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Heavy neutrinos from the type-I seesaw model can have a large mixing with active states, motivating
their search at collider experiments. However, loop corrections to light neutrino masses constrain the heavy
neutrinos to appear in pseudo-Dirac pairs, leading to a potential suppression of lepton number violating
parameters. In this work we perform a detailed review of a proposal to relax constraints on lepton number
violation by adding supersymmetry (SUSY). We define the conditions necessary to maximize the SUSY
screening effect, with the objective of allowing a larger mass splitting between low-scale heavy neutrino
masses. We find that the sole addition of SUSY does not guarantee a screening, and that favorable cases
have some degree of fine-tuning.
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I. INTRODUCTION

The type-I seesaw [1–5] is very likely the most studied
extension of the Standard Model (SM) explaining neutrino
masses. One of its key predictions is the existence of heavy
neutrinos Nh, although their number, mass scale, and
coupling strength remain free parameters. This has moti-
vated their search by several experiments (see reviews
[6–8]) with unfortunately null signals to date.
It is well known that, in its most basic realization, the

seesaw is actually very hard to test. TheNh interact via their
mixing with the active flavor states (νe, νμ, ντ), and the
typical expectation is that the square of this mixing will be
proportional to the ratio between light and heavy neutrino
masses, out of reach of current and near future experiments.
This theoretical constraint can be evaded once the model
includes at least two heavy neutrinos, introducing textures
in the neutrino mass matrix that reproduce light neutrino
masses and permit the mixing to be significantly enhanced
[9]. Thus, the aforementioned searches for Nh, which
generally interpret their results in terms of one heavy
neutrino with large mixing, could be considered as probing
seesaw scenarios with several heavy neutrinos, but with
only one of them having a mass within the reach of the
experiment.

Unfortunately, this view is not acceptable. When heavy
neutrinos have enhanced mixing and large splitting
between their masses, the mass matrix has strong cancel-
lations between its elements, induces large contributions to
neutrinoless double beta decay (0νββ), and leads to
unacceptable quantum corrections to light neutrino masses
[10–17]. Even though the cancellations in the mass matrix
can be justified by the presence of a lepton number (LN)
symmetry, whose breaking generates the light neutrino
masses [18–21], the constraints by 0νββ and loop correc-
tions can only be avoided if, in addition, the heavy
neutrinos appear in almost degenerate pairs at tree level,
usually called pseudo-Dirac neutrinos. The reason for this
is that the mass splitting is connected to new sources of
lepton number violation (LNV), which at tree level do not
participate in the generation of light neutrino masses. Thus,
the bounds on the mass splittings suggest that searches for
singleNh would not be theoretically well motivated, at least
from the seesaw perspective.
An important effect of having pseudo-Dirac heavy

neutrinos is that all LNV effects could be heavily sup-
pressed, particularly for large Nh masses. This brings the
need of phenomenological reinterpretations of collider
searches [22–25], which generally give rise to modifica-
tions of the reported bounds.
It must be noted that the bounds coming from loop

corrections are theoretical. In principle, it is possible to
fine-tune the light neutrino tree-level masses, such that the
physical masses are correctly reproduced. Thus, these
constraint are based on the desire to avoid fine-tuning
between the tree and loop level contributions to physical
masses. In this sense, an intriguing option was presented in
[26], in the context of a supersymmetric extension of the
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type-I seesaw. Here, light neutrino masses were generated
radiatively, with contributions from both heavy neutrinos
and sneutrinos. An interesting conclusion was that large
LNV parameters are still allowed in the model, as the new
sneutrino loops can help to keep the corrections under
control. The origin of this “supersymmetry (SUSY) screen-
ing” effect allegedly stems from remnants of the SUSY
nonrenormalization theorems [27,28].
This result has interesting implications in our discussion

on searches for single heavy neutrinos, regardless of having
radiative light neutrino masses or not. If sizeable LNV is
permitted, then it would be possible to relax the constraints
on Nh mass splittings,1 allowing a straightforward inter-
pretation of experimental results. Furthermore, the discov-
ery of a singleNh could also be interpreted as a hint in favor
of supersymmetry. Thus, we consider it important to further
examine the findings of [26] in our context. In addition, we
consider that a more detailed explanation of the screening
effect is necessary, understanding which SUSY contribu-
tion allows for cancellations, and under which circum-
stances this happens.
In this work we take the supersymmetric extension of the

type-I seesaw and explore in depth the possibility of having
destructive interference between the SUSY and non-SUSY
loop corrections to light neutrino masses, with the intention
of allowing large heavy neutrino mixing with large mass
splitting. We begin by reviewing the problem of quantum
corrections in Sec. II. Then, in Sec. III, we present the
νRMSSM and calculate the SUSY and non-SUSY loop
contributions. Section IV is the most important part of this
work, where we evaluate when is it feasible to have
cancellations between SUSY and non-SUSY loops. We
conclude in Sec. V where, given our findings, we argue that
due to the experimental constraints on SUSY masses the
screening is not a generic feature of supersymmetry and
actually happens in very specific scenarios.

II. LOOP CORRECTIONS IN THE
STANDARD SEESAW

The type-I seesaw models generate light neutrino masses
via the introduction of N new heavy neutral leptons νR.
These are also called sterile neutrinos, in contrast to the
active neutrinos within SUð2ÞL doublets. In the model, the
full neutrino mass matrix on the active-sterile basis is

Mtree
ν ¼

�
0 MD

MT
D MR

�
: ð1Þ

For “large” MR one can obtain the light neutrino masses to
an excellent approximation by diagonalizing the matrix:

Mtree
light ¼ −MDM−1

R MT
D: ð2Þ

On the standard seesaw model, the heavy neutrinos
couple to Standard Model particles via the mixing matrix
U, which diagonalizes the full mass matrix shown in
Eq. (1). When including N ¼ 3 sterile neutrinos, this
matrix can be decomposed into four 3 × 3 blocks:

