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I show that spontaneous breaking of vector flavor symmetry on the lattice is impossible in gauge theories
with a positive functional-integral measure, for discretized Dirac operators linear in the quark masses, if the
corresponding propagator and its commutator with the flavor symmetry generators can be bounded in norm
independently of the gauge configuration and uniformly in the volume. Under these assumptions, any order
parameter vanishes in the symmetric limit of fermions of equal masses. I show that these assumptions are
satisfied by staggered, minimally doubled and Ginsparg-Wilson fermions for positive fermion mass, for
any value of the lattice spacing, and so in the continuum limit if this exists. They are instead not satisfied by
Wilson fermions, for which spontaneous vector flavor symmetry breaking is known to take place in the
Aoki phase. The existence of regularizations unaffected by residual fermion doubling for which the
symmetry cannot break spontaneously on the lattice establishes rigorously (at the physicist’s level)
the impossibility of its spontaneous breaking in the continuum for any number of flavors.
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I. INTRODUCTION

The importance of symmetries and of the way in which
they are realized in quantum field theories can hardly be
overemphasized. In the context of strong interactions and
its microscopic theory, i.e., QCD, an important role is
played by the approximate vector flavor symmetry involv-
ing the lightest two or three types (“flavors”) of quarks,
which holds exactly in the limit of quarks of equal masses;
and by its enhancement to chiral flavor symmetry in the
limit of massless quarks. Vector flavor symmetry and
the pattern of its explicit breaking largely determine the
structure of the hadronic spectrum; chiral flavor symmetry
and its spontaneous breaking down to vector flavor
symmetry explain the lightness of pions and their dynam-
ics, as well as the absence of parity partners of hadrons. The
full symmetry group at the classical level includes also the
Uð1ÞB symmetry responsible for baryon number conserva-
tion, and the axial Uð1ÞA symmetry, that does not survive
the quantization process and becomes anomalous in the
quantum theory.
An interesting question is whether baryon number and

vector flavor symmetry can break down spontaneously
in general vector gauge theories, where the fermions’

left-handed and right-handed chiralities are coupled in
the same way to the gauge fields. This could in principle
happen for exactly degenerate massive fermions, leading to
the appearance of massless Goldstone bosons; and in the
chiral limit of massless fermions it could lead to a different
symmetry breaking pattern than the usual one, and so to a
different set of Goldstone bosons. This question has been
essentially answered in the negative by Vafa andWitten in a
famous paper [1]. There they actually prove a stronger
result, namely the impossibility of finding massless par-
ticles in the spectrum of a gauge theory with positive
functional-integral measure that couple to operators with
nonvanishing baryon number or transforming nontrivially
under vector flavor transformations. This is done by
deriving a bound on the fermion propagator that guarantees
its exponential decay with the distance as long as the
fermion mass is nonzero. Since massless bosons coupling
to the operators mentioned above would appear in the
spectrum as a consequence of Goldstone’s theorem [2–4] if
those symmetries were spontaneously broken, the impos-
sibility of spontaneous breaking follows.
The elegant and powerful argument of Vafa andWitten is

developed using the “mathematical fiction” of the func-
tional integral formalism for interacting quantum field
theories in continuum (Euclidean) spacetime. The crucial
issue of the regularization of the functional integral,
generally required to make it a mathematically well defined
object, is discussed only briefly. In particular, the possibil-
ity of formulating the argument using a lattice regulariza-
tion is mentioned, but not discussed in detail. The general
validity of this statement is called into question by the
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existence of examples of spontaneous breaking of vector
flavor symmetry on the lattice, namely in the Aoki phase
[5–25] of lattice gauge theories with Wilson fermions [26].
While this is not in contradiction with the argument of Vafa
and Witten in the continuum [22], it also makes clear that
this argument does not trivially extend to the lattice in a
general setting. It would then be desirable to identify
conditions that guarantee the impossibility of baryon
number and vector flavor symmetry breaking on the lattice,
at least for small lattice spacing, which could help in
putting Vafa and Witten’s “theorem” on more solid ground.
The strategy of widest generality is to directly prove a

lattice version of Vafa and Witten’s bound on the propa-
gator, which would allow one to recover all the conclusions
of Ref. [1] in a rigorous way (under the tacit assumption of
the existence of the continuum limit). This was done for
staggered fermions [27–29] in Ref. [30], so excluding
completely the possibility of breaking baryon number
symmetry and the vector flavor symmetry of several
staggered fields on the lattice using this discretization.
However, in four dimensions one flavor of staggered
fermions on the lattice describes four degenerate “tastes”
of fermions in the continuum limit, and while the sponta-
neous breaking of the corresponding extended flavor
symmetry is excluded by the result of Ref. [30], this limits
the impossibility proof to a number of physical fermion
species that is a multiple of four (and of 2½d=2� in d
dimensions). The extension to an arbitrary number of
fermion species requires the “rooting trick” [31–33] to
eliminate the taste degeneracy, a procedure that has been
criticized in the past (see Refs. [34–39]). While both
theoretical arguments and numerical evidence support
the validity of the rooting procedure (see Refs. [40–46],
the reviews [47–51], and references therein), its theoretical
status is still not fully settled. It would then be nice to
extend the proof of Ref. [30] or derive a similar bound also
for other discretizations that describe a single fermion
species. However, the proof makes essential use of the anti-
Hermiticity and ultralocality of the operator: while it can
probably be extended quite straightforwardly to other
discretizations that share these properties, e.g., the mini-
mally doubled fermions of Karsten and Wilczek [52,53]
and of Creutz and Boriçi [54,55] (that are, however, still
describing two fermion species in the continuum limit),
it is not clear how to do so with discretizations that do not,
e.g., Ginsparg-Wilson fermions [56–65].
A less general strategy, still sufficient to prove the

impossibility of spontaneous symmetry breaking on the
lattice, is to show that the corresponding order parameters
must vanish. Partial results for vector flavor symmetry
following this strategy are present in the literature. Already
in Ref. [1] the authors show that vector flavor symmetry
cannot be spontaneously broken by the formation of the
simplest symmetry-breaking bilinear fermion condensate,
when approaching the symmetric case of degenerate

fermion masses starting from the nondegenerate case.
Their argument works only for discretizations of the
Dirac operator that are anti-Hermitian, so it applies again
only to staggered and minimally doubled (and obviously
to naive) fermions. In Ref. [66] the authors show that
the simplest symmetry-breaking condensate must vanish
also for Ginsparg-Wilson fermions. They do not add any
symmetry-breaking term to the action, applying instead the
formalism of probability distribution functions [67,68] to
the relevant operator to show the absence of degenerate
vacua. More precisely, their result shows that if degenerate
nonsymmetric vacua are present, they cannot be distin-
guished by the (vanishing) expectation value of this
operator.
In this paper I pursue this second strategy and present a

simple argument that spontaneous vector flavor symmetry
breaking is impossible on the lattice for gauge theories with
a positive integration measure, as long as the discretization
of the Dirac operator satisfies certain reasonable assump-
tions. More precisely, I show that any localized order
parameter for vector flavor symmetry breaking must vanish
in the symmetric limit of fermions of equal masses (taken of
course after the thermodynamic limit), for massive lattice
Dirac operators DM that
(0.) are linear in the fermion masses, DM¼Dð0Þ þMΔD,

with Dð0Þ and ΔD trivial in flavor space, and M a
Hermitian mass matrix;

(1.) have inverse bounded in norm by a configuration-
and volume-independent constant, finite in the
symmetric limit;

(2.) have derivative with respect to the fermion masses,
ΔD, also bounded in norm by a configuration- and
volume-independent constant, finite in the symmet-
ric limit.

