð1; 1Þ0 1 2 1 5=2 0 14 −20 37 2 −2 −5 νR;16;i
2 ð1; 1Þ0 1 1 2 5=2 0 14 −20 37 2 −2 −5 νR;17;i
2 ð1; 1Þ0 1 1 1 5=2 0 14 −20 −39 0 41 −5 νR;18;i
2 ð1; 1Þ0 1 1 1 3=2 0 14 54 35 4 37 −15 νR;19;i
2 ð1; 1Þ0 1 1 1 3=2 6 16 30 11 −11 −30 −75 νR;20;i
2 ð1; 1Þ0 3̄ 1 1 1=2 −2 −24 −8 −27 27 14 35 ν0R;21;i
2 ð1; 1Þ0 1 1 1 3=2 6 16 30 11 28 13 −75 νR;22;i
2 ð1; 1Þ0 3̄ 1 1 1=2 −2 −24 −8 −27 −12 −29 35 ν0R;23;i
1 ð1; 1Þ0 3̄ 1 1 0 −2 74 0 0 0 0 0 ν0R;24
1 ð1; 1Þ0 3 1 1 −2 2 −18 68 −8 8 −8 −20 ν00R;25
1 ð1; 1Þ0 3̄ 1 1 2 16 24 8 8 −8 8 20 ν0R;26
1 ð1; 1Þ0 3 1 1 −2 −16 −24 −8 −8 8 −8 −20 ν00R;27
4 ð1; 1Þ0 1 1 1 1 6 −26 −58 −20 20 −20 −50 νR;28;i
2 ð1; 1Þ0 1 1 1 −1 −6 26 58 20 −20 20 50 νR;29;i
2 ð1; 1Þ0 1 1 1 1 −6 −30 −10 28 −28 28 70 νR;30;i
2 ð1; 1Þ0 1 1 1 3=2 −3 13 29 −28 −11 −30 −75 νR;31;i
2 ð1; 1Þ0 3̄ 1 1 1=2 7 −21 −7 12 27 14 35 ν0R;32;i
2 ð1; 1Þ0 1 1 1 3=2 −3 13 29 −28 28 13 −75 νR;33;i
2 ð1; 1Þ0 3̄ 1 1 1=2 7 −21 −7 12 −12 −29 35 ν0R;34;i
2 ð1; 1Þ0 1 1 1 3=2 −9 11 53 −4 −35 −6 −15 νR;35;i
2 ð1; 1Þ0 1 2 1 5=2 −9 11 −21 −2 2 −2 −5 νR;36;i
2 ð1; 1Þ0 1 1 1 5=2 9 17 −19 0 −39 −2 −5 νR;37;i
2 ð1; 1Þ0 1 1 2 5=2 −9 11 −21 −2 2 −2 −5 νR;38;i
2 ð1; 1Þ0 1 1 1 3=2 −9 11 53 −4 4 37 −15 νR;39;i
2 ð1; 1Þ0 1 1 1 5=2 9 17 −19 0 0 41 −5 νR;40;i
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tY ¼
�
1

3
; 0; 0; 0;−

1

3
;−

1

2
;−

1

2
;
1

3
; 0; 0; 0; 0; 0; 0; 0; 0

�
ðA2Þ

with normalization tY · tY ¼ 5=6. Note that this normali-
zation makes the hypercharge compatible with SU(5)
unification, as [73][Eq. (3)] sin2 θW ¼ 1=ð1þ k1Þ ¼ 3=8 at
the string scale, since the hypercharge level is given by [73]
[below Eq. (4)] k1 ¼ 2tY · tY ¼ 5=3. The hypercharge qY of
effective fields with gauge momenta p ∈ SOð16Þ ×
SOð16Þ is given by qY ¼ tY · p.

