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Perturbative aspects of CPT-even Lorentz-violating scalar chromodynamics
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In this work, we formulate the theory of Lorentz-violating scalar quantum chromodynamics with an
arbitrary non-Abelian gauge group. This theory belongs to the class of models encompassed by the
standard model extension framework. At the lowest order in the theory’s Lorentz violation parameters, we
calculate the divergent quantum corrections, including the renormalization group f-functions of the theory.
The Lorentz-violating sector is shown to be scale invariant if there is a particular relation between the

couplings.
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I. INTRODUCTION

The physics of elementary particles rest on well-tested
principles of symmetry. The presumptions that there are
certain exact spacetime symmetries (described by the
Lorentz group) and internal symmetries (underlying strong
and electroweak physics and described by an overall non-
Abelian gauge group) in the current standard model (SM)
are key examples. However, there is also a common
understanding that the SM as we observe it is really just
an effective theory, describing low-energy elementary
particle interactions using a renormalizable quantum field
theory. Thus, any symmetry that is apparent at observable
scales may actually be just a low-energy approximation,
with those symmetries being violated at more fundamental
levels. One natural way to obtain an extension of the
currently understood SM is, therefore, by relaxing at least
one of the fundamental symmetries imposed on the theory.
In this paper, we are specifically concerned with the case of
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explicit breaking of some of the spacetime symmetries—
specifically the isotropy and Lorentz boosts symmetries,
which together generate the Lorentz group.

One of the most important directions in the study of
Lorentz symmetry breaking consists of formulating and
studying the possible Lorentz-breaking extensions of vari-
ous field theoretic models. The most important advancement
in this area was the formulation of the Lorentz-violating
(LV) standard model extension (SME) [1,2]. The SME is an
effective theory framework in which additional operators are
added to the action of the SM; these operators are structur-
ally similar to the usual SM operators, but unlike the terms in
the usual SM Lagrange density (which are taken to be scalars
under proper, orthochronous Lorentz transformations), the
SME operators may have free Lorentz indices. Since the
foundational work near the end of the last century, a large
number of studies of classical and quantum aspects of
various LV theories—most commonly LV extensions of
spinor quantum electrodynamics (QED)—have been com-
pleted. (See, for example [3,4].) In addition, the SME
approach has also been generalized to the include the
presence of classical gravitation [5]. In this context, the
perturbative studies of LV non-Abelian gauge theories are
extremely natural.

There have already been some interesting results
obtained using perturbative analyses of LV non-Abelian
gauge theories coupled to spinor matter—notably including
SME generalizations of the SM’s quantum chromodynam-
ics (QCD) sector with quarks and gluons: first, the one-
loop renormalization of LV non-Abelian gauge theories
with fermions completed (including chiral fermions) in

Published by the American Physical Society
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Refs. [6-8]; second, perturbative generation of the non-
Abelian generalization of the Carroll-Field-Jackiw term
[9]; third, perturbative generation of a non-Abelian aether-
like term [10]. However, coupling of non-Abelian LV
theories to scalar matter has not been explored at all,
leaving this sector as a very natural area to study. Explicitly,
our aim is to extend the calculations of two-, three- and
four-point correlation functions, previously obtained in LV
scalar QED in [11,12], to the non-Abelian case. That is, we
will be formulating and studying scalar QCD, and thereby
obtaining the one-loop divergent quantum corrections for
the theory, from which its renormalization group behavior
may be determined. More specifically, in this paper we are
focusing on the analysis of the gluon-scalar interaction,
since the gluon self-interaction and gluon-ghost interaction
were studied in Refs. [6,7]. Throughout this paper, we use
standard particle physics conventions [natural units
¢ =h=1, and (+ — ——) as the spacetime signature].

The structure of the paper is as follows. In Sec. II, we
introduce the action for our theory, including gauge fixing
and ghost contributions. In Sec. III, we discuss the
generation of the non-Abelian aether term. In Sec. IV,
we obtain the scalar-vector vertex functions, and in Sec. V
we study the pJ-functions that describe the resulting
renormalization group (RG) behavior. Our conclusions
are presented in Sec. VI. There are also two appendices.
Appendix A collects the Passarino-Veltman basis integrals
used throughout our calculations, and in Appendix B, the
calculation of the gluon self-energy in the presence of
scalar matter is presented in a little more detail.

