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Using general properties of the Q ¼ 0 topological sector, we previously argued that a vectorlike theory,
with chiral Uð1ÞA anomaly, and exact non-Abelian chiral symmetry, should exhibit divergent suscep-
tibilities in the chiral limit, the two-flavor Schwinger model being a paradigmatic example of the realization
of this scenario. Two flavor QCD at T > Tc satisfies all the above conditions, and it is also expected that the
Uð1ÞA axial symmetry remains effectively broken in its high temperature phase. Therefore, we would
expect a nonanalyticity in the quark mass dependence of the free energy density, in contrast with the dilute
instanton gas approximation (DIGA) prediction. We investigate in this work whether the aforementioned
results can also be reproduced making only use of standard properties of the spectral density of the Dirac
operator, without having to resort to general properties of the Q ¼ 0 topological sector. We show that the
only way to derive a nontrivial θ-dependence, and an analytical free energy density in QCD with two
degenerate flavors is that the spectral density, ρðλ; mÞ, of the absolute value of the nonzero modes of the
Dirac-Ginsparg-Wilson operator develops a m2δðλÞ function in the thermodynamic limit. This is the
expected result in the DIGA, where interactions between instantons in the dilute gas are fully neglected.
However, at temperatures close to Tc the interaction between instantons should become non-negligible, and
the splitting from zero of the near-zero modes, which has been neglected in the DIGA, should be taken into
account. Therefore we expect that the m2δðλÞ contribution to the spectral density is no longer correct at
these temperatures, and that the free energy density becomes a nonanalytic function of the quark mass.

DOI: 10.1103/PhysRevD.107.114516

I. INTRODUCTION

Understanding the fate of the axialUð1ÞA anomaly in the
high temperature phase of QCD is a great challenge for
high energy theorists. Indeed the axion, predicted by
Weinberg [1] and Wilczek [2], in the Peccei and Quinn
mechanism [3], is one of the more interesting candidates to
make the dark matter of the universe, and the axion
potential, which determines the dynamics of the axion
field, is closely linked to the topological properties of QCD,
and in particular to the topological susceptibility. Moreover,
it has been argued that scalar and pseudoscalar meson
screening masses, and their corresponding susceptibilities,
are very sensitive to the realization of the Uð1ÞA axial
anomaly in the high-temperature chiral symmetric phase of
QCD. More precisely it has been argued that if the Uð1ÞA
symmetry remains effectively broken, i.e., order parameters
for the Uð1ÞA symmetry take nonvanishing vacuum

expectation values in the chiral limit when compatible
with the realization of other symmetries, the topological
properties of the theory can be the basis of a new
mechanism, other than Goldstone’s theorem, to generate
a rich spectrum of quasimassless bosons near the chiral
limit [4–6].
Computing the topological susceptibility in the high

temperature phase of QCD from first principles, through
numerical simulations in the lattice, is a very hard task
because of several nontrivial numerical problems [7]. First,
there is a sampling problem because the probability of the
vanishing topological charge sector, Q ¼ 0, is much higher
than the probability of any Q ≠ 0 sector on affordable
volumes. Second, the numerical determination of the
topological susceptibility is affected by large lattice arti-
facts because the lattice fermions used explicitly break the
chiral symmetry. Moreover, for small enough values of the
lattice spacing, the topological critical slowing down
phenomenon is present in local updating algorithms, and
ergodicity is lost. We refer the interested reader to Ref. [7]
to get an idea of the current situation on this topic.
On the other hand, given these technical difficulties, we

can also resort to some simplified models, as the dilute
instanton gas approximation, which is expected to work at
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asymptotically high temperatures. The DIGA [8] assumes
that at temperatures much higher than Tc, Debye screening
would only allow instantons of very small radius to exist,
and hence the QCD vacuum energy density of noninter-
acting instantons should not suffer from infrared singular-
ities. The vacuum energy density can therefore be expanded
in powers of the quark masses, and the topological
susceptibility χT of QCD with Nf quark flavors behaves
like

χT ≈ CðTÞ
YNf

i¼1

mi: ð1Þ

Lattice simulations of pure gauge SUð2Þ and SUð3Þ
gauge theories have confirmed the DIGA prediction at
T ∼ 2Tc [9], where Tc is the deconfinement temperature.
However in QCD, with two light flavors, instanton con-
tributions to the partition function are very suppressed by
the fermion determinant, and the validity of the DIGA, in
what concerns the light quark mass dependence of the
topological susceptibility (1), has not been tested. Rather it
has been used, for instance in Ref. [10], to re-scale their
determinations of χT , obtained at a Goldstone pion mass of
160 MeV, to the physical point.
Using general properties of the Q ¼ 0 topological