APPENDIX B: FERMIONIC MASS MATRICES
OF THE SIX-HIGGS-DOUBLET MODEL

Let us provide some details on the computation of the
fermionic mass eigenstates for quarks and leptons prior to
electroweak symmetry breakdown, due to the existence of
exotics in the model. To simplify the notation, we use
hsii → si for the singlet VEVs. Given the mass matrix for
the leptons in Eq. (6) and the chosen VEV configuration in

Eq. (8). The squared matrix is given by

M⊺
lMl ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 c21 þ c25s
2
1 c1c2s4

0 0 0 c1c2s4 c22s
2
4

1
CCCCCCA
: ðB1Þ

The corresponding unnormalized physical lepton states are
given in terms of the original stringy states by

0
BBBBBB@

lL;1

lL;2

lL;3

lL;4

lL;5

1
CCCCCCA

phys

≔

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 w− 1

0 0 0 wþ 1

1
CCCCCCA

0
BBBBBB@

lL;1

lL;21

lL;22

lL;3

lL;4

1
CCCCCCA
; ðB2Þ

where

TABLE V. Stringy spectrum of massless complex scalars for a model with six Higgses. Note that our DM candidate S has the same
charges as s10. We follow the same notation as in Table IV.

Number GSM SU(3) SU(2) SU(2) q1 q2 q3 q4 q5 q6 q7 q8 Label

2 ð1; 2Þ1=2 3 1 1 −2 2 −18 −6 −6 6 −6 28 ϕi

1 ð1; 1Þ0 1 1 1 3=2 9 45 15 −4 −35 −6 −15 S
1 ð1; 1Þ0 1 1 1 0 −18 −6 −76 0 0 0 0 s1
1 ð1; 1Þ0 1 1 1 0 0 0 74 −78 0 0 0 s2
1 ð1; 1Þ0 1 1 1 −2 0 56 −6 70 8 −8 −20 s3
1 ð1; 1Þ0 1 1 1 2 18 −50 8 8 −8 8 20 s4
2 ð1; 1Þ0 1 1 2 3=2 −9 39 13 −6 6 −6 −15 s5
2 ð1; 1Þ0 1 1 1 5=2 −9 −17 19 0 0 41 −5 s6
2 ð1; 1Þ0 1 1 1 3=2 9 45 15 −4 4 37 −15 s7
2 ð1; 1Þ0 1 1 1 5=2 −9 −17 19 0 −39 −2 −5 s8
2 ð1; 1Þ0 1 2 1 3=2 −9 39 13 −6 6 −6 −15 s9
1 ð1; 1Þ0 1 1 1 3=2 9 45 15 −4 −35 −6 −15 s10
2 ð1; 1Þ0 1 1 1 5=2 −3 −15 −5 −24 24 17 −65 s11
2 ð1; 1Þ0 3 1 1 1=2 −7 −7 −27 −8 8 33 −25 s012
2 ð1; 1Þ0 1 1 1 5=2 −3 −15 −5 −24 −15 −26 −65 s13
2 ð1; 1Þ0 3 1 1 1=2 −7 −7 −27 −8 −31 −10 −25 s014
6 ð1; 1Þ0 1 1 1 −2 −3 −1 49 11 −11 11 −80 s15
2 ð1; 1Þ0 1 1 1 0 3 57 19 −19 19 −19 60 s16
2 ð1; 1Þ0 3 1 1 1=2 2 −4 −26 31 −31 −10 −25 s017
2 ð1; 1Þ0 1 1 1 −5=2 −6 12 4 −15 15 26 65 s18
2 ð1; 1Þ0 3 1 1 1=2 2 −4 −26 31 8 33 −25 s019
2 ð1; 1Þ0 1 1 1 −5=2 −6 12 4 −15 −24 −17 65 s20
2 ð1; 1Þ0 1 2 1 −3=2 0 −42 −14 −33 −6 6 15 s21
2 ð1; 1Þ0 1 1 1 −3=2 0 −42 −14 43 35 6 15 s22
2 ð1; 1Þ0 1 1 1 −5=2 0 14 −20 −39 39 2 5 s23
2 ð1; 1Þ0 1 1 2 −3=2 0 −42 −14 −33 −6 6 15 s24
2 ð1; 1Þ0 1 1 1 −3=2 0 −42 −14 43 −4 −37 15 s25
2 ð1; 1Þ0 1 1 1 −5=2 0 14 −20 −39 0 −41 5 s26
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w� ≔
c21 þ c25s