II. CPT-EVEN LV SCALAR CHROMODYNAMICS

Let us consider the non-Abelian generalization of the
model studied in [11,12], described by the Lagrange
density

A
L= (D)) (0" + *)Dyp; = >l h; = ($] )

1 1
- ZFﬁDFa;w + ZKﬂmﬁFavaaa/} + 'CGF + 'Cghost’ (1)

where a is the non-Abelian gauge group index [we may
sometimes specialize to the gauge group SU(N), or even to
the physical SU(3) of QCD, for definiteness]; the scalar
fields ¢; are in the adjoint representation (meaning the octet
in QCD); Fy' = 0"AY — 0"Al + gf wpALAY is the gluon
field strength; D¥* = 0" — ieAZTa is the covariant deriva-
tive, with 7, being the generators [T,],. = if.. of the
gauge group in the adjoint; and ¢* and x*** are dimen-
sionless constant tensors that describe the CPT-even but
LV operators in the scalar and vector sectors. All the scalars
have the same mass m, which we take to be real, so that
gauge symmetry is not spontaneously broken—meaning
that m? > 0. (Studies of theories with both Lorentz
symmetry breaking and spontaneous gauge symmetry

breaking will be undertaken in the future.) Note that a
term like F4"F,,, with a sum over group indices may also
be written as trace over F*F,,, in terms of the group-
valued field strengths F**.

Prior to the inclusion of the gauge-fixing and ghost terms,
the Lagrange density (1) contains two tensors that describe
the Lorentz-violating backgrounds through which the scalar
and vector fields propagate. However, the number of physi-
cally meaningful parameters is actually fewer than one might
expect, based just on counting the number of parameters in
the SME tenors. Physically observable quantities cannot
actually depend on c¢** without also depending on x#**/,
through the specific linear combination c** + k #*® [13].
This quantity measures the mismatch between the effective
metric appearing in the kinetic terms for different sectors of
the theory. If ¢ + k,/® = 0, then the whole theory is
actually nothing more than standard scalar QCD, written in
skewed coordinates. Whenever possible, it is desirable to
have the triviality of the Lorentz violation in this case be
evident in the description of the theory.

For simplicity—especially for when we shall be looking
at the RG p-functions—we shall assume that ¢** takes an
(aetherlike) traceless (¢, = 0) form ¢* = Q,u"u”, depen-
dent on a single preferred null vector u* with u?> = 0. The
Lorentz violation coefficient in the gauge sector will also
depend solely on u*, taking the form

wwad — 2 (uay _ by g ach _ by (2)
0,

in terms of ¢**. (In the limit of vanishing coupling, g = 0, a
k*% of this form is indicative of birefringence-free gauge
boson propagation.) The case mentioned above—in which
the apparent Lorentz violation is actually fictitious—
corresponds to Q; + 20, =0. When this relation is
satisfied, the theory is actually just Lorentz-invariant scalar
QCD, but expressed in a coordinate system in which the
distance along the light-front axis direction u* is measured
on a different scale than distances along other four-vector
directions. General linear transformations of the global
coordinates may be used to change u*, Q;, and Q,, but the
quantity Q; 4+ 20, remains invariant under such trans-
formations, meaning that it may be measured independ-
ently of the choice of coordinate system.

With the simplified SME tensors, the Lagrange density
(1) becomes

; A,
L= (D) (1 + Q) Dyps = i pi = 7 (b1 :)°

1
- ZFI;DFa;w + QZMﬂuDFaﬂaFaua + EGF + Eghost' (3)

We must further include in the Lagrange density (1) or (3)
a gauge-fixing term, together with the corresponding
Faddeev-Popov ghost contributions. The gauge-fixing term
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Lgr is a further LV generalization of the usual Lorenz-like
gauge condition used for non-Abelian gauge theories

1 1 2
[’GF = 2—5 <6“Aaﬂ + EkgyaﬂAHU> . (4)
In general, there is freedom to choose any «{; ; however,
the goal of selecting this generalized gauge-fixing term is
to have the simplest possible propagator for the gauge
sector, with the same x*** in the physical and pure gauge
components of the propagator tensor. It is fairly clear that
to make this possible, there must be a specific relation-
ship between the physical #**% and the x/; assigned to
the gauge-fixing term, with &% = 41Q,u*u* for some
constant 4. If O, + 20, = 0, so that the apparent Lorentz
violation in (1) is actually fictitious (being just a
coordinate artifact), having a gauge-fixing term of this
form should make it possible to eliminate an appropri-
ately chosen {5 tensor via the same coordinate redefi-
nition that sets Q; = @, = 0.
The structure of the Lgp term necessitates that there
should also be a ghost term, which takes the form

