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In this work, we formulate the theory of Lorentz-violating scalar quantum chromodynamics with an
arbitrary non-Abelian gauge group. This theory belongs to the class of models encompassed by the
standard model extension framework. At the lowest order in the theory’s Lorentz violation parameters, we
calculate the divergent quantum corrections, including the renormalization group β-functions of the theory.
The Lorentz-violating sector is shown to be scale invariant if there is a particular relation between the
couplings.
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I. INTRODUCTION

The physics of elementary particles rest on well-tested
principles of symmetry. The presumptions that there are
certain exact spacetime symmetries (described by the
Lorentz group) and internal symmetries (underlying strong
and electroweak physics and described by an overall non-
Abelian gauge group) in the current standard model (SM)
are key examples. However, there is also a common
understanding that the SM as we observe it is really just
an effective theory, describing low-energy elementary
particle interactions using a renormalizable quantum field
theory. Thus, any symmetry that is apparent at observable
scales may actually be just a low-energy approximation,
with those symmetries being violated at more fundamental
levels. One natural way to obtain an extension of the
currently understood SM is, therefore, by relaxing at least
one of the fundamental symmetries imposed on the theory.
In this paper, we are specifically concerned with the case of

explicit breaking of some of the spacetime symmetries—
specifically the isotropy and Lorentz boosts symmetries,
which together generate the Lorentz group.
One of the most important directions in the study of

Lorentz symmetry breaking consists of formulating and
studying the possible Lorentz-breaking extensions of vari-
ous field theoreticmodels. Themost important advancement
in this area was the formulation of the Lorentz-violating
(LV) standard model extension (SME) [1,2]. The SME is an
effective theory framework inwhich additional operators are
added to the action of the SM; these operators are structur-
ally similar to the usual SMoperators, but unlike the terms in
the usual SMLagrange density (which are taken to be scalars
under proper, orthochronous Lorentz transformations), the
SME operators may have free Lorentz indices. Since the
foundational work near the end of the last century, a large
number of studies of classical and quantum aspects of
various LV theories—most commonly LV extensions of
spinor quantum electrodynamics (QED)—have been com-
pleted. (See, for example [3,4].) In addition, the SME
approach has also been generalized to the include the
presence of classical gravitation [5]. In this context, the
perturbative studies of LV non-Abelian gauge theories are
extremely natural.
There have already been some interesting results

obtained using perturbative analyses of LV non-Abelian
gauge theories coupled to spinor matter—notably including
SME generalizations of the SM’s quantum chromodynam-
ics (QCD) sector with quarks and gluons: first, the one-
loop renormalization of LV non-Abelian gauge theories
with fermions completed (including chiral fermions) in
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Refs. [6–8]; second, perturbative generation of the non-
Abelian generalization of the Carroll-Field-Jackiw term
[9]; third, perturbative generation of a non-Abelian aether-
like term [10]. However, coupling of non-Abelian LV
theories to scalar matter has not been explored at all,
leaving this sector as a very natural area to study. Explicitly,
our aim is to extend the calculations of two-, three- and
four-point correlation functions, previously obtained in LV
scalar QED in [11,12], to the non-Abelian case. That is, we
will be formulating and studying scalar QCD, and thereby
obtaining the one-loop divergent quantum corrections for
the theory, from which its renormalization group behavior
may be determined. More specifically, in this paper we are
focusing on the analysis of the gluon-scalar interaction,
since the gluon self-interaction and gluon-ghost interaction
were studied in Refs. [6,7]. Throughout this paper, we use
standard particle physics conventions [natural units
c ¼ ℏ ¼ 1, and ðþ − −−Þ as the spacetime signature].
The structure of the paper is as follows. In Sec. II, we

introduce the action for our theory, including gauge fixing
and ghost contributions. In Sec. III, we discuss the
generation of the non-Abelian aether term. In Sec. IV,
we obtain the scalar-vector vertex functions, and in Sec. V
we study the β-functions that describe the resulting
renormalization group (RG) behavior. Our conclusions
are presented in Sec. VI. There are also two appendices.
Appendix A collects the Passarino-Veltman basis integrals
used throughout our calculations, and in Appendix B, the
calculation of the gluon self-energy in the presence of
scalar matter is presented in a little more detail.