U ¼
�
Ual Uah

Usl Ush

�
: ð3Þ

Throughout this paper, a indices denote the active basis
where the charged lepton Yukawas Ye are diagonal, i.e.,
a ¼ e, μ, τ. The s ¼ s1; s2; s3 indices denote the sterile
neutrino basis, which at this point is arbitrary. In addition,
l ¼ 1, 2, 3 labels the three light (mostly active) neutrinos
nl, with masses m1, m2, m3, while h ¼ 4, 5, 6 labels the
three heavier (mostly sterile) neutrinos Nh, with masses
M4, M5, M6.
For our numerical results, we shall take a specific

choice of parameters such that, in the case of normal
ordering of light neutrino masses, we can write the Uah
mixing as [14,29–31]

Ua4 ¼ iðUPMNSÞa1
ffiffiffiffiffiffiffi
m1

M4

r
; ð4Þ

Ua5 ¼ z56Za

ffiffiffiffiffiffiffi
m3

M5

r
cosh γ56eiz56ρ56 ; ð5Þ

Ua6 ¼ iZa

ffiffiffiffiffiffiffi
m3

M6

r
cosh γ56eiz56ρ56 ; ð6Þ

Za ¼ ðUPMNSÞa3 þ iz56

ffiffiffiffiffiffi
m2

m3

r
ðUPMNSÞa2; ð7Þ

where z56 is the sign of the free parameter γ56 ≳ 2, and
ρ56 ∈ ½0; π=2�. From here it is possible to reconstruct the
Dirac and Majorana masses appearing in Eq. (1). If we
take M̂h ¼ diagðM4;M5;M6Þ, we can write MD ¼ U�

ahM̂h

and MR ¼ M̂h.
We see that both Ua5 and Ua6 can be enhanced, in this

case by a factor cosh γ56, whileUa4 remains small. Thus, by
taking a very largeM4 we can decouple this heavy neutrino,
leaving us with an effective 3þ 2 seesaw model. As
mentioned in the Introduction, this possibility of enhancing
the active-heavy mixing while keeping acceptable light
neutrino masses can be attributed to a slightly broken
lepton number symmetry [18–21].
Loop corrections can modify both MD and MR, as well

as generate a nonzero element in the active-active region
of Mtree

ν , which can be denoted by δMD, δMR, and δML,
respectively. Nevertheless, from these the most important
correction to light neutrino masses comes from δML, such
that one can write

1Large mass splittings would still need to be compatible with
0νββ.
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Mfull
light ¼ Mtree

light þ δML: ð8Þ

In this standard seesaw model, δML is determined by loops
involving the Z and H0 bosons. Diagrams including the W
boson would not contribute at one loop, as there would be
no LNV term on any vertex or propagator. The well-known
result for δML [32–34] can be written in our notation:

ðδMLÞaa0 ¼
1

v2SM

X
h;s;s0

ðMDÞasUshðMDÞa0s0Us0hfðMhÞ; ð9Þ

≈
m3

v2SM
Z�
aZ�

a0 ½M5fðM5Þ −M6fðM6Þ� cosh2 γ56e−2iz56ρ56 ;

ð10Þ

where the loop function fðMhÞ is defined:

fðMhÞ ¼
Mh

16π2

�
3

�
M2

h

M2
Z
− 1

�
−1

ln
M2

h

M2
Z

þ
�
M2

h

M2
H
− 1

�
−1

ln
M2

h

M2
H

�
: ð11Þ

In Eq. (10) we havewritten the correction in our benchmark
scenario, Eqs. (4)–(6), neglecting the contribution of N4.
The dependence of fðMhÞ as a function of the heavy

neutrino mass can be seen on the left panel of Fig. 1, where
we have multiplied a normalization factorMh=v2SM. We see
the that loop correction increases with mass, with the slope
varying around Mh ∼ 100 GeV. This change is due to the
terms multiplying the logarithms in Eq. (11), which for
large Mh adds an additional suppression factor.2

From Eq. (9) it is possible to confirm that, if a heavy
neutrino does not have an almost degenerate pair, then
active-heavy mixing cannot exceed a certain value, or else
substantial loop corrections are induced. If this bound is not

respected, fine-tuning is required to accurately reproduce
the observed neutrino masses [15]. Such upper limits for
jUa5j2 are shown as a function of M5 on the right panel of
Fig. 1, for M6 ¼ 100 GeV, where we require loop correc-
tions not to exceed 50% of the tree-level value. For
example, for M5 equal to 1 GeV (1 TeV), we need γ56 ≲
2.94 (≲2.45), which corresponds to jUμ5j2 ≲ 2.7 × 10−9

(jUμ5j2 ≲ 9.9 × 10−13). Note that the apparent stronger
bounds on jUe5j2 are really due to the correlations existing
between the mixings such that, given some value for jUμhj2
or jUτhj2, the different Za terms make jUehj2 smaller. From
this result, it is clear that a single heavy neutrino with mass
≳1 GeV cannot have its mixing enhanced by too much, so
is unlikely to appear at collider searches.3

As a final comment, note that in Eq. (10) one can see
that, if M5 → M6, there exists a cancellation between the
N5 and N6 contributions. This leads to the peak shown in
the right panel of Fig. 1. As commented earlier, this can
again be attributed to the slightly broken lepton number
symmetry, which guarantees that loop corrections are kept
small [13,15,16]. In this interpretation, degenerate Nh
masses imply that the only nonzero sources of LNV are
those essential for obtaining nonzero light neutrino masses,
so no new LNV terms appear at the loop level. The
maximum size of allowed nondegeneracy is critically
dependent on the value of jUahj2 and the average mass,
as was shown in [16].

III. THE νRMSSM MODEL

The simplest SUSY extension of the standard seesaw
consists of introducing ν̂cR superfields to the MSSM. Apart
from the sterile neutrinos, this also implies the presence of
new scalar partners, the R-sneutrinos ν̃cR. The introduction
of SUSY leads to modifications in the light neutrino
phenomenology, for example, due to RGEs [35–39]. Of
course, here we are interested in the new contributions to

FIG. 1. Left: dependence of loop function, conveniently normalized, with respect to heavy neutrino mass. Right: maximum value of
jUa5j2 as a function of M5, for M6 ¼ 100 GeV.