_ |
Eghost =-C, (aﬂDabﬂ + EK% ayDahu> Cps (5)

where C, and C, are the Faddeev-Popov ghost and anti-
ghost field, respectively. Once again, if the Lorentz
violation is unphysical, we hope, with the right coordinate
transformation, to be able to eliminate the Lorentz violation
in Lghoq along with the other terms.

Since we shall be evaluating loop integrals only to first
order in the Lorentz violation coefficients, we may neglect
anything with more than one power of Q; or O, when
determining the gauge field propagator. To get this propa-
gator, we look at the gauge part of the action in momentum
space, at leading order,
|

1 [ d*p 1
S, =—— A 20V 1—= Hpt 1D Va2
A 2/(2”)4 a,,[pn ( §>pp +20,u'u’p

g_l v,,0 a v
—4(—§)Q2u U pp* +20:uu ppsn | Ay, (6)

We can read off from the gauge field action S, what the
corresponding equation of motion will be. To determine the
propagator, we shall consider a numerator with the possible
Lorentz structures

PuDs PaP"
Aus = Myus — C# + BQru,us +yQruus ;)2

PaPp
+ 6Q2uauﬂ pgl Mys (7)

and insist that it produce a Kronecker o-function upon
contraction with the integrand in (6). Of course, (7) is not
the most general p”-dependent matrix that might be used
to invert the bilinear structure in (6). In fact, this A, is
restricted to have no poles higher than the ones that appear
in the normal gauge boson propagator. The motivation
for this is that Lorentz violation in the pure gauge sector
may be eliminated by a linear coordinate transformation.
(However, only if the SME coefficients satisfy Q; + 20, =
0 will the same transformation that sets O, =0 also
eliminate the apparent Lorentz violation in the scalar sector,
by also setting Q@ = 0.) Therefore, we would like to find a
propagator for the gauge field that resembles the propagator
for a Lorentz-invariant non-Abelian gauge field, but
expressed in skewed coordinates—if this is possible.

The first thing to notice is that { = (1 — &) has to be
satisfied, confirming the usual behavior in the absence of the
Lorentz violation. Moreover, upon contracting and keeping
the terms which are first order in Q,, we find a total of twelve
terms, which, taken together, should vanish. They are

0 = pu'usp® + yugusp®p* + ouu’ popd
1 1 1 psP”
—ﬁ(l——)u u p"’p”—y(l——)u u p“p"—a(l——)u“uﬂp D=
é: as f ats g alp p2

+ 2utusp* — 45

=2(1 = &uu’ pups +4(1 =€) :

For this to be zero, the set of terms with each different
contraction structure of u# and p* must vanish. For this to
happen, the first and seventh terms together require f = —2.
Similarly, the third and ninth terms require ¢ = —2. How-
ever, with this o, we see that we cannot generally cancel the
sixth and the twelfth term.

If this complication is temporarily ignored, we can also
compute y = 2(1 — &) and 1 = % which depend on the

Uu” pops + 2u”u’ p,p oy

psp”

A
U paps —2(1 = Euul p,pg = (8)

|
gauge parameter & The latter expression may appear
particularly problematic, as it seems peculiar that the
quantity <; describing the extent of the Lorentz violation
in the ghost loops should depend explicitly on &£. A further
problem may crop up with a more general x*** than (2), for
which the propagator A, may not be manifestly symmetric
in its Lorentz indices y and v. However, in the Feynman
gauge, £ =1, all of these problems are circumvented.
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FIG. 1.

5 6

Feynman diagrams for the LV corrections to the gluon field self-energy. Continuous and curly lines represent scalar and gluon

propagators, respectively. The crossed vertices correspond to LV vertex insertions.

Moreover, this fixes the value A = 1, so that the Lorentz
violation in the kinetic terms for the gauge and ghost fields
enter with the same physical magnitudes.