II. CPT-EVEN LV SCALAR CHROMODYNAMICS

Let us consider the non-Abelian generalization of the
model studied in [11,12], described by the Lagrange
density

L ¼ ðDμϕiÞ†ðημν þ cμνÞDνϕi −m2ϕ†
iϕi −

λ

4
ðϕ†

iϕiÞ2

−
1

4
Fμν
a Faμν þ

1

4
κμναβFaμνFaαβ þ LGF þ Lghost; ð1Þ

where a is the non-Abelian gauge group index [we may
sometimes specialize to the gauge group SUðNÞ, or even to
the physical SUð3Þ of QCD, for definiteness]; the scalar
fields ϕi are in the adjoint representation (meaning the octet
in QCD); Fμν

a ¼ ∂
μAν

a − ∂
νAμ

a þ gfabcA
μ
bA

ν
c is the gluon

field strength; Dμ ¼ ∂
μ − ieAμ

aTa is the covariant deriva-
tive, with Ta being the generators ½Ta�bc ¼ ifabc of the
gauge group in the adjoint; and cμν and κμναβ are dimen-
sionless constant tensors that describe the CPT-even but
LVoperators in the scalar and vector sectors. All the scalars
have the same mass m, which we take to be real, so that
gauge symmetry is not spontaneously broken—meaning
that m2 > 0. (Studies of theories with both Lorentz
symmetry breaking and spontaneous gauge symmetry

breaking will be undertaken in the future.) Note that a
term like Fμν

a Faμν with a sum over group indices may also
be written as trace over FμνFμν, in terms of the group-
valued field strengths Fμν.
Prior to the inclusion of the gauge-fixing and ghost terms,

the Lagrange density (1) contains two tensors that describe
the Lorentz-violating backgrounds through which the scalar
and vector fields propagate. However, the number of physi-
callymeaningful parameters is actually fewer than onemight
expect, based just on counting the number of parameters in
the SME tenors. Physically observable quantities cannot
actually depend on cμν without also depending on κμναβ,
through the specific linear combination cμν þ κα

μαν [13].
This quantity measures the mismatch between the effective
metric appearing in the kinetic terms for different sectors of
the theory. If cμν þ κα

μαν ¼ 0, then the whole theory is
actually nothing more than standard scalar QCD, written in
skewed coordinates. Whenever possible, it is desirable to
have the triviality of the Lorentz violation in this case be
evident in the description of the theory.
For simplicity—especially for when we shall be looking

at the RG β-functions—we shall assume that cμν takes an
(aetherlike) traceless (cμμ ¼ 0) form cμν ¼ Q1uμuν, depen-
dent on a single preferred null vector uμ with u2 ¼ 0. The
Lorentz violation coefficient in the gauge sector will also
depend solely on uμ, taking the form

κμναβ ¼ Q2

Q1

ðcμαηνβ − cμβηνα þ ημαcνβ − ημβcναÞ ð2Þ

in terms of cμν. (In the limit of vanishing coupling, g ¼ 0, a
κμναβ of this form is indicative of birefringence-free gauge
boson propagation.) The case mentioned above—in which
the apparent Lorentz violation is actually fictitious—
corresponds to Q1 þ 2Q2 ¼ 0. When this relation is
satisfied, the theory is actually just Lorentz-invariant scalar
QCD, but expressed in a coordinate system in which the
distance along the light-front axis direction uμ is measured
on a different scale than distances along other four-vector
directions. General linear transformations of the global
coordinates may be used to change uμ, Q1, and Q2, but the
quantity Q1 þ 2Q2 remains invariant under such trans-
formations, meaning that it may be measured independ-
ently of the choice of coordinate system.
With the simplified SME tensors, the Lagrange density

(1) becomes

L ¼ ðDμϕiÞ†ðημν þQ1uμuνÞDνϕi −m2ϕ†
iϕi −

λ

4
ðϕ†

iϕiÞ2

−
1

4
Fμν
a Faμν þQ2uμuνFaμ

αFaνα þ LGF þ Lghost: ð3Þ

We must further include in the Lagrange density (1) or (3)
a gauge-fixing term, together with the corresponding
Faddeev-Popov ghost contributions. The gauge-fixing term
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LGF is a further LV generalization of the usual Lorenz-like
gauge condition used for non-Abelian gauge theories