Assumption (0.) is rather natural, and assumption (2.) is not
really restrictive; both are satisfied by all common discre-
tizations. Assumption (1.) is instead crucial, and it means
that the propagator corresponding to DM is bounded in
norm for all configurations, uniformly in the volume. This
may in general not be the case, for example if a finite
density of near-zero modes of DM develops in the thermo-
dynamic limit, as it happens with Wilson fermions in the
Aoki phase. For staggered [69], minimally doubled, and
Ginsparg-Wilson fermions [70], assumption (1.) holds as
long as the fermion masses are nonzero, and the functional-
integration measure is positive for nonnegative fermion
masses, so that for these discretizations the spontaneous
breaking of vector flavor symmetry is impossible at finite
positive fermion mass.
My argument is clearly of narrower scope than the one

in Ref. [1] and its counterpart for staggered fermions in
Ref. [30], and limited to quadratic fermion actions with the
usual symmetry-breaking terms. On the other hand, it is
mathematically rigorous for a physicist’s standard, leaving
little room for loopholes, and applies to more general
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discretizations than staggered fermions. The strategy of
proof is standard: one starts from the explicitly broken
case with fermions of different masses, and shows that
observables related by a vector flavor transformation have
the same expectation value in the symmetric limit of equal
masses, taken after the infinite-volume limit. This is
achieved by proving two rather elementary bounds on
the fermion propagator and on its commutator with the
generators of the vector flavor symmetry group, that
hold independently of the lattice size under assumptions
(0.)–(2.). This results in the magnitude of the difference
between the expectation values of observables related by a
vector flavor transformation obeying a bound proportional
to the spread in mass of the fermions, uniformly in the
volume. In the symmetric limit such expectation values are
then equal, and any order parameter for symmetry breaking
must therefore vanish. A few remarks are in order.

(i) The geometry of the lattice, the boundary conditions
imposed on the fields, the type of gauge action,
the temperature of the system, and the value of the
lattice spacing and of the other parameters of
the theory play no role as long as positivity of the
integration measure and the boundedness assump-
tions (1.) and (2.) (or more generally the derived
bounds on the propagator and on its commutator
with the symmetry generators) hold.

(ii) The restriction to localized observables is natural,
as Goldstone’s theorem involves observables that
are localized in spacetime, and in space in the finite
temperature case [4]. Their counterparts on a finite
lattice involve lattice fields associated with a
finite number of lattice sites or edges (links), that
remains unchanged as the system size grows. In
particular, this means that they are polynomial in the
fermion fields, of degree independent of the lat-
tice size.

(iii) If assumptions (0.)–(2.) hold for any lattice spacing,
or at least for any sufficiently small spacing, then all
the relevant order parameters vanish in the sym-
metric infinite-volume theory also in the continuum
limit, if this exists (notice the order of limits:
thermodynamic first, then symmetric, continuum
last). Vector flavor symmetry will then be realized
in the continuum. For staggered, minimally doubled,
and Ginsparg-Wilson fermions this is the case for
any positive fermion mass.

(iv) The fate of vector flavor symmetry in the chiral limit,
both on the lattice and in the continuum, can be
discussed following the argument presented in
Ref. [1]: barring accidental degeneracies of the ground
states, vector flavor symmetry must remain unbroken.

(v) The restriction to quadratic actions is not a limitation
as far as the eventual continuum limit is concerned.
Renormalizable higher-order operators with the
right global and local symmetries are available only

in dimension lower than or equal to two, where
spontaneous breaking of a continuous symmetry is
forbidden [71–73]. The inclusion of symmetry-
breaking nonrenormalizable operators in the action
may lead to spontaneously broken phases on the
lattice, but does not affect the long-distance physics
in the continuum limit. Since lattice discretizations
exist that guarantee the realization of vector flavor
symmetry in the continuum limit, any hypothetical
phase where it is spontaneously broken on the lattice
should shrink as this limit is approached. This is
the case also for the spontaneously broken phases
possibly appearing on the lattice for discretizations
that do not satisfy the assumptions of this paper, e.g.,
the Aoki phase found with Wilson fermions.

(vi) The existence of regularizations unaffected by
residual fermion doubling in the continuum limit
for which the symmetry cannot break spontaneously
on the lattice at any spacing (e.g., Ginsparg-Wilson
fermions) establishes rigorously (at the physicist’s
level of rigor) the impossibility of its spontaneous
breaking in continuum gauge theories for any
number of physical fermion species.

The plan of the paper is the following. After briefly
reviewing gauge theories on the lattice to set up the notation
in Sec. II, and vector flavor symmetry in Sec. III, I derive
the relevant bounds and prove the main statement in
Sec. IV. The cases of staggered, Ginsparg-Wilson, Wilson,
and minimally doubled fermions are discussed in Sec. V.
A brief summary is given in Sec. VI. A few technical details
are given in the Appendix.

II. GAUGE THEORIES ON THE LATTICE

I will consider d-dimensional vector gauge theories
with Nf flavors of fermions, all transforming in the same
Nc-dimensional representation of a compact gauge group,
discretized on a finite lattice containing V sites. Suitable
boundary conditions are assumed on the gauge and fermion
fields. The shape of the lattice and the boundary conditions
play no distinctive role in the following; in particular, the
discussion applies to systems both at zero and finite
temperature. The partition function and the expectation
values of the theory are given by

Z≡
Z

½DU�
Z

½DψDψ̄ �e−SG½U�−SF½ψ ;ψ̄ ;U�;

hOi≡ 1

Z

Z
½DU�

Z
½DψDψ̄ �e−SG½U�−SF½ψ ;ψ̄ ;U�O½ψ ; ψ̄ ; U�;

ð1Þ

where ½DU� ¼ Q
l dUl is the product of the Haar measures

associated with the gauge variables Ul attached to the
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lattice links l, and ½DψDψ̄ � ¼ Q
xfaα dψfaαðxÞdψ̄faαðxÞ

is the Berezin integration measure associated with the
Grassmann variables ψfaαðxÞ and ψ̄faαðxÞ attached to the
lattice sites x. Here f and a are the discrete indices
associated with the flavor and color (i.e., gauge group)
degrees of freedom, f ¼ 1;…; Nf, a ¼ 1;…; Nc, and α is
the Dirac index, typically α ¼ 1;…; 2½d=2�, but possibly
absent altogether (e.g., for staggered fermions). The full set
of discrete indices will be collectively denoted as A ¼ faα;
when needed, the color and Dirac indices will be denoted
together as A⋆ ¼ aα. Finally, SG and SF denote the gauge
and fermionic parts of the action. The fermionic action is
taken to be of the form

SF½ψ ; ψ̄ ; U� ¼
X

x;y;A;B

ψ̄AðxÞðDM½U�ÞABðx; yÞψBðyÞ

¼ ψ̄DM½U�ψ ; ð2Þ

where in the last passage I introduced the matrix notation
that will be used repeatedly. Here DM is the massive Dirac
operator, whose dependence on the gauge links Ul will be
often omitted for simplicity. Expectation values are com-
puted in two steps. For a generic observable O½ψ ; ψ̄ ; U�,
integration over Grassmann variables yields

hOiF ≡
R ½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�O½ψ ; ψ̄ ; U�R ½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�

¼
R ½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�O½ψ ; ψ̄ ; U�

det DM½U� : ð3Þ

The expectation value ofO is then obtained from Eq. (3) by
averaging over gauge fields, hOi ¼ hhOiFiG, where for a
purely gluonic observable Õ½U�

hÕiG ≡
R ½DU�e−SG½U� det DM½U�Õ½U�R ½DU�e−SG½U� det DM½U�

¼ 1

Z

Z
½DU�e−SG½U� det DM½U�Õ½U�: ð4Þ

I assume that the full gluonic integration measure
dμG ¼ ½DU�e−SG½U� det DM½U� is nonnegative, i.e.,
e−SG½U� det DM½U� ≥ 0, and not identically zero. For brev-
ity, I will refer to this assumption simply as positivity of
the integration measure. The gluonic action is otherwise
unspecified, besides its being gauge-invariant. I consider
massive Dirac operators of the form

