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In this work, we explore in detail the presence of scalar resonances in the WW fusion process in the
context of the LHC experiments working in the theoretical framework provided by Higgs effective field
theories (HEFTs). While the phenomenology of vector resonances is reasonably understood in the
framework of Weinberg sum-rules and unitarization studies, scalar resonances are a lot less constrained
and, more importantly, do depend on HEFT low-energy effective couplings different from the ones of
vector resonances that are difficult to constrain experimentally. More specifically, unitarization techniques
combined with the requirement of causality allows us to set nontrivial bounds on Higgs self-interactions.
This is due to the need for considering coupled channels in the scalar case along the unitarization process.
As a byproduct, we can gain some relevant information on the Higgs sector from WW → WW elastic
processes without needing to consider two-Higgs production.
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I. INTRODUCTION

In a companion paper [1], we highlighted the importance
of the WLWL scattering in investigating the Higgs self-
couplings, and therefore the Higgs potential, at the LHC in
the framework of the Higgs effective field theory (HEFT).
We argued that unitarization of the amplitudes was a
convenient—sometimes even necessary—ingredient in
this analysis. Summarizing, there are two reasons for this.
On the one hand, departures from the minimal Standard
Model (SM) typically lead to violations of unitarity at large
energies with fast rising amplitudes. Taking into account
that the fundamental theory has presumably to be renor-
malizable and unitary, this may lead to hypersensitivity to
deviations of the effective theory coefficients with respect
to their SM values. Even if this is not the case (for instance,
because deviations with respect to the SM are tiny), it is
known that lack of unitarity typically generates resonances
in various channels, which in a sense is the way the
effective theory has to remember that it derives from a
bona fide microscopic theory. The properties of these
resonances are typically very sensitive even to some

small deviations with respect the SM and thus worth
investigating.
In Ref. [1], we listed and renormalized all the suitable

on-shell local operators of the vector and scalar sector of the
HEFT describing at low energies an extended electroweak
symmetry breaking sector contributing to 2 → 2 processes.
Similar results were also reported in Ref. [2] in the off-shell
case, but without consideration of the Higgs self-coupling.
In Ref. [3], the complete process Wþ

LW
−
L → hh where the

triple Higgs coupling contributes at tree level and its
renormalization plays a role, was in turn considered,
confirming the results in Ref. [1]. We also studied the
presence of vector resonances (IJ ¼ 11) in the spectrum
and their characteristics. These resonances appeared after
unitarization of the WW elastic partial waves that would
otherwise grow uncontrolled with the center-of-mass
energy within the HEFT framework.
Unitarization of the amplitudes was carried out, making

use of the Inverse Amplitude Method (IAM) [4–13], where
the appearance of resonances can be understood after the
resummation of an infinite chain of bubble diagrams, hence
dynamically. In the vector case, the only such resummation
possible is with I ¼ 1 intermediate states, WW → ZZ →
WW → … → ZZ, but for the scalar amplitude, I ¼ 0
double-Higgs state insertions are permitted, leading to a
chains of bubbles of the formWW → hh→ ZZ→…→ ZZ.
The details of how to build the multichannel version of the
IAM will be specified in the forthcoming sections, and the
interested reader may find more information in Refs. [9,14].
It should be clear that unitarization in the IJ ¼ 00

channel and the ensuing possible resonances are a very
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promising tool to study and eventually set relevant con-
straints on the Higgs self-couplings and all other param-
eters in an effective theory. As stated, a given set of
parameters of the effective theory typically leads to the
appearance of resonances, required by unitarity. If these
resonances happen to have a low mass and should have
already been experimentally seen, the absence of detection
should translate into bounds on the effective parameters.
On the other hand, it may happen (and it does happen) that
a given effective theory gives rise to unphysical resonances,
located in the first Riemann sheet. The corresponding set of
parameters can also be excluded as no fundamental micro-
scopic theory should give rise to acausal behavior. Thus,
unitarization and resonances are important not only to
reconcile effective theories with experiment but also to set
bounds and exclude regions of parameter space. This is one
of the purposes of the present work.
When compared to works that made use of the

Equivalence Theorem [15–22] (ET) in its extreme version,
where no transverse modes of the electroweak gauge
bosons were allowed inside the loops [23,24], it was found
that including the complete OðgÞ calculation did not
noticeably modify masses and widths of the vector reso-
nances. Consequently, we found a clear hierarchy among
the HEFT coefficients as far as the properties of the
resonances is concerned: the positions of the vector poles
are mainly controlled by the parameters surviving in the
extreme g ¼ 0 ET limit, namely, a4 and a5, with only small
variations when the new OðgÞ operators are introduced via
a3 and ζ parameters [1] (see below for the proper definition
of these parameters). This is important because the number
of free parameters explodes in effective theories and it is
relevant to know beforehand those that may be more
relevant for phenomenology.
In this work, we begin by briefly reviewing the basic

setup and notation of the HEFT. Then, we proceed to
examining the existing bounds on the various parameters
involved in the HEFT, paying special attention to those
involving the Higgs. In Sec. III, the isospin projections
and several technical aspects of the calculations are
reviewed in a cursory manner (including several comments
on the approximations made). Section IV is devoted to a

discussion, in the present context, on the IAMwhen several
coupled channels are present. A comparison and a dis-
cussion on how the presence of coupled channels alters
previously existing results is included there, too. The next
section is devoted to a in-depth analysis of the various
resonances that appear for a range of parameters. It is seen
that for certain values of the Higgs potential causality
violations appears. This implies that there cannot be a
consistent microscopic, i.e., fundamental, theory whose
low-energy realization—the HEFT—is described by such
values. Other sets of parameters can be excluded because
they would lead to resonances that should have been
observed.

II. EFFECTIVE LAGRANGIAN

The HEFT is a nonlinear gauge effective field theory
(EFT) that includes a light (with respect to the scale of new
physics) Higgs-like field, and it is a natural extension of the
ElectroweakChiral Lagrangian [25–29].All the details about
how to build this effective theory that only draws from the
local and global properties of the electroweak sector can be
found in the references listed in Ref. [1]. Wewill work under
the approximation that the custodial symmetry remains exact
and consequently the electromagnetism is removed from our
theory along with other possible sources of custodial break-
ing. In practice, itwill suffice to set g0 ¼ 0 and leave custodial
breaking operators aside.
The low-energy degrees of freedom of this EFT are the

electroweak gauge bosons W�; Z; their associated
Goldstone bosons arising from the spontaneous symmetry
breaking ω�; z; and the light Higgs, which in the nonlinear
realization of the chiral symmetry remains a singlet in
clear contrast to the SUð2ÞL doublet of the linear case.
The theory is built as an expansion of powers of the
momenta of the external Goldstones that quickly leads to a
violation of unitarity of the amplitudes even within the
range of convergence of the EFT.
The relevant pieces for the calculations of on-shell 2 → 2

processes in the scalar and vector sector of the HEFT up to
next-to-leading order (NLO) and under the assumptions
mentioned before are listed hereunder,

L2 ¼ −
1

2g2
TrðŴμνŴ

μνÞ − 1

2g02
TrðB̂μνB̂

μνÞ þ v2

4
F ðhÞTrðDμU†DμUÞ þ 1

2
∂μh∂μh − VðhÞ ð1Þ

L4 ¼ −ia3TrðŴμν½Vμ; Vν�Þ þ a4ðTrðVμVνÞÞ2 þ a5ðTrðVμVμÞÞ2 þ γ

v4
ð∂μh∂μhÞ2

þ δ

v2
ð∂μh∂μhÞTrðDμU†DμUÞ þ η

v2
ð∂μh∂νhÞTrðDμU†DνUÞ þ i

ζ

v
TrðŴμνVμÞ∂νh; ð2Þ

with the building blocks
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U ¼ exp

�
iωaσa

v

�
∈ SUð2ÞV; Vμ ¼ DμU†U; F ðhÞ ¼ 1þ 2a

�
h
v

�
þ b

�
h
v

�
2

þ…;

DμU ¼ ∂μU þ iŴμU; Ŵμ ¼ g
W⃗μ · σ⃗

2
; Ŵμν ¼ ∂μŴν − ∂νŴμ þ i½Ŵμ; Ŵν�;

VðhÞ ¼ 1

2
M2

hh
2 þ λ3vh3 þ

λ4
4
h4 þ… ð3Þ

The so-called anomalous, i.e., not present in the SM, chiral
couplings follow the notation in Ref. [1]. The ωa fields
are the Goldstone degrees of freedom that are gathered
in the unitary U matrix included in the custodial group
SUð2ÞL × SUð2ÞR=SUð2ÞV .
We will use the parametrization λ3;4 ¼ d3;4λSM, where

λSM is the SM Higgs self-interaction that defines its mass
M2

h ¼ 2λSMv2. In our beyond-SM (BSM) theory, the
departures from the SM Higgs potential are carried out
by the dimensionless couplings d3 and d4. These last
parameters will play a key role in the present study since
they enter at tree level in the two-Higgs production unlike
in the I ¼ 1 case.
In our previous work [1], the complete list of counter-

terms associated to the electroweak and chiral parameters
of the custodial-preserving Lagrangian was presented up to
order s2. In the Landau gauge and by making use of the
Equivalence Theorem, we performed the one-loop on-shell
renormalization of the three processes involved. We cross-
checked our results with previous work that assumed a
massless scenario [24] and also with results in an off-shell
basis [2,30].
Finally,

L ¼ L2 þ L4 þ LGF þ LFP; ð4Þ

where the last two pieces correspond to the gauge fixing
and Faddeev-Popov terms, respectively, essential for add-
ing the quantum corrections. Regarding this matter, we will
be working in the Landau gauge (ξ ¼ 0) with massless
Goldstones and no interactions among the Goldstone sector
and the Faddeev-Popov ghosts since they are proportional
to the gauge parameter. There is no fundamental reason to
do so, but this approach makes the calculations simpler. In
the HEFT, there are no interactions between the Higgs and
the ghost sector either, the former being a singlet in the
nonlinear realization of the chiral symmetry and thereupon
absent in both the gauge fixing and Faddeev-Popov terms.