LGF ¼
1

2ξ

�
∂
μAaμ þ

1

2
κμνG ∂μAaν

�
2

: ð4Þ

In general, there is freedom to choose any κμνG ; however,
the goal of selecting this generalized gauge-fixing term is
to have the simplest possible propagator for the gauge
sector, with the same κμναβ in the physical and pure gauge
components of the propagator tensor. It is fairly clear that
to make this possible, there must be a specific relation-
ship between the physical κμναβ and the κμνG assigned to
the gauge-fixing term, with κμνG ¼ 4λQ2uμuν for some
constant λ. If Q1 þ 2Q2 ¼ 0, so that the apparent Lorentz
violation in (1) is actually fictitious (being just a
coordinate artifact), having a gauge-fixing term of this
form should make it possible to eliminate an appropri-
ately chosen κμνG tensor via the same coordinate redefi-
nition that sets Q1 ¼ Q2 ¼ 0.
The structure of the LGF term necessitates that there

should also be a ghost term, which takes the form

Lghost ¼ −C̄a

�
∂
μDabμ þ

1

2
κμνG ∂μDabν

�
Cb; ð5Þ

where Ca and C̄a are the Faddeev-Popov ghost and anti-
ghost field, respectively. Once again, if the Lorentz
violation is unphysical, we hope, with the right coordinate
transformation, to be able to eliminate the Lorentz violation
in Lghost along with the other terms.
Since we shall be evaluating loop integrals only to first

order in the Lorentz violation coefficients, we may neglect
anything with more than one power of Q1 or Q2 when
determining the gauge field propagator. To get this propa-
gator, we look at the gauge part of the action in momentum
space, at leading order,

SA ¼−
1

2

Z
d4p
ð2πÞ4Aaμ

�
p2ημν−

�
1−

1

ξ

�
pμpνþ 2Q2uμuνp2

− 4
ðξ− λÞ

ξ
Q2uνuαpαpμþ 2Q2uαuβpαpβη

μν

�
Aaν: ð6Þ

We can read off from the gauge field action SA what the
corresponding equation of motion will be. To determine the
propagator, we shall consider a numerator with the possible
Lorentz structures

Δμδ ¼ ημδ − ζ
pμpδ

p2
þ βQ2uμuδ þ γQ2uαuδ

pαpμ

p2

þ σQ2uαuβ
pαpβ

p2
ημδ ð7Þ

and insist that it produce a Kronecker δ-function upon
contraction with the integrand in (6). Of course, (7) is not
the most general pμ-dependent matrix that might be used
to invert the bilinear structure in (6). In fact, this Δμδ is
restricted to have no poles higher than the ones that appear
in the normal gauge boson propagator. The motivation
for this is that Lorentz violation in the pure gauge sector
may be eliminated by a linear coordinate transformation.
(However, only if the SME coefficients satisfyQ1 þ 2Q2 ¼
0 will the same transformation that sets Q2 ¼ 0 also
eliminate the apparent Lorentz violation in the scalar sector,
by also setting Q1 ¼ 0.) Therefore, we would like to find a
propagator for the gauge field that resembles the propagator
for a Lorentz-invariant non-Abelian gauge field, but
expressed in skewed coordinates—if this is possible.
The first thing to notice is that ζ ¼ ð1 − ξÞ has to be

satisfied, confirming the usual behavior in the absence of the
Lorentz violation. Moreover, upon contracting and keeping
the termswhich are first order inQ2, we find a total of twelve
terms, which, taken together, should vanish. They are

0 ¼ βuνuδp2 þ γuαuδpαpν þ σuαuβpαpβδ
ν
δ

− β

�
1 −

1

ξ

�
uαuδpαpν − γ

�
1 −

1

ξ

�
uαuδpαpν − σ

�
1 −

1

ξ

�
uαuβpαpβ

pδpν

p2

þ 2uνuδp2 − 4
ξ − λ

ξ
uαuνpαpδ þ 2uαuβpαpβδ

ν
δ

− 2ð1 − ξÞuαuνpαpδ þ 4ð1 − ξÞ ξ − λ

ξ
uαuνpαpδ − 2ð1 − ξÞuαuβpαpβ

pδpν

p2
: ð8Þ

For this to be zero, the set of terms with each different
contraction structure of uμ and pμ must vanish. For this to
happen, the first and seventh terms together require β ¼ −2.
Similarly, the third and ninth terms require σ ¼ −2. How-
ever, with this σ, we see that we cannot generally cancel the
sixth and the twelfth term.
If this complication is temporarily ignored, we can also

compute γ ¼ 2ð1 − ξÞ and λ ¼ 1þξ
2
, which depend on the

gauge parameter ξ. The latter expression may appear
particularly problematic, as it seems peculiar that the
quantity κμνG describing the extent of the Lorentz violation
in the ghost loops should depend explicitly on ξ. A further
problemmay crop up with a more general κμναβ than (2), for
which the propagatorΔμν may not be manifestly symmetric
in its Lorentz indices μ and ν. However, in the Feynman
gauge, ξ ¼ 1, all of these problems are circumvented.
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Moreover, this fixes the value λ ¼ 1, so that the Lorentz
violation in the kinetic terms for the gauge and ghost fields
enter with the same physical magnitudes.
If we insisted on using a different gauge, then the simple