DM ¼ 1FDð0Þ þMΔD; ð5Þ

with M a constant Hermitian matrix carrying only flavor
indices and independent of coordinates and gauge links.
The symbol 1F, and similarly 1C and 1D, denote the identity
in flavor (F), color (C), and Dirac (D) space; 1 will

denote the identity in the full flavor, color, Dirac and
coordinate space. The operators Dð0Þ and ΔD carry only
color, Dirac, and coordinate indices, i.e., ðDð0ÞÞA⋆B⋆ðx; yÞ
and ðΔDÞA⋆B⋆ðx; yÞ. Since one can diagonalize M with a
unitary transformation, and reabsorb this into a redefinition
of the fermion fields that does not affect the Berezin
integration measure, one can consider a diagonal mass
matrix M ¼ diagðm1;…; mNf

Þ without loss of generality,
and write

DM ¼ diagðDðm1Þ;…; DðmNf
ÞÞ;

DðmÞ ≡Dð0Þ þmΔD;

ðDMÞfA⋆gB⋆ðx; yÞ ¼ δfgðDðmfÞÞA⋆B⋆ðx; yÞ: ð6Þ

The fermion propagator is then

SM ¼ D−1
M ¼ diagðSðm1Þ;…; SðmNf

ÞÞ;
SðmÞ ≡ ðDðmÞÞ−1;

ðSMÞfA⋆gB⋆ðx; yÞ ¼ δfgS
ðmfÞ
A⋆B⋆ðx; yÞ; ð7Þ

and the fermion determinant is

det DM ¼
YNf

f¼1

detDðmfÞ: ð8Þ

The trace over all indices, i.e., flavor, color, Dirac, and
coordinates, will be denoted by Tr. The trace over one or
more of the discrete indices will be denoted by tr with one
or more of the subscripts F, C, D, indicating which indices
are being traced. Matrix multiplication is understood not to
involve the indices displayed explicitly: for matrices P, Q
carrying all indices, and matrices P, Q carrying all but
flavor indices,

ðPQÞABðx; yÞ ¼
X
z;C

PACðx; zÞQCBðz; yÞ;

ðPðx; zÞQðz; yÞÞAB ¼
X
C

PACðx; zÞQCBðz; yÞ;

ðPQÞA⋆B⋆ðx; yÞ ¼
X
C⋆;z

PA⋆C⋆ðx; zÞQC⋆B⋆ðz; yÞ;

ðPðx; zÞQðz; yÞÞA⋆B⋆ ¼
X
C⋆

PA⋆C⋆ðx; zÞQC⋆B⋆ðz; yÞ: ð9Þ

A similar convention applies to Hermitian conjugation,

ðP†ÞABðx; yÞ ¼ PBAðy; xÞ�;
ðPðx; yÞ†ÞAB ¼ PBAðx; yÞ�;

ðP†ÞA⋆B⋆ðx; yÞ ¼ PB⋆A⋆ðy; xÞ�;
ðPðx; yÞ†ÞA⋆B⋆ ¼ PB⋆A⋆ðx; yÞ�: ð10Þ

MATTEO GIORDANO PHYS. REV. D 107, 114509 (2023)

114509-4



At a certain point I will assume that the propagator and the
operator ΔD are suitably bounded in norm. In the finite-
dimensional case, the operator norm kAk of an operator A
equals the largest of the eigenvalues a2n of the positive
Hermitian operator A†A,

kAk2 ¼ sup
ψ≠0

ðAψ ;AψÞ
ðψ ;ψÞ ¼ sup

ψ≠0

ðψ ;A†AψÞ
ðψ ;ψÞ ¼ max

n
a2n; ð11Þ

where ðψ ;ϕÞ denotes the standard Hermitian inner product.
I will assume that
(1.) kSMk ≤ m−1

0 < ∞, with m0 independent of the
gauge configuration and of the lattice volume V,
and finite in the limit of equal fermion masses;

(2.) kΔDk ≤ ΔDmax < ∞, with ΔDmax independent of
the gauge configuration and of the lattice volume,
and finite in the limit of equal fermion masses.

For the purposes of this paper it suffices to consider
the most general localized gauge-invariant observable, so
polynomial in the fermion fields and dependent on finitely
many link variables, with fermion number zero [74]. For
notational purposes it is convenient to write it with its
discrete indices contracted with the most general matrix
carrying flavor, color and Dirac indices, dependent on the
link variables (and possibly also explicitly on the lattice
coordinates, and on the parameters of the theory), and
having the right transformation properties under gauge
transformations to make the observable gauge invariant.
I will then consider

OM½ψ ; ψ̄ ; U�
≡ X

A1 ;…;An;
B1 ;…;Bn

ðM½U�ÞA1…AnB1…Bn
ðx1;…; xn; y1;…; ynÞ

×
Yn
i¼1

ψBi
ðyiÞψ̄Ai

ðxiÞ

¼
X
A;B

ðM½U�ÞABðx; yÞ
Yn
i¼1

ψBi
ðyiÞψ̄Ai

ðxiÞ: ð12Þ

For brevity I will writeM½U�ABðx; yÞ, using bold typeface
to denote collectively a set of indices or variables. I will
generally omit the dependence on U when unimportant.
The transformation properties of M under gauge trans-
formations are easily obtained from those of the fermionic
fields, and do not play any role in the following. Notably,
the quantity

KMðx; yÞ≡ trFCDfMðx; yÞMðx; yÞ†g ð13Þ

is gauge invariant. The expectation value hOMi ¼
hhOMiFiG is obtained averaging hOMiF over gauge fields
using Eq. (4). From Eq. (3) one finds using Wick’s theorem

hOMiF ¼
X
A;B

M½U�ABðx; yÞ
�Yn

i¼1

ψBi
ðyiÞψ̄Ai

ðxiÞ
�

F

¼
X
A;B

M½U�ABðx; yÞ

×
X
P∈Sn

σP
Yn
i¼1

SM½U�BiAPðiÞ ðyi; xPðiÞÞ; ð14Þ

with P a permutation of n elements and σP ¼ �1 its
signature.
Restrictions on M are required in order for the integra-

tion over link variables to yield finite results for hOMi.
In the physically relevant cases M is a product of Wilson
lines, suitably connecting the fermion fields to achieve
gauge invariance, and so polynomial in the link variables.
Imposing that M be polynomial or, more generally,
continuous in the link variables guarantees that in a finite
volumeKM is bounded from above by its maximum on the
compact integration manifold. The thermodynamic limit is
taken while keeping M fixed as a function of the link
variables (in particular, its possible dependence on the
lattice coordinates is unchanged and cannot cause con-
vergence problems), and so the bound on KM is indepen-
dent of the volume. Assumption (1.) on the propagator then
suffices to show convergence of hOMi, both in a finite
volume and in the infinite-volume limit, see below in
Sec. IV. Finally, any possible dependence of M on the
fermion masses is assumed to be continuous, at least in the
symmetric limit of equal fermion masses. This guarantees
that KM is bounded in a neighborhood of the symmetric
point, which is all that is needed to prove the results of
Sec. IV. In fact, the assumption of continuity of M in the
link variables and in the fermion masses can be relaxed,
without changing the arguments in Sec. IV, to the weaker
assumption that KM be bounded from above, independ-
ently of the link configuration (and therefore of the
volume), in a neighborhood of the symmetric point. The
results of this paper can be proved also if one further relaxes
the requirement of continuity or boundedness to absolute
integrability of the entries MAB: this is discussed in the
Appendix.