sector [11] we argued in Refs. [4–6] that a gauge-fermion
quantum field theory, in which the Uð1ÞA axial symmetry
remains effectively broken, and where the chiral conden-
sate vanishes in the chiral limit, because of a not sponta-
neously broken non-Abelian chiral symmetry, should
exhibit a divergent correlation length in the correlation
function of the scalar condensate in the chiral limit. In such
a case also some pseudoscalar correlation functions,
associated to what would be the Nambu-Goldstone bosons
if the non-Abelian chiral symmetry were spontaneously
broken, should exhibit a divergent correlation length. These
results, if applied to the high-temperature phase of QCD,
would imply a nonanalytical behavior of the free energy
density in the quark masses, in contrast to the DIGA
prediction (1).
The main goal of this work is to investigate whether the

aforementioned results can also be reproduced making only
use of standard properties of the spectral density of the
Dirac operator, without having to resort to general proper-
ties of the Q ¼ 0 topological sector. With this purpose we
will present our theoretical setup, which makes use of
lattice Ginsparg-Wilson fermions, in Sec. II. We will also
calculate in this section the scalar condensate in one-flavor
QCD, with the help of the spectral density of the Dirac-
Ginsparg-Wilson operator, and will remember how the
Banks-Casher mechanism [12] allows us to reproduce the
expected result for the scalar condensate in the chiral limit.
In Sec. III, which contains the main body of this work, we
will show that the only way to obtain an analytic free
energy density with nontrivial topology, in the high

temperature chiral symmetric phase of two-flavor QCD,
is that the spectral density, ρðλ; mÞ, of the absolute value of
the nonzero modes of the Dirac-Ginsparg-Wilson operator,
develops am2δðλÞ contribution in the thermodynamic limit.
This is the expected result in the DIGA, where interactions
between instantons are fully neglected, an approximation
that may be reliable at very high temperatures. However at
temperatures higher but close to Tc, the critical temperature
of the chiral SUð2ÞA restoration transition, the interaction
between instantons should become non-negligible.
Therefore, the splitting from zero of the near-zero modes,
which has been neglected when assuming the δðλÞ behavior
in the spectral density ρðλ; mÞ, should be taken into
account. We analyze this issue in Sec. IV, which contains
our conclusions.

II. SPECTRAL DENSITY OF THE
DIRAC-GINSPARG-WILSON

OPERATOR: ONE-FLAVOR CASE

The QCD Euclidean continuum action with a θ-vacuum
term is

S ¼
Z

d4x

�XNf

f

ψ̄fðxÞðγμDμðxÞ þmfÞψfðxÞ

þ 1

4
Fa
μνðxÞFa

μνðxÞ þ iθQðxÞ
�

ð2Þ

where DμðxÞ is the covariant derivative, Nf the number of
flavors, and QðxÞ the density of topological charge of the
gauge configuration, whose integral over the space-time
volume is an integer number, the quantized topological
charge ν,

ν ¼ g2

64π2

Z
d4xϵμνρσFa

μνðxÞFa
ρσðxÞ: ð3Þ

To avoid ultraviolet divergences we will use a lattice
regularization, and Ginsparg-Wilson (G-W) fermions [13],
that share with the continuum formulation all essential
ingredients: an explicit Uð1ÞA anomalous symmetry [14],
good chiral properties, a quantized topological charge, and
an exact index theorem on the lattice [15].
The G-W one-flavor fermion action can be written in a

compact form as

SF ¼ a4
�
ψ̄Dψ þmψ̄

�
1 −

a
2
D

�
ψ

�

¼ a4
X
v;w

ψ̄ðvÞDðv; wÞψðwÞ

þ a4m
X
v;w

ψ̄ðvÞ
�
1 −

a
2
Dðv; wÞ

�
ψðwÞ ð4Þ
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where v and w contain site, Dirac and color indices, and the
G-W operator, D, is γ5 −Hermitian

γ5Dγ5 ¼ D† ð5Þ
and obeys the essential anticommutation relation

Dγ5 þ γ5D ¼ aDγ5D ð6Þ

a being the lattice spacing.
Equations (5) and (6) determine the main properties of

the spectrum of the G-Woperator, which we can summarize
as follows [16]:
(1) The eigenvalues μ of D are either real or come in

complex conjugate pairs.
(2) Only eigenvectors with real eigenvalues can have

nonvanishing chirality.
(3) The eigenvalues μ are restricted to a circle in the

complex plane, the Ginsparg-Wilson circle. This
circle has its center at 1a on the real axis and a radius
of 1

a.
In the chiral limit,m ¼ 0, action (4) is invariant under the

Uð1ÞA chiral rotation

ψ → eiαγ5ðI−1
2
aDÞψ ; ψ̄ → ψ̄eiαðI−1

2
aDÞγ5 ð7Þ

which for a → 0 reduces to the standard continuum chiral
transformation. However the integration measure is not
invariant, and the change of variables (7) induces a
Jacobian

e−i2α
a
2
trðγ5DÞ ð8Þ

where

a
2
trðγ5DÞ ¼ n− − nþ ¼ ν ð9Þ

is an integer number, the difference between left-handed
and right-handed zero modes, which is the topological
charge ν of the gauge configuration. Furthermore, the scalar
and pseudoscalar condensates