Δμδ from (7) would not be sufficient to describe the gauge
boson propagator. A more complicated structure, with
higher poles, would be required [14]. However, the analysis
in Ref. [14] is also simplified by the fact that it only
considers a massive Abelian gauge theory. In a theory
with a vector mass (whether of generalized Proca or
Stueckelberg form), there is a consistency condition on
the gauge field; this is a Lorentz-violating generalization of
the Lorenz condition obeyed by the Abelian vector poten-
tial in the presence of a Proca mass. This generalized
consistency condition may be used to simplify the action
and the propagator for the physical vector boson modes, but
this useful simplifying condition unfortunately becomes
trivial when the physical photon mass vanishes.
Fortunately, by using the Feynman gauge—which is

generally the most convenient gauge to use anyway—all
the complications and caveats are avoided. With the

propagators established, in the next sectionwe shall compute
the one-loop radiative corrections to the κμναβ term in the
gauge field action, as generated by the coupling of the gauge
field to virtual scalar matter loops. To evaluate the relevant
correlation functions, we shall use adapted versions of a set
of Mathematica packages [15–17]. Note, however, that the
contributions coming solely from gluon and ghost propa-
gators (both of which are manifestations of the non-Abelian
gauge sector) have already been calculated [6], although not
directly using the gauge fixing prescription described in this
section.

III. CORRECTIONS TO THE NON-ABELIAN
AETHERLIKE TERM

Let us start with evaluating the matter loop corrections to
the non-Abelian aether termQ2uμuνF

μα
a Fν

aα appearing in (1).
The diagrams we must compute are depicted in Figs. 1–3.
First, we calculate the gluon self-energy given by the

Feynman diagrams in Fig. 1. The general structure of the
aetherlike LV gluon self-energy has the form

hTAμ
aðp1ÞAν

bðp2Þi ¼
�
−
g2CAQ1

48π2ϵ
þ finite

�
Πμνðp1ÞtrðTaTbÞð2πÞ4δð4Þðp1 þ p2Þ; ð9Þ

where the representation constant CA ¼ N for the for the adjoint representation of the SUðNÞ gauge group, and the Lorentz
structure is

Πμνðp1Þ ¼ ημνðp1 · uÞ2 − ðpμ
1u

ν þ pν
1u

μÞðp1 · uÞ þ p2
1u

μuν; ð10Þ

here we have used the conservation law p2 ¼ −p1 for the external momentum. In this and the following calculations we
define, as usual, the dimensional extension ϵ ¼ D−4

2
.

The matter corrections to the aetherlike LV three-gluon vertex, Fig. 2, can similarly be cast as

hTAα
aðp1ÞAμ

bðp2ÞAν
cðp3Þi ¼

�
−
g2CAQ1

48π2ϵ
þ finite

�
Παμνðp1; p2; p3Þtrð½Ta; Tb�TcÞð2πÞ4δð4Þðp1 þ p2 þ p3Þ; ð11Þ

where

Παμνðp1; p2; p3Þ ¼ ðp1 − p3Þαuμuν þ ðp3 − p2Þνuαuμ þ ðp2 − p1Þμuνuα
þ uαημνðp1 − p3Þ · uþ uνημαðp3 − p2Þ · uþ uμηανðp2 − p1Þ · u: ð12Þ

Naturally, the symbol ½Ta; Tb� stands for the commutators between the normalized group generators, ½Ta; Tb� ¼ ifabcTc.

FIG. 1. Feynman diagrams for the LV corrections to the gluon field self-energy. Continuous and curly lines represent scalar and gluon
propagators, respectively. The crossed vertices correspond to LV vertex insertions.
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Finally, matter loop corrections to the aetherlike LV four-gluon vertex, shown in Fig. 3, are given by

hTAα
aðp1ÞAβ

bðp2ÞAμ
cðp3ÞAν

dðp4Þi ¼
�
−
g2CAQ1

48π2ϵ
þ finite

�
Παβμνðp1; p2; p3; p4Þtrð½Ta; Td�½Tb; Tc�

þ ½Ta; Tc�½Tb; Td�Þð2πÞ4δð4Þðp1 þ p2 þ p3 þ p4Þ; ð13Þ

where in this case

FIG. 2. Feynman diagrams for the LV corrections to the three-gluon vertex interaction.