III. RELEVANT AMPLITUDES

Let us begin by reviewing the experimental situation
regarding the existing bounds on the couplings of the
HEFT. Not all low-energy constants are constrained. At
present, there are no bounds available on various Oðp4Þ
parameters. It is important to note that the Higgs potential

parameters λ3 and λ4 (i.e., d3 and d4) are poorly constrained
and not constrained at all, respectively, from an exper-
imental point of view. See the Table I for existing
information of the parameters of the HEFT. However, it
should be mentioned that from the results of Ref. [1] it
becomes clear that some of the parameters in the Oðp4Þ
HEFTare not very relevant in determining the properties of
the dynamical resonances that appear and consequently
they only play a marginal role in the restoration of unitarity.
Indeed, of all the effective couplings contributing to the
I ¼ 1 channel, a3 and particularly ζ are not that important
in determining the mass and width of the resonances. In the
I ¼ 0 case studied here, various other couplings enter, and
it is per se interesting to assess the relevance of each of
them, as they are in principle unknown except for general
order-of-magnitude estimates. Needless to say, it is par-
ticularly interesting to assess the relevance of the Higgs
scalar couplings for the reasons already mentioned.
In the I ¼ 0 channel, there are three 2 → 2 processes that

need to be taken into account:WW → WW, where byWW
we refer generically to any initial state with twoW or two Z
that is compatible with the prescribed isospin projection
(we refer to this process as the elastic one);WW → hh; and
hh → hh. Along the unitarization process, all three become
coupled and need to be considered.

TABLE I. Current experimental constraints on bosonic HEFT
anomalous couplings at 95% C.L. See our work [1] about the
issue to extract the a4 bound from the CMS analysis of Ref. [31].
Note that d4 is not constrained at all at present from the
experimental point of view.

Couplings References Experiments

0.89 < a < 1.13 [32] LHC
−0.76 < b < 2.56 [33] ATLAS
−3.3 < d3 < 8.5 [34] CMS
d4 � � � � � �
ja1j < 0.004 [35] Large Electron Positron

Collider (LEP)
(S parameter)

−0.06 < a2 − a3 < 0.20 [36] LEP & LHC
−0.0061 < a4 < 0.0063 [37] The Compact

Muon Solenoid
Collaboration (CMS)
(from WZ → 4l)

ja5j < 0.0008 [31] CMS
(from WZ=WW → 2l2j)
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The first step is to consider the tree plus one-loop
perturbative contribution to the three subprocesses, includ-
ing the necessary counterterms [1]. The relevant amplitudes
are described below.

A. Tree-level amplitudes and counterterms

In this section, we show the tree-level amplitudes of the
processes relevant for the study. The level of precision that
we aim for requires having physical gauge bosons in the
external states, as said before in the Introduction. For
reasons that will be clear immediately below, we just need
to compute the three processes presented here to get the
suitable scalar-isospin projection. Because of the lengthy

expressions that we get, we give the results split in the
different channels participating in the process using
the following notation that was used in Ref. [1]: a super-
index indicates the different processes labeled as WW for
WþW− → ZZ,Wh forWþW− → hh, and hh for hh → hh.
Also, each amplitude carries a subindex xy that represents
a process with a particle y propagating in the x channel. In
the case with x ¼ c and no y, Ac represents the contact
interaction of the four external particles. For instance, the
amplitude AWW

sh represents a Higgs exchanged in the s
channel of WþW− → ZZ scattering. The tree-level ampli-
tudes corresponding to the processes under discussion are
as follows:

(1) WþW− → ZZ:

AWW
c ¼ g2ððð−2a3 þ a4Þg2 þ 1Þððε1ε4Þðε2ε3Þ þ ðε1ε3Þðε2ε4ÞÞ

þ2ðð2a3 þ a5Þg2 − 1Þðε1ε2Þðε3ε4ÞÞ

AWW
sh ¼ −

a2g2M2
Wðε1ε2Þðε3ε4Þ

ðp1 þ p2Þ2 −M2
H

þ ag4ζ
4ððp1 þ p2Þ2 −M2

HÞ
½2ðε3ε4Þððp1ε2Þðp2ε1Þ

−ðε1ε2Þðp1 þ p2Þ2Þ þ 2ðε1ε2Þðp3ε4Þðp4ε3Þ�

AWW
tW ¼ −

ð1 − 2a3g2Þg2
ðp1 − p3Þ2 −M2

W
½−4ððε1ε2Þðp1ε3Þðp2ε4Þ þ ðε1ε4Þðp1ε3Þðp4ε2Þ

þðε2ε3Þðp3ε1Þðp2ε4Þ þ ðε3ε4Þðp3ε1Þðp4ε2ÞÞ þ 2ððε2ε4Þððp1ε3Þðp2 þ p4Þε1 þ ðp3ε1Þðp2 þ p4Þε3Þ
þðε1ε3Þððp2ε4Þðp1 þ p3Þε2 þ ðp4ε2Þðp1 þ p3Þε4ÞÞ−ðε1ε3Þðε2ε4Þððp1 þ p3Þp2 þ ðp2 þ p4Þp1Þ�

AWW
uW ¼ AtWðp3 ↔ p4; ε3 ↔ ε4Þ; ð5Þ

where εi is the abbreviation for εLðpiÞ.
(2) WW → hh:

AWh
c ¼ g2b

2
ðε1ε2Þ −

g2η
v2

ððε1p4Þðε2p3Þ þ ðp3ε1Þðε2p4ÞÞ −
2g2δ
v2

ðp3p4Þðε1ε2Þ

þ g2ζ
v2

ððε1ε2Þðp1 þ p2Þ2 − 2ðp1ε2Þðp2ε1ÞÞ

AWh
sh ¼ 3g2M2

h

2ððp1 þ p2Þ2 −M2
hÞ
ðaðε1ε2Þ þ

ζ

v2
ððε1ε2Þðp1 þ p2Þ2 − 2ðp1ε2Þðp2ε1ÞÞÞ

AWh
tω ¼ 2a2g2 þ aζg4

2ðp1 − p3Þ2
ððp3ε1Þðp4ε2ÞÞ

AtW ¼ a2g2M2
W

ððp1 − p3Þ2 −M2
WÞ
�
ε1ε2 þ

ðp4ε2Þðε1p3Þ
ðp1 − p3Þ2

�
þ ag4ζ
2ððp1 − p3Þ2 −M2

WÞ
ð2M2

hðε1ε2Þ

−ðp4ε2Þðp2ε1Þ − ðε1p3Þðε2p3Þ þM2
W
ðp4ε2Þðε1p3Þ
ðp1 − p3Þ2

Þ

AWh
uω ¼ AWh

tω ðp3 ↔ p4Þ
AWh

uW ¼ AWh
tW ðp3 ↔ p4Þ. ð6Þ
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(3) hh → hh:

Ahh
c ¼ 8γ

v4
ððp1p4Þðp2p3Þ þ ðp1p3Þðp2p4Þ þ ðp1p2Þðp3p4ÞÞ − 6λ4

Ahh
sh ¼ −

36λ23v
2

ðp1 þ p2Þ2 −M2
h

Ahh
th ¼ Ahh

sh ðp2 ↔ −p3Þ
Ahh

uh ¼ Ahh
sh ðp2 ↔ −p4Þ: ð7Þ

In all the previous expressions, the various couplings and
parameters v; a; b; a3; a4;… contain the corresponding
counterterms needed for the one-loop renormalization:
v → vþ δv; a → a þ δa; b → b þ δb; a3 → a3 þ δa3;…
The set of counterterms required to render finite the
physical amplitudes is provided in the Appendix.
In Ref. [1], the interested reader can find a more detailed

construction of the isospin projections (isoscalar, isovector,
and isotensor) of the 2 → 2 processes that concern us here.
In this section, we will only summarize the main points
relevant for the I ¼ 0 case. We emphasize that in the scalar
case the two-Higgs final state is also present and that
through the coupled channel the unitarization mechanism
contributes to the elasticWW → WW channel, and this is a
relevant fact because this turns out to be easier to handle
experimentally than processes involving two-Higgses final
states, as we will see in the coming sections. This opens an
interesting window: the dynamical resonances potentially
present in elastic WW scattering carry information from
Higgs production. We will exploit this potential below.
The generic process Wa

LW
b
L → Wc

LW
d
L, assuming an

exactly preserved custodial symmetry and using Bose
symmetry, can be written

Aabcd ¼ δabδcdAðpa; pb; pc; pdÞ
þ δacδbdAðpa;−pc;−pb; pdÞ
þ δadδbcAðpa;−pd; pc;−pbÞ; ð8Þ

which allows us to write the following amplitudes in the
more familiar charge basis:

Aþ−00 ¼ Aðpa; pb; pc; pdÞ
Aþ−þ− ¼ Aðpa; pb; pc; pdÞ þAðpa;−pc;−pb; pdÞ
Aþþþþ ¼ Aðpa;−pc;−pb; pdÞ þAðpa;−pd; pc;−pbÞ:

ð9Þ

Given this, one can see that once the “fundamental”
amplitude Wþ

LW
−
L → ZLZL has been computed the other

ones are obtained simply by crossing symmetry.

Since we are interested in a partial-wave analysis of
unitarity, it is suitable to build the fixed-isospin amplitudes
of the process that read

T0 ¼ 3Aþ−00 þAþþþþ

T1 ¼ 2Aþ−þ− − 2Aþ−00 −Aþþþþ

T2 ¼ Aþþþþ: ð10Þ
In contrast to our previous work, we will now be interested
in the scalar projection, T0.
Within our theoretical framework, the Higgs is a weak

isospin singlet (I ¼ 0), so it is straightforward to write the
following relations for the Wa

LW
b
L → hh and hh → hh

processes:

MðWa
LW

b
L → hhÞ ¼ Mabðpa; pb; ph;1; ph;2Þ;