If we insisted on using a different gauge, then the simple
A5 from (7) would not be sufficient to describe the gauge
boson propagator. A more complicated structure, with
higher poles, would be required [14]. However, the analysis
in Ref. [14] is also simplified by the fact that it only
considers a massive Abelian gauge theory. In a theory
with a vector mass (whether of generalized Proca or
Stueckelberg form), there is a consistency condition on
the gauge field; this is a Lorentz-violating generalization of
the Lorenz condition obeyed by the Abelian vector poten-
tial in the presence of a Proca mass. This generalized
consistency condition may be used to simplify the action
and the propagator for the physical vector boson modes, but
this useful simplifying condition unfortunately becomes
trivial when the physical photon mass vanishes.

Fortunately, by using the Feynman gauge—which is
generally the most convenient gauge to use anyway—all
the complications and caveats are avoided. With the

|

_QZCAQI
487%¢

(T A% (p1)AL(py)) = (

propagators established, in the next section we shall compute
the one-loop radiative corrections to the x¥**® term in the
gauge field action, as generated by the coupling of the gauge
field to virtual scalar matter loops. To evaluate the relevant
correlation functions, we shall use adapted versions of a set
of Mathematica packages [15-17]. Note, however, that the
contributions coming solely from gluon and ghost propa-
gators (both of which are manifestations of the non-Abelian
gauge sector) have already been calculated [6], although not
directly using the gauge fixing prescription described in this
section.

ITII. CORRECTIONS TO THE NON-ABELIAN
AETHERLIKE TERM

Let us start with evaluating the matter loop corrections to
the non-Abelian aether term Qp u,, u, F4," F%, , appearing in (1).
The diagrams we must compute are depicted in Figs. 1-3.

First, we calculate the gluon self-energy given by the
Feynman diagrams in Fig. 1. The general structure of the
aetherlike LV gluon self-energy has the form

+ finite) ¥ (p)te(T,T,,) (27)*6™ (py + pa), )

where the representation constant C, = N for the for the adjoint representation of the SU(N) gauge group, and the Lorentz

structure is

I (py) = (py - u)* = (phu? + put)(py - u) + piuru®; (10)

here we have used the conservation law p, = —p; for the external momentum. In this and the following calculations we

define, as usual, the dimensional extension e = 2.

The matter corrections to the aetherlike LV three-gluon vertex, Fig. 2, can similarly be cast as

_ 7°CA0,
487%¢

(TAZ(py )AL (p2)AY (ps)) = (

where

O (py, pa. p3) = (p1 — p3)“u'u” + (p3

n ﬁnite) [ (py. pa. ps)tr(Tos THIT) 2860 (py + pa + pa). (1)

= p2) uu' + (py — py)futu”

+un™(py = p3) - u+ un*(ps = pa) - u+ u'n™(py — py) - u. (12)

Naturally, the symbol [T, T}| stands for the commutators between the normalized group generators, [T, T)] = if ypc T -
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FIG. 2. Feynman diagrams for the LV corrections to the three-gluon vertex interaction.

Finally, matter loop corrections to the aetherlike LV four-gluon vertex, shown in Fig. 3, are given by

’C
(TA5 )AL )AL ) ) = (- LA

+ [T, T[T, 7)) (27)*6W (py + p2 + p3 + Pa). (13)

SO
émmx

t 1,

FIG. 3. Topologies for the four-point function Feynman diagrams with single LV vertex insertions. Both gauge and scalar internal lines
are implicitly included.

+ﬁnite) [0 (py. pa. ps. pa)te(T4, T[T, T¢]

where in this case
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FIG. 4. Feynman diagrams for the scalar field self-energy.

afuv — O o W Uoaff VBl d4k 2)N.
M1 ooy pa) = o 2(p) = =i [ i it (17)
+uﬁuﬂnau_2<uauul,lﬂy_i_uﬂuy’,]ﬂv)' (271') (k —m )
14 AN
( ) = ) AO(mz)‘Sij‘sabv (18)

Using the Lie algebra of the generators T, of the SU(N)
gauge group and combining the results (9), (11), and (13),
we obtain the following effective Lagrange density

where Ay (m?) is one of the Passarino-Veltman basis integrals
(see Appendix A), and N, is the number of scalar fields
[which must be a multiple of (N? — 1) for SU(N) adjoint
scalars].
+ finite) uyu, F**F U(1:|’ (15) The expression for the tadpole diagram 4-2 is propor-
tional to Agy(0)—that is, vanishing (up to irrelevant,
regulator-dependent finite terms). However, the corre-
sponding expression for diagram 4-3 is