2
1 − c22s

2
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc21 þ c25s

2
1Þ2 þ 2c22ðc1 − c5s1Þðc1 þ c5s1Þs24 þ c42s

4
4

q
2c1c2s4

: ðB3Þ

We must perform an analogous procedure for down-
quark singlets. According to Table I, in our model there are
seven left-handed down-quark singlets, d̄ ≔ ðd̄L;1; d̄L;21;
d̄L;22; d̄L;23; d̄L;24; d̄L;3; d̄L;4Þ, and four left-handed conju-
gate states, d0 ≔ ðd0L;11; d0L;12; d0L;2; d0L;3Þ⊺. Thus, we find the
low-energy physical states by building the mass eigen-
states. Using the charges of these fields in Table IV, we can
find the resulting admissible couplings that lead to

d̄Mdd0 ⊂ L: ðB4Þ

At leading order, the down-quark mass matrix is given by

Md ¼

0
BBBBBBBBBBBB@

0 0 0 0

cd1 cd2 s15 0

cd3 cd4 s15 0

cd5 cd6 s15 0

cd7 cd8 s15 0

cd9s16 cd10s16 0 cd11s3

0 0 cd12s2 cd13

1
CCCCCCCCCCCCA
: ðB5Þ

As in the leptonic case, the coefficients cdi are some
coupling constants that are assumed to be real and order
unity. In addition, to be consistent with the leptonic case,
we take s15 ¼ 0 and this is why we omit the coupling
constants of s15d̄L;2idL;1j in Eq. (B5). It is easy to verify that
the down-quark mass matrix has full rank 4. Hence, in the
notation of Table IV, the physical (massless) down-quark
singlets are d̄L;1 and the combinations

d̄L;24 −
cd2c

d
7 − cd1c

d
8

cd2c
d
3 − cd1c

d
4

d̄L;22 −
cd4c

d
7 − cd3c

d
8

cd1c
d
4 − cd2c

d
3

d̄L;21;

d̄L;23 −
cd2c

d
5 − cd1c

d
6

cd2c
d
3 − cd1c

d
4

d̄L;22 −
cd4c

d
5 − cd3c

d
6

cd1c
d
4 − cd2c

d
3

d̄L;21: ðB6Þ

Now, we relabel the massless eigenstates as

d̄L;1 → d̄L;1

d̄L;24 −
cd2c

d
7 − cd1c

d
8

cd2c
d
3 − cd1c

d
4

d̄L;22 −
cd4c

d
7 − cd3c

d
8

cd1c
d
4 − cd2c

d
3

d̄L;21 → d̄L;2

d̄L;23 −
cd2c

d
5 − cd1c

d
6

cd2c
d
3 − cd1c

d
4

d̄L;22 −
cd4c

d
5 − cd3c

d
6

cd1c
d
4 − cd2c

d
3

d̄L;21 → d̄L;3: ðB7Þ

APPENDIX C: COEFFICIENTS OF THE SIX-
HIGGS-DOUBLET SECTOR

The quadratic terms of the neutral components in the
Higgs-sector potential (16) are

Vϕðσ1I; σ2IÞ ⊃ θIJσ1Iσ
�
2J þ χIJσ1Iσ2J þ κ1;IJσ1Iσ1J

þ κ2;IJσ2Iσ2J þ ω1;IJσ1Iσ
�
1J

þ ðξδIJ þ ω2;IJÞσ2Iσ�2J þ c:c:; ðC1Þ

where δIJ is the usual Kronecker delta and

θIJ ≔ λ6v1Iv1J; χIJ ≔ λ6v1Iv1J; κ1;IJ ≔ λ1v1Iv1J;

κ2;IJ ≔ λ5v1Iv1J; ω1;IJ ≔ 2λ1v1Iv1J; ω2;IJ ≔
1

2
λ4v1Iv1J:

ðC2Þ

The entries of the mass matrix (23), which follow from the
potential (C1) in the limit of ϵ2 ∼ 0, are given by

Ω1 ≔
1

2
ω1;11 þ κ1;11; Ω2 ≔

1

2
ω2;11 þ κ2;11;

ξ ≔ μ222 þ
1

2
λ3v211 and P ≔ θ11 þ χ11: ðC3Þ

Here we assume the hierarchy v11 ≫ v12 ≫ v13 via the
parameter ϵ, such that ϵ ¼ v12=v11 ¼ v13=v12, with ϵ2 ∼ 0.

APPENDIX D: SPECTRUM
FOR THE STRINGY 2HDM

1. Hypercharge generator

As in appendix A 1, the so-called Uð1ÞY generator tY for
the two-Higgs-doublet model is given by

tY ¼
�
−
1

3
;
1

2
;−

1

3
; 0; 0;−

1

3
;
1

2
; 0; 0; 0; 0; 0; 0; 0; 0; 0

�
;

ðD1Þ

with normalization tY · tY ¼ 5
6
, implying that sin2 θW ¼ 3=8

[73] at the string scale, as discussed in appendix A 1.
The hypercharge qY of matter fields with gauge momenta
p ∈ SOð16Þ × SOð16Þ is given by qY ¼ tY · p.