S ¼ ψ̄

�
1 −

a
2
D

�
ψ P ¼ iψ̄γ5

�
1 −

a
2
D

�
ψ ð10Þ

transform under the chiral Uð1ÞA rotations (7) as a vector,
just in the same way as ψ̄ψ and iψ̄γ5ψ do in the continuum
formulation.
The partition function Zν in the ν − topological sector

can be written as follows

Zν ¼ð2mÞjνj
Z
ν
½dU�

Y
j

�
m2þ

�
1−

1

4
m2

�
λ2jðUÞ

�
e−βSGðUÞ

ð11Þ

while for the full partition function we have

Z ¼
Z

½dU�
Y
j

�
m2 þ

�
1 −

1

4
m2

�
λ2jðUÞ

�
ð2mÞjνðUÞj

× e−βSGðUÞ: ð12Þ

SGðUÞ is the pure gauge action, m the quark mass in lattice
units, β the inverse gauge coupling, νðUÞ the topological
charge of the gauge configuration, and

λjðUÞ ¼ jμjðUÞja ð13Þ

where μjðUÞ are the eigenvalues of the G-W operator D
which either come in complex conjugate pairs, or are real
with both chiralities, and the subscript j runs over half the
number of these eigenvalues. The dimensionless quantity λj
takes values 0 ≤ λj ≤ 2.
The normalized scalar condensate is the logarithmic

derivative of the partition function

hsi ¼ 1

V

�
ψ̄

�
1 −

a
2
D

�
ψ

�

¼ −2m
�
1

V

X
j

1 − 1
4
λ2jðUÞ

m2 þ ð1 − 1
4
m2Þλ2jðUÞ

�
−

1

m

�jνðUÞj
V

�

ð14Þ

where V is the space-time volume in lattice units.
We can explicitly write the contribution to the conden-

sate of all exact zero modes, the unpaired jνðUÞj, plus
occasional pairs of zero modes with opposite chiralities that
may appear in the first addend of (14), and proceeding in
this way we get

hsi ¼ −2m
�
1

V

Xn:z:
j

1 − 1
4
λ2jðUÞ

m2 þ ð1 − 1
4
m2Þλ2jðUÞ

�

−
1

m

�
nþðUÞ þ n−ðUÞ

V

�
ð15Þ

and the sum runs only over half of the nonzero modes.
The standard wisdom on the vacuum structure of one-

flavor QCD in the chiral limit is that it is unique at each
given value of θ. Indeed, the only plausible reason to have
a degenerate vacuum in the chiral limit would be the
spontaneous breakdown of chiral symmetry, but since it is
anomalous, actually there is no symmetry. Therefore the
model is expected to show a mass gap in the chiral limit,
and be free of infrared divergences. The vacuum energy
density can be expanded in powers of the fermion mass m,
treating the quark mass term as a perturbation [17], and this
expansion will be then an ordinary Taylor series both, for
the vacuum energy density
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Eðm; θÞ ¼ E0 − Σm cos θ þOðm2Þ; ð16Þ

and for the scalar condensate

hsi ¼ −Σ cos θ þOðmÞ: ð17Þ

Wewill take in what follows θ ¼ 0 andm > 0. Since the
thermodynamic and chiral limits commute, Σ can be
computed from (15) as follows

Σ ¼ lim
V→∞

lim
m→0

1

m

�
nþðUÞ þ n−ðUÞ

V

�

¼ lim
V→∞

lim
m→0

�
2

Vm
Z1

Z0

�
: ð18Þ

which implies a finite density of zero-modes in the chiral
limit that behaves as

lim
m→0

�
nþðUÞ þ n−ðUÞ

V

�
≈mΣ:

But we can also take the two limits in (15) in the opposite
order, and in such a case we get

Σ ¼ lim
m→0

2m
Z

2

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

þ lim
m→0

lim
V→∞

1

m

�
nþðUÞ þ n−ðUÞ

V

�
: ð19Þ

We have used in (19) the standard definition of the spectral
density of the absolute value of the nonzero modes

ρðλ; mÞ ¼ lim
V→∞

�
1

V

Xn:z:
j

δðλ − λjðUÞÞ
�

ð20Þ

where λjðUÞ is the absolute value of the paired complex-
conjugate eigenvalues (13) of the Dirac-Ginsparg-Wilson
operator.
Equation (19) can be satisfied in one of the following

two ways:
(i) The density of zero-modes vanishes in the infinite

volume limit for any m > 0

lim
V→∞

�
nþðUÞ þ n−ðUÞ

V

�
¼ 0 ð21Þ

and there is therefore no zero-mode contribution to
the chiral condensate in the thermodynamic limit.
The scalar condensate, in this limit, is given by

hsi ¼ −2m
Z

2

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ ð22Þ

where ρðλ; mÞ (20) is the density of the absolute
value of the nonzero modes of the Dirac-Ginsparg-
Wilson operator D.

(ii) The density of zero modes of the Dirac-Ginsparg-
Wilson operator is finite in the infinite volume limit

lim
V→∞

�
nþðUÞ þ n−ðUÞ

V

�
¼ mΣþ… ð23Þ

and there is no contribution of the nonzero modes to
the chiral condensate in the chiral limit.