92 Ca0Q,
967%e

L =tr { <ZQ2Q2 -

where Zy, 0, = (Q, + 6y,), with 6y, being the appropri-
ate counterterm, which in the minimal subtraction (MS)

renormalization scheme is evidently given by S(p) = i / &k gzﬂw( k+ p)i(k + p)vfacd foed
3\pP) = ij
FCL0, (27)* (k* —m?)(k = p)* ’
%~ 96r%e (16) (19)
This is one of the pieces needed to determine how the _ 9°Ca [Ao(mz) _ 2(p2 +m2)BO(p2 0 m2)]5”5 Y
RG behavior of the theory is affected by the charged 1672 o v
scalars. In the next section we compute the scalar self- (20)

energy contribution, as well as the gluon-matter contribu-
tion, in order to complete the computation the § functions ~ where By(p?, 0, m?) is another integral from the Passarino-

for the model. Veltman basis.
The expression for the first diagram with a LV vertex
IV. SCALAR SELF-ENERGY insertion, diagram 4-4, is given by

AND THE GLUON-MATTER VERTEX

) d4k QZQ k+p 2 k-u Zfacdfbcd
Let us now compute the one-loop scalar self-energy Zy(p) = —i / (2”)4 IEkz —n)12§2(k2 )2 0jj
(Fig. 4), Z(p) = (T¢i(p)¢), (—p)). The expression corre- p

sponding to Fig. 4’s diagram 1 (or “diagram 4—1") is given by (21)

92Q1CA(P‘”)2 2 2 2 4 2.2 4 2 2 2 2\2 2 2
= =T |20 4 P Ag(m) = (2p° A p2 4 3m) By, 0.m%) + (P 4 2By 0, )

— (p® +2m?p* + 2m* p* + m®)Cy(0, p*, p*, m*, m?, 0)] 8ii8ap- (22)

Here we have encountered the last of the Passarino-Veltman basis integrals that we need; like the others,
Co(0, p2, p?, m?,m?,0) is given in Appendix A.

115002-6



PERTURBATIVE ASPECTS OF CPT-EVEN LORENTZ- ...

PHYS. REV. D 107, 115002 (2023)

Continuing, the expression for diagram 4-5 is

_ [ @k FO[pP (k- u) + B (p - u)® = 2k p) (k- u)(p - u)]flfred
() =i [ e 2CP((k = p - m?

27)*

_92Q2CA (p-u)?

0ij (23)

B 7 |A0(m2) =20 + 1) Bo(p2,0.m?)

19222 p

- (p2 - m2)BO(O’ 0, O) + (pZ - mz)ZCO(O’ pzv pZ’ 0,0, m2):| 51']'551/7' (24)

Diagram 4-6 is once again a tadpole proportional to
A(0) = 0. The following diagram, 47, can be expressed as

2z)t (K =m?)* (k= p)?

2 2
g QCy(p-u
= 48721.2A ( p4 ) {(41)2 + mz)AO(mz)

= (Tp* 4 4m2p? + m*)Bo(p2,0.m2) | 8.

(26)

The expression corresponding to diagram 4-8 is propor-
tional to the trace of the LV tensor ¢#**—that is to u> = 0.
Since diagram 4-9 is tadpole, it can also be expressed as

d4k 2 k - 2 racd ybed
29(19)—1'/( 7Ok w) 177 8;j o Ap(0) = 0.

2r)* 4(k*)?
(27)

Finally, the expression for diagram 4-10 is

[ 4k FOi[(k—p) -ulPfeefred

2ol) =1 [ G =Pkt o

5[/ = 27(1)).