FIG. 3. Topologies for the four-point function Feynman diagrams with single LV vertex insertions. Both gauge and scalar internal lines
are implicitly included.
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Παβμνðp1; p2; p3; p4Þ ¼ uαuβημν þ uμuνηαβ þ uαuνηβμ

þ uβuμηαν − 2ðuαuμηβν þ uβuμηβνÞ:
ð14Þ

Using the Lie algebra of the generators Ta of the SUðNÞ
gauge group and combining the results (9), (11), and (13),
we obtain the following effective Lagrange density

Leff ¼ tr

��
ZQ2

Q2 −
g2CAQ1

96π2ϵ
þ finite

�
uμuνFμαFν

α

�
; ð15Þ

where ZQ2
Q2 ¼ ðQ2 þ δQ2

Þ, with δQ2
being the appropri-

ate counterterm, which in the minimal subtraction (MS)
renormalization scheme is evidently given by

δQ2
¼ g2CAQ1

96π2ϵ
: ð16Þ

This is one of the pieces needed to determine how the
RG behavior of the theory is affected by the charged
scalars. In the next section we compute the scalar self-
energy contribution, as well as the gluon-matter contribu-
tion, in order to complete the computation the β functions
for the model.

IV. SCALAR SELF-ENERGY
AND THE GLUON-MATTER VERTEX

Let us now compute the one-loop scalar self-energy
(Fig. 4), ΣðpÞ ¼ hTϕi

aðpÞϕj�
b ð−pÞi. The expression corre-

sponding to Fig. 4’s diagram1 (or “diagram4–1”) is given by

Σ1ðpÞ ¼ −i
Z

d4k
ð2πÞ4

2λNs

ðk2 −m2Þ δijδab ð17Þ

¼ λNs

4π2
A0ðm2Þδijδab; ð18Þ

whereA0ðm2Þ is one of the Passarino-Veltman basis integrals
(see Appendix A), and Ns is the number of scalar fields
[which must be a multiple of ðN2 − 1Þ for SUðNÞ adjoint
scalars].
The expression for the tadpole diagram 4–2 is propor-

tional to A0ð0Þ—that is, vanishing (up to irrelevant,
regulator-dependent finite terms). However, the corre-
sponding expression for diagram 4–3 is

Σ3ðpÞ ¼ i
Z

d4k
ð2πÞ4

g2ημνðkþ pÞμðkþ pÞνfacdfbcd
ðk2 −m2Þðk − pÞ2 δij

ð19Þ

¼ g2CA

16π2
½A0ðm2Þ − 2ðp2 þm2ÞB0ðp2; 0; m2Þ�δijδab;

ð20Þ
where B0ðp2; 0; m2Þ is another integral from the Passarino-
Veltman basis.
The expression for the first diagram with a LV vertex

insertion, diagram 4–4, is given by

Σ4ðpÞ ¼ −i
Z

d4k
ð2πÞ4

g2Q1ðkþ pÞ2ðk · uÞ2facdfbcd
ðk2 −m2Þ2ðk − pÞ2 δij

ð21Þ

¼ −
g2Q1CA

24π2
ðp · uÞ2

p4

�
2ðp2 þm2ÞA0ðm2Þ − ð2p4 þ 4m2p2 þ 3m4ÞB0ðp2; 0; m2Þ þ ðp2 þm2Þ2B0ð0; m2; m2Þ

− ðp6 þ 2m2p4 þ 2m4p2 þm6ÞC0ð0; p2; p2; m2; m2; 0Þ
�
δijδab: ð22Þ

Here we have encountered the last of the Passarino-Veltman basis integrals that we need; like the others,
C0ð0; p2; p2; m2; m2; 0Þ is given in Appendix A.