TWh;0 ¼
ffiffiffi
3

p
Mþ−; ð11Þ

T ðhh → hhÞ ¼ T ðph;1; ph;2; ph;3; ph;4Þ ¼ T hh;0: ð12Þ

B. One-loop real part: The Equivalence Theorem

Taking into account that we will be eventually interested
in exploring a large set of parameters, it is important to be
equipped with computational algorithms that run fast. This
is one of the reasons that make convenient, in order to
determine the real part of the one-loop amplitude, to appeal
to the so-called Equivalence Theorem. This allows us to
replace the scattering of physical W’s by the one of the
corresponding Goldstone bosons. The details concerning
this approximation can be found in Ref. [38] and were also
briefly reviewed in Ref. [1].
Another reason why it may be convenient to use the ET

has to do with the convenience to make direct contact with
some existing analytical results that are only available in
the ET limit and for g ¼ 0, where the expressions become
analytically tractable, because a full one-loop calculation in
the g ≠ 0 limit involves expressions that do not have a
simple analytical continuation to the complex s plane.
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We chose to work in the ’t Hooft-Landau gauge that is
particularly simple from the renormalization point of view.
As discussed in Ref. [1], the results we obtain should be
gauge invariant at the order where we are working, even if,
in principle, the leading order of the ETapproximation is by
itself not gauge invariant. Recall that the ET relies on the
splitting of the polarization vector ϵμL ¼ kμ=MW þ vμ, with
vμ being of order MW=

ffiffiffi
s

p
. We note that we use the ET for

the one-loop correction only, not for the tree-level con-
tribution that is calculated using physical W’s. The one-
loop correction to the partial wave is of Oðs2Þ, and the
(potentially gauge-dependent) corrections to the ET might
change the OðsÞ contribution, but the latter—tree level—is
calculated exactly without appealing to the ET. Therefore,
gauge invariance is respected even if the splitting is itself
not gauge invariant. As a sanity check, where a comparison
can be made, all counterterms agree with those computed in
a general gauge.
A further check is provided by comparing the imaginary

part obtained in this way with the one computed exactly via
the optical theorem.
Even using the ET, the one-loop real part cannot be

expressed when masses are not neglected in terms of simple
functions and the results are derived numerically.
Fortunately, most of the effective coefficients enter only
at order s2, and then they are formally tree level from a
computational point of view, even though they give con-
tributions of the same order as the one loop. This makes
exploring the parameter landscape simpler. An exception to
this rule are the parameters a, b, d3, and d4 that enter at
order s. Accordingly, every modification of any of those
requires a new one-loop calculation of the real part.

For further reference, we give below the expression for
the tree and one-loop results in the limit MW ¼ MH ¼ 0

[24]. They are useful to identify physical poles in the
full-fledged calculation that, as said, is not amenable to
analytical continuation to the appropriate Riemann sheet. In
the limit where all the particles are massless and hence the
SM values g and λSM are set to zero, the amplitudes withWs
in the external states vanish, and if we want to have some
analytical expressions for the tree level for our unitarity
study, we are forced to go to the ET and place Goldstone
bosons in the external legs.
The authors in Ref. [24] worked with the chiral param-

eters α and β, instead of a and b, since they introduced a

vacuum-tilt extra free parameter, ξ ¼
ffiffi
v
f

q
, interpolating

between composite models (v ¼ f) and the SM limit
(f → ∞) where the new resonant states completely decou-
ple from the theory (this vacuum-tilt parameter should not
be confused with the gauge parameter). In fact, with the
massless and naive custodial limit g ¼ g0 ¼ 0 in Ref. [24]
[also known as naive Equivalence Theorem (nET)], all the
gauge dependence disappears, and all the amplitudes are
trivially gauge invariant. This parametrization makes con-
tact with ours with the redefinitions a ¼ α

ffiffiffi
ξ

p
and b ¼ βξ.

In our framework, only the electroweak scale is used for the
Higgs mechanism and weighs both Goldstone and Higgs
fields, so we rewrite their amplitudes in the particular case:
ξ ¼ 1, a ¼ α, and b ¼ β.
The expressions are shown below, and, in contrast to the

full calculation previously described, due to the simplicity
of the formulas, we do not split the full amplitude in the
different channels:

(1) ωω → ωω—Massless limit:

Atree ¼ ð1 − a2Þ s
v2

þ 4

v4
ð2a5s2 þ a4ðt2 þ u2ÞÞ ð13Þ

Aloop ¼ 1

576π2v4
½fWðs; t; uÞs2 þ ð1 − a2Þ2ðgðs; t; uÞt2 þ gðs; u; tÞu2Þ� ð14Þ

with the definitions

fWðs; t; uÞ ¼ 20 − 40a2 þ 56a4 − 72a2bþ 36b2 þ Δð12 − 24a2 þ 30a4 − 36a2bþ 18b2Þ

þ ð−18þ 36a2 − 36a4 þ 36a2b − 18b2Þ log
�
−s
μ2

�
þ 3ð1 − a2Þ2

�
log

�
−t
μ2

�
þ log

�
−u
μ2

��
ð15Þ

gðs; t; uÞ ¼ 26þ 12Δ − 9 log

�
−t
μ2

�
− 3 log

�
−u
μ2

�
:
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(2) ωω → hh—Massless limit:

Mtree ¼ ða2 − bÞ s
v2

þ 2δ

v4
s2 þ η

v4
ðt2 þ u2Þ ð16Þ

Mloop ¼ a2 − b
576π2v2

�
fWHðs; t; uÞ s

2

v2
þ a2 − b

v2
ðgðs; t; uÞt2 þ gðs; u; tÞu2Þ

�
; ð17Þ

where

fWHðs; t; uÞ ¼ −8ð−9þ 11a2 − 2bÞ − 6Δð−6þ 7a2 − bÞ − 36ð1 − a2Þ log
�
−s
μ2

�

þ 3ða2 − bÞ
�
log

�
−t
μ2

�
þ log

�
−u
μ2

��
ð18Þ

and the function gðs; t; uÞ is the same as in the elastic case.

(3) hh → hh—Massless limit:

T tree ¼ 2γ

v4
ðs2 þ t2 þ u2Þ: ð19Þ

Notice that this process has no Oðp2Þ contribution
since in the massless Higgs limit the triple self-
coupling of the Higgs vanishes and there is no
diagram contributing to the process,

T loop ¼ 3ða2 − bÞ2
32π2v4

ðfHðsÞs2 þ fHðtÞt2 þ fHðuÞu2Þ;
ð20Þ

with

fHðsÞ ¼ 2þ Δ − log

�
−s
μ2

�
: ð21Þ

C. One-loop imaginary part: The optical theorem

With respect to the imaginary part of the one loop
calculation, it is most easily determined exactly by using

the optical theorem. The details about our calculation of the
imaginary part using this theorem are gathered in Ref. [1],
but for the scalar case, we find one difference with respect
to our previous study: an intermediate double-Higgs I ¼ 0
state is now permitted.
Once we know the discontinuity of a complex amplitude,

AðsÞ, across the physical cut, we find

ImAðsÞ ¼
X

jψðI¼0Þ>
σðsÞjAðsÞj2; ð22Þ

where σðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðM1þM2Þ2

s

q
is the two-body phase space.

This allows us to compute the imaginary part of any
amplitude at the one-loop level from the tree-level result.
As an example, we show the different contribuitions in

the full I ¼ 0 isospin amplitude in the process
Wþ

LW
−
L → ZLZL:

AðWþ
LW

−
L → ZLZLÞ ¼ Að2Þ

tree þAð4Þ
tree þAð4Þ

loop. ð23Þ

Að2Þ
tree þAð4Þ

tree is the full tree-level contribution (5) andA
ð4Þ
loop

is the one-loop amplitude

Að4Þ
loop ¼ Re½Að4Þ

loopðωþω− → zzÞ� þ iðσWðsÞjAð2Þ
treej2 þ σHðsÞjAð2Þ

treeðWþ
LW

−
L → hhÞj2Þ. ð24Þ

Að2Þ
treeðWþ

LW
−
L → hhÞ in the imaginary part is the tree level

amplitude of the VBS two-Higgs production, Eq. (6), and

σW;H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

W;H

s

q
.

Can we safely compute the real part of the one-loop
amplitude within the ET? The technical issue of gauge
invariance was already discussed in the previous subsec-
tion. Now, we can ask ourselves what the precision of such

an approximation is. In the context of partial wave analysis,
perturbative unitarity relates the imaginary part of the NLO
wave and its leading-order (LO) modulus

ImtWW;ð4Þ
00 ¼ σW jtWW;ð2Þ

00 j2 þ σHjtWh;ð2Þ
00 j2: ð25Þ

These partial waves are defined in detail in the next section.
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Our test consists in computing the left-hand side of (25)
within the ET, via a one-loop calculation, and checks
whether the relation (25), with the rhs determined using
physical W’s, stands and what level of agreement is
obtained. For this, let us define the error, in a percentage,
assumed by the ET with the quantity

ΔFull−ET ¼
jImtωω;ð4Þ00 − ðσW jtWW;ð2Þ

00 j2 þ σHjtWh;ð2Þ
00 j2Þj

σW jtWW;ð2Þ
00 j2 þ σHjtWh;ð2Þ

00 j2
· 100:

ð26Þ

This quantity includes, by construction, couplings from
the leading-order Lagrangian (1), and it is completely
independent of any Oðp4Þ parameter since our calculation
is made up to Oðp4Þ and they just enter at tree level and
consequently do not produce any imaginary part for the
left-hand side of Eq. (25).
Figure 1 shows ΔFull−ET for the BSM-HVV interaction

a ¼ 0.9, the self-couplings of the Higgs set to their
standard values, and various b values. The behavior is that
expected for the ET: the longitudinal components of the
electroweak gauge bosons are well represented by the
associated Goldstone boson for high energies compared to
the gauge boson masses. This is independent of the value of
b in the plot.
What we also observe in Fig. 1 is that for values of b

close to a2 ¼ 0.92 ¼ 0.81 the error grows. This “failure” of
the ET can be understood by going to the completely

massless limit, useful for
ffiffiffi
s

p
≫ Mω;h, where the leading-

order ωω and ωh amplitudes are proportional to ð1 − a2Þ
and ða2 − bÞ [Eqs. (13) and (16)], respectively. For a fixed
value of a, close to the SM which cancels the ωωmassless
amplitude, the closer b is to 0.81, the worse the com-
parison with the full calculation is. This happens because
the right-hand side of (25) approaches zero, being propor-
tional to b − a2, and cancels the leading part of the
denominator of ΔFull−ET. Generally speaking, if one
considers the SM parameters b ¼ a2 ¼ 1, we do not find
good agreement, and more terms in the ET expansion,
such as Oðg2ÞWLω → ωω, would be needed at low s
values as explained in Ref. [38].
However, the apparent failure just described is actually a

mirage because we are dealing with partial waves that are
very small numerically. To see this, we show in Fig. 2 a
check of perturbative unitarity for a benchmark point away
from the SM by a 10%, except for the Higgs self-couplings
which remain set in their SM values.
It could seem that Fig. 2 enters into contradiction with

the previous Fig. 1 that shows a worse agreement for the
same benchmark point, while it is almost unnoticeable for
the low-energy points in the former. This situation, that is
reproduced with any choice of parameters, is explained by
the fact that, by construction, the chiral amplitudes are
much smaller at low energies than in the high-energy
regime where this uncontrolled growth leads precisely to
the violation of unitarity. Having said that, we can conclude
that it is safe for us to make use of the ET for the one-loop
level along the whole range of energies since the
differences with the full calculation are on one hand
negligible in the high-energy regime and, on the other

FIG. 1. In this plot, we show in a percentage the quantity
ΔFull−ET defined in (26) plotted with respect to the center-of-mass
energy. In this figure, we set a ¼ 0.9; d3 ¼ 1.0, and d4 ¼ 1.0 and
show different values of b. This figure is independent of Oðp4Þ
parameters. This shows that for large values of s the imaginary
part computed via the ET agrees at the 10% level with the one
determined (exactly) via the optical theorem. As explained in the
text, although the discrepancy may look large at low values of s,
the amplitude is very small there and does not contribute
significantly to the position and width of possible resonances.
See also Fig. 2.