III. VECTOR FLAVOR TRANSFORMATIONS

Vector flavor transformations are defined by

ψfA⋆ðxÞ →
X
g

VfgψgA⋆ðxÞ;

ψ̄fA⋆ðxÞ →
X
g

ψ̄gA⋆ðxÞV†
gf; ð15Þ

where Vfg are the entries of a unitary unimodular Nf × Nf

matrix V ∈ SUðNfÞ. This can be written as V ¼ eiθat
a≡

eiθ·t ≡ VðθÞ, with θa ∈ R and with ta the Hermitian and
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traceless generators of SUðNfÞ, taken with the standard
normalization 2trFtatb ¼ δab. The task is to show that
any localized observable O ¼ O½ψ ; ψ̄ ; U� and its trans-
formed Oθ,

Oθ½ψ ; ψ̄ ; U�≡O½VðθÞψ ; ψ̄VðθÞ†; U�; ð16Þ

have the same expectation value in the infinite-volume
theory in the symmetric limit M → m1F, i.e.,

lim
M→m1F

lim
V→∞

hOθ −Oi ¼ 0: ð17Þ

On a finite lattice all observables are obviously localized. In
the thermodynamic limit V → ∞, every localized observ-
able is a linear combination of finitely many of the OM
discussed above, Eq. (12), where M is understood to be a
fixed function of the link variables, independent of V.
Moreover, since SUðNfÞ is a Lie group, any finite trans-
formation can be obtained by composition of infinitesimal
ones. It suffices then to consider observables OM and
transformations with θa ≪ 1 in Eq. (17), i.e., one has
to show

lim
M→m1F

lim
V→∞

∂

∂θa
hOθ

Mi
���
θ¼0

¼ 0: ð18Þ

An explicit proof that Eq. (18) implies Eq. (17) is given in
Appendix A 1. In Appendix A 2 I show that Eq. (17)
implies that order parameters for vector flavor symmetry,
i.e., expectation values of observables that transform non-
trivially under SUðNfÞ, must vanish in the symmetric limit.
To efficiently study the effect of a vector flavor trans-

formation on the expectation value of an arbitrary observ-
able, it is convenient to make use of the corresponding
well-known integrated Ward-Takahashi identity, derived
for completeness in Appendix A 1,

i
∂

∂θa
hOθi

���
θ¼0

¼ hCaOi;

Ca½ψ ; ψ̄ ; U�≡ ψ̄ ½ta;DM½U��ψ : ð19Þ

Integrating fermions out one finds for a generic
observable O

i
∂

∂θa
hOθiF

���
θ¼0

¼ hCaOiF ¼ hCaiFhOiF − TrfFaOg; ð20Þ

with

OABðx; yÞ≡
�

∂

∂LψBðyÞ
∂

∂Lψ̄AðxÞ
O
�

F
; ð21Þ

where ∂L denotes the usual left derivative with respect to
Grassmann variables, and

Fa ≡ SM½ta;DM�SM ¼ ½SM; ta�; ð22Þ

i.e., the commutator of the propagator with the generators
of SUðNfÞ. The first term in Eq. (20) vanishes since

hCaiF ¼ −Trf½ta;DM�SMg ¼ −Trfta½DM; SM�g ¼ 0: ð23Þ

Specializing now to observables of the form Eq. (12), one
finds, for i; j ¼ 1;…; n,

∂

∂LψBj
ðyjÞ

∂

∂Lψ̄Ai
ðxiÞ

OM½ψ ; ψ̄ ; U�

¼ −sijðM½U�ÞABðx; yÞ
Yn−1
k¼1

ψ
BðjÞ
k
ðyðjÞk Þψ̄

AðiÞ
k
ðxðiÞk Þ: ð24Þ

Here the superscript (i) means that the ith element is
omitted from the set of indices while keeping their ordering

unchanged, i.e., AðiÞ ¼ fAðiÞ
1 ;…; AðiÞ

n−1g ¼ fA1;…; Ai−1g ∪
fAiþ1;…; Ang, and similarly for the other sets. The
sign factor −sij ¼ ð−1Þi−j−1 appears when reordering the
Grassmann variables to be in the same form as in Eq. (12).
Using now Eq. (14) one finds explicitly

OMAiBj
ðx; yÞ≡

�
∂

∂LψBj
ðyjÞ

∂

∂Lψ̄Ai
ðxiÞ

OM

�
F

¼ −sij
X

P∈Sn−1

σP
X

AðiÞ;BðjÞ
MABðx; yÞ

Yn−1
k¼1

ðSMÞBðjÞ
k AðiÞ

PðkÞ
ðyðjÞk ; xðiÞPðkÞÞ; ð25Þ

where P is now a permutation of n − 1 elements and σP its signature. Notice that Ai and Bj are not contracted in Eq. (25),
and that the dependence of OMAiBj

on xi, yj is only through that of M. One can finally write

i
∂

∂θa
hOθ

Mi
���
θ¼0

¼ hCaOMi ¼
Xn
i;j¼1

sij
X

P∈Sn−1

σP

�X
A;B

MABðx; yÞFa
BjAi

ðyj; xiÞ
Yn−1
k¼1

ðSMÞBðjÞ
k AðiÞ

PðkÞ
ðyðjÞk ; xðiÞPðkÞÞ

�
G

: ð26Þ
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This relation could have been obtained also directly
from Eq. (14) by noticing that a vector flavor trans-
formation VðθÞ can be seen as a transformation of the
matrix M, M → Mθ, at fixed fermion fields, i.e.,
Oθ

M ¼ OMθ [see Eq. (A7)]. In practice, hOMθiF is
obtained from hOMiF by replacing each propagator
with SM → VðθÞSMVðθÞ†. Expanding to first order in θ,
Eq. (26) follows.

IV. PROOF OF THE MAIN RESULT

Equation (26) is the starting point for establishing a
bound on the magnitude of the variation of the expectation
value of OM under an infinitesimal vector flavor trans-
formation. The argument is quite elementary, and should
be understandable in spite of my best attempts at obscuring
it with cumbersome notation. As shown above, after
performing the Wick contractions the variation of hOMi

is written as a sum of terms of the form hMF
Q

SiG,
differing by permutations of the indices. By standard
techniques, if the integration measure is positive this is
bounded in magnitude by a sum of terms of the form
hðtrfMM†gtrfFF†gQ trfSS†gÞ12iG, which under the
assumptions of Sec. II on the Dirac operator and on the
continuity (or boundedness) of M can be bounded uni-
formly in the volume by a constant times the spread in mass
of the fermions. In the symmetric limit one then finds that
the variation of hOMi under any infinitesimal vector flavor
transformation vanishes. By a similar argument one can
show that hOMi is finite, independently of the fermion
masses, also in the thermodynamic limit.
I now present the detailed proof. Using standard inequal-

ities for the absolute value, the assumed positivity of the
integration measure, and the Cauchy-Schwarz inequality
for inner products, one has

���� ∂

∂θa
hOθ

Mi
���
θ¼0

���� ≤
Xn
i;j¼1

X
P∈Sn−1

����
�X

A;B
MABðx; yÞFa

BjAi
ðyj; xiÞ

Yn−1
k¼1

ðSMÞBðjÞ
k AðiÞ

PðkÞ
ðyðjÞk ; xðiÞPðkÞÞ

�
G

����

≤
Xn
i;j¼1

X
P∈Sn−1

�����
X

A;B
MABðx; yÞFa

BjAi
ðyj; xiÞ

Yn−1
k¼1

ðSMÞBðjÞ
k AðiÞ

PðkÞ
ðyðjÞk ; xðiÞPðkÞÞ

����
�

G

≤
Xn
i;j¼1

X
P∈Sn−1

��
KMðx; yÞF aðyj; xiÞ

Yn−1
k¼1

SðyðjÞk ; xðiÞPðkÞÞ
�1

2
�

G

; ð27Þ

where KMðx; yÞ is defined in Eq. (13) and

F aðy; xÞ≡ trFCDfFaðy; xÞFaðy; xÞ†g;
Sðy; xÞ≡ trFCDfSMðy; xÞSMðy; xÞ†g: ð28Þ

The quantity KMðx; yÞ is a positive gauge-invariant func-
tion of the link variables and their Hermitian conjugates,
polynomial (or more generally continuous) if M is poly-
nomial (continuous), defined on the compact domain given
by the direct product of finitely many compact gauge-group
manifolds. It is therefore bounded from above in magnitude
by its maximum, which depends on the details of M
but is otherwise a configuration- and volume-independent
quantity,

KMðx; yÞ ¼ trFCDfMðx; yÞMðx; yÞ†g ≤ CM: ð29Þ

One can actually relax the request of continuity of M to
assuming that this bound on KM holds, without changing
the argument below. Moreover, since Dð0Þ and ΔD are
trivial and M is diagonal in flavor space, one has
½ta;DM� ¼ ½ta;M�ΔD,