2Note that, whenMh is much larger than the electroweak scale,
one should actually decouple the heavy neutrinos and use
effective operators.

3This statement is made evident by comparing our limits with
experimental bounds shown in [6–8].
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the loop corrections to the neutrino propagator. These can
be be either supersymmetric or nonsupersymmetric, the
former including loops with neutralinos and sneutrinos, as
well as charginos and charged sleptons, and the latter
involving the heavier Higgs bosons.
The superpotential of the model is

W¼WMSSMþðY�
νÞasL̂a · Ĥuν̂

c
Rsþ

1

2
ðMRÞss0 ν̂cRsν̂cRs0 ; ð12Þ

where the Yukawas are connected to the Dirac mass via
MD ¼ vSMffiffi

2
p Y�

ν sin β, with tan β being the ratio of the Higgs

vacuum expectation values.4 Note that the parametrization
we are using in the neutrino sector determines MD, from
which the Yukawas can be extracted. In addition to the
superpotential, the following soft SUSY-breaking terms are
allowed:

Vsoft ¼ Vsoft
MSSM þ ðm2

ν̃Þss0 ν̃cRsν̃cRs0

þ
�
1

2
ðBνÞss0 ν̃cRsν̃cRs0 þ ðT�

νÞasL̃a ·Huν̃
c
Rs þ H:c:

�
:

ð13Þ

In addition to the typical soft mass m2
ν̃ and trilinear

couplings Tν, we have a LNV soft mass Bν. This new
term will give further contributions to neutrino masses at
the loop level. In fact, Bν played a major role in [40], in the
context of the supersymmetric inverse seesaw with only
one pair of sterile neutrinos. Here, they explored the
possibility of generating one light neutrino mass via the
standard seesaw, and the other through SUSY corrections,
with the requirement of having Tν not aligned with Yν.
In the following sections we shall describe both SUSY

and non-SUSY loop corrections to the light neutrino
masses. Here, and in the following sections, we will focus
on heavy neutrino masses discoverable at colliders, namely
Mh ¼ 40, 200 GeV.

A. Non-SUSY loop corrections

The full one-loop correction to the neutrino propagator
in models with two Higgs doublets has been extensively
studied in the past, see for example [32,34,41–45]. The
relevant diagrams involve the W and Z bosons, the
neutral and charged Higgs bosons, and the corresponding
Goldstone bosons. Nevertheless, as in the standard seesaw,
loops involving charged particles do not contribute to the
Majorana mass, leaving only the diagrams shown in Fig. 2.
Although the δML correction involving the Z is the same as
in the standard seesaw, there is a new combined contribu-
tion from the neutral scalars. Thus, in terms of Yν, we can
write the full correction:

ðδMLÞ2HDMaa0 ¼ 1

2

X
h;s;s0

ðY�
νÞasUshðY�

νÞa0s0Us0hgðMh;MA; tanβÞ;

ð14Þ

≈Kaa0 ½M5gðM5;MA; tan βÞ −M6gðM6;MA; tan βÞ�; ð15Þ

where the second line again corresponds to our benchmark
scenario. We have defined Kaa0 ¼ ðm3=v2uÞZ�

aZ�
a0 ×

cosh2 γ56e−2iz56ρ56 , and a new loop function:

gðMh;MA; tan βÞ ¼
Mh

16π2

�
3sin2β

�
M2

h

M2
Z
− 1

�−1
ln
M2

h

M2
Z

þ cos2α

�
M2

h

M2
H1

− 1

�−1
ln

M2
h

M2
H1

þ sin2α

�
M2

h

M2
H2

− 1

�−1
ln

M2
h

M2
H2

− cos2β

�
M2

h

M2
A
− 1

�−1
ln
M2

h

M2
A

�
: ð16Þ

Here, MA, MH1
, and MH2

are the masses of the pseudo-
scalar and scalar Higgses, and α is the scalar mixing angle.
It is important to remember that, at tree level, all of the latter
are a function of MA and tan β. In particular, in the
decoupling regime, we find a very precise cancellation
between the H2 and A contributions. Notice we do not
proceed as in [26], who modify the effective quartic
coupling in the scalar mass matrix such that the observed
lightest Higgs mass is obtained. The reason is that the

FIG. 2. Nonsupersymmetric one-loop diagrams of the MSSM that contribute to the neutrino mass matrix.

4Even though they can be enhanced, the Yukawas are usually
very small. For example, following our parametrization in
Eqs. (4)–(6), the largest element of jYνj for a lightest neutrino
mass of 10−3 eV, heavy neutrino masses of order 100 GeV, and
γ56 ¼ 8 is ∼5 × 10−4.
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aforementioned cancellation is spoilt, suggesting it might
be necessary to include similar corrections in the pseudo-
scalar mass matrix at the same time, which is outside the
scope of this work.
From Eq. (15), we can expect that corrections in general

type-II two Higgs doublet models will have a very similar
phenomenology to that of the standard seesaw, in particular
in what concerns the enhancement to the neutrino mixing
and the possibility of cancellations between different heavy
neutrino contributions. In our case, the constraints imposed
by the SUSY framework appear in the structure of the g
function, as shown in Eq. (16), where most of the appearing
parameters are related to each other. This leads to g not
having a strong dependence on MA nor tan β, with
numerical values very similar to the f of the standard
seesaw, see Eq. (11). To illustrate this, we shown in Fig. 3
the ratio between g and f, presented as a function of MA
and tan β, for two values of Mh. We find that, for the
evaluated values of heavy neutrino mass, g is always
slightly smaller than f, but hardly decreases under 80%.
Thus, for a givenMD and M̂h, the non-SUSY corrections

are expected to be of the same order of magnitude as in the
standard seesaw. These will depend on the heavy neutrino
masses in a way similar to what is shown on the left panel
of Fig. 1. Correspondingly, the larger the ΔM65 ¼ M6 −
M5 mass splitting, the larger the contribution, with its sign
being the opposite of that of ΔM65.