FIG. 2. Figure showing perturbative unitarity (25) for the chiral
couplings specified in the title. The data shown here are ten red
points equally spaced along the energy range 1500–3000 GeV,
within the validity region of the theory. The dashed line is the
bisector of the first quadrant, and the points that lie over it satisfy
perturbative unitarity exactly.

ASIÁIN, ESPRIU, and MESCIA PHYS. REV. D 107, 115005 (2023)

115005-8



hand, the low-energy contributions are much smaller when
one is very close to the SM values. Away from the SM limit
(which is of course our main focus), the agreement is good
everywhere.

IV. UNITARIZATION

The resonances that we are seeking cannot be described
by a series expansions in the momenta since they should
arise as poles in S-matrix elements and that is why we need
nonperturbative methods to extend the predictivity of the
low-energy theory, that eventually will lose unitarity, to the
strongly interacting regime at higher energies.
The loss of unitarity requires unitarization methods, and

there is a variety of such methods (K-matrix, N=D, IAM,
etc.; see Ref. [12] for a complete summary), but they have
been proven to show the same qualitative results. They are
based on partial wave analysis and make use of amplitudes
with fixed spin (J) and isospin (I) after the projection

tIJðsÞ ¼
1

32Kπ

Z
1

−1
dðcos θÞPJðcos θÞTIðs; cos θÞ; ð27Þ

where K is a constant whose value is K ¼ 2 or 1 depending
on whether the particles participating in the process are
identical or not and TI are the fixed isospin amplitudes that
are built from Feynman diagrams and weak isospin
relations. These are Eqs. (9)–(12) of Sec. III A.
As we did in the vector case, we will assume that the

scalar wave admits an expansion in powers of the momenta

t00 ¼ tð2Þ00 þ tð4Þ00 þ � � � ; ð28Þ

restricting ourselves to the lowest order ðI; J ¼ 0; 0Þ for the
study. Hence, with this analysis, we will just be looking for
scalar-isoscalar resonances.

A. Coupled channel formalism

In our preceding study [1], we focused on the case of
vector-isovector resonances present in the WLWL elastic
scattering, so the single-channel formalism of the IAM was
the way to go. As already anticipated in the Introduction,
for the scalar case, we must take into account the presence
of scalar waves coming from double-Higgs configurations
(in addition to the I ¼ 0 projection of ωω) in the inter-
mediate states of the resummation of bubble diagrams. This
mixing of different possible intermediate states is repre-
sented in the matrix form of the scalar-isoscalar partial
wave

t00 ¼
 
tWW
00 tWh

00

tWh
00 thh00

!
ð29Þ

that is the fundamental structure that will be rendered
unitary.

For the case b ¼ a2 and in the high-energy limit where
the mass of the Higgs can be neglected, the off-diagonal
elements (what we call the crossed channel) of (29) vanish
in the ET limit when we set g ¼ 0, i.e., in the nET
framework. This actually leads to the decoupling limit:
there is no mixing among the different scalar channels
whatsoever. However, this is not true as soon as we set
g ≠ 0, even if b ¼ a2, and the full coupling matrix needs to
be considered.
It can be found, for example in Ref. [9], that when

cutting the expansion of the scalar wave at NLO [Oðp4Þ]
the multichannel IAM amplitude is just the generalization
of the elastic case in matrix form

tIAM00 ¼ tð2Þ00 · ðtð2Þ00 − tð4Þ00 Þ−1 · tð2Þ00 : ð30Þ

The elements of the IAM matrix are all the unitary scalar
waves participating in the process up to NLO: unitary WW
in the first diagonal entry,Wh in the off-diagonal and hh in
the second diagonal element.
This IAM matrix, besides keeping the analytical proper-

ties on the right cut required for partial wave analysis, has a
low-energy expansion that coincides with (28) and fulfills
the exact unitarity condition

ImtIAM00 ¼ σðtIAM00 Þ†tIAM00 ; ð31Þ

where σ is the two-body phase space. At this point, we find
an ambiguity in the crossed channel of this expression: we
have two kinds of particles with different masses, the gauge
bosons and the Higgs, but yet we only include a unique
phase space, that we choose to be the one with theW boson

mass, σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

W
s

q
. This choice, of course, will be of no

relevance at the high-energy regime that we want to explore
where M2

W ≈M2
H ≪ s and σ ≈ 1.

From (30), it can be seen how the scalar resonances, if
present, are located at the zeros of the determinant

Δ00ðsRÞ≡ det ðtð2Þ00 ðsRÞ − tð4Þ00 ðsRÞÞ ¼ 0; ð32Þ

where the Breit-Wigner resonances occur at sR ¼
ðMR − i

2
ΓRÞ2 in the s-complex plane.

With this coupled-channel formalism, more channels are
available for the resummation of the intermediate and in the
final states, making the resonances appearing in the
scattering characteristically broader. They are short lived,
compared to those found in single-channel, massive states.
If these poles in the zeros of the determinant (32) are to be
interpreted as Breit-Wigner-like resonant states, we will be
applying the broadly used criterion that the width satisfies
Γ < M

4
, meaning this that the pole is located near the real

axis as one can see from the definition of sR above.
Otherwise, we would have found a simple enhancement
of the scalar amplitude not to be interpreted as a physical
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pole with such an enhancement produced by the presence
of a pole far from the real axis.
As in the vector case, we shall be looking for poles

appearing in the second Riemann sheet where the Breit-
Wigner interpretation leads to positive widths, required by
causality arguments. If some pole appears in the first
Riemann sheet, where imaginary parts are positive, it
would be associated with a spurious resonance with
negative width that cannot be present in a physical theory.
Thus, we find here an empirical approach in order to
discriminate a priori plausible sets of parameters in
the HEFT.

B. Scalar resonances

Now that we have presented the coupled-channel for-
malism for the scalar waves, we are prepared to search for
scalar resonances in the chiral parameter space.
Following the way of building the fixed I ¼ 0 isospin

amplitude in Ref. [1], the scalar partial wave is obtained
from (27)

t00 ¼
1

64π

Z
1

−1
dðcos θÞT0ðs; cos θÞ; ð33Þ

where we have used that the Legendre polynomial
P0ðcos θÞ ¼ 1.
Previous works such as Refs. [39,40] already searched

for scalar resonances in WW scattering following the
procedure developed in the preceding section. These works
relied on the ET (even at tree level) in the naive custodial
limit, g ¼ g0 ¼ 0, and the former assumed a completely
massless scenario, so both of them could get exact
analytical continuations of the partial waves to the second
Riemann sheet to look for the resonant states. This is a step
that we are not able to perform in our calculation, as the
resulting expressions do not have an analytic treatment.
The first task for our numerical analysis, following the

ideas in Ref. [1], is to find modifications in the properties of
the scalar resonances studied, e.g., in Ref. [40] once one
relaxes the g ¼ 0 approximation and includes gauge bosons
in the external states at tree level and in internal lines of
the one-loop calculation. In that study, the authors consid-
ered the relevant chiral parameter space giving scalar
resonance masses in the range 1.8 TeV<MS < 2.2 TeV.
No coupled-channel formalism was used, and instead they
assumed the decoupled-channel limit within the nET by
setting b ¼ a2 for the particular case b ¼ a ¼ 1. For some
benchmark points in the mentioned region, we get the
modifications on the location of the scalar points after
allowing for transverse gauge propagation (see Table II).
From this table, we extract similar conclusions as in the

vector case. On one hand, the masses of the scalar
resonances are pushed up by 2%–3% once the SUð2ÞL
coupling is set to its SM value, the very same behavior as
for I ¼ 1. On the other hand, we observe variations in the

widths1 of around 4%–6%, values much greater than in the
vector case where the differences were almost unnoticeable.
This gives us an idea of the significance of the propagation
of transverse modes.
However, the above results for MS, ΓS are only tentative

because when one wants to make a full calculation beyond
the nETand consider physical vector bosons in the external
states, even in the case where b ¼ a2, there is no decou-
pling and one needs the coupled-channel formalism to get a
proper description of the dynamics of the system in the
IJ ¼ 00 channel. Let us now proceed to study how
coupling the various relevant channels affects the results.
The modifications will be substantial in fact.
All the Oðp2Þ parameters are included in all the

amplitudes of (29), but as one can see from the L4

Lagrangian (2), not every Oðp4Þ coupling affects all the
channels. In particular, WW depends on a4, a5, a3, and ζ;
Wh depends on δ, η, and ζ; and the hh elastic process
depends only on γ. The operators accompanying these
couplings could eventually dominate the corresponding
amplitudes at high energies due to the presence of the four
derivatives. However, not all these couplings contribute to
the NLO scalar amplitude with the same strength. The
aforementioned contribution is represented in Fig. 3 for
values of the parameters of the expected (absolute) size
of 10−3.
From Fig. 3, we see an evident hierarchy among the

different couplings: a4 and a5 contributions are much more
relevant than those of a3 and ζ in the elastic WW. For the
crossed scattering, Wh, δ, and η contributions are much
more important than the one of ζ. This picture reinforces
the conclusion that those operators surviving in the g ¼ 0
limit (the nET limit) are more relevant that the other ones.
The reason why this happens lies in the fundamental

TABLE II. Values for the location of the scalar poles
ffiffiffiffiffi
sS

p ¼
MS − i

2
ΓS for g ¼ 0 and g ≠ 0 for some points in the a4 − a5

plane and in the decoupling limit b ¼ a2 within the nET with
a ¼ b ¼ 1. The self-interactions of the Higgs are set to the SM
values. Note that the coupling to other I ¼ 0 channels is ignored
here for the purpose of assessing the effect of switching on the
transverse modes.