Fa
gB⋆fA⋆ðy; xÞ ¼ ðSM½ta;M�ΔDSMÞgB⋆fA⋆ðy; xÞ

¼ tagfðmf −mgÞðSðmgÞΔDSðmfÞÞB⋆A⋆ðy; xÞ;
ð30Þ

and so

F aðy; xÞ ¼
X
f;g

jtagfj2ðmf −mgÞ2trCDfðSðmgÞΔDSðmfÞÞðy; xÞ

× ðSðmgÞΔDSðmfÞÞðy; xÞ†g: ð31Þ

The partial traces appearing in Eqs. (28) and (31) can be
bounded using an elementary lemma, proved in Appen-
dix A 3: given a multi-indexed matrix A, the partial trace of
A†A over a subset of its indices is bounded by the
dimension of the corresponding space times the square
of the operator norm of A. One has then the following
bound on the propagator [see Eq. (A15)], valid for arbitrary
lattice coordinates x and y,

Sðy; xÞ ≤ NfNcNDkSMk2; ð32Þ

from which one obtains the bound
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Yn−1
k¼1

SðyðjÞk ; xðiÞPðkÞÞ ≤ ðNfNcNDkSMk2Þn−1: ð33Þ

Since the bound Eq. (32) is independent of the coordinates,
the bound Eq. (33) is independent of the particular choice
of i and j and of the permutation P. Using again Eq. (A15)
one finds

trCDfðSðmgÞΔDSðmfÞÞðy; xÞðSðmgÞΔDSðmfÞÞðy; xÞ†g
≤ NcNDkSðmgÞΔDSðmfÞk2
≤ NcNDkSðmgÞk2kΔDk2kSðmfÞk2
≤ NcNDkSMk4kΔDk2; ð34Þ

where I used the well-known inequality kABk ≤ kAkkBk,
and the obvious fact that kSðmfÞk ≤ maxf0kSðmf0 Þk ¼ kSMk.
From Eqs. (31) and (34) one obtains the following bound
on the commutator of the propagator with the SUðNfÞ
generators,

F aðy; xÞ ≤
X
f;g

jtagfj2ðmf −mgÞ2NcNDkSMk4kΔDk2

≤
1

2
ðδmÞ2NcNDkSMk4kΔDk2; ð35Þ

where I denoted with δm≡maxf;g jmf −mgj the spread in
mass of the fermions, and I used trFðtaÞ2 ¼ 1

2
. Also this

bound is independent of the coordinates, and so each of the
n2ðn − 1Þ! terms appearing in the sums over i, j and P in
Eq. (27) obeys the same bound. Collecting now Eqs. (29),
(33), and (35), one finds

���� ∂

∂θa
hOθ

Mi
���
θ¼0

���� ≤ δmC̃MhkSMknþ1kΔDkiG; ð36Þ

having set C̃M ≡ nn!ðNfNcNDÞn2ðCM
2Nf

Þ12. I now make the

assumptions that kSMk≤m−1
0 <∞ and kΔDk≤ΔDmax<∞,

with m0 and ΔDmax independent of the gauge configura-
tion. With these assumptions one concludes

jhCaOMij ¼
���� ∂

∂θa
hOθ

Mi
���
θ¼0

���� ≤ δm
C̃MΔDmax

mnþ1
0

: ð37Þ

Using also the assumption that m0 and ΔDmax are inde-
pendent of the lattice size V, the bound Eq. (37) is volume-
independent and therefore holds also in the thermodynamic
limit; using the continuity in mass of CM (or its bounded-
ness near the symmetric point) and the assumed finiteness
ofm0 and ΔDmax in the symmetric limit one concludes that

lim
δm→0

lim
V→∞

∂

∂θa
hOθ

Mi
���
θ¼0

¼ 0; ð38Þ

which is what had to be proved [see Eq. (18)].
Notice that under the same assumptions used above one

can show that the expectation values hOMi are indeed finite
in the thermodynamic limit, independently of the choice of
masses. In fact, a bound similar to Eq. (27) is obtained for
hOMi starting from Eq. (14),

jhOMij ≤
X
P∈Sn

��
KMðx; yÞ

Yn
k¼1

Sðyk; xPðkÞÞ
�1

2
�

G

: ð39Þ

Under the boundedness assumptions on kSMk and the
continuity assumption on M (or the boundedness
assumption on KM)

jhOMij ≤ n!ðNfNcNDÞn2hKMðx; yÞ12kSMkniG

≤
n!ðNfNcNDÞn2C

1
2

M

mn
0

; ð40Þ

which is a finite bound, independent of V. The extension
of this result and of Eq. (38) to the case of absolutely
integrable MAB is discussed in Appendix A 4.

V. APPLICATION TO SPECIFIC
DISCRETIZATIONS

In this section, I discuss explicitly several lattice dis-
cretizations of the single-flavor Dirac operator. A super-
script is used to distinguish them and the corresponding
propagators, i.e., DXðmÞ ¼DXð0Þ þmΔDX, SXM ¼ diag

ðSXðm1Þ;…; SXðmNf
ÞÞ, SXðmÞ ¼ ðDXðmÞÞ−1. I discuss in par-

ticular staggered fermions (S), Ginsparg-Wilson fermions
(GW), Wilson fermions (W), and minimally doubled
fermions (KW, BC), on hypercubic lattices. Lattice sites
are labeled by coordinates xμ ¼ 0;…; Lμ − 1, where Lμ is
the linear size in direction μ, with μ ¼ 1;…; d. The lattice
oriented edges connect x and xþ μ̂, with μ̂ the unit vector
in direction μ; the associated link variables are denoted
with Uðx; xþ μ̂Þ, and Uðx; x − μ̂Þ≡Uðx − μ̂; xÞ† denotes
the link variable associated with the oppositely oriented
edge. Finally, δðx; yÞ ¼ Q

d
μ¼1 δxμyμ . Standard boundary

conditions (periodic for link variables and periodic/anti-
periodic in space/time for Grassmann variables) are under-
stood, although they do not play any particular role.

A. Staggered fermions

The case of staggered fermions [27–29] is the most
straightforward. The corresponding discretization of the
lattice Dirac operator carries no Dirac index, and reads
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DSð0Þðx; yÞ ¼ 1

2

Xd
μ¼1

Uðx; yÞðημðxÞδðxþ μ̂; yÞ

−ημðyÞδðx − μ̂; yÞÞ;
ΔDSðx; yÞ ¼ 1Cδðx; yÞ; ð41Þ

where ημðxÞ ¼ ð−1Þ
P

α<μ
xα . Notice that Lμ must be an

even number for every μ. The staggered operator is anti-
Hermitian, and obviously commutes with ΔDS. Let iλn,
λn ∈ R, be its purely imaginary eigenvalues. Since DSð0Þ

has the chiral property fε; DSð0Þg ¼ 0, where εabðx; yÞ ¼
ð−1Þ

P
α
xαδabδðx; yÞ, these come in complex conjugate

pairs �iλn or vanish, and so

detDSðmÞ ¼ mN S
0

Y
n;λn>0

ðλ2n þm2Þ; ð42Þ

where N S
0 is the number of exact zero modes, which must

be an even number. The integration measure dμG is
therefore positive for any choice of mf. For the propagator
one has

SSðmÞ†SSðmÞ ¼ ðm2 −DSð0Þ2Þ−1;

kSSðmÞk2 ¼ 1

m2 þminnλ2n
≤

1

m2
; ð43Þ

and so

kSSMk2 ¼ max
f

kSSðmfÞk2 ¼ 1

minfm2
f þminnλ2n

≤
1

minfm2
f

≡ 1

m2
0

: ð44Þ

Obviously kΔDSk ¼ 1. All the assumptions used in Sec. IV
hold, and so vector flavor symmetry cannot be sponta-
neously broken, as long as the common fermion mass in the
symmetric limit is nonzero. This was already known [30].
The result holds at any lattice spacing, and remains true for
any choice of boundary conditions or inclusion of external
fields (e.g., an imaginary chemical potential or a magnetic
field) that preserves the anti-Hermiticity and the chiral
property of DSð0Þ.
The result still holds also for improved staggered

operators as long as they retain these properties. In
particular, this is the case if in Eq. (41) one replaces the
“thin links” U with “fat links” obtained by some smearing
procedure; and if one improves the lattice approximation of
the covariant derivative by including terms that only couple
even and odd lattice sites (i.e., sites with

P
α xα even

or odd), e.g., the Naik term [75]. This covers all the
commonly used improved operators (e.g., ASQTAD [76],
stout smeared [77], HISQ [78]).