B. SUSY loop corrections

As mentioned earlier, SUSY corrections to the light
neutrino propagator involve both sneutrino-neutralino and
charged slepton-chargino loops. Moreover, since only the
ν̂R sector involve LNV terms, only the former are relevant
for δML [26,49,50].

Since we now have two sources of LNV, namelyMR and
Bν, for transparency wewill carry out our analysis using the
mass-insertion technique [51–55]. This has the additional
advantage of being able to carry out our calculations directly
on the active-sterile basis. Such an approach was also
followed in [26], although here this will be done only for
the sneutrino line in the SUSY contribution. For this, we
need to write the terms of the sneutrino scalar potential
contributing to the sneutrinomass matrix. These can be split
into lepton number conserving (LNC) and LNV terms,
Lmass
ν̃ ¼ LLNC

ν̃ þ LLNV
ν̃ , where

−LLNC
ν̃ ¼ ν̃�La

�
m2

L̃
þ v2u

2
YνY

†
ν þ 1

2
m2

Z cos 2β
�
aa0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m2
ν̃L

ν̃La0

þ ν̃cRs

�
m2T

ν̃ þ v2u
2
Y†
νYν þMRM�

R

�
ss0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m2
ν̃R

ν̃cRs0

þ ν̃cRs

�
vuffiffiffi
2

p T†
ν −

vdffiffiffi
2

p μ�Y†
ν

�
sa
ν̃La

þ ν̃�La

�
vuffiffiffi
2

p Tν −
vdffiffiffi
2

p μYν

�
as
ν̃cRs; ð17Þ

−LLNV
ν̃ ¼ ν̃cRs

�
1

2
Bν

�
ss0
ν̃cRs0 þ ν̃�La

�
vuffiffiffi
2

p YνMR

�
as
ν̃cRs

þ ν̃La

�
vuffiffiffi
2

p Y�
νM�

R

�
as
ν̃cRs ð18Þ

Thus,we have LNVmass insertions fromEq. (18), aswell as
LNC insertions from the last line of Eq. (17). From Eq. (18),
we find two types of LNV terms. From these, the YνMR

FIG. 3. Ratio between loop functions, gðMh;MA; tan βÞ=fðMhÞ. Gray (dark green) region is excluded byH=A → τþτ− [46] (H� → tb
[47]) searches. The region to the left of the purple curve is excluded, as here the light Higgs boson couplings do not match with
measurements [48]. We show results for Mh ¼ 40 (200) GeV on the left (right).
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terms are “irreducible” in the sense that they cannot be set to
zero without spoiling the seesawmechanism at tree level. In
contrast, a vanishing Bν does not affect the neutrino masses
at leading order, and thus are considered “reducible.”
In the following, for simplicity, we assumem2

L̃
andm2

ν̃ to
be diagonal. With this, we can also take the m2

ν̃L
and m2

ν̃R
matrices as diagonal, to an excellent approximation. In
addition, when presenting numerical results, we will take
Tν ¼ aνYν and Bν ¼ bνMR. Note that these assumptions,
which are not guaranteed by SUSY, will be crucial to
preserve the flavor structure of the tree-level mass matrix.
In what follows, we list all possible contributions to δML

up to order OðY2
νÞ, which was the assumption taken when

writing Eq. (8). For each type of loop diagram, we present
both the complete expression and an approximate one
relevant for our benchmark scenario, applying our assump-
tions for Tν and Bν, taking degenerate5 mL̃ and neglecting
the contribution from ν̃R4.

1. Irreducible contributions (Bν = 0)

Since we are taking terms of order OðY2
νÞ, it is crucial to

note that the LNV insertions we are currently considering
are of the type ðYνMRÞ=MSUSY, meaning that we will
have at most two of these in δML. The same reasoning can
be followed for the LNC insertions in the last line of
Eq. (17). From these considerations, we can expect these
SUSY corrections to be negligible if the Yukawas are not
enhanced.
Let us consider the pure Higgsino contribution. Here, we

have a Yν suppression at each vertex, so adding any
insertion make these of order larger than OðY2

νÞ, and can
be neglected.

Next come the gaugino-Higgsino contributions, shown
on the top row of Fig. 4, with only one vertex with a Yν

suppression. We can allow only one mass insertion:

ðδMirr
L Þghaa0 ¼

vu
2

X
b;s;r

ð−1Þbgb
1

mχ̃0r

OrbOr4

× ½ðY�
νM�

RÞasðY�
νÞa0sf3ðm2

χ̃0r
; m2

ν̃La
; m2

ν̃Rs
Þ

þ ðY�
νÞasðY�

νM�
RÞa0sf3ðm2

χ̃0r
; m2

ν̃Rs
; m2

ν̃La0
Þ�; ð19Þ

≈2vuKaa0
X
b;r

ð−1Þbgb
1

mχ̃0r

OrbOr4

× ½M2
5f3ðm2

χ̃0r
;m2

ν̃R5
;m2

ν̃L
Þ−M2

6f3ðm2
χ̃0r
;m2

ν̃R6
;m2

ν̃L
Þ�; ð20Þ

where Orb are the neutralino mixing matrices, r ¼ 1;…; 4
denotes the neutralino mass eigenstates, and b can be 1
(bino) or 2 (wino). The function f3 is defined as

f3ðm2
0; m

2
1; m

2
2Þ ¼

1

16π2
m2

0

m2
1 −m2

2

��
1 −

m2
0

m2
1

�
−1

ln
m2

1

m2
0

−
�
1 −

m2
0

m2
2

�
−1

ln
m2

2

m2
0

�
ð21Þ

and is shown on the left panel of Fig. 5, being
symmetric with respect to m1 ↔ m2 exchange. It is
clear that f3 is largest when m1 and m2 are smallest.
Furthermore, for fixed m1, m2, this function is maximized
when m0 ∼Maxðm1; m2Þ.
Finally, for the pure gaugino case we have no suppressed

vertices, but need two LR transitions on the sneutrino line.
As shown on the bottom row of Fig. 4, in order to
contribute to δML, these must combine one LNV and
one LNC mass insertion:

FIG. 4. Irreducible mass insertions. In all cases, gray (white) blobs indicate LNV (LNC) insertions. Top: gaugino-Higgsino case.
Bottom: pure gaugino case.