The latter possibility has been excluded by the results of
Refs. [18,19], where the authors show that zero modes do
not contribute to the chiral condensate in the thermody-
namic limit form > 0 and θ ¼ 0. Moreover, a finite density
of zero modes in the infinite volume limit is quite
implausible because in actual lattice calculations one never
finds zero modes of both chiralities. This means that
nþðUÞ þ n−ðUÞ ¼ jνðUÞj and therefore

lim
V→∞

�
nþðUÞ þ n−ðUÞ

V

�
¼ lim

V→∞

�jνðUÞj
V

�
ð24Þ

and the right-hand side of (24) vanishes for any non-
negative value of the quark mass m because otherwise
parity would be spontaneously broken, and also because
the topological susceptibility is finite.
We conclude that Eq. (19) is realized in the former of the

two ways, and hence

Σ ¼ lim
m→0

2m
Z

2

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ: ð25Þ

This equation could be fulfilled if there is a singular
contribution, ΣmδðλÞ, to ρðλ; mÞ. However the standard
wisdom is that equation (25) holds because the spectral
density ρðλ; mÞ remains finite for λ-values arbitrarily close
to zero [20], and verifies the well known Banks-Casher
relation.1

lim
ðλ;mÞ→ð0þ;0þÞ

ρðλ; mÞ ¼ ρð0; 0Þ ¼ Σ
π

ð26Þ

Wewant to note that although the chiral condensate is, in
one-flavor QCD, an analytical function of the quark mass,
the above discussion tells us that both, the two contribu-
tions to the scalar condensate in (15) are nonanalytic
functions of the quark mass, and their nonanalyticities
are exactly compensated in the sum [19]. In other words,

1One could also obtain a nonvanishing chiral condensate in the
chiral limit if the spectral density has a contribution that behaves
as ρðλ; mÞλ∼0 ∼ Aðmλ Þα with 0 < α < 1. Note however that this
would give rise to a nonanalytic quark-mass contribution to the
chiral condensate.
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the chiral and thermodynamic limits commute on the sum
(15), but not on each single addend.

III. SPECTRAL DENSITY
IN TWO-FLAVOR QCD

The G-W fermion action for the two-flavor model is

SF ¼
X
v;w

ψ̄uðvÞDðv; wÞψuðwÞ

þmu

X
v;w

ψ̄uðvÞ
�
1 −

1

2
Dðv; wÞ

�
ψuðwÞ

þ
X
v;w

ψ̄dðvÞDðv; wÞψdðwÞ

þmd

X
v;w

ψ̄dðvÞ
�
1 −

1

2
Dðv; wÞ

�
ψdðwÞ ð27Þ

where mu and md are the up and down quark masses in
lattice units. In the chiral limit action (27) is invariant under
the chiral rotations

�
ψu

ψd

�
→ eiαγ5MðI−1

2
DÞ
�
ψu

ψd

�

ð ψ̄u ψ̄d Þ → ð ψ̄u ψ̄d Þeiαγ5MðI−1
2
DÞ ð28Þ

where the 2 × 2 M-matrix can either be the identity or any
Pauli matrix. These transformations generate a SUð2ÞA ×
Uð1ÞA symmetry group, but the Abelian Uð1ÞA symmetry
is anomalous, as in the one-flavor model.
The normalized up (or down) condensate, in the infinite

volume limit, is

hsui ¼
1

V

�
ψ̄u

�
1 −

a
2
D

�
ψu

�

¼ −2mu

Z
2

0

ρðλ; mu;mdÞð1 − 1
4
λ2Þ

m2
u þ ð1 − 1

4
m2

uÞλ2
dλ

− lim
V→∞

1

mu

�
nþðUÞ þ n−ðUÞ

V

�
; ð29Þ

where we have, also in this case, explicitly written the
contribution of the exact zero modes, and ρðλ; mu;mdÞ is
the density of the absolute value of the complex conjugate
eigenvalues of the Dirac-Ginsparg-Wilson operator D

ρðλ; mu;mdÞ ¼ lim
V→∞

�
1

V

Xn:z:
j

δðλ − λjðUÞÞ
�

ð30Þ

with 0 < λjðUÞ ≤ 2.
For degenerate flavors, mu ¼ md ¼ m, we can denote

ρðλ; mu;mdÞmu¼md
¼ ρðλ; mÞ, and we write here some

expressions that will be useful in what follows.