HIGGS-PORTAL DARK MATTER FROM NONSUPERSYMMETRIC … PHYS. REV. D 107, 115007 (2023)

115007-19



TABLE VI. Spectrum of massless fermions in a stringy 2HDM. The first column corresponds to the multiplicity of the fields. The 4D
gauge group is G4D ¼ GSM × G0 × Uð1Þ08, where GSM ¼ SUð3Þc × SUð2ÞL × Uð1ÞY and G0 ¼ SUð2Þflavor × SUð3Þ × SUð2Þ. The first
Uð1Þ0, associated with the charges q1 is (pseudo-)anomalous. The first column with the label SU(2) displays the representations under
SUð2Þflavor.
Number GSM SU(2) SU(3) SU(2) q1 q2 q3 q4 q5 q6 q7 q8 Label

1 ð1; 2Þ−1=2 1 1 1 −3 0 −3 −9 9 −9 −27 6 lL;3

2 ð1; 2Þ−1=2 1 1 1 2 0 −3 −9 9 −9 −27 6 lL;i

1 ð1; 1Þ1 2 1 1 1 1 1 3 −3 3 9 −2 ēL
1 ð1; 1Þ1 1 1 1 1 −2 1 3 −3 3 9 −2 ēL;3
1 ð3; 2Þ1=6 2 1 1 1 1 1 3 −3 3 9 −2 qL
1 ð3; 2Þ1=6 1 1 1 1 −2 1 3 −3 3 9 −2 qL;3
1 ð3̄; 1Þ−2=3 2 1 1 1 1 1 3 −3 3 9 −2 ūL
1 ð3̄; 1Þ−2=3 1 1 1 1 −2 1 3 −3 3 9 −2 ūL;3
1 ð3̄; 1Þ1=3 1 1 1 −3 0 −3 −9 9 −9 −27 6 d̄L;3
4 ð3̄; 1Þ1=3 1 1 1 2 0 −3 −9 9 −9 −27 6 d̄L;1i
2 ð3; 1Þ−1=3 1 1 1 −2 0 3 9 −9 9 27 −6 d0L;1i
1 ð1; 1Þ0 1 3̄ 2 1 0 −9 −27 27 3 −23 2 νR;1
1 ð1; 1Þ0 1 1 1 1 0 −9 29 −29 −31 −93 2 νR;2
1 ð1; 1Þ0 1 3̄ 1 −1 0 9 27 −27 27 −47 −2 νR;3
1 ð1; 1Þ0 1 1 1 −1 0 9 27 −27 −33 93 −2 νR;4
1 ð1; 1Þ0 1 1 1 1 0 3 9 −9 9 27 22 νR;5
1 ð1; 1Þ0 1 3̄ 1 1 0 9 −29 29 −29 −23 2 νR;6
1 ð1; 1Þ0 1 1 2 −1 0 −9 29 −29 −1 93 −2 νR;7
1 ð1; 1Þ0 1 3 2 0 0 −9 −27 −31 1 35 0 νR;8