5Exactly degenerate sleptons can induce artificially large
mixing. This can be avoided by adding slepton mass splittings
at the per-mille level, without spoiling our numerical results.
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ðδMirr
L Þggaa0 ¼

v2u
4

X
b;b0;s;r

ð−1Þbþb0gbgb0
1

m3
χ̃0r

OrbOrb0f4ðm2
χ̃0r
; m2

ν̃La
; m2

ν̃Rs
; m2

ν̃La0
Þ

× ½ðT�
ν − μ�Y�

ν cot βÞasðY�
νM�

RÞa0s þ ðY�
νM�

RÞasðT�
ν − μ�Y�

ν cot βÞa0s�; ð22Þ

≈v2uKaa0 ðaν−μcotβÞ
X
b;b0;r

ð−1Þbþb0gbgb0
1

m3
χ̃0r

OrbOrb0 × ½M2
5f4ðm2

χ̃0r
;m2

ν̃R5
;m2

ν̃L
;m2

ν̃L
Þ−M2

6f4ðm2
χ̃0r
;m2

ν̃R6
;m2

ν̃L
;m2

ν̃L
Þ�: ð23Þ

The function f4 follows the general expression:

fnðm2
0; m

2
1; m

2
2;…; m2

n−1Þ ¼
m2

0

m2
1 −m2

2

½fn−1ðm2
0; m

2
1; m

2
3;…; m2

n−1Þ − fn−1ðm2
0; m

2
2; m

2
3;…; m2

n−1Þ�; ð24Þ

where n − 1 is the number of mass insertions in the
diagram. It is shown on the right panel of Fig. 5, and
again is symmetric under exchange of mi ↔ mj, i, j ≠ 0.
As with f3, the function f4 has larger values for smaller mi
and m0 around the largest of the mi.

2. Reducible contributions (Bν ≠ 0)

Once Bν is different from zero, a new set of loop
corrections can enter the game. For this, it is important

to assume that the Bν=m2
ν̃R

suppression associated
with this insertion must not be as strong as the one
from Yν, allowing diagrams with a larger number of
insertions.
Let us start again with the pure Higgsino case,

which had negligible irreducible contributions. This
time, the self-energy, shown in the top row of Fig. 6,
is given by

ðδMred
L Þhhaa0 ¼

X
r;s;s0

1

mχ̃0r

O2
r4ðY�

νÞasðB�
νÞss0 ðY�

νÞa0s0f3ðm2
χ̃0r
; m2

ν̃Rs
; m2

ν̃Rs0
Þ; ð25Þ

≈2Kaa0bν
X
r

1

mχ̃0r

O2
r4½M2

5f3ðm2
χ̃0r
; m2

ν̃R5
; m2

ν̃R5
Þ −M2

6f3ðm2
χ̃0r
; m2

ν̃R6
; m2

ν̃R6
Þ�: ð26Þ

The loop function f3 is shown in Eq. (21), and illustrated in the left panel of Fig. 5.

FIG. 5. Mass insertion functions f3 (left) and f4 (right), each with a convenient normalization. We set m2 ¼ m3 ¼ 600 GeV.
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For the gaugino-Higgsino correction, we now can have two insertions, one of them being a LR transition that is LNC, and
then the RR insertion from Bν. This can be seen on the center row of Fig. 6, leading to

ðδMred
L Þghaa0 ¼

vu
4

X
b;s;s0;r

ð−1Þbgb
1

m3
χ̃0r

OrbOr4½ðT�
ν − μ� cot βY�

νÞas0 ðB�
νÞss0 ðY�

νÞa0sf4ðm2
χ̃0r
; m2

ν̃La
; m2

ν̃Rs0
; m2

ν̃Rs
Þ

þ ðY�
νÞasðB�

νÞs0sðT�
ν − μ� cot βY�

νÞa0s0f4ðm2
χ̃0r
; m2

ν̃Rs
; m2

ν̃Rs0
; m2

ν̃La0
Þ�; ð27Þ

≈vuKaa0 ðaν − μ cot βÞbν
X
b;r

ð−1Þbgb
1

m3
χ̃0r

OrbOr4½M2
5f4ðm2

χ̃0r
; m2

ν̃L
; m2

ν̃R5
; m2

ν̃R5
Þ −M2

6f4ðm2
χ̃0r
; m2

ν̃L
; m2

ν̃R6
; m2

ν̃R6
Þ�: ð28Þ

Here, the loop function f4 is deduced from Eq. (24) and shown on the right panel of Fig. 5.
Finally, following the bottom row of Fig. 6, the pure gaugino loops have three mass insertions, with two LR transitions in

addition to the Bν insertion:

ðδMred
L Þggaa0 ¼

v2u
8

X
b;b0;s;s0;r

ð−1Þbþb0gbgb0
1

m5
χ̃0r

OrbOrb0f5ðm2
χ̃0r
; m2

ν̃La
; m2

ν̃Rs
; m2

ν̃Rs0
; m2

ν̃La0
Þ

× ½ðY�
νM�

RÞasðBνÞss0 ðY�
νM�

RÞa0s0þðT�
ν − μ� cot βY�

νÞasðB�
νÞss0 ðT�

ν − μ� cot βY�
νÞa0s0 �; ð29Þ

≈
v2u
4
Kaa0bν

X
b;b0;r

ð−1Þbþb0gbgb0
1

m5
χ̃0r

OrbOrb0 ½M2
5ðM2

5 þ ðaν − μ cot βÞ2Þf5ðm2
χ̃0r
; m2

ν̃R5
; m2

ν̃R5
; m2

ν̃L
; m2

ν̃L
Þ

−M2
6ðM2

6 þ ðaν − μ cot βÞ2Þf5ðm2
χ̃0r
; m2

ν̃R6
; m2

ν̃R6
; m2

ν̃L
; m2

ν̃L
Þ�: ð30Þ

As before, the function f5 is calculated following Eq. (24), following the general properties outlined earlier for f3 and f4.