The scalar condensate is

hsi ¼ 1

2
ðhsui þ hsdiÞ

¼ −2m
Z

2

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

− lim
V→∞

1

m

�
nþðUÞ þ n−ðUÞ

V

�
ð31Þ

The pion susceptibility χπ can be written, with the help of
the Ward-Takahashi identity, as

χπ ¼ −
hsui þ hsdi

m

¼ 4

Z
2

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

þ lim
V→∞

2

m2

�
nþðUÞ þ n−ðUÞ

V

�
; ð32Þ

and the difference between the π and δ susceptibilities is

χπ − χδ ¼ 8m2

Z
2

0

ρðλ; mÞð1 − 1
4
λ2Þ2

ðm2 þ ð1 − 1
4
m2Þλ2Þ2 dλ

þ lim
V→∞

4

m2

�
nþðUÞ þ n−ðUÞ

V

�
ð33Þ

A. Low temperature broken phase

As far as non-Abelian SUð2ÞA chiral chiral symmetry is
concerned, it is well known that QCD spontaneously breaks
this symmetry in the low temperature phase, and in contrast
to the single flavor model, the vacuum energy density and
chiral condensates are not analytic functions of the quark
masses, as a consequence of the long-range order. The
infinite volume limit and the chiral limit do not commute in
this phase and to analyze the structure of the vacuum, the
chiral limit must be taken after the infinite volume limit.
The scalar condensate for degenerate flavors, which is an

order parameter for SUð2ÞA chiral symmetry, is given by
Eq. (31). The standard wisdom, as discussed in Sec. II, is
that the contribution of exact zero modes to the chiral
condensate, second addend in the right-hand side of (31),
should vanish in the thermodynamic limit because the

density of zero modes hnþðUÞþn−ðUÞ
V i vanishes in this limit

for every m ≥ 0. Hence spontaneous symmetry breaking is
done by the Banks-Casher mechanism

Σ2f ¼ − lim
m→0

hsi ¼ lim
m→0

2m
Z

2

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

¼ πρð0; 0Þ ð34Þ
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with

ρð0; 0Þ ¼ lim
ðλ;mÞ→ð0þ;0Þ

ρðλ; mÞ ð35Þ

B. High temperature symmetric phase

It is also well known that at a critical temperature Tc, of
the order of the pion mass, two-flavor QCD undergoes a
phase transition to a SUð2ÞA chiral symmetric phase.
Moreover, as stated in the introduction of this article, we
argued in [4–6], using general properties of the Q ¼ 0
topological sector, that if the Uð1ÞA axial symmetry
remains effectively broken in the high temperature chiral
symmetric phase of QCD, the theory should exhibit a
divergent correlation length in the correlation function of
the scalar condensate, as well as in other pseudoscalar
correlation functions, in the chiral limit.
A qualitative but powerful argument supporting this

result is derived from the application of Landau’s theory
of phase transitions to the expected phase diagram in the
Q ¼ 0 topological sector [4,6].
We briefly summarize this argument here. Figure 1 is a

schematic representation of the phase diagram of the two-
flavor model, in the Q ¼ 0 topological sector, and in the
ðmu;mdÞ plane. The two coordinate axis show first order
phase transition lines. All first order transition lines end
however at a common point, the origin of coordinates
mu ¼ md ¼ 0, where all condensates vanish because at this
point we recover the SUð2ÞA chiral symmetry. Notice that
in the low temperature phase, where the non-Abelian chiral
symmetry is spontaneously broken, the phase diagram in
the ðmu;mdÞ plane would be the same as that of Fig. 1 with

the only exception that the origin of coordinates is not an
endpoint.
Landau’s theory of phase transitions predicts that the end

point placed at the origin of coordinates in the ðmu;mdÞ
plane is a critical point, the scalar condensate should show a
non analytic dependence on the fermion masses, and the
scalar susceptibility should diverge. But since the vacuum
energy density in the Q ¼ 0 topological sector, and its
fermion mass derivatives, matches the vacuum energy
density and fermion mass derivatives in the full theory,
and the same is true for the critical equation of state,
Landau’s theory of phase transitions predicts a nonanalytic
dependence of the flavor singlet scalar condensate on the
fermion mass, and a divergent correlation length in the
chiral limit of our full theory, in which we take into account
the contribution of all topological sectors.
The two-flavor Schwinger model, analyzed by Coleman

years ago [21], is a paradigmatic case of realization of this
scenario, as discussed in [5,6].
However, as far as QCD is concerned, some approaches,

such as the DIGA or the quasi-instanton picture [22,23],
assume the validity of the perturbative expansion of the
vacuum energy density in powers of the quark masses.
The dilute instanton gas approximation, trying to

describe physics at very high temperature, assumes that
at temperatures much higher than Tc Debye screening
would only allow instantons of very small radius to exist,
and hence the QCD vacuum energy density of noninter-
acting instantons should not suffer from infrared singular-
ities. The vacuum energy density can therefore be expanded
in powers of the up and down quark masses, and its
θ-dependent piece, for degenerate quark masses, is