(28)

Adding all the above expressions, along with the
counterterm diagrams, we find

4AN ;m?* — g*C,(2p* + m?)
p) = 1672%¢

_G(Q1 + 0))Ca(p - u)?
4n’e

(52]72 - 5m2 mz)

+ 80, (p - u)? + finite| 5,5, (29)

where &, 6,2, and 6y, are the counterterms in question,
with the forms: 8, =Z, — 1, 8,2 = (m3Z,2 — m?)/m?,
and 6y, = Q1(Zp, —1). Here, Z,, Z,», and Z, are the
corresponding renormalization constants (in particular,

[

Z, is the renormalization constant for the scalar field
redefinition ¢, — \/Z,¢,), and m} is the bare scalar mass
squared. Imposing finiteness of (29) through the MS
scheme, we find

92 Ca

Oy = , 30
27 87% (302)
2
5,0 = N5 =9 Cn), (30b)
167°¢
2
g (01 + 0,)Cy

For completeness, we shall also evaluate the radiative
corrections to the gluon-matter-current interaction vertex.
The Feynman diagrams of this process are depicted in
Fig. 5. The general form taken by the vertex function is

. [d'py d*py d*ps «
=i (2”)4 (271_)4 (271_)4 fuhc'¢a (pl)¢b (pZ)
x T, A(p3)(27)*6(p1 + pa + p3). (31)

The corresponding ultraviolet-divergent expression may be
written as

3
g Calp2— p1)!
F”(P1,P2,P3):—A( 2 l)

167%¢
n 3(01 + 02)Cul(pa — py) - ulu
2
16z°€
+619(p2 — p1)! =S¢, [(p2 — p1) - u]ut,

(32)

where §; and SQI are the appropriate counterterms, and we
have once again used momentum conservation to simplify
the final expression. Setting (32) to be vanishing, we find
the counterterm values

Zo\/Z5 — ’C
5 =0vZi=9_ 9Cs (330)
g 167°€
5y = 90(01)0Zo\/Z5 — Oy _ 34%(0y +2Q2)CA, (33b)
1 0, 167%
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FIG. 5. Feynman diagrams for the gluon-matter vertex.

where Z3 is the renormalization constant for the gluon field
redefinition A, — \/Z3A,. The counterterm §; = Z3 — 1 is
computed in Appendix B.

It is important to mention that the renormalization of the
A¢p* operator is just like in the ordinary theory, since the LV
corrections are necessarily proportional to u> = 0. Any LV
corrections to the scalar vertex must involve contractions of
u* with derivatives of the field, making them manifestly
finite by power counting.

V. B-FUNCTIONS

We now proceed to compute the scalar-matter coupling
corrections to the one-loop p-functions of the Lorentz
violation parameters O and Q,. In the previous sections
we have found the one-loop counterterms for the scalar
and gluon fields and the gluon-matter vertex in our model.
In order to evaluate the relevant Z factors to compute
the p-functions of Q and Q,, we expand each renormal-
ization constant Z; as power series in the coupling con-
stants, which can be determined order by order using
perturbation theory,

Zi=1+8" 467 +.... (34)

The relation between the bare and renormalized coupling
constants may be cast as

Zo, 01 = pu*(01)9Zr = 01 + g, (35a)

Zp,0r = 1*(02)0Z3 = Oy + 5p,. (35b)

where, as noted above, Z, (¢, > \/Zrp,) and Zj
(Af = /Z3AY) are the field strength renormalization con-
stants for the scalar and gauge boson fields, respectively.
Taking the scaling relations (35) between the bare and
renormalized couplings, we can compute f, to be

)} _9(Q1 +20))Ch

47>

= lim| -2 146,-20
ﬂQ,—GLmO—GQl +2—Q—l

(36)

When Q, + 20, = 0, there is no RG flow for this SME
parameter. Similarly, the scalar matter-loop fluctuations
result in the following corrections to the f,, function:

i S9,\] _ #*Ns(Q1 +20
T O

+eo (37)

where the dots mean that we have included only the matter-
loop corrections to f,.

VI. FINAL REMARKS

Renormalization is an essential part of the work to
understand a quantum field theory. The regularization
and renormalization processes allow us to verify the
consistency of a specific field-theoretic model at the
quantum level and to understand its underlying behavior
at high energy scales. Even in theories, such as the SME, in
which some of the core principles of relativistic field theory
may have been discarded, it is still crucial to understand the
theory’s renormalization properties—either by generalizing
and reformulating formal renormalization theorems or by
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explicit perturbative calculations. It is, in fact, one of the
greatest strengths of the SME approach that, since it is an
effective field theory, it is amenable to calculation of
radiative corrections in essentially just the same way as
the usual SM.