Extending the result to rooted staggered fermions is not
entirely straightforward. The expectation values of local-
ized observables OM in the rooted theory with Nf flavors
of staggered quarks are obtained by replacing the fermionic
determinant for each flavor with its positive fourth root (so
keeping the integration measure positive), and by including
suitable counting factors for the various permutations
appearing in the fermionic expectation value hOMiF,
Eq. (14). Defining vector flavor transformations on these
observables directly as transformations of M, i.e., OM →
Oθ

M ¼ OMθ [see Eq. (A7) and comment after Eq. (26)],
one can still show that the variation of hOMi for infini-
tesimal θ is bounded by the mass spread δm times a
constant, hence it vanishes in the symmetric limit. In fact,
such a variation remains of the form Eq. (26) up to
inclusion of the counting factors; the rest of the argument
is unchanged. However, one should still check that the
flavor transformations defined above reduce in the con-
tinuum limit to the correct transformations of the physical
subset of fermionic degrees of freedom. To this end, one
may use the blocking transformations and the reweighted
actions of Refs. [40,43], introduced to argue the validity of
the rooting procedure (I thank an anonymous referee for
pointing these references out). Such an analysis is, how-
ever, beyond the scope of this paper. It should be noted that
if one accepts the validity of the rooting procedure, then the
uniform bound of Ref. [30] on the staggered propagator in a
gauge field background suffices to prove the absence of
massless particles in the spectrum of the continuum theory
for any nonzero common fermion mass, implying the
impossibility of spontaneous flavor symmetry breaking.

B. Ginsparg-Wilson fermions

Massless Ginsparg-Wilson fermions are characterized by
the relation [56]

fDGWð0Þ; γ5g ¼ 2DGWð0ÞRγ5DGWð0Þ; ð45Þ

with R a local operator, satisfied by the corresponding
lattice discretization DGWð0Þ of the Dirac operator. Most of
the known examples [57–65] satisfy this relation with
2R ¼ 1, and moreover are γ5-Hermitian,

γ5DGWð0Þγ5 ¼ DGWð0Þ†: ð46Þ

If these extra assumptions hold it is easy to show that

ðDGWð0Þ − 1ÞðDGWð0Þ − 1Þ† ¼ 1; ð47Þ

i.e., DGWð0Þ ¼ 1þ U with U unitary. For massive
Ginsparg-Wilson fermions one uses

ΔDGW ¼ 1 −
1

2
DGWð0Þ; ð48Þ
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and so

DGWðmÞ ¼
�
1þm

2

�
1þ

�
1 −

m
2

�
U: ð49Þ

This is a normal operator with spectrum lying on a circle of
radius j1 − m

2
j centered at 1þ m

2
, so its eigenvalues are

bounded in magnitude from below by the square root of

min
φ

����
�
1þm

2

�
þ
�
1 −

m
2

�
eiφ

����
2

¼ minðm2; 4Þ: ð50Þ

It follows that the propagator obeys kSGWM k ≤
max ð 1

minf jmf j ;
1
2
Þ, which is a finite bound if mf ≠ 0 ∀ f.

For ΔDGW one has

kΔDGWk2 ≤ 1

2
max
φ

j1 − eiφj2 ¼ 2≡ ΔD2
max < ∞: ð51Þ

As a consequence of Eq. (46), γ5Uγ5 ¼ U†, and so if ψn is a
common eigenvector of DGWð0Þ and DGWð0Þ† with eigen-
values μn ¼ 1þ eiφn and μ�n ¼ 1þ e−iφn , respectively,
thenDGWð0Þγ5ψn ¼ γ5DGWð0Þ†ψn ¼ μ�nγ5ψn. It follows that
complex eigenvalues come in complex-conjugate pairs; for
the real eigenvalues μn ¼ μ�n ¼ 0, 2, one can instead choose
chiral eigenvectors ψ�, satisfying γ5ψ� ¼ �ψ�. For the
determinant of DGWðmÞ one finds

detDGWðmÞ ¼ mN GW
0 2N

GW
2

Y
n;sinφn>0

��
2 cos

φn

2

�
2

þ
�
m sin

φn

2

�
2
�
; ð52Þ

with N GW
0;2 the degeneracies of the two real eigenvalues.

It follows that the integration measure dμG is positive if
mf ≥ 0 ∀ f, and more generally for an even number of
negative masses. Vector flavor symmetry cannot be sponta-
neously broken in the symmetric limit as long as the
common fermion mass is positive, or just nonzero if Nf is
even, at any value of the lattice spacing. The use of different
boundary conditions or the inclusion of external fields in
DGWð0Þ does not change this result, as long as the operator
remains of the form DGWð0Þ ¼ 1þ U and the γ5-
Hermiticity property Eq. (46) holds.

C. Wilson fermions

For Wilson fermions [26] the massless operator DWð0Þ ¼
Dnð0Þ þ RW is obtained adding the naive discretization
Dnð0Þ of the massless Dirac operator and the Wilson
term RW, while ΔDW is the identity in color, Dirac, and
coordinate space,

Dnð0Þðx; yÞ ¼ 1

2

Xd
μ¼1

Uðx; yÞγμðδðxþ μ̂; yÞ − δðx − μ̂; yÞÞ;

RWðx; yÞ ¼ −
r
2
1D

Xd
μ¼1

ðUðx; yÞðδðxþ μ̂; yÞ

þ δðx − μ̂; yÞÞ − 21Cδðx; yÞÞ;
ΔDWðx; yÞ ¼ 1C1Dδðx; yÞ; ð53Þ

with r a nonzero real parameter. This operator is not anti-
Hermitian and not even normal, satisfying only the γ5-
Hermiticity condition γ5DWðmÞγ5 ¼ DWðmÞ†. The spectrum
of DWðmÞ is generally complex, and while γ5-Hermiticity
guarantees that detDWðmÞ is real, one is not guaranteed to
find a positive integration measure dμG, unless an even
number of fermions with the same mass is present.
Moreover, while ΔDW is obviously bounded, no general
lower bound applies to the spectrum ofDWðmÞ†DWðmÞ, even
in the massive case, and so no uniform upper bound on
the norm of the propagator is available. The result of the
previous section therefore does not apply to Wilson
fermions. This is not surprising since it is known that
vector flavor symmetry is spontaneously broken in the
Aoki phase [5–25]. One can, however, refine the discussion
and see more precisely how things fail for Wilson fermions.
Presumably, for an even number of flavors and suffi-

ciently small δm the sign problem of the integration
measure affects only a set of gauge configurations of zero
measure. If so, in this case the integration measure would
effectively be positive, and so one could follow the
derivation of the previous section up to Eq. (36), obtaining

���� ∂

∂θa
hOθ

Mi
���
θ¼0

���� ≤ δmC̃MhkSWMknþ1iG

¼ δmC̃M

Z
∞

0

dspðsÞsnþ1; ð54Þ

where

pðsÞ≡ hδðs − kSWMkÞiG: ð55Þ

One could then still exclude the spontaneous breaking of
vector flavor symmetry if pðsÞ vanished faster than any
polynomial as s → ∞, for example if pðsÞ ¼ 0 for s > s0
for some s0, or if it vanished exponentially. If pðsÞ vanished
only as a power law pðsÞ ∼ s−n0, or not at all, the argument
above would not provide a viable bound for n > n0 − 2,
and spontaneous breaking could not be excluded. In fact,
in the Aoki phase one finds a finite spectral density of
near-zero modes of the Hermitian operator H ¼ γ5DWðmÞ
[7,20,21]. Since
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kSWðmÞk2 ¼ sup
ψ≠0

ðψ ; ðDWðmÞDWðmÞ†Þ−1ψÞ
ðψ ;ψÞ

¼ sup
ψ≠0

ðγ5ψ ; ðH2Þ−1γ5ψÞ
ðγ5ψ ; γ5ψÞ

¼ 1

minnh2n
; ð56Þ

where hn ∈ R are the eigenvalues of H, one finds that as
the lattice volume grows and the lowest mode of H on
typical configurations tends to zero pðsÞ becomes more and
more peaked at a larger and larger value of s, eventually
tending to infinity in the thermodynamic limit, and the
right-hand side of Eq. (54) blows up, making the bound
useless. Outside the Aoki phase the spectrum of H is
gapped around the origin, the right-hand side of Eq. (54) is
finite, and the bound prevents spontaneous flavor sym-
metry breaking.