EDIGA
θ ¼ −2m2zIðTÞ cos θ ð36Þ

The quasi-instanton picture goes further, and assumes
the validity of the perturbative expansion for any temper-
ature greater than Tc [22].
We will assume in the rest of this section that, contrary to

the prediction of Landau’s theory, the vacuum energy
density can be expanded in powers of the quark masses,
and therefore the chiral and thermodynamic limits com-
mute, like in the one-flavor model. Then we will show that,
in such a case, either the spectral density ρðλ; mÞ of the
absolute value of the nonzero modes of the Dirac-Ginsparg-
Wilson operator develops a m2δðλÞ contribution in the
thermodynamic limit, or the theory becomes θ-independent
to second order on quark masses.
The expansion of the vacuum energy density up to

second order reads as follows

Eðmu;mdÞ¼Eð0;0Þ−1

2
m2

uχsu;u −
1

2
m2

dχsd;d −mumdχsu;d þ…

ð37Þ

critical point

md

mu

FIG. 1. Phase diagram of the two-flavor model in the Q ¼ 0
topological sector. The coordinate axis in the ðmu;mdÞ plane are
first order phase transition lines. The origin of coordinates is the
end point of all first order transition lines. The vacuum energy
density, its derivatives, and expectation values of local operators
of the two-flavor model at θ ¼ 0 only agree with those of the
Q ¼ 0 sector in the first ðmu > 0; md > 0Þ and third ðmu < 0;
md < 0Þ quadrants (the darkened areas).
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The linear terms in (37) vanish because the SUð2ÞA
symmetry is fulfilled in the vacuum, and χsu;u ; χsd;d , and
χsu;d are the scalar up, down and up-down susceptibilities
respectively

χsu;u ¼ Vhs2uimu¼md¼0

χsd;d ¼ Vhs2dimu¼md¼0

χsu;d ¼ Vhsusdimu¼md¼0 ð38Þ

where su and sd are the scalar up and down condensates
(10), normalized by the lattice volume V ¼ L3

s × Lt, with
Lt ¼ 1

T, the inverse temperature in lattice units. The dis-
connected contributions are absent in (38) because the
SUð2ÞA chiral symmetry constrains hsuimu¼md¼0 and
hsdimu¼md¼0 to vanish, and χsu;u ¼ χsd;d because of flavor
symmetry.
The scalar up and down susceptibilities for massless

fermions, χsu;u and χsd;d , get all their contribution from the
ν ¼ 0 topological sector, while χsu;d gets all its contribution
from the ν ¼þ

− 1 topological sectors. Hence the vacuum
energy density (37) in the presence of a θ-vacuum term is,
up to second order,

Eðmu;md; θÞ ¼ Eð0; 0Þ − 1

2
ðm2

u þm2
dÞχsu;u

−mumd cos θχsu;d þ � � � ð39Þ

with

χsu;u ¼ χsd;d ¼ 2

Z
2

0

ρðλ; 0Þð1 − 1
4
λ2Þ

λ2
dλ ð40Þ

and there is no contribution from zero modes to these
susceptibilities.
On the other hand, χsu;d can be written as

χsu;d ¼ lim
V→∞

lim
ðmu;mdÞ→ð0;0Þ

1

mumd

�ðnþðUÞ þ n−ðUÞÞ2
V

�

¼ lim
V→∞

lim
ðmu;mdÞ→ð0;0Þ

�
2

Vmumd

Z1

Z0

�
ð41Þ

One can easily derive from Eq. (39) the following
relations for the π and π − δ susceptibilities in the chiral
limit at θ ¼ 0

χπmu¼md¼0
¼ χσmu¼md¼0

¼ 2χsu;u þ 2χsu;d ð42Þ

χπmu¼md¼0
− χδmu¼md¼0

¼ 4χsu;d ð43Þ

We will analyze here the case of degenerate flavors,
mu ¼ md ¼ m. Our goal in the calculation that follows is to
find general properties of the spectral density that give an

effective breaking of the Uð1ÞA axial symmetry and a
vacuum energy density that can be expressed as an even
power series in the quark mass, and therefore do not give
spontaneous breaking of the SUð2ÞA chiral symmetry.
We want to remark that, as far as the spectral density

ρðλ; mÞ is concerned, the only moderate assumption in
what follows is that it is a continuous function of the
fermion mass, at m ¼ 0, for each λ > 0.
Since we are assuming the validity of the perturbative

expansion of the free energy density (37), the chiral and
thermodynamic limits commute. Hence we can also use
Eqs. (32) and (33) for the computation of the chiral limit of
the π and π − δ susceptibilities. Moreover, the suppression
of paired zero modes at high temperature is even stronger
than at low temperature. Therefore the zero modes con-
tribution to these susceptibilities [second addends in (32)
and (33)] should vanish in the thermodynamic limit, as in
the low temperature phase. Then, if we take the massless
limit of χπ − χδ, Eq. (33), we can write

lim
m→0

χπ − χδ ¼ lim
m→0

8m2

Z
2

0

ρðλ; mÞð1 − 1
4
λ2Þ2

ðm2 þ ð1 − 1
4
m2Þλ2Þ2 dλ

¼ lim
m→0

8m2

Z
ϵ

0

ρðλ; mÞð1 − 1
4
λ2Þ2

ðm2 þ ð1 − 1
4
m2Þλ2Þ2 dλ ð44Þ

for every ϵ > 0, and taking into account Eq. (43) we get

lim
m→0

2m2

Z
ϵ

0

ρðλ; mÞð1 − 1
4
λ2Þ2

ðm2 þ ð1 − 1
4
m2Þλ2Þ2 dλ ¼ χsu;d ð45Þ

By taking, on the other hand, the massless limit of the
pion susceptibility χπ, Eq. (32), we can write