ffiffiffiffiffi
sS

p ðGeVÞ a4 × 104 a5 × 104 g ¼ 0 g ≠ 0

1 −0.2 1805 − i
2
130 1856 − i

2
125

2 −1 2065 − i
2
160 2119 − i

2
150

3.5 −2 2175 − i
2
170 2231 − i

2
163

1In this work the widths are determined by measuring the
difference in energy between the values where the resonance
curve intercepts a straight line drawn at half the value of the
maximum of the resonance curve. This is a simple method that
should not differ significantly from an exact determination of the
pole position in the complex energy plane, which is not accessible
to us.
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structure of the HEFT. To be consistent in the chiral
counting, both Higgs mass (∼

ffiffiffiffiffiffiffiffi
λSM

p
v) and EW gauge

boson mass (∼gv) must be understood as OðpÞ soft scales;
therefore, a local operator with one gauge coupling plus
three derivatives (like those accompanying a3 and ζ) is
of chiral order 4, just like one with four derivatives
(a4; a5; � � �), but the latter dominates by far at high energies.
The behavior presented above agrees with what we

found from vector-isovector resonances [1]: the pole
position was almost completely determined by a4 and a5
with subleading effects after adding a3 and ζ, at least for
values of a; b; d3, and d4 close to the SM values. This is
why in the forthcoming analysis, in order to keep it as
simple as possible, we will only consider the influence of
a4 and a5 in determining the properties of resonances in the
IJ ¼ 11 channel and neglect the role of a3 and ζ.
The space of parameters to analyze in the IJ ¼ 00 case is

considerably larger than in the vector case, and some sort of
hierarchy is needed in order to proceed. One point to check
is whether in the scalar case a4 and a5 dictates to a very
good approximation the structure of resonances as it
happens in the vector case (assuming for the time being
that we stay close to the SM values a ¼ b ¼ d3 ¼ d4 ¼ 1).
To study this, we will focus first on the benchmark points
(BPs) in the a4 − a5 plane defined in Table III. Other works
have studied the spectrum of resonances inWW scattering,

in particular the group of Ref. [41] that made use of
Weinberg sum rules [42] derived from the W3B correlator,
to set minimal bounds for the masses of vector resonances
allowed by experimental constraints of the chiral param-
eters. For the region in the a4 − a5 plane that we are
interested in, they found that, for any scenario where an
axial state is decoupled, the minimal mass for an exper-
imentally allowed vector resonance is around 2 TeV.
We slightly relax that condition and require a parameter
space where, if present, the vector resonances satisfy
MV ≳ 1.8 TeV. We choose the minimal mass for any
observable scalar resonance to be the same value of MS ≳
1.8 TeV and assume that any lighter state should have
already been seen in the experiment.
At this point, one should recall that only particular

combinations of a4 and a5 appear in the various channels,
namely, 5a4 þ 8a5 for IJ ¼ 00, a4 − 2a5 for IJ ¼ 11, and
2a4 þ a5 for IJ ¼ 20 [43]. In previous studies, it was found
that isotensor resonances are always acausal and the
corresponding region 2a4 þ a5 < 0 is to be excluded from
our considerations. Thus, we select BPs outside the region
excluded by isotensor acausal resonances [44] and within
the vector-isovector and scalar-isoscalar space. In particu-
lar, we select one BP (BP1) that belongs to the region
where both isovector and isoscalar resonances appear,
satisfying the condition commented above regarding the
vector resonance mass. The other two BPs (BP2 and BP3)

FIG. 3. Plot of the NLO tree-level scalar wave separated in the different chiral coupling contributions for (left axis) the elasticWW and
(right axis) the crossed channel Wh. All the values are chosen to be of the maximum expected size of 10−3.

TABLE III. Properties of the scalar resonances for the selected benchmark points in the a4 − a5 plane, with the
Oðp2Þ parameters set to their standard values, in both single-channel (S.C.) and coupled-channel (C.C.) formalism.
We also include the values of the properties of vector resonances if present. The dash symbol − indicates the absence
of a zero in the determinant, Eq. (32). The Oðp2Þ chiral parameters are set to their SM values. We see that coupling
channels modifies very substantially masses and widths. Those poles not fulfilling the resonance condition are in
boldface.

a4 × 104 a5 × 104 S:C: C:C: MV − i
2
ΓV

BP1 3.5 1 1044 − i
2
50 1844 − i

2 487 2540 − i
2
27

BP2 −1 2.5 1219 − i
2
75 2156 − i

2 637 � � �
BP3 1 1 1269 − i

2
75 2244 − i

2 675 � � �
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lie in the purely scalar-isoscalar region. In Fig. 4, we see the
position of the BPs that we have just described within
the a4 − a5 plane where resonances are present when the
coupled-channel formalism is applied.
These BPs are gathered in Table III where we also

include, even if they do not have a physical relevance,
the values after applying the single channel formalism to
theWW scalar wave, obviating the crossed channel and the
elastic hh scattering. Both values are obtained with g ≠ 0.
The first thing that one notices is that when (correctly)

considering coupled channels the results differ considerably

from the ones onewould obtain in the single channel and the
resonance masses and widths visibly increase. Recall that
here we are assuming a ¼ b ¼ 1 where naively one would
expect to have decoupling (this is the case in the nET). This is
not so because we are setting g ≠ 0. In fact some of the
would-be resonances even disappear as such by just becom-
ing broad enhancements. Recall that conventionally a physi-
cal resonancemust satisfyΓ < M=4 and this is not the case in
many cases when applying the coupled-channel formalism.
Obviously, coupled channels matter.
Finally, let us mention that in pp collisions the scattering

of vector bosons (VBS) is a subdominant process, but the
production of hh pairs via VBS is further suppressed with
respect to the elastic channelWW → WW. A relevant issue
that will be studied below is the intensity of the coupling of
the dynamical resonances to hh final states. As we will see,
they would be more visible in the elastic WW → WW
channel and tend to couple weakly to final hh pairs. To
what extent this depends on the various couplings is an
interesting question, too.

C. Checking unitarity

The bad high-energy behavior, manifest in the ampli-
tudes of the effective theory even, must be avoided in order
to give reasonable predictions that do not overestimate the
number of predicted events in WW fusion subprocesses.
Here, we provide evidence that this is the case when the
partial scalar waves are unitarized.
Indeed, the IAM amplitude (30) is built to keep the

desired unitarity property (31) as long as there is a good
description of the amplitudes across the physical cut. One
can easily show from the exact unitarity condition that the
unitarized partial waves for the elastic processes (WW and

FIG. 4. Regions in the a4 − a5 plane where scalar (red) and
vector (green) resonant states appear. The striped area represents
excluded paramter space by the presence of acausal isotensor
resonances. The benchmark points used in this study are marked
in the plot. One of them, BP1, lies in the region where both
isoscalar and isovector states show up, and the other two, BP2
and BP3, lie in the purely isoscalar sector.

FIG. 5. Argand plot for the scalar wave of the (left) elastic WW and (right) elastic hh scattering for BP3 and the chiral coupling
γ ¼ 10−3. The rest of the parameters are set to their SM values. In red dots, the unitarized amplitude satisfying the unitarity condition; in
blue dots, the nonunitary chiral amplitude from the Lagrangians (1) and (2). TheWh crossed channel alone does not need to satisfy this
condition of lying on or inside the circumference.
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hh) must lie on or within the circumference of radius 1=2
centered at ð0; 1=2Þ when plotting the imaginary versus the
real part of the unitarized amplitude. This is not the case for
the crossed-channel Wh. As a demonstration of the good
behavior of our scalar waves, we show in Fig. 5 the Argand
plot for the elastic processes described with the chiral
parameters of BP3 plus γ ¼ 10−3. The rest of the chiral
couplings keep their SM values.
As we can see in Fig. 5, no matter the point (every one of

them corresponding to different energies), they all fall
within the unitary circle. The fact that they do not lie
exactly over the circumference is because, for the selection
of parameters chosen for illustration, there is a big
component of inelasticity in the process, i.e., the crossed
channel cannot be neglected.

D. Some theoretical insight

Physical resonances should always be located in the
second Riemann sheet. It is sometimes not fully appreciated
that the presence of unphysical singularities, e.g., in the first
Riemann sheet, is useful to restrict the space of parameters of
an effective field theory. In hadron physics, for instance, it is
widely known that a broad range of parameters in the pion
Effective Chiral Lagrangian is excluded because it leads
to acausal resonances in isotensor resonances. This result
automatically translates into the HEFT because the expres-
sions are very similar. An upper bound on the combination
a5 þ 2a4 (see Ref. [43]) emerges. This restricts the range of
parameters that can be considered for an effective theory. In
other word, no UV completion may exist that leads to such
low-energy constant.
This lack of causality can also be understood directly on

Lagrangian terms in some cases. In Ref. [45], it was seen in
a general setting how such restrictions may arise.
In the context of HEFT, in Ref. [46], the following sum

rule was derived

1−a2

v2
¼ 1

6π

Z
∞

0

ds
s
ð2σI¼0ðsÞtotþ3σI¼1ðsÞtot−5σI¼2ðsÞtotÞ;

ð34Þ

where σtotI is the total cross section in the isospin channel I.
This interesting result was derived making full use of the
ET and setting g ¼ 0. Taking into account that, unless there
is an unlikely strong enhancement of the I ¼ 2 isospin
channel, the rhs is positive definite, this would exclude
values of the effective coupling a greater than 1. Note that
we just saw that there were no physical resonances in the
isotensor channel. And, indeed, no satisfactory microscopic
model has been constructed with a > 1 to our knowledge.
As we have seen, there are some deviations with respect

to the ET predictions when using the proper longitudinal
vector boson amplitudes and they affect the analytic
properties of the amplitude. In Ref. [44], it was seen that

a complete calculation (as opposed to the simpler nET
treatment) changes the previous result in several ways. For
instance, it is not true that a given order in the chiral
expansion corresponds to a definite power of s—a property
that is used in order to derive (34). Therefore, when gauge
transverse propagation q is included, the order s contribu-
tion will have corrections from all orders in perturbation
theory. The contribution to the left-hand side of the integral
obtained will then be of the form

3 − a2 þOðg2Þ
v2

: ð35Þ

However, the right cut changes, too, when g is taken to be
nonzero due to W propagation in the t channel, and this
could compensate the modification on the lhs. Finally, as
we have seen, crossing symmetry is not manifest in the
Mandelstam variables when one moves away from the nET.
This is again a necessary ingredient to derive (34).
These subtleties, however, do not mean that the a > 1

forbidden region is not present; it just means that proving
this when the propagation of transverse modes is taken into
account is not so easy. Indeed, in Ref. [44], it was seen that
for a > 1 the IAM led to pathologies in resonances
appearing in various channels, including acausal resonan-
ces—poles in the first Riemann sheet.
Therefore, it seems that an efficient way of setting

bounds on the low-energy constants is provided by dis-
carding those regions of parameter space in the effective
theory, i.e., in the infrared, where resonances are acausal.
The regions described by these effective theories do not
have an ultraviolet completion.