FIG. 4. Feynman diagrams for the scalar field self-energy.
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Continuing, the expression for diagram 4–5 is

Σ5ðpÞ ¼ −i
Z

d4k
ð2πÞ4

g2Q2½p2ðk · uÞ2 þ k2ðp · uÞ2 − 2ðk · pÞðk · uÞðp · uÞ�facdfbcd
2ðk2Þ2½ðk − pÞ2 −m2� δij ð23Þ

¼ −
g2Q2CA

192π2
ðp · uÞ2
p2

h
A0ðm2Þ − 2ðp2 þm2ÞB0ðp2; 0; m2Þ

− ðp2 −m2ÞB0ð0; 0; 0Þ þ ðp2 −m2Þ2C0ð0; p2; p2; 0; 0; m2Þ
i
δijδab: ð24Þ

Diagram 4–6 is once again a tadpole proportional to
A0ð0Þ ¼ 0. The following diagram, 4–7, can be expressed as

Σ7ðpÞ ¼ i
Z

d4k
ð2πÞ4

g2Q1½ðkþ pÞ · u�2facdfbcd
ðk2 −m2Þ2ðk − pÞ2 δij ð25Þ

¼ g2Q2CA

48π2
ðp · uÞ2

p4

h
ð4p2 þm2ÞA0ðm2Þ

− ð7p4 þ 4m2p2 þm4ÞB0ðp2; 0; m2Þ
i
δijδab:

ð26Þ
The expression corresponding to diagram 4–8 is propor-

tional to the trace of the LV tensor cμν—that is to u2 ¼ 0.
Since diagram 4–9 is tadpole, it can also be expressed as

Σ9ðpÞ ¼ i
Z

d4k
ð2πÞ4

g2Q2ðk · uÞ2facdfbcd
4ðk2Þ2 δij ∝ A0ð0Þ ¼ 0:

ð27Þ

Finally, the expression for diagram 4–10 is

Σ10ðpÞ ¼ i
Z

d4k
ð2πÞ4

g2Q1½ðk−pÞ · u�2facdfbcd
ðk2 −m2ÞðkþpÞ2 δij ¼ Σ7ðpÞ:

ð28Þ

Adding all the above expressions, along with the
counterterm diagrams, we find

ΣðpÞ ¼
�
4λNsm2 − g2CAð2p2 þm2Þ

16π2ϵ

−
g2ðQ1 þQ2ÞCAðp · uÞ2

4π2ϵ
ðδ2p2 − δm2m2Þ

þ δQ1
ðp · uÞ2 þ finite

�
δijδab; ð29Þ

where δ2, δm2 , and δQ1
are the counterterms in question,

with the forms: δ2 ¼ Z2 − 1, δm2 ¼ ðm2
0Zm2 −m2Þ=m2,

and δQ1
¼ Q1ðZQ1

− 1Þ. Here, Z2, Zm2 , and ZQ1
are the

corresponding renormalization constants (in particular,

Z2 is the renormalization constant for the scalar field
redefinition ϕa →

ffiffiffiffiffi
Z2

p
ϕa), and m2

0 is the bare scalar mass
squared. Imposing finiteness of (29) through the MS
scheme, we find

δ2 ¼
g2CA

8π2ϵ
; ð30aÞ

δm2 ¼ ðλNs − g2CAÞ
16π2ϵ

; ð30bÞ

δQ1
¼ g2ðQ1 þQ2ÞCA

4π2ϵ
: ð30cÞ

For completeness, we shall also evaluate the radiative
corrections to the gluon-matter-current interaction vertex.
The Feynman diagrams of this process are depicted in
Fig. 5. The general form taken by the vertex function is

Γ ¼ i
Z

d4p1

ð2πÞ4
d4p2

ð2πÞ4
d4p3

ð2πÞ4 fabcϕaðp1Þϕ�
bðp2Þ

× ΓμA
μ
cðp3Þð2πÞ4δðp1 þ p2 þ p3Þ: ð31Þ

The corresponding ultraviolet-divergent expression may be
written as

Γμðp1; p2; p3Þ ¼
g3CAðp2 − p1Þμ

16π2ϵ

þ 3g3ðQ1 þQ2ÞCA½ðp2 − p1Þ · u�uμ
16π2ϵ

þ δ1gðp2 − p1Þμ − δ̃Q1
½ðp2 − p1Þ · u�uμ;

ð32Þ

where δ1 and δ̃Q1
are the appropriate counterterms, and we

have once again used momentum conservation to simplify
the final expression. Setting (32) to be vanishing, we find
the counterterm values