D. Minimally doubled fermions

For the minimally doubled fermions of Karsten and
Wilczek (KW) [52,53], and of Creutz and Boriçi (BC)
[54,55], the massless Dirac operator is of the form DXð0Þ ¼
Dnð0Þ þ RX, X ¼ KW, BC, where the naive operator Dnð0Þ
is defined in Eq. (53), and the inclusion of the terms

RKWðx; yÞ ¼ −
ir
2
γd

Xd−1
μ¼1

ðUðx; yÞðδðxþ μ̂; yÞþδðx − μ̂; yÞÞ

−21Cδðx; yÞÞ;

RBCðx; yÞ ¼ −
ir
2

Xd
μ¼1

γ0μðUðx; yÞðδðxþ μ̂; yÞþδðx − μ̂; yÞÞ

−21Cδðx; yÞÞ; ð57Þ

where γ0μ ≡ ΓγμΓ and Γ≡ 1ffiffi
d

p
P

d
ν¼1 γν, reduces the number

of doublers to two when r ¼ 1. The massive operator
is obtained in both cases using the trivial mass term
ΔDKW ¼ ΔDBC ¼ ΔDW, see again Eq. (53). For both
types of fermions the massless operator is anti-Hermitian
and chiral, fDXð0Þ; γ5g ¼ 0, and obviously commutes with
the mass term. One can then diagonalize DXð0Þ obtaining
purely imaginary eigenvalues iλXn and a symmetric spec-
trum, and so the single-flavor propagators SXðmÞ obey

kSXðmÞk2 ¼ 1

m2 þminnλX 2
n

≤
1

m2
; X ¼ KW;BC: ð58Þ

The fermionic determinant reads

detDXðmÞ ¼ mN X
0

Y
n;λn>0

ðλX 2
n þm2Þ; X ¼ KW;BC; ð59Þ

with N X
0 the number of exact zero modes, so it is positive

for nonnegative fermion masses, and for an even number of

negative masses. The same argument therefore applies
as with staggered fermions, and vector flavor symmetry
cannot break spontaneously as long as the common fermion
mass is positive (or just nonzero if Nf is even) in the
symmetric limit, independently of the lattice spacing.

VI. CONCLUSIONS

In this paper I have shown that under quite general
assumptions on the discretization of the Dirac operator DM,
one can rigorously exclude the possibility of spontaneous
breaking of vector flavor symmetry on the lattice, in gauge
theories with a positive functional-integral measure. These
assumptions are
(0.) DM is linear in the fermion masses, DM ¼ Dð0Þþ

MΔD, with Dð0Þ and ΔD trivial in flavor space, and
M a Hermitian mass matrix;

(1.) the norm of the propagator D−1
M can be bounded by a

configuration- and volume-independent quantity,
that remains finite in the symmetric limit of fermions
of equal masses, M → m1F;

(2.) the norm of the derivative of DM with respect to the
fermion masses, ΔD, can be bounded by a configu-
ration- and volume-independent quantity, that re-
mains finite as M → m1F.

The impossibility of spontaneous flavor symmetry break-
ing on the lattice is proved by showing that any localized
order parameter must vanish in the symmetric limit, taken
after the thermodynamic limit. If the assumptions above
hold for any (or at least for sufficiently small) lattice
spacing, this result remains true also in the continuum limit,
if this exists. My argument applies in particular to staggered
fermions [27–29]; to the minimally doubled fermions of
Karsten and Wilczek [52,53] and of Creutz and Boriçi
[54,55]; and to Ginsparg-Wilson fermions [56–65] that are
γ5-Hermitian and satisfy the Ginsparg-Wilson relation with
2R ¼ 1 [see Eq. (45)]. For these discretizations one can
exclude spontaneous breaking of vector flavor symmetry
on the lattice for any spacing, and so in the continuum limit
as well, for any positive common fermion mass m (and for
any nonzero m for an even number of flavors). Quite
unsurprisingly, the argument fails in the case of Wilson
fermions [26], where such a spontaneous breaking is
known to happen in the Aoki phase [5–25]. While for
staggered fermions spontaneous breaking of vector flavor
symmetry (as well as of baryon number symmetry) was
already completely excluded by the results of Ref. [30], for
Ginsparg-Wilson fermions only partial results were pre-
viously available [66].
My result is clearly not as powerful as that obtained by

Vafa and Witten working with the continuum functional
integral in Ref. [1], and by Aloisio et al. in Ref. [30]
working with staggered fermions on the lattice. In particu-
lar, although it excludes the possibility of Goldstone bosons
appearing in the spectrum due to spontaneous flavor
symmetry breaking, it cannot exclude completely the
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presence of massless bosons, as Refs. [1,30] do. On the
other hand, the use of a properly regularized functional
integral rather than the continuum one used in Ref. [1]
makes the present argument mathematically fully rigorous.
Since the ultralocality and anti-Hermiticity of the staggered
operator are not used, as they are in Ref. [30], my argument
works also for more general discretizations, in particular
allowing one to treat the case of an arbitrary number of
physical fermion flavors in the continuum limit without
resorting to the “rooting trick.”
The bound on the variation of expectation values under a

vector flavor transformation [see Eq. (37)] proved here to
derive the main result is probably far less than optimal, as it
does not take into account the cancellations present in
fermionic observables due to the oscillating sign of the
contributions of the various field contractions. The bound
on the propagator [see Eq. (32)] is also likely to be
suboptimal, and one suspects that a lattice analog of the
Vafa-Witten bound could be obtained also for more general
discretizations than staggered fermions, for which it was
proved in Ref. [30]. A direct extension of the proof of
Ref. [30] to minimally doubled fermions seems feasible,
while a different approach is probably needed for Ginsparg-
Wilson fermions. It is worth noting, however, that a global,
coordinate-independent bound like Eq. (32) suffices to
prove the impossibility of vector flavor symmetry breaking,
without the need to bound the long-distance behavior of the
propagator as in Refs. [1,30].
The present argument does not rule out the appearance of

phases with spontaneously broken vector flavor symmetry
on the lattice if terms of order higher than quadratic are
included in the fermionic action, even if the quadratic terms
satisfy assumptions (0.)–(2.). Nonsymmetric vacua may
in fact exist, degenerate with the symmetric one in the
symmetric limit, but with ground state energy increased by
the standard symmetry-breaking term used here. These
vacua could not be reached with the procedure used here,
and would require the addition of different symmetry-
breaking terms to the symmetric action in order to select
them. This possibility is of limited interest in the physical
case of QCD, since in this theory vector flavor symmetry is
broken explicitly precisely by the differences in the quark
masses, and the symmetric limit of interest where one
should investigate the possibility of its spontaneous break-
ing is the one considered in this paper. More generally,
while such spontaneously broken phases on the lattice
could be problematic for numerical simulations, they
should be unphysical and not survive the continuum limit.