V. RESULTS

As previously mentioned, bounds on the parameters of
the HEFT from the study of unitarity and resonances can
come in two ways. One is simply by experimentally
falsifying a given set of parameters because they should
give rise to resonances that are not seen in experiment. The
other is giving rise to unphysical acausal resonances that
lay on the wrong Riemann sheet.
To exploit all the potential of the analysis, we will group

the parameters of the HEFT into two different sets. One of
them contains all parameters that enter the Oðp2Þ
Lagrangian; namely a; b; d3, and d4. In the preliminary
analysis previously presented, these values were all set to
their SM values a ¼ b ¼ d3 ¼ d4 ¼ 1. The other set
contains all the Oðp4Þ parameters: a4; a5; γ; η, and δ. We
shall assume that none of the parameters in the second
group exceeds in absolute value 10−3. We will not include
the chiral parameters a3 and ζ because in Ref. [1] it was
demonstrated that they play only a marginal role in the
determination of vector resonances.
In what follows, we will first study the influence of the

relevant Oðp4Þ parameters while keeping the first set to
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their SM values. Later, we will repeat the analysis for
values of a, b that slightly differ from the SM, but still
keeping d3 ¼ d4 ¼ 1. Finally, we will study the influence
of d3 and d4, but keeping the SM values a ¼ b ¼ 1 to test
the sensitivity of scalar resonances to the parameters in the
Higgs potential.
For a given set of Oðp2Þ parameters (a; b; d3, and d4),

once one fixes a4 and a5, the pole position in the elastic
WW channel is pretty much determined (up to small a3 and
ζ corrections that we neglect). To the extend that the elastic
channel may dominate resonance production, we can treat
the effect of the rest of parameters that participate in the
mixing among the scalar channels as a perturbation. We
have, for instance, searched for resonances in the case a4 ¼
a5 ¼ 0 while varying the remaining Oðp4Þ terms with a
negative result. The presence of resonances (both in the
vector and scalar channels) is largely triggered by nonzero
values of the chiral couplings a4 and a5.
However, not every set of low-energy parameters may

correspond to an effective description of a strongly inter-
acting theory. Therefore, we have to be able to discriminate
which of the zeroes of Eq. (32) is a physical and which is
not and also which resonances should have also been
observed.
On one hand, we will be looking for resonant states that

satisfy the condition Γ < M=4. If this is not fulfilled, we
will be talking of an enhancement of the unitarized
amplitude but never to be interpreted as a resonant state.
In that case, even if Eq. (32) has a zero, the parameters M
and Γ are not directly related the properties of a Breit-
Wigner resonance. On the other hand, there are zeros that,
even satisfying the aforementioned condition, cannot be
taken as physical states since they have negative Breit-
Wigner widths. These spurious states cannot be present in
any physical theory. Analytically speaking, these zeros are
found in the first Riemann sheet, above the physical cut in
the complex s plane.

Unlike in the case of the nET, due to the complicated
structure of the one-loop amplitude, we cannot perform
analytical continuation to the second Riemann-sheet and
find poles analytically. To contour that difficulty, we have
three tools at our disposal: (1) comparison with the nET in
order to see if a pole represents a modification of a pole
previously known to exist in the simplifiedmodel; (2) fitting
the partial wave to a two Breit-Wigner resonances, leaving
the sign of the width as a free variable; and (3) checking the
behavior of the phase shift across the resonance. Of all three
possibilities, tool 1 is not very informative because, as seen,
the modifications with respect the nET are large when
coupled channels play a role, tool 2 is quite useful, but tool
3 is the method of choice (particularly when combined with
tool 2).
The phase of an amplitude that contains a physical

resonance presents a shift from π=2 to −π=2 in the pole
position. The derivative of the phase should always be

positive as the expression Γ ∼ ð∂δðsÞ
δ
ffiffi
s

p Þ−1, where δðsÞ repre-
sents the phase, can be derived analytically. In this way, we
study the causal character of all resonances found. All cases
are met: one resonance, two physical resonances, and also
two resonances where only one of them happens to be
physical.
Let us now proceed with the study in the case

a ¼ b ¼ d3 ¼ d4 ¼ 1.
To study the impact of the new parameters, we focus on

the three BP points defined by specific values of a4 and a5
previously used. The new parameters are: γ, that enters in
elastic hh, and δ and η that carry out the mixing between the
two elastic processes as one can see in (29).
The effect of each Oðp4Þ anomalous coupling is

reflected in the Tables IV–VI below where we study the
separate influence of each one for the above benchmark
points. In the following analysis, we keep the SM values for
a; b; d3, and d4.

TABLE IV. Pole position for the benchmark points in Table III varying the Oðp4Þ parameter γ. The rest of the
parameters are set to their SM values. Values in boldface indicate broad resonances that do not satisfy Γ < M=4.

MS − i
2
ΓS γ ¼ 0 γ ¼ 0.5 × 10−4 γ ¼ 1 × 10−4 γ ¼ −0.5 × 10−4 γ ¼ −1 × 10−4 γ ¼ 1 × 10−2

BP1 1844 − i
2 487 1668 − i

2
212 1594 − i

2
162 � � � � � � 1119 − i

2
50

BP2 2156 − i
2 637 1881 − i

2
212 1781 − i

2
162 � � � � � � 1269 − i

2
62

BP3 2244 − i
2 675 1931 − i

2
200 1831 − i

2
162 � � � � � � 1319 − i

2
75

TABLE V. Pole position for the benchmark points in Table III varying the Oðp4Þ parameter δ. The rest of the
parameters are set to their SM values. Values in boldface indicate broad resonances that do not satisfy Γ < M=4.

MS − i
2
ΓS δ ¼ 0 δ ¼ 0.5 × 10−4 δ ¼ 1 × 10−4 δ ¼ −0.5 × 10−4 δ ¼ −1 × 10−4

BP1 1844 − i
2 487 1744 − i

2
362 1669 − i

2
300 1994 − i

2 1100 ⊗
BP2 2156 − i

2 637 1981 − i
2
387 1869 − i

2
300 2644 − i

2Γ � � �
BP3 2244 − i

2 675 2031 − i
2
400 1906 − i

2
287 � � � � � �
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From the previous table, we can see that the appearance
of a nonzero γ makes the profile of the zero narrower in
such a way that we can even talk of a Breit-Wigner
resonance with Γ < M=4. The values in boldface for
γ ¼ 0 do not satisfy this condition. In the case of an
extreme value of γ, a value we would not expect for
naturalness reasons, we recover the single-channel approxi-
mation, and the coupled-channel formalism is not neces-
sary anymore. This is shown in the last column for a value
of γ ¼ 10−2, where very narrow resonances appear.
The symbol − represents the absence of a zero in the

determinant of the IAM matrix. We have also introduced
the symbol ⊗ to indicate the situation where there are two
poles in the unitarized amplitude but one is unphysical
following the phase-shift criteria; analytically, it corre-
sponds to a pole in the first Riemann sheet, which leads to a
violation of causality with a negative width. Also, when-
ever our code is not able to calculate the width over the
profile of the “resonance” because it is too wide and the half
maximum surpasses the HEFT validity, we include the
symbol Γ, knowing that such a BP can never represent a
physical resonance.
From the Tables IV–VI above we can see a really

different scenario from the one in the vector-isovector
case. The location of the pole changes 15%–20% when we
use reasonable values of γ and δ (∼10−4) and softer
variations of around 4%–8% for values of η of the same
order. The lesson thus is clear: we cannot give a good
description of the resonant scalar states from WW scatter-
ing without paying attention to the coupled channels. In the
first table, we have also included a big γ value (∼10−2) to
make evident that the pole position in that case is very
similar to that obtained using the single-channel formalism
neglecting the extra I ¼ 0 intermediate states. In fact, for
very non-natural values of γ (∼1), the single-channel
resonance is reproduced exactly.
The importance of the mixing parameters in determining

the properties of the scalar resonances is now evident.
In the Tables IV–VI, we have studied the effect in the

resonance properties of the different couplings separately.
However, this may not be the general case since they are all
independent and they are not strongly constrained (or even
constrained at all) by the experiment, especially the ones
belonging to the Higgs sector, so they could all differ from
zero. Hence, it is not the individual effects but the
simultaneous contribution of them all that we are interested

in. In Fig. 6, we show for the BPs in Table III the space
parameter in the δ − η plane where physical resonances
with scalar masses heavier that 1.8 TeV are allowed for
different values of γ.
No matter the value of γ or the benchmark point selected,

the presence of an unphysical pole appearing in the first
Riemann sheet leads us to exclude the parameter space
above the bands. This whole range of parameters cannot
describe any physical extension of the SM. We also find
that the greater the value of γ is, the more restriction we find
(there are more excluded space above the band), especially
for BP1.
Below the bands, we find a nonresonant scenario: we do

not find any zero in the determinant of the unitarized
amplitude.
Because the above benchmark points correspond to

relatively large masses, the amplitudes are to a large extent
dominated by the NLO [i.e., Oðp4Þ] contributions. Those
appearing in theWhmixed channel vanish when δ ¼ η ¼ 0,
so the decoupling limit results should be retrieved then.
The question of whether these resonances could be

visible in the experiment requires a much more detailed
study with Monte Carlo techniques that is beyond the scope
of this first study of scalar resonances. However, from the
parton level processes studied here, and by looking at the
relative size of the residues of the corresponding poles in
every channel, we can say whether it is more likely to be a
bound system of twoW0s or a hh composite state. Once the
pole structure is factorized from the unitarized amplitude,
we are left with function which is a mixture of the other
dynamical variables of the system, i.e., momentum struc-
tures and couplings of the Lagrangian.
As an example, we show in Fig. 7 the amplitude of two

unitarized amplitudes that show a broad (left panel) and a
narrow (right panel) resonances. In both cases, they
correspond to zeros of the determinant of the IAM
amplitude. We observe that the bigger the γ parameter,
the stronger the coupling to a hh final state is, although the
WW channel is strongly favored always. In any case, even
if the dynamical resonances have a strong admixture of
Higgs, they will be easier to spot in theWW elastic channel.
This is a very clear prediction.
To conclude this section, let us consider the case where

some of theOðp2Þ parameters differ from the SM limit. We
shall still keep d3 ¼ d4 ¼ 1, but let us take a ¼ 0.95
and b ¼ 0.805. These values correspond to a minimal

TABLE VI. Pole position for the benchmark points in Table III varying the Oðp4Þ parameter η. The rest of the
parameters are set to their SM values. Values in boldface indicate broad resonances that do not satisfy Γ < M=4.