FIG. 6. Reducible mass insertions. In all cases, gray (white) blobs indicate LNV (LNC) insertions. Top: pure Higgsino case. Center:
gaugino-Higgsino case. Bottom: pure gaugino case.
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IV. SEARCHING FOR CANCELLATIONS

The main purpose of this work is to find under what
conditions can one have large LNV terms while keeping
loop corrections under control, avoiding the need for fine-
tuning in the neutrino sector. Since we know that the non-
SUSY contributions are very similar to those in the
standard seesaw, it is necessary to have a cancellation
featuring the sneutrino loops. In fact, presenting this SUSY
screening was the main motivation of [26], where it was
suggested that the nonrenormalization theorems could
enforce such a result. So, in the following we concentrate
on characterizing the region of the parameter space
guaranteeing destructive interference for both reducible
and irreducible corrections.

A. Irreducible contributions

In order to understand how these corrections affect
neutrino masses, let us first assume that ν̃R5 and ν̃R6 are
degenerate. In this limit, all SUSY loop diagrams are
proportional to ðY�

νM�
RY

†
νÞaa0 ¼ 2Kaa0 ðM2

5 −M2
6Þ. Then, if

both neutrinos and sneutrinos are independently degener-
ate, one should expect all loop corrections to vanish, and
thus with no fine-tuning on light neutrino masses. We
attribute this, on the one hand, to the cancellation of
additional LNV terms on the neutrino side, and, on the
other hand, to the fact that in the unbroken SUSY limit a
mass degeneracy for neutrinos would also imply degenerate
sneutrino masses.
If ΔM65 ≠ 0, then both SUSY and non-SUSY contribu-

tions can be large, so we need them to interfere destruc-
tively. As a first step, we have confirmed the result of [26]
in their SUSY-conserving limit, where MSUSY, μ → 0 and
tan β → 1. Here, the only nonvanishing SUSY contribution
is the gaugino-Higgsino ðδMirr

L Þgh, which precisely can-
cels ðδMLÞ2HDM.
However, once one considers broken SUSY, the can-

cellations become inefficient, with ðδMirr
L Þgh being sub-

dominant with respect to ðδMLÞ2HDM. We find destructive
interference to be more likely if mL̃, mν̃R , M1;2, and μ are
relatively light, or if heavy neutrino masses are close to the

SUSY scale. However, due to the lack of experimental
evidence in favor of SUSY, the sparticles must be heavy,
making it very difficult to have large cancellations involv-
ing ðδMirr

L Þgh in the region accessible to heavy neutrino
searches.
An important point to consider is that, once SUSY is

broken, the pure gaugino ðδMirr
L Þgg can play an important

role. For aν ¼ 0, we find that the overall sign of this
contribution depends on the relative sign between μ and
M1;2. In the following, we choose μ < 0 and M1;2 > 0,
which guarantees destructive interference with ðδMLÞ2HDM.
In this case, a light SUSY spectrum is again favored, but
can now be enhanced by large jμj. This is also the case
when aν is large and positive.
In order to illustrate our findings, we define Rx ¼

1þ ½ðδMirr
L Þx=ðδMLÞ2HDM� as a measure of the amount

of cancellation possible between the SUSYand non-SUSY
loop corrections, with x ¼ ghþ gg; gh; gg. Notice that the
flavor structure of ðδMirr

L Þx and ðδMLÞ2HDM effectively
cancels, leaving Rx without flavor indices.
A scatter plot of Rx as a function of jμj is shown in Fig. 7,

for two values of heavy neutrino mass, M5. In the scan we
have varied −μ;M2; mL̃; mν̃ logarithmically between 700
and 5000 GeV but allowing a soft mass mν̃ as low as
0.1 GeV. We have set M1 ¼ M2=2 and aν ¼ 0. Results are
not strongly sensitive to ΔM65, nor any other parameter.
In the figure we confirm that cancellations are driven by
ðδMirr

L Þgh for small jμj and taken over by ðδMirr
L Þgg as jμj

grows. The combined contributions are relevant for inter-
mediate values of jμj. Here, we confirm that the SUSY
contribution cannot lead to strong cancellations any more,
being less than 1% (5%) for Mh ¼ 40 (200) GeV, and thus
it cannot solve the fine-tuning problem.
It is then of interest to understand the results of [26], who

were able to relax constraints on LNV within their radiative
inverse seesaw. Even though their setup is somewhat
different from ours, the cancellation mechanisms are the
same, and should be comparable regardless of the exact
scenario in use. In order to shine light on the matter, we plot
in Fig. 8 the maximum ΔM65 allowed by requiring the full
(SUSY þ non-SUSY) loop corrections to be less than 50%

FIG. 7. Rx parameter for increasing jμj, with M5 ¼ 40 (200) GeVon the left (right). Gaugino-Higgsino (pure gaugino) cancellations
are shown in blue (orange), with combined contribution in gray.
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as a function of jμj or aν. The rest of the parameters are set
as in Table II in [26]. Within the figure, we show curves
obtained with our mass-insertion formulas, compared
with those from SPheno [56,57], which performs the exact
calculation using the tree-level Higgs mass.6

The first thing we notice is that, as verified by SPheno, the
mass-insertion approximation holds very well, even for
extremely large jμj and aν. In addition, we also find that
there exist values for both parameters where SUSY and
non-SUSY contributions cancel, allowing for a very large
ΔM65. These are in the ballpark of the corresponding
values reported in [26]. The explanation for this is that
ðδMirr