lim
m→0

χπ ¼ lim
m→0

4

Z
2

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

¼ lim
ϵ→0

lim
m→0

4

Z
ϵ

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

þ lim
ϵ→0

4

Z
2

ϵ

ρðλ; 0Þð1 − 1
4
λ2Þ

λ2
dλ

¼ lim
ϵ→0

lim
m→0

4

Z
ϵ

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

þ 4

Z
2

0

ρðλ; 0Þð1 − 1
4
λ2Þ

λ2
dλ ð46Þ

2, and taking into account Eqs. (40) and (42) we get

2We have implicitly excluded in Eq. (46) an unphysical
behavior ρðλ; 0Þ ∼ λ2δðλÞ around λ ¼ 0 since it would give rise
to an infrared divergence in the higher order perturbative
expansion (37).
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lim
ϵ→0

lim
m→0

2

Z
ϵ

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ ¼ χsu;d ð47Þ

Equations (45) and (47) allow us to write

lim
ϵ→0

lim
m→0

Z
ϵ

0

ρðλ; mÞð1 − 1
4
λ2Þ

m2 þ ð1 − 1
4
m2Þλ2 dλ

¼ lim
m→0

m2

Z
ϵ

0

ρðλ; mÞð1 − 1
4
λ2Þ2

ðm2 þ ð1 − 1
4
m2Þλ2Þ2 dλ ¼

1

2
χsu;d : ð48Þ

It is easy to show that this equation is equivalent to

lim
ϵ→0

lim
m→0

Z
ϵ

0

ρðλ; mÞ
m2 þ ð1 − 1

4
m2Þλ2 dλ

¼ lim
m→0

m2

Z
ϵ

0

ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ ¼

1

2
χsu;d ð49Þ

and making the subtraction we get

lim
ϵ→0

lim
m→0

Z
ϵ

0

ρðλ; mÞð1 − 1
4
m2Þλ2

ðm2 þ ð1 − 1
4
m2Þλ2Þ2 dλ ¼ 0 ð50Þ

that is to say

lim
ϵ→0

lim
m→0

Z
ϵ

0

ρðλ; mÞλ2
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ ¼ 0 ð51Þ

The last point of our argument is to show that compat-
ibility of Eqs. (49) and (51) requires that the spectral
density ρðλ; mÞ have a singular contribution

ρsin gðλ; mÞ ¼ χsu;dm
2δðλÞ ð52Þ

in addition to other terms that contribute neither to (49)
nor to (51).
The first step in proving Eq. (52) is to write Eqs. (49) and

(51) in a slightly modified mode

lim
m→0

Z
ϵ

0

m2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ

¼ lim
m→0

Z
m

0

m2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ

þ lim
m→0

Z
ϵ

m

m2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ ¼

1

2
χsu;d ð53Þ

and

lim
ϵ→0

lim
m→0

Z
ϵ

0

λ2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ

¼ lim
m→0

Z
m

0

λ2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ

þ lim
ϵ→0

lim
m→0

Z
ϵ

m

λ2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ ¼ 0 ð54Þ

Since all the above integrals are non-negative, the two
terms in the right-hand side of equation (54) must cancel
independently. Moreover the second integral in the right-
hand side of (53) is upper-bounded by the second integral
in the right-hand side of (54), and hence the following
equations have to be fulfilled

lim
m→0

Z
m

0

m2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ ¼

1

2
χsu;d ð55Þ

lim
m→0

Z
m

0

λ2ρðλ; mÞ
ðm2 þ ð1 − 1

4
m2Þλ2Þ2 dλ ¼ 0: ð56Þ

Now, if we perform the variable change λ ¼ mμ in the
previous integrals we get

lim
m→0

Z
1

0

ρðμm;mÞ
mð1þ ð1 − 1

4
m2Þμ2Þ2 dμ ¼ 1

2
χsu;d ð57Þ

lim
m→0

Z
1

0

μ2ρðμm;mÞ
mð1þ ð1 − 1

4
m2Þμ2Þ2 dμ ¼ 0 ð58Þ

and defining the following normalized probability distri-
bution function

Pðμ; mÞ ¼
�Z

1

0

ρðμm;mÞ
mð1þ ð1 − 1

4
m2Þμ2Þ2 dμ

�
−1

×
ρðμm;mÞ

mð1þ ð1 − 1
4
m2Þμ2Þ2 ð59Þ

one can write

lim
m→0

Z
1

0

μ2Pðμ; mÞdμ ¼ 0 ð60Þ

and in general

lim
m→0

Z
1

0

μαPðμ; mÞdμ ¼ 0 ∀ α > 0: ð61Þ

Equation (61) implies that the normalized probability
distribution function Pðμ; mÞ approaches a Dirac delta,
2δðμÞ, as m approaches zero, and hence we can write
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lim
m→0