The restriction to a quadratic lattice action is in fact not
really a limitation as far as the usual continuum limit is
concerned. For continuum gauge theories in dimension
d > 2 (in d ≤ 2 the spontaneous breaking of a continuous
symmetry is forbidden [71–73]) there are no perturbatively
renormalizable fermionic operators with the right global
and local symmetries other than the quadratic ones,
approximated on the lattice by the action used here. The
inclusion of higher order terms in the lattice action only
adds perturbatively nonrenormalizable interactions that do
not affect the long-distance physics in the usual continuum
limit. Hypothetical spontaneously broken phases on the
lattice should then shrink as the continuum limit is
approached, with vector flavor symmetry being realized
in the continuum theory. Phases with spontaneously broken
vector flavor symmetry may still be found in the continuum
if unconventional continuum limits exist, but this would
concern a different type of continuum theories. Universality
of the continuum limit also implies that the spontaneously
broken phases potentially found on the lattice for quadratic
actions not satisfying assumptions (0.)–(2.) should shrink
in the usual continuum limit, as is the case for the Aoki
phase of Wilson fermions.
In conclusion, the existence of lattice discretizations of

the Dirac operator, free of doublers, for which spontaneous
vector flavor symmetry breaking for finite positive fermion
mass is impossible at any lattice spacing (i.e., the Ginsparg-
Wilson fermions discussed above) implies the same impos-
sibility in the continuum limit, if this exists, for an arbitrary
number of fermion species. This settles the issue of
spontaneous vector flavor symmetry breaking in a rigorous
manner (for a physicist’s standard of rigor).
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APPENDIX: TECHNICAL DETAILS

1. IntegratedWard-Takahashi identity and finite flavor
transformations

Since the Berezin integration measure is invariant under
vector flavor transformations, Eq. (15), one has after
changing variables [see Eq. (16) for the notation]

Z
½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�Oθ½ψ ; ψ̄ ; U� ¼

Z
½DψDψ̄ �e−ψ̄VðθÞDM ½U�VðθÞ†ψO½ψ ; ψ̄ ; U�: ðA1Þ

For infinitesimal θa, expanding both sides of the equation to leading order in θa, one finds
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Z
½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�

�
O½ψ ; ψ̄ ; U� þ

X
a

θa
∂

∂θa
Oθ½ψ ; ψ̄ ; U�

���
θ¼0

þOðθ2Þ
�

¼
Z

½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�ðO½ψ ; ψ̄ ; U� − iðψ̄ ½θ · t;DM½U��ψÞO½ψ ; ψ̄ ; U� þOðθ2ÞÞ; ðA2Þ

from which Eq. (19) follows,

i
∂

∂θa
hOθi

���
θ¼0

¼ hðψ̄ ½ta;DM�ψÞOi ¼ hCaOi; Ca½ψ ; ψ̄ ; U�≡ ψ̄ ½ta;DM½U��ψ : ðA3Þ

For finite transformations, since VðθÞ is analytic in θa one can write the trivial identity

Z
½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�ðOθ½ψ ; ψ̄ ; U� −O½ψ ; ψ̄ ; U�Þ ¼

Z
1

0

dα
d
dα

Z
½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�Oαθ½ψ ; ψ̄ ; U�: ðA4Þ

Using now Eq. (A1) one finds the following result for the change of the expectation value of an observable under a finite
vector flavor transformation,

Z
½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�ðOθ½ψ ; ψ̄ ; U� −O½ψ ; ψ̄ ; U�Þ

¼ −
Z

1

0

dα
Z

½DψDψ̄ �e−ψ̄VðαθÞDM ½U�VðαθÞ†ψ
�
ψ̄VðαθÞ

�
VðαθÞ† dVðαθÞ

dα
;DM½U�

�
VðαθÞ†ψ

�
O½ψ ; ψ̄ ; U�

¼ −i
Z

1

0

dα
Z

½DψDψ̄ �e−SF½ψ ;ψ̄ ;U�ðψ̄ ½θ · t;DM½U��ψÞOαθ½ψ ; ψ̄ ; U�: ðA5Þ

This implies

hOθ −Oi ¼ −i
X
a

θa

Z
1

0

dαhCaOαθi: ðA6Þ

For the observablesOM of interest, the effect of a vector flavor transformation VðθÞ can be fully accounted for by replacing
M → Mθ, i.e., Oθ

M ¼ OMθ , with

Mθ
AB ≡MA0

1
…A0

nB0
1
…B0

n
VðθÞ†A1A0

1
…VðθÞ†AnA0

n
VðθÞB0

1
B1
…VðθÞB0

nBn
; ðA7Þ

where VAiA0
i
¼ Vfif0i

δaia0iδαiα0i . Notice that

KMθðx; yÞ ¼ trFCDfMθðx; yÞMθðx; yÞ†g ¼ trFCDfMðx; yÞMðx; yÞ†g ¼ KMðx; yÞ; ðA8Þ

which implies that the same upper bound applies toM and
Mθ in Eq. (29), i.e., CMθ ¼ CM, and the same constant
C̃M ¼ C̃Mθ appears in the bound Eq. (37). Using now
Eq. (A6) one finds

hOθ
M −OMi ¼ hOMθ −OMi

¼ −i
X
a

θa

Z
1

0

dαhCaOMαθi: ðA9Þ

The integrand on the right-hand side obeys the bound
Eq. (37), and since C̃Mαθ ¼ C̃M are independent of α one
finds

jhOθ
M −OMij ≤

X
a

jθaj
Z

1

0

dαjhCaOMαθij

≤ δm
C̃MΔDmax

mnþ1
0

X
a

jθaj: ðA10Þ

Since this bound is independent of V and remains finite in
the symmetric limit, one has

lim
δm→0

lim
V→∞

hOθ
M −OMi ¼ 0: ðA11Þ

This implies hOθ
Mi ¼ hOMi in the thermodynamic and

symmetric limit, for any θ, and so vector flavor symmetry
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cannot be spontaneously broken if the assumptions of
Sec. II are satisfied.

2. Vanishing of order parameters

Under SUðNfÞ vector flavor transformations, the matrix
M transforms in the product representation with n funda-
mental and n antifundamental factors. This is a unitary
representation that can be decomposed in the direct sum of
unitary irreducible representations. The most general M is

then the linear combination of matrices MðRÞ
r ðx; yÞ,

ðMðRÞ
r Þf1A⋆1…fnA⋆ng1B⋆1…gnB⋆nðx; yÞ
¼ ðT ðRÞ

r Þf1…fng1…gnM̃A⋆1…A⋆nB⋆1…B⋆nðx; yÞ; ðA12Þ

where M̃ is a matrix acting only on color and Dirac space
that can depend on the gauge variables in a suitably gauge-

covariant way, and where T ðRÞ
r , r ¼ 1;…; dR, are constant

tensors in flavor space, independent of the gauge variables
and of any feature of the theory other than the number
of flavors, that transform irreducibly under vector flavor
transformations [see Eq. (A7) for the notation],

T ðRÞθ
r ¼

X
r0
T ðRÞ

r0 DðRÞðVðθÞÞr0r; ðA13Þ

with DðRÞðVÞ the representative of V ∈ SUðNfÞ in the
irreducible unitary representation R of dimension dR. For
these quantities one has in the thermodynamic and sym-
metric limit [see Eq. (A11)]

uðRÞr ≡ hO
T ðRÞ

r M̃
i ¼ hOθ

T ðRÞ
r M̃

i
¼

X
r0
hOT ðRÞ

r0 M̃iDðRÞðVðθÞÞr0r

¼
X
r0
uðRÞr0 DðRÞðVðθÞÞr0r; ðA14Þ

which expresses the invariance of the vector uðRÞ with

components uðRÞr , r ¼ 1…; dR, under an arbitrary SUðNfÞ
transformation. No nonzero invariant vector exists if R is a
nontrivial representation [79], so uðRÞ ¼ 0 follows unless R

is the one-dimensional trivial representation, and all order
parameters vanish.

3. Bound on partial traces

Let A be a matrix with entries labeled by pairs of an
arbitrary number of indices. Denote the subset of indices
corresponding to an “internal” space I collectively by I,
and denote the remaining ones collectively by x, i.e., the
matrix entries are labeled as AI0