1 ð1; 1Þ0 1 3̄ 2 0 0 9 27 31 −1 −35 0 νR;9
1 ð1; 1Þ0 1 3 2 0 0 −9 29 29 1 35 0 νR;10
1 ð1; 1Þ0 1 3̄ 2 0 0 9 −29 −29 −1 −35 0 νR;11
4 ð1; 1Þ0 2 1 1 0 −1 5 15 −15 15 45 −10 ν0R;12;i
2 ð1; 1Þ0 2 1 1 0 1 −5 −15 15 −15 −45 10 ν0R;13;i
2 ð1; 1Þ0 1 1 1 0 2 5 15 −15 15 45 −10 νR;14;i
2 ð1; 1Þ0 1 1 1 2 0 −6 −18 −11 −19 39 −11 νR;15;i
2 ð1; 1Þ0 2 1 1 0 −1 2 6 23 7 −75 5 ν0R;16;i
2 ð1; 1Þ0 1 1 1 0 2 2 6 23 7 −75 5 νR;17;i
2 ð1; 1Þ0 1 1 2 2 0 9 −1 −28 −2 −6 −1 νR;18;i
2 ð1; 1Þ0 1 1 1 2 0 −9 1 −30 30 −6 −1 νR;19;i
2 ð1; 1Þ0 1 1 1 2 0 9 −1 30 30 −6 −1 νR;20;i
2 ð1; 1Þ0 1 1 1 2 0 3 9 20 10 −66 −11 νR;21;i
2 ð1; 1Þ0 2 1 1 0 −1 −7 −21 −8 −22 30 5 ν0R;22;i
2 ð1; 1Þ0 1 1 1 0 2 −7 −21 −8 −22 30 5 νR;23;i
2 ð1; 1Þ0 1 3 1 2 0 0 28 1 −1 29 −1 νR;24;i
2 ð1; 1Þ0 1 1 1 2 0 0 −28 −1 1 99 −1 νR;25;i
2 ð1; 1Þ0 1 3 2 0 0 −9 1 −1 1 35 0 νR;26;i
2 ð1; 1Þ0 1 3̄ 2 0 0 9 −1 1 −1 −35 0 νR;27;i
2 ð1; 1Þ0 1 3 1 0 0 9 −1 1 −31 35 0 νR;28;i
2 ð1; 1Þ0 1 1 1 0 0 9 −1 1 29 −105 0 νR;29;i
2 ð1; 1Þ0 1 3̄ 1 0 0 −9 1 −1 31 −35 0 νR;30;i
2 ð1; 1Þ0 1 1 1 0 0 −9 1 −1 −29 105 0 νR;31;i
2 ð1; 1Þ0 1 1 1 2 0 −6 10 19 −19 39 −11 νR;32;i
2 ð1; 1Þ0 2 1 1 0 −1 2 −22 −7 7 −75 5 ν0R;33;i
2 ð1; 1Þ0 1 1 1 0 2 2 −22 −7 7 −75 5 νR;34;i
2 ð1; 1Þ0 1 1 2 2 0 9 27 2 −2 −6 −1 νR;35;i
2 ð1; 1Þ0 1 1 1 2 0 −9 29 0 30 −6 −1 νR;36;i
2 ð1; 1Þ0 1 1 1 2 0 9 −29 0 30 −6 −1 νR;37;i
2 ð1; 1Þ0 1 1 1 2 0 3 −19 −10 10 −66 −11 νR;38;i