L Þgg has become very large, enhanced by either jμj or
aν, and can cancel ðδMLÞ2HDM, thus relaxing the LNV
constraint on ΔM65. In fact, we see that the maximum
ΔM65 decreases considerably after this cancellation, mean-
ing that from this point ðδMirr

L Þgg not only cancels but
exceeds ðδMLÞ2HDM, needing an even smaller ΔM65 to be
under control.
What we conclude is that, in order to achieve the

required cancellation, it is essential to select very precise
values for either jμj or aν, greatly enhancing the pure
gaugino contribution. Unfortunately, comparing this result
with Fig. 1, it can be argued that in this scenario the fine-
tuning of the neutrino sector has been transferred to the
SUSY sector, although this time without a symmetry such
as LN to justify it.
Apart from this issue, we believe the large jμj; aν

solutions have additional problems, which need to be
addressed. Regarding jμj, the SUSY minimization con-
ditions would lead to a second situation with large fine-
tuning, as the soft Higgs masses would need to have very
special values to trigger electroweak symmetry breaking
and reproduce the observed Z mass simultaneously. It is
likely this would also convey very large loop corrections to
the light Higgs mass, leading to a third fine-tuning. On the

other hand, for aν, it was argued in [64] that in order to
avoid charge-breaking minima, one had to satisfy

ðaνþMRÞ2 ≤ 3ðm2
Hu

þjμj2þm2
L̃
þm2

ν̃R
þM2

RþBνÞ; ð31Þ

which is unlikely to hold given the benchmark spectrum.
Thus, we do not consider the cancellations featured in [26]
to be a generic feature of the νRMSSM, but to rather require
additional ingredients beyond the simple structure of
the model.
There does exist an alternative way of slightly improving

the cancellations that, although inelegant,7 does not require
such large parameters. A direct inspection of Eqs. (20) and
(23) shows that the ν̃R5 and ν̃R6 terms have opposite signs,
meaning that the SUSY contribution is diminished when
R-sneutrinos are degenerate. Then, if R-sneutrino masses
are different, and if one of these is very large such that the
corresponding R-sneutrino is decoupled, the SUSY con-
tribution is maximized. However, the choice of which
R-sneutrino needs to be decoupled depends on the neutrino
sector. For example, we find that ifM6 > M5, then it is ν̃R5
who must be decoupled in order to guarantee destructive
interference (with μ < 0 as before). In other words, the
R-sneutrino hierarchy needs to be inverted with respect to
the one for heavy neutrinos.
Given the properties of the loop functions, the most

effective hierarchy leading to cancellations ismν̃R6 ≪ mL̃ <
−μ;M1;M2 ≪ mν̃R5 . This suggests a spectrum similar to
that of [30,65], which avoided LHC constraints and
provided a R-sneutrino dark matter candidate [64].
Considering this hierarchy, we show Rghþgg as a function
of mν̃R6 on the left panel of Fig. 9, for different neutrino
mass splittings. The model parameters are mA¼1.1TeV,

FIG. 8. Maximum allowed ΔM65 as a function of jμj (aν) on the left (right), for the SUSY spectrum considered in [26], with tan β ¼ 2.
We set γ56 ¼ 8, such that jUμ5j2 ¼ 1.3 × 10−7.

6The model was implemented using SARAH [58–63].

7It is very unlikely that a high-scale model would provide such
a spectrum after running the RGEs. Also, even in the case of a
moderate splitting, the RGEs would generate off-diagonal soft
terms, likely leading to problems with lepton flavor violating
processes.
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tanβ¼ 8, mL̃¼500GeV, M2 ¼ 750 GeV, M1 ¼ M2=2,
μ ¼ −1 TeV, and aν ¼ 0. The figure shows that, for a fixed
ΔM65, the value of Rghþgg increases with mν̃R6 . Thus,
cancellations are stronger formν̃R6 closest to the correspond-
ing heavy neutrino mass (i.e., vanishing soft mass).
Moreover, contrary to the degenerate case, the efficiency
of the cancellation does depend on the heavy neutrino mass
splitting, with smaller values of Rghþgg for smaller ΔM65.
The reason is that the full SUSY contribution no longer
depends on the neutrino splitting, meaning that reducing
ΔM65 decreases only ðδMLÞ2HDM, thus leading to lower
Rghþgg. Nevertheless, contrary to the degenerate case, this
time the destructive interference can be substantial for
moderate values of jμj, in some cases having the SUSY
contribution exceeding the non-SUSY part (Rghþgg < 0).
The right panel of Fig. 9 compares the maximum jUμ5j2

of the standard seesaw with that on our scenario, for the
aforementioned spectrum. The bounds for the standard
seesaw are shown in red, while the corresponding con-
straints for our model are shown in blue. Even though one
can see a non-negligible relaxation of the bounds for small
ΔM65=M5, we find this effect vanishes when the splitting is
large. Thus, we conclude that even for the nondegenerate
case, SUSY does not relax the fine-tuning associated to
heavy neutrinos with large mass splitting and mixing.
As a final comment, the figure also shows gray curves for

very small ΔM65, which place bounds much more stringent
than those of the standard seesaw. Here, we find the SUSY
contribution to be dominant, corresponding to negative
Rghþgg. To avoid these constraints one needs to take a
heavier SUSY spectrum, in particular, larger mν̃R6 or mL̃.