δ1 ¼
g0Z2

ffiffiffiffiffi
Z3

p
− g

g
¼ −

g2CA

16π2ϵ
; ð33aÞ

δ̃Q1
¼ g0ðQ1Þ0Z2

ffiffiffiffiffi
Z3

p
−Q1

Q1

¼ 3g2ðQ1 þQ2ÞCA

16π2ϵ
; ð33bÞ
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where Z3 is the renormalization constant for the gluon field
redefinition Aμ →

ffiffiffiffiffi
Z3

p
Aμ. The counterterm δ3 ¼ Z3 − 1 is

computed in Appendix B.
It is important to mention that the renormalization of the

λϕ4 operator is just like in the ordinary theory, since the LV
corrections are necessarily proportional to u2 ¼ 0. Any LV
corrections to the scalar vertex must involve contractions of
uμ with derivatives of the field, making them manifestly
finite by power counting.

V. β-FUNCTIONS

We now proceed to compute the scalar-matter coupling
corrections to the one-loop β-functions of the Lorentz
violation parameters Q1 and Q2. In the previous sections
we have found the one-loop counterterms for the scalar
and gluon fields and the gluon-matter vertex in our model.
In order to evaluate the relevant Z factors to compute
the β-functions of Q1 and Q2, we expand each renormal-
ization constant Zi as power series in the coupling con-
stants, which can be determined order by order using
perturbation theory,

Zi ¼ 1þ δð1Þi þ δð2Þi þ � � � : ð34Þ

The relation between the bare and renormalized coupling
constants may be cast as

ZQ1
Q1 ¼ μ−2ϵðQ1Þ0Z2 ¼ Q1 þ δQ1

; ð35aÞ

ZQ2
Q2 ¼ μ−2ϵðQ2Þ0Z3 ¼ Q2 þ δQ2

; ð35bÞ

where, as noted above, Z2 (ϕa →
ffiffiffiffiffi
Z2

p
ϕa) and Z3

(Aμ
a →

ffiffiffiffiffi
Z3

p
Aμ
a) are the field strength renormalization con-

stants for the scalar and gauge boson fields, respectively.
Taking the scaling relations (35) between the bare and

renormalized couplings, we can compute βQ1
to be

βQ1
¼ lim

ϵ→0

�
−2ϵQ1

�
1þ δ2 −

δQ1

Q1

��
¼ g2ðQ1 þ 2Q2ÞCA

4π2
:

ð36Þ
When Q1 þ 2Q2 ¼ 0, there is no RG flow for this SME
parameter. Similarly, the scalar matter-loop fluctuations
result in the following corrections to the βQ2

function:

βQ2
¼ lim

ϵ→0

�
−2ϵQ2

�
1þ δ3 −

δQ2

Q2

��
¼ g2NsðQ1 þ 2Q2Þ

48π2

þ � � � ; ð37Þ
where the dots mean that we have included only the matter-
loop corrections to βQ2

.

VI. FINAL REMARKS

Renormalization is an essential part of the work to
understand a quantum field theory. The regularization
and renormalization processes allow us to verify the
consistency of a specific field-theoretic model at the
quantum level and to understand its underlying behavior
at high energy scales. Even in theories, such as the SME, in
which some of the core principles of relativistic field theory
may have been discarded, it is still crucial to understand the
theory’s renormalization properties—either by generalizing
and reformulating formal renormalization theorems or by

FIG. 5. Feynman diagrams for the gluon-matter vertex.
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explicit perturbative calculations. It is, in fact, one of the
greatest strengths of the SME approach that, since it is an
effective field theory, it is amenable to calculation of
radiative corrections in essentially just the same way as
the usual SM.
This paper has addressed the case where Lorentz

symmetry is broken, but non-Abelian gauge symmetries
are still preserved. More specifically, we formulated the
LV extension of a non-Abelian gauge theory coupled to
a scalar matter. We calculated the contributions to scalar
and gluon field strength renormalization, as well as to the
vector-scalar interaction vertex, at the lowest orders in the
gauge couplings and the Lorentz violation parameters.
Using these results, we computed the one-loop β-functions
for the model. From the forms of βQ1

and βQ2
, it is evident

that there is no running of these coupling constants
when there is a particular relationship between the SME
coefficients in the gauge and matter sectors, specifically
whenQ1 þ 2Q2 ¼ 0. When this relation is satisfied, the LV
couplings are scale independent at this order; this corre-
sponds to a theory in which the Lorentz violation may be
eliminated from both sectors by a transformation to skewed
four-dimensional Cartesian coordinates. The inclusion of
quantum corrections should not change the fact that the
theory is actually Lorentz invariant, but merely expressed in
oblique coordinates.