(Table continued)
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TABLE VI. (Continued)

Number GSM SU(2) SU(3) SU(2) q1 q2 q3 q4 q5 q6 q7 q8 Label

2 ð1; 1Þ0 2 1 1 0 −1 −7 7 22 −22 30 5 ν0R;39;i
2 ð1; 1Þ0 1 1 1 0 2 −7 7 22 −22 30 5 νR;40;i
2 ð1; 1Þ0 1 3 1 2 0 0 0 −29 −1 29 −1 νR;41;i
2 ð1; 1Þ0 1 1 1 2 0 0 0 29 1 99 −1 νR;42;i

TABLE VII. Massless scalar spectrum for a stringy 2HDM. The scalar singlet labeled as S is chosen as our DM candidate. We use the
same conventions as in Table VI.

Number GSM SU(2) SU(3) SU(2) q1 q2 q3 q4 q5 q6 q7 q8 Label

2 ð1; 2Þ1=2 1 1 1 −2 −2 −2 −6 6 −6 −18 4 ϕi

1 ð1; 1Þ0 1 1 1 1 0 −18 2 56 4 12 2 S
2 ð3̄; 1Þ1=3 2 1 1 2 −1 2 6 −6 6 18 −4 xi
2 ð1; 1Þ0 1 3 1 0 0 18 −2 2 −2 −70 0 s1
2 ð1; 1Þ0 1 1 1 0 0 0 −56 −60 0 0 0 s2
4 ð1; 1Þ0 1 3 1 1 0 0 −28 28 2 −58 2 s3
4 ð1; 1Þ0 1 1 2 1 0 0 −28 28 −28 12 2 s4
4 ð1; 1Þ0 1 1 1 −1 0 18 26 −26 −4 −12 −2 s5
16 ð1; 1Þ0 1 1 1 0 0 0 −28 −30 0 0 0 s6
1 ð1; 1Þ0 1 3 1 1 0 0 −56 −2 2 −58 2 s7
1 ð1; 1Þ0 1 1 2 −1 0 0 56 2 28 −12 −2 s8
1 ð1; 1Þ0 1 1 2 1 0 0 0 58 −28 12 2 s9
1 ð1; 1Þ0 1 3̄ 1 −1 0 0 0 −58 −2 58 −2 s10
1 ð1; 1Þ0 1 1 1 −1 0 18 54 4 −4 −12 −2 s11
2 ð1; 1Þ0 1 1 1 2 0 3 9 20 10 −66 −11 s12
2 ð1; 1Þ0 2 1 1 0 −1 −7 −21 −8 −22 30 5 s013
2 ð1; 1Þ0 1 1 1 0 2 −7 −21 −8 −22 30 5 s14
2 ð1; 1Þ0 1 3 1 2 0 0 28 1 −1 29 −1 s15
2 ð1; 1Þ0 1 1 1 2 0 0 −28 −1 1 99 −1 s16
2 ð1; 1Þ0 1 1 1 2 0 −6 −18 −11 −19 39 −11 s17
2 ð1; 1Þ0 2 1 1 0 −1 2 6 23 7 −75 5 s018
2 ð1; 1Þ0 1 1 1 0 2 2 6 23 7 −75 5 s19
2 ð1; 1Þ0 1 1 2 2 0 9 −1 −28 −2 −6 −1 s20
2 ð1; 1Þ0 1 1 1 2 0 −9 1 −30 30 −6 −1 s21
2 ð1; 1Þ0 1 1 1 2 0 9 −1 30 30 −6 −1 s22
2 ð1; 1Þ0 1 3̄ 1 −2 0 0 0 29 1 −29 1 s23
2 ð1; 1Þ0 1 1 1 −2 0 0 0 −29 −1 −99 1 s24
2 ð1; 1Þ0 1 1 1 0 −2 7 −7 −22 22 −30 −5 s25
2 ð1; 1Þ0 2 1 1 0 1 7 −7 −22 22 −30 −5 s026
2 ð1; 1Þ0 1 1 1 −2 0 −3 19 10 −10 66 11 s27
2 ð1; 1Þ0 1 1 2 −2 0 −9 −27 −2 2 6 1 s28
2 ð1; 1Þ0 1 1 1 −2 0 −9 29 0 −30 6 1 s29
2 ð1; 1Þ0 1 1 1 −2 0 9 −29 0 −30 6 1 s30
2 ð1; 1Þ0 1 1 1 0 −2 −2 22 7 −7 75 −5 s31
2 ð1; 1Þ0 2 1 1 0 1 −2 22 7 −7 75 −5 s032
2 ð1; 1Þ0 1 1 1 −2 0 6 −10 −19 19 −39 11 s33
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APPENDIX E: DOWN-QUARK MASS MATRIX
OF THE STRINGY 2HDM

Let us provide the massless physical states for the down-
quark singlets. In Table II we notice that we have five left-
handed down-quark singlets and two left-handed conjugate
partners. Using the charges in Table VI for these fields,
we construct the down-quark mass matrix Md from the
invariant terms in d̄Mdd0 þH:c:⊂L, where d̄≔ ðd̄L;3; d̄L;11;
d̄L;12; d̄L;13; d̄L;14Þ and d0 ≔ ðd0L;11; d0L;12Þ⊺. We find that

M⊺
d ¼

�
0 c1 c3 c5 c7
0 c2 c4 c6 c8

�
ðE1Þ

has (full) rank two. The ci are some coupling constants
of order unity that are assumed to be real. The squared

mass matrix MdM
⊺
d encodes the three massless physical

down-quark states through the following linear combina-
tions

ðd̄L;1Þphys ¼ α1d̄L;11 þ α2d̄L;12 þ d̄L;14;

ðd̄L;2Þphys ¼ α3d̄L;11 þ α4d̄L;12 þ d̄L;13;

ðd̄L;3Þphys ¼ d̄L;3; ðE2Þ

where α1 ¼ c4c7−c3c8
c2c3−c1c4

, α2 ¼ c1c8−c2c7
c2c3−c1c4

, α3 ¼ c4c5−c3c6
c2c3−c1c4

and
α4 ¼ c1c6−c2c5

c2c3−c1c4
. Note that the third down-quark singlet

d̄L;3 is an eigenstate and can be identified with the third
generation down quark, as implied by the Yukawa cou-
plings in Eq. (32).
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