B. Reducible contributions

Let us briefly comment on the three types of reducible
contributions in our benchmark scenario, for degenerate
sneutrinos and aν ¼ 0, focusing on how to guarantee a
cancellation with the non-SUSY part. First, we find that

regardless of the spectrum, and for both signs of μ, the
gaugino-gaugino correction in Eq. (30) gives destructive
interference as long as bν < 0.
The gaugino-Higgsino loop of Eq. (28) also leads to

cancellations for bν < 0, as long as μ < 0. If μ is positive,
then we find that the sign of the correction depends on the
spectrum. However, we will not consider this possibility, as
μ < 0 is also favored by the irreducible gaugino-gaugino
contribution.
As can be seen in Eq. (26), the Higgsino-Higgsino

correction does not depend on mL̃. Again concentrating on
negative μ, we find destructive interference for bν < 0 if jμj
is large. If jμj is small, then there exists a change in sign,
requiring bν > 0 for cancellations. However, the latter
possibility is in conflict with the other reducible correc-
tions, which require bν < 0.
Thus, if we want all reducible and irreducible correc-

tions to work together in canceling the non-SUSY con-
tribution, we need μ to be large and negative, as well as a
negative bν. In order to illustrate its behavior we show, on
the left panel of Fig. 10, the corresponding Rred

ggþghþhh

considering only the reducible contribution, as a function
of jμj and mL̃. Here, we have taken negative μ, and
varied M2 ¼ 2M1 between 700 and 5000 GeV. Since
effects are maximized for small mν̃, we have set this
parameter equal to 0.5 GeV and, in order to avoid
tachyonic states, set bν ¼ M5 − 5 GeV.8 Results are
shown only for M5 ¼ 200 GeV.
In all points, we find that the gaugino-gaugino contri-

bution dominates the correction, usually followed by
gaugino-Higgsino and then Higgsino-Higgsino contribu-
tions. We also find that the dependence onΔM65 practically
cancels with that of the non-SUSY part, so our results can
be taken independent of the heavy neutrino mass splitting.
However, within the evaluated parameter space, the

FIG. 9. Left: dependence of Rghþgg with mν̃R6 , for several values of ΔM65. Heavy neutrino mass is set to M5 ¼ 40 GeV. Right:
maximum allowed value of jUμ5j2, as a function of ΔM65=M5, for two values ofM5. Limits on for the standard seesaw are shown in red.
Blue and gray lines show limits for the spectrum described in the text. For gray lines, the SUSY contribution is larger the one
from 2HDM.

8Even though this is a relatively large value of bν, we have
checked that our results coincided reasonably well with SPheno.
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cancellation is hardly above 1%, which happens for very
large jμj and very small mL̃. The situation is worse for
smaller M5. When compared to the corresponding irreduc-
ible contributions, we find that the reducible part never rises
above 0.6% of the latter. Thus, we consider reducible
contributions not worth considering any further.
Similarly to the irreducible case, the work in [26] claims

that one can find values of bν of Oð0.1 GeVÞ that again
cancel the non-SUSY loops. This time, we have not been
able to reproduce their result. We show our attempt on the
right panel of Fig. 10, where we again plot the maximum
ΔM65 in their benchmark scenario (note they use
μ; bν > 0). We do not find any cancellation around their
expected value, coinciding with the prediction from SPheno.
Thus, it is possible that the bν-based screening is a feature
of models with radiative light neutrino masses. As a final
remark, within the mass-insertion method, we again found
that very large values of bν could be tuned in order to have
the necessary destructive interference. These would work
for μ > 0, and would be dominated by reducible Higgsino-
Higgsino loops. However, one should not expect the mass
insertion method to hold for such large values of bν, and in
any case, when contrasted with SPheno, we found that these
would lead to tachyonic sneutrino states.

V. DISCUSSION

In this work we have briefly reviewed the problem of
large loop corrections to light neutrino masses in the type-I
seesaw model, which can be present in scenarios where the
active-heavy mixing is large. It is well known that a good
way of avoiding the problem is by assigning to the model a
slightly broken LN symmetry, which forces the heavy
neutrinos to appear as pseudo-Dirac states. This, however,
can constrain LNV signals from appearing in collider
searches.
We then evaluated a work appearing some years ago,

which proposed considering a supersymmetric extension to
the model as a way of keeping loop corrections under
control. This study was motivated by the fact that in

unbroken SUSY the quantum corrections to terms in the
superpotential are canceled, leading to the hope than in the
broken case a soft SUSY screening effect would follow.
The expectation from this was that larger LNV parameters
would be allowed on the neutrino sector, reflected on larger
heavy neutrino mass splittings. This, in turn, would better
motivate searches for LNV phenomena associated to a
single heavy neutrino at colliders.
We thus performed a detailed analysis of the two

irreducible and three reducible SUSY contributions to
the loop corrected masses. We determined the regions of
parameter space guaranteeing cancellations between
the latter and the non-SUSY loops, concentrating on
heavy neutrino mass ranges accessible to current collider
experiments.
To summarize, we found the largest SUSY quantum

corrections to be the irreducible ones. For the case of
degenerate sneutrinos, with parameters under the TeV
scale, we found no significant screening effect. We did
corroborate that the pure gaugino loops could cancel the
non-SUSY contributions for extremely large values of jμj
and aν, but argued that doing so could cause problems in
other sectors of the model. We also presented a nonelegant
scenario with very nondegenerate sneutrinos, and found
that the screening could be more efficient without needing
too large jμj or aν. However, regardless of this, the
relaxation of constraints on LNV was very mild.
It must be noted that none of the cases above, where the

cancellations could be efficient, arises as a consequence of
nonrenormalization theorems. The only SUSY screening
contribution that does not rely on SUSY breaking, and thus
could be attributed to the theorems, is the irreducible
gaugino-Higgsino loop which, as we have shown, only
dominates for small jμj. None of the cases with efficient
cancellations rely on this correction. Instead, they all need
very specific values for the parameters, suggesting that
what we are observing is a transfer of fine-tuning from the
neutrino sector to the SUSY sector of the model. In our
opinion, even though SUSY screening does sound

FIG. 10. Left: values of Rred
ggþghþhh parameter for different values ofmL̃ and jμj, withM5 ¼ 200 GeV. Right: maximum allowed ΔM65

as a function of bν, for the SUSY spectrum considered in [26], with tan β ¼ 2. We set γ56 ¼ 8, such that jUμ5j2 ¼ 1.3 × 10−7.
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appealing in principle, in practice it does not seem
reasonable to bring in the whole supersymmetric frame-
work to address this issue.
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