This paper has addressed the case where Lorentz
symmetry is broken, but non-Abelian gauge symmetries
are still preserved. More specifically, we formulated the
LV extension of a non-Abelian gauge theory coupled to
a scalar matter. We calculated the contributions to scalar
and gluon field strength renormalization, as well as to the
vector-scalar interaction vertex, at the lowest orders in the
gauge couplings and the Lorentz violation parameters.
Using these results, we computed the one-loop p-functions
for the model. From the forms of 3, and f,,, it is evident
that there is no running of these coupling constants
when there is a particular relationship between the SME
coefficients in the gauge and matter sectors, specifically
when O + 20, = 0. When this relation is satisfied, the LV
couplings are scale independent at this order; this corre-
sponds to a theory in which the Lorentz violation may be
eliminated from both sectors by a transformation to skewed
four-dimensional Cartesian coordinates. The inclusion of
quantum corrections should not change the fact that the
theory is actually Lorentz invariant, but merely expressed in
oblique coordinates.

|

The theory we have considered is, more generally, part of
the non-Abelian gauge and scalar sectors of the LV SME.
As we have already noted, there is still a significant amount
of further work to be done to understand these types of
theories, with couplings between of non-Abelian gauge
fields and charged scalar matter—in particular, concerning
the explicit calculation of radiative corrections. The present
contribution gives a first step in this direction, but there are
important topics that have still not been touched, such as
the effects of spontaneous gauge symmetry breaking. Since
the electroweak sector of the SM includes a multiplet of
scalar Higgs fields that break SU(2), gauge invariance, this
is an important area in which further research will need to
be undertaken in the future.
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APPENDIX A: PASSARINO-VELTMAN
BASIS INTEGRALS

Many of the integrals appearing in Sec. [V were reduced
to linear combinations of the following standard integrals,
which are components of the Passarino-Veltman basis:

1 m?

Ag(m?) = /dek2 — =+ finite: (A1)
1 1
By(p?, m?, m3 :/de = — + finite; A2
o) (=) pP—m) ¢ "
1
Co(p?, (p1 = p2)%, p3.m?, m3,m?) = /de = finite. (A3)
O Rl P T T (k2 = m?)((k+ py)? = m3)((k + p2)* = m3)

APPENDIX B: GLUON SELF-ENERGY

The Feynman diagrams for the ordinary one-loop gluon self-energy are depicted in Fig. 6. The general structure of the

gluon two-point function has the form

= [

The expressions corresponding to the individual diagrams shown in Fig. 6 are

I (p) =i

/

AZ(p)HW(p)AZ(—p). (Bl)
d*k 2¢°N " ¢*N, 5
T R ®2)

c

¢ g
¢ c 9
g g g g g g e g
¢ g

1 2

3

4 5

FIG. 6. Feynman diagrams for the ordinary gluon self-energy. Dashed lines represent Faddeev-Popov ghost propagators.
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d*k  g*N(2k = p)*(2k — p)
H;w — S B3
P0) =1 [ Gt i o o Y
PN 1y v 2 2 _ 2\ ( 2 v 2 2 2
= 48;;2?[(” n" 4 2pt p¥)Ag(m?) + (4m* = p*)(p*n* — p"p*)Bo(p*, m*, m?)],
d'k FCsK' (k= p)* _ g°Cy
I (p) =i = 2 + 2p* p¥)By(p?,0,0), B4
() =1 | e = A (204 Ba(42.0.0) (B4)
I (p) / d'k g*Caln™ (5p* +2k* = 2(k - p)) — p"(5K* + 2p*) + 5k*(2k* — p*)]
= —i
F (2a)* 22 (k= p)?
QZCA 2 uv v 2
= 5 (P°n™ +2p¥ p*)By(p,0,0), (BS)
1927
I
while diagram 6-2, being a tadpole, is proportional to  Imposing finiteness, we immediately find
Ap(0) =0.
Adding these contributions, substituting the integrals P g (5C, — Ny) B7
(see again Appendix A), and keeping only the ultraviolet- 37 1272¢ (B7)

divergent terms, we have

QZ(SCA - Ns)

B6
127%€ (B6)

" (p) = (p*n* — p*p*) -8

Notice that if we have only one octet of QCD scalar fields,
we will have N, = N> —-1=8and C, = N = 3.
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