MS − i
2
ΓS η ¼ 0 η ¼ 0.5 × 10−4 η ¼ 1 × 10−4 η ¼ −0.5 × 10−4 η ¼ −1 × 10−4

BP1 1844 − i
2 487 1806 − i

2
437 1769 − i

2
387 1881 − i

2 575 1931 − i
2 712

BP2 2156 − i
2 637 2094 − i

2
512 2031 − i

2
437 2256 − i

2 887 2394 − i
2Γ

BP3 2244 − i
2 675 2156 − i

2
537 2094 − i

2
450 2356 − i

2 925 2544 − i
2Γ
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FIG. 6. Regions in the δ − η plane where physical resonances satisfying MS > 1.8 TeV and for the benchmark points in Table III
appear for different values of γ: γ ¼ 0 (golden vertical lines), γ ¼ 10−4 (pink tilted lines), and γ ¼ 10−3 (blue horizontal lines). For all the
values of γ, the region above the bands is excluded by the presence of a nonphysical pole. Below the bands, we find a nonresonant
scenario.

FIG. 7. Profile of the unitarized amplitude showing a zero in the determinant for the chiral couplings specified in the title and with the
rest of the parameters set to the corresponding SM values.
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composite Higgs model living in the subgroup H ¼
SOð5Þ=SOð4Þ, which presents a symmetry in the Higgs
function F ðhÞ with the relation b ¼ 2a2 − 1. The inter-
ested reader may find in Ref. [25] a complete review for the
different realizations of the HEFT, including this minimal
extension.
In this case, and with the already mentioned expected

maximum size of the Oðp4Þ of ∼10−3, we have not found
any resonant state that fulfills all the requirements of this
study, even though some scenarios present resonant profiles
that are too wide. All the physical resonances for this choice
of a and b appear for values of a4;5 of order 10−2.
Not much can be concluded in this case.

VI. BOUNDS ON d3 AND d4 FROM RESONANCES

In this section, we will take the Oðp2Þ couplings a, b to
be equal to their SM value a ¼ b ¼ 1 and explore how the
resonance scene depends on the triple and quartic Higgs
couplings.

A. d3
The issue of determining the triple Higgs self-coupling is

of utmost importance because it would help us to explore
the properties of the Higgs potential, crucial to under-
standing the nature of the Higgs boson itself. However,
such a measurement is quite involved at the LCH because it
relies on the ability of the experiment to find a double

Higgs final state (through its decay products) coming from
the fusion of two radiated (off-shell) electroweak gauge
bosons or, alternatively, from top pairs. Up to now, not
enough statistics have been collected from the experiment,
which translates into a very wide range in the experimental
bound for this coupling: −3.3 < d3 < 8.5. The upper limit
of this interval would make the interaction of Oð1Þ since
the BSM self-interaction is described by λ3 ¼ d3λSM
with λSM ∼ 0.13.
The fact that this coupling d3 enters now at tree level in

the calculation of the I ¼ 0 processesWh and hhmakes the
resonant scalar states in the spectrum of WW scattering
more sensitive to it and, hence, a good approach to the
problem of investigating the Higgs potential.
We start by analyzing the effect of this coupling

separately, when the rest of the chiral parameters are set
to their SM values, and for the benchmark points in
Table III. The results are gathered in Table VII.
We find that for d3 ≳ 2.5 a second pole clearly appears

(notation pole1 over pole2) in the low-energy region
around ∼1 TeV, and it is also physical because it is found
in the second Riemann sheet of the complex s plane.
However, one of the physical poles is located at energy
scales much lower than our preestablished bound of
1.8 TeV, so, in principle, the corresponding set of param-
eters should be discarded. The results are shown in
Table VII. In fact, there are already hints of this first
resonance at d3 ¼ 1.7.

TABLE VII. Values of the pole position of the benchmark points in Table III changing d3. The rest of the
parameters are set to their SM values. The cells with two complex numbers indicate the pole position of the two
physical Breit-Wigner poles in the denominator of the unitarized amplitude.

MS − i
2
ΓS d3 ¼ 0.5 d3 ¼ 1 d3 ¼ 2 d3 ¼ 3 d3 ¼ 4 d3 ¼ 5

BP1 2006 − i
2Γ 1884 − i

2 487 1681 − i
2
187 994 − i

2
25 1044 − i

2
38 993 − i

2
23

1756 − i
2
65 2069 − i

2
26 2444 − i

2
25

BP2 2369 − i
2Γ 2156 − i

2 637 1906 − i
2
237 1119 − i

2
27 1219 − i

2
37 1181 − i

2
21

1869 − i
2
75 2094 − i

2
31 2444 − i

2
25

BP3 2468 − i
2Γ 2244 − i

2 675 1969 − i
2
250 1131 − i

2
19 1269 − i

2
37 1231 − i

2
23

1894 − i
2
75 2094 − i

2
20 2444 − i

2
25

TABLE VIII. Values of the pole position of the benchmark points in Table III with γ ¼ 0.5 × 10−4 changing d3.
The rest of the parameters are set to their SM values. The cells with two complex numbers indicate the pole position
of the two physical Breit-Wigner poles in the denominator of the unitarized amplitude.

MS − i
2
ΓS d3 ¼ 0.5 d3 ¼ 1 d3 ¼ 2 d3 ¼ 3 d3 ¼ 4 d3 ¼ 5

BP1 1769 − i
2
275 1668 − i

2
212 1544 − i

2
112 994 − i

2
23 1044 − i

2
37 994 − i

2
27

1569 − i
2
25 1769 − i

2
34 1994 − i

2
54

BP2 1981 − i
2
262 1881 − i

2
212 1719 − i

2
125 1106 − i

2
27 1219 − i

2
37 1118 − i

2
26

1656 − i
2
50 1781 − i

2
34 1994 − i

2
50

BP3 2031 − i
2
250 1931 − i

2
200 1769 − i

2
125 1131 − i

2
37 1269 − i

2
37 1231 − i

2
23

1681 − i
2
38 1781 − i

2
27 1994 − i

2
53
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Of course, the possibility of a light scalar resonance
(≲1.8 TeV) being very weakly coupled to WW channel
and, hence, viable but hard to detect yet due to limited
statistics remains a logical possibility to be further studied.
However, if we discard such possibility, the bound on d3
becomes very stringent.
We have checked that the inclusion of a natural value of γ

does not alter the fact that one of the states is too light,
making the restriction on d3 not significantly modified as

can be seen in Table VIII. In this table, we reproduce the
same analysis that we have just presented but set the
value γ ¼ 0.5 × 10−4.
The next step is to check the impact of the crossed

channels by varying η and δ in the phenomenological
constraint found.
By doing so, we have not found any resonant state

fulfilling all the criteria that we have imposed. For the three
selected benchmark points in Table III, the behavior is quite

TABLE IX. Values of the pole position of the benchmark points in Table III changing d4 with γ ¼ 0.5 × 10−4. The rest of the
parameters are set to their SM values.

MS − i
2
ΓS d4 ¼ 0.5 d4 ¼ 1 d4 ¼ 2 d4 ¼ 3 d4 ¼ 4 d4 ¼ 5 d4 ¼ 8

BP1 1794 − i
2
250 1668 − i

2
212 1494 − i

2
137 1381 − i

2
112 1306 − i

2
87 1256 − i

2
75 1169 − i

2
50

BP2 1981 − i
2
225 1881 − i

2
212 1719 − i

2
175 1606 − i

2
125 1531 − i

2
112 1481 − i

2
87 1381 − i

2
75

BP3 2031 − i
2
225 1931 − i

2
200 1781 − i

2
162 1669 − i

2
137 1594 − i

2
112 1544 − i

2
100 1444 − i

2
75

FIG. 8. Regions in the δ − η plane where physical resonances satisfying MS > 1.8 TeV appear for different values of d4 and setting
γ ¼ 0.5 × 10−4 for specific values of a4 and a5 corresponding to (top left) BP1, (top right) BP2, and (bottom) BP3 in Table III. For all
the values of d4 ≲ 6 and for all the benchmark points, the region above the bands is excluded by the presence of a nonphysical pole.
Below the bands, we find a nonresonant scenario.
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similar and can be summed up in the following three
situations depending on the region in the η − δ plane: the
firs scenario (1) with a single light resonance (∼1 TeV),
another scenario (2) where two physical resonances appear
but one is too light and a third new scenario (3) with a chain
of three resonances but the more massive one is classified
as unphysical by the phase shift criteria. With all this, the
bound d3 ≲ 2.5 is not modified.

B. d4
The coupling d4 parametrizes the strength of the self-

interaction of four Higgses, and as it happens with d3, it
enters now at the lowest order in chiral perturbation theory
and contributes at tree level in the hh process. From
experiment, it is extremely poorly constrained because
of the difficulty of measuring the pointlike coupling of four
Higgses. For this study and in the absence of any relevant
experimental bounds up to date, we will be considering
values up to d4 ≲ 10, which would make the interaction of
order Oð1Þ. Negative values of d4 are to be excluded
outright due to vacuum-stability reasons.
To start the analysis, we select the benchmark points

from the tables above and see how the value of d4 affects
the properties of the poles. In particular, we focus on the
case where γ ¼ 0.5 × 10−4, which for all scenarios allowed
the presence of resonances satisfying Γ < M=4.
FromTable IX, we can say that, if all the rest of parameters

are set to their SM values, we could exclude values of d4 ≳ 2
for BP2 and BP3 and BP1 would be excluded since these
parameters lead to light resonances that should have already
been seen. As always, we assume (rightly or wrongly) that
any scalar resonance above 1.8 TeV should have been
observed. And as always, we also force the vector reso-
nances, if present, to be heavier than that scale.
The question whether the crossed channel (with the

parameters δ and η leading at high energies) could affect
this result is depicted in the following graphs, where, for
different values of d4, we show the regions in the δ − η
plane where resonances MS > 1.8 TeV can appear.
In Fig. 8, we see how, in fact, some regions that were

nonresonant show resonances after activating the crossed-
channels parameters from the values in Table IX. The more
we depart from the SM value d4 ¼ 1, the more restriction
we get. In fact, for d4 ¼ 5 and the values of Table IX, we
only find resonances in the lines δ ¼ − 1

3000
− η

3
for BP2 and

δ ¼ − 8
3000

− η
3
for BP3.