The theory we have considered is, more generally, part of
the non-Abelian gauge and scalar sectors of the LV SME.
As we have already noted, there is still a significant amount
of further work to be done to understand these types of
theories, with couplings between of non-Abelian gauge
fields and charged scalar matter—in particular, concerning
the explicit calculation of radiative corrections. The present
contribution gives a first step in this direction, but there are
important topics that have still not been touched, such as
the effects of spontaneous gauge symmetry breaking. Since
the electroweak sector of the SM includes a multiplet of
scalar Higgs fields that break SUð2ÞL gauge invariance, this
is an important area in which further research will need to
be undertaken in the future.
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APPENDIX A: PASSARINO-VELTMAN
BASIS INTEGRALS

Many of the integrals appearing in Sec. IV were reduced
to linear combinations of the following standard integrals,
which are components of the Passarino-Veltman basis:

A0ðm2Þ ¼
Z

dDk
1

k2 −m2
¼ m2

ϵ
þ finite; ðA1Þ

B0ðp2; m2
1; m

2
2Þ ¼

Z
dDk

1

ðk2 −m2
1Þððkþ pÞ2 −m2

2Þ
¼ 1

ϵ
þ finite; ðA2Þ

C0ðp2
1; ðp1 − p2Þ2; p2

2; m
2
1; m

2
2; m

2
3Þ ¼

Z
dDk

1

ðk2 −m2
1Þððkþ p1Þ2 −m2

2Þððkþ p2Þ2 −m2
3Þ

¼ finite: ðA3Þ

APPENDIX B: GLUON SELF-ENERGY

The Feynman diagrams for the ordinary one-loop gluon self-energy are depicted in Fig. 6. The general structure of the
gluon two-point function has the form

ΓA ¼
Z

d4p
ð2πÞ4 A

μ
aðpÞΠμνðpÞAν

að−pÞ: ðB1Þ

The expressions corresponding to the individual diagrams shown in Fig. 6 are

Πμν
1 ðpÞ ¼ i

Z
d4k
ð2πÞ4

2g2Nsη
μν

ðk2 −m2Þ ¼ −
g2Ns

8π2
ημνA0ðm2Þ; ðB2Þ

FIG. 6. Feynman diagrams for the ordinary gluon self-energy. Dashed lines represent Faddeev-Popov ghost propagators.

PERTURBATIVE ASPECTS OF CPT-EVEN LORENTZ- … PHYS. REV. D 107, 115002 (2023)

115002-9



Πμν
3 ðpÞ ¼ −i

Z
d4k
ð2πÞ4

g2Nsð2k − pÞμð2k − pÞν
ðk2 −m2Þððk − pÞ2 −m2Þ ðB3Þ

¼ g2Ns

48π2
1

p2
½ðp2ημν þ 2pμpνÞA0ðm2Þ þ ð4m2 − p2Þðp2ημν − pμpνÞB0ðp2; m2; m2Þ�;

Πμν
4 ðpÞ ¼ i

Z
d4k
ð2πÞ4

g2CAkμðk − pÞν
k2ðk − pÞ2 ¼ g2CA

192π2
ðp2ημν þ 2pμpνÞB0ðp2; 0; 0Þ; ðB4Þ

Πμν
5 ðpÞ ¼ −i

Z
d4k
ð2πÞ4

g2CA½ημνð5p2 þ 2k2 − 2ðk · pÞÞ − pμð5kν þ 2pνÞ þ 5kμð2kν − pνÞ�
2k2ðk − pÞ2

¼ g2CA

192π2
ðp2ημν þ 2pμpνÞB0ðp2; 0; 0Þ; ðB5Þ

while diagram 6–2, being a tadpole, is proportional to
A0ð0Þ ¼ 0.
Adding these contributions, substituting the integrals

(see again Appendix A), and keeping only the ultraviolet-
divergent terms, we have

ΠμνðpÞ ¼ ðp2ημν − pμpνÞ
�
g2ð5CA − NsÞ

12π2ϵ
− δ3

�
: ðB6Þ

Imposing finiteness, we immediately find

δ3 ¼
g2ð5CA − NsÞ

12π2ϵ
: ðB7Þ

Notice that if we have only one octet of QCD scalar fields,
we will have Ns ¼ N2 − 1 ¼ 8 and CA ¼ N ¼ 3.
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