ρðμm;mÞ
mð1þ ð1 − 1

4
m2Þμ2Þ2 ¼ χsu;dδðμÞ ð62Þ

which gives rise to the following singular contribution to
the spectral density ρðλ; mÞ

ρsin gðλ; mÞ ¼ χsu;d
m2

�
m2 þ

�
1 −

1

4
m2

�
λ2
�

2

δðλÞ

¼ χsu;dm
2δðλÞ: ð63Þ

Therefore we can conclude that the only way to con-
sistently derive a nonzero value of χsu;d from an analytic free
energy density (37) is that the spectral density ρðλ; mÞ of
the absolute value of the nonzero modes of the Dirac-
Ginsparg-Wilson operator develops a δðλÞ function in the
thermodynamic limit, which implies a nonzero density of
zero modes in this limit.
Equation (63) is expected to hold in the DIGA,

which assumes that the density of random instantons is
Oðm2Þ [24]. This finite density of random instantons
implies the existence of near zero-modes, whose contribu-
tion to the spectral density ρðλ; mÞ should be well approxi-
mated, at temperatures much higher than Tc, by [24,25]:

ρðλ; mÞ ≈ zIðTÞm2δðλÞ: ð64Þ

The use of the delta function in (64) requires the implicit
assumption that the small splitting from zero of the near-zero
modes, produced by the interactions between instantons
and anti-instantons in the dilute gas, can be neglected.
Nevertheless at lower temperatures, and especially at temper-
atures close to Tc, the interaction between instantons should
become non-negligible, and the semiclassical perturbative
treatment of widely separated instantons and anti-instantons
should no longer be valid. Therefore we expect that Eq. (64)
does not hold at these temperatures. But we have shown that,
if Eq. (64) does not hold, the free energy density cannot be an
analytic function of the quark mass, and therefore the
Landau’s theory prediction, discussed at the beginning of
this section, becomes the most plausible scenario.

IV. CONCLUSIONS

Using general properties of the Q ¼ 0 topological sector
we argued in Refs. [4–6] that a vectorlike theory with chiral
Uð1ÞA anomaly, in which theUð1ÞA axial symmetry remains
effectively broken, and where the chiral condensate vanishes
in the chiral limit, because of a not spontaneously broken
non-Abelian chiral symmetry, should exhibit a divergent
correlation length in the correlation function of the scalar
condensate in the chiral limit. In such a case also some
pseudoscalar correlation functions, associated towhat would
be the Nambu-Goldstone bosons if the non-Abelian chiral
symmetry were spontaneously broken, should exhibit a
divergent correlation length. The two-flavor Schwinger

model, analyzed byColeman [21], is a paradigmatic example
of realization of this scenario, as discussed in [5,6].
QCD at T > Tc satisfies all the above conditions, and it

is also expected that the Uð1ÞA axial symmetry remains
effectively broken in its high temperature phase. Therefore
we would expect, based on the results of Refs. [4–6], a
nonanalyticity in the quark mass dependence of the free
energy density, in contrast to the DIGA prediction.
We have investigated in this work whether the afore-

mentioned results can also be reproduced making only use
of standard properties of the spectral density of the Dirac
operator, without having to resort to general properties of
the Q ¼ 0 topological sector. To this end we have assumed
that the free energy density of QCD with two degenerate
flavors is, in the high temperature phase, an analytic
function of the quark mass, and have shown that, in such
a case, the only way to derive a nontrivial θ-dependence of
an analytical free energy density is that the spectral density,
ρðλ; mÞ, of the absolute value of the nonzero modes of the
Dirac-Ginsparg-Wilson operator develops a m2δðλÞ func-
tion in the thermodynamic limit. We want to stress that this
kind of behavior of ρðλ; mÞ is crucial to get simultaneously
analyticity and nontrivial θ-dependence. Any other kind of
behavior of ρðλ; mÞ around λ ¼ 0 would be incompatible
with an analytical free energy density or would lead to a θ-
independent theory, at least to second order in the quark
mass. We also want to point out that, as far as the spectral
density ρðλ; mÞ is concerned, the only moderate assumption
we have made is that it is a continuous function of the
fermion mass, at m ¼ 0, for each λ > 0.
A m2δðλÞ contribution to the spectral density ρðλ; mÞ is

expected in the DIGA, where interactions between instan-
tons are fully neglected. This approximation may be
reliable at very high temperatures, but at temperatures
close to Tc the interaction between instantons should
become non-negligible, and the splitting from zero of
the near-zero modes, which has been neglected in the
DIGA, should be taken into account. Therefore we can
expect that them2δðλÞ contribution to the spectral density is
no longer correct. But we have shown that in such a case the
free energy density can no longer be an analytic function of
the quark mass, a result that agrees with the predictions of
Refs. [4–6]. Therefore we conclude that the Landau’s
theory approach, summarized at the beginning of
Sec. III B, becomes the most plausible scenario to explain
the origin of the nonanalyticity of the free energy density.
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