We do not find any physical resonant state with MS ≳
1.8 TeV and d4 ≳ 6.
In this case varying d4, the same behavior that has

been observed varying γ (Fig. 6) is reproduced: above
the color bands, we get excluded regions by the appearance
of a second nonphyiscal pole (again using the phase-shift
criteria), and below the bands, we get a nonresonant
scenario with an absence of any zeros in the determinant
of the unitarized amplitude.

VII. CONCLUSIONS

Resonances are a characteristic feature in a HEFT as
soon as one departs from the minimal Standard Model.
Their role is to restore unitarity, and their properties, mass,
and width and also their coupling to the various initial and
final states are in close relation with the low-energy
constants present in the HEFT. Detecting one of such a
resonance would undoubtedly signal the existence of
additional microscopic degrees of physics but also point
to particular regions in the space of effective theories,
suggesting fundamental physics of a certain kind.
Studying the properties of the possible resonances

provides precious information to experimentalist as to
what type of signal is to be expected in extensions of
the Standard Model. It was seen in previous studies that the
resonances appearing inWW elastic scattering are typically
narrow and not very pronounced, indicating that, while the
HEFT may be perturbatively nonunitary, it is, in a sense,
close to unitarity because the departures from the Standard
Model are not large from a numerical point of view. While
this picture remains true in the vector resonance case, we
have seen that when considering the IJ ¼ 00 case, where
the formalism of coupled channels is unavoidable when
transverse gauge degrees of freedom are included, scalar
resonances become substantially broader.
Assuming that no resonances exist below the scales that

have already been experimentally probed, the next-to-
leading Oðp4Þ coefficients in the HEFT should be at most
of order 10−3 and probably of order 10−4. In this work, we
have assumed that no resonance, vector or scalar, exists
below 1.8 TeV, and from that, we derive bounds on the
HEFT couplings. But there is another way of restricting the
HEFT; namely, if in the unitarization process one encoun-
ters acausal or unphysical resonances, the corresponding
set of parameters in the effective theory can be ruled out.
We assume three different conditions to characterize

a resonance as physical: (1) Γ < M=4; (2) the set of
parameters in the HEFT must not produce vector or scalar
resonances below 1.8 TeV; and (3) all resonances (usually
one, but sometimes two) must lie in the second Riemann
sheet. We also assume, as said, that any resonance above
1.8 TeV should have been observed by now.
The space of parameters is fairly large, so the present

study has to be understood only as a first exploration of
this landscape that surelymerits anmore systematic analysis.
Let us nevertheless summarize the more relevant constraints.
First, we have verified that not all Oðp4Þ coefficients are

equally important. Those determining the appearance of
resonances correspond to operators that survive in the nET
limit. This, which is in agreement with previous studies in
the vector case, and it is quite useful as it tells us where to
look for resonances in the vast space of HEFT. Note that the
inclusion of transverse modes becomes relevant (unlike in
the vector case) in the scalar case. Second, besides a4 and
a5, three new parameters appear at next-to-leading order.
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Taking all the Oðp2Þ couplings to be identical to the SM,
we have found that, for specific values of a4 and a5, the
resonance spectrum that could be observed is more
restricted in the δ − η plane the lower the value of γ is.
For γ ¼ 0, resonances live in a narrow band of values of δ
and η, and the greater the value of γ, the broader the band is.
The region above these narrow bands can be excluded on
causality grounds. So, this places a very strong restriction
in parameter space. It is also seen almost immediately that
if a resonance is present in one channel it is present in all,
but they always couple more strongly to WW final states.
In this study, and making use of the arguments explained

above, we have also set encouraging theoretical bounds on
the self-interactions of the Higgs, especially in the case of
the triple self-coupling whose BSM deviations are para-
metrized via d3 (in units of λSM). We have found for this
coupling that whenever it exceeds d3 ∼ 2.5 a second very
light pole appears, which we assume would have already
been detected in the experiment. The emergence of this
light pole becomes noticeable even before, from d3 ∼ 1.7.
The absence of such a resonance make us exclude all the
values above this threshold. This behavior is not signifi-
cantly modified when considering nonzero values for the
parameters δ, γ, and η, so from this study, we could set a
bound d3 ≲ 2, much more restrictive than current exper-
imental bounds (assuming, of course, that indeed no scalar
resonance exists below 1.8 TeV). This is an important
prediction; even if a resonance is more likely to be observed
in theWW elastic channel, the Higgs self-coupling enters in
the determination of its properties via the coupled-channel
formalism, and it should not be dramatically different from
its SM value.
For the case of the four-Higgs coupling, parametrized by

d4 (again in units of λSM), there are no experimental bounds
in the literature to our knowledge. From this study of the
single resonance spectrum, we have set an overall phe-
nomenological bound d4 ≲ 6 with regions of the parameter

space where it could be more restrictive, in particular for the
point with both scalar and vector contribution (our BP1).
In conclusion, somewhat unexpectedly, the study of

possible scalar resonances in WW fusion places very
interesting restrictions on the space of Higgs couplings,
a region that is hard to experimentally study. We have
presented here some, we believe, relevant results, but
certainly this line of research deserves further more
systematic studies.
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APPENDIX: RELEVANT COUNTERTERMS

In this appendix, we present the complete list of counter-
terms needed to absorb the one-loop divergences of the
three relevant processes of this study. They have been
obtained in the on-shell (OS) [47] scheme and with the
approximations mentioned in the previous sections of this
piece of work; they are valid in the custodial limit, g0 ¼ 0,
and within the Landau gauge (ξ ¼ 0) where the Goldstones
are massless. In this scheme, the physical mass is placed in
the pole of the renormalized denominator with residue 1.
With all this, we just need to redefine two of the bare
masses of the electroweak sector, Mh and MW , and no
gauge parameter whatsoever due to its multiplicative
renormalization,

δM2
h;div ¼

Δ
32π2v2

ð3½6ð2a2 þ bÞM4
W − 6a2M2

WM
2
h þ ð3d23 þ d4 þ a2ÞM4

h�Þ;

δM2
W;div ¼

Δ
48π2v2

ðM2
W ½3ðb − a2ÞM2

h þ ð−69þ 10a2ÞM2
W �Þ;

δZh;div ¼
Δ

16π2v2
ð3a2ð3M2

W −M2
hÞÞ;

δZω;div ¼
Δ

16π2v2
ððb − a2ÞM2

h þ 3ða2 þ 2ÞM2
WÞ; ðA1Þ

where Δ ¼ 1
ϵ þ logð4πÞ þ γE represents the divergence.

In our setting, we let all the mass of the Higgs, the

vacuum expectation value (vev), and λSM to get radiative

corrections at NLO so the relation MH ¼ 2λSMv is jut

valid at tree level. On the contrary, the relation MW ¼ 1
2
gv

is kept at all orders. This is why, in our case, it is
meaningless to add a counterterm δg since it is a derived
quantity:
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δg2

g2
¼ δM2

W

M2
W

þ δv2

v2
: ðA2Þ

In what concerns the chiral parameters, we just need to renormalize those couplings accompanying local operators of the
scalar sector with no custodial-breaking pieces in them; these are a; b; a3; a4; a5; γ; δ; η, and ζ:

δv2div ¼
Δ

16π2
ððb − a2ÞM2

h þ 3ða2 þ 2ÞM2
WÞ; δTdiv ¼ −

Δ
32π2v

3ðd3M4
h þ 6aM4

WÞ;

δa ¼ Δ
32π2v2

ð6að−2a2 þ bþ 1ÞM2
W þ ð5a3 − að2þ 3bÞ − 3d3ða2 − bÞÞM2

hÞ;

δb ¼ Δ
32π2v2

ð6ð3a4 − 6a2bþ bðbþ 2ÞÞM2
W

−ð21a4 − a2ð8þ 19bÞ þ bð4þ 2bÞ þ 6ad3ð1þ 2b − 3a2Þ − 3d4ðb − a2ÞÞM2
hÞ;

δλdiv ¼
Δ

64π2v4
ðð5a2 − 2bþ 3ðd3ð3d3 − 1Þ þ d4ÞÞM4

h − 12ð2a2 þ 1ÞM2
WM

2
hþ18ðað2a − 1Þ þ bÞM4

WÞ;

δλ3 ¼
Δ

64π2v4
ð36abM4

W þ 6ð3a3 − 3ab − d3ð5a2 þ 1ÞÞM2
WM

2
hþð−9a3 þ 3abþ d3ð10a2 − bÞ þ 9d3d4ÞM4

hÞ;

δλ4 ¼
Δ

64π2v4
ð36b2M4

W − 12ða2 − bÞð8a2 − 2b − 9ad3ÞM2
WM

2
h

þð96a4 þ 4b2 − d3ð114a3 − 42abÞ þ 9d24 þ a2ð−64bþ 27d23 þ 12d4ÞÞM4
hÞ;

δa3 ¼ −
Δ

384π2
ð1 − a2Þ; δa4 ¼ −

Δ
192π2

ð1 − a2Þ2;

δa5 ¼ −
Δ

768π2
ð5a4 − 2a2ð3bþ 2Þ þ 3b2 þ 2Þ;

δγ ¼ −
Δ

64π2
3ðb − a2Þ2; δδ ¼ −

Δ
192π2

ðb − a2Þð7a2 − b − 6Þ; δη ¼ −
Δ

48π2
ðb − a2Þ2;

δζ ¼ Δ
96π2

aðb − a2Þ: ðA3Þ

All these counterterms have been proven to have the good SM behavior and to be consistent with the existing literature in
the appropriate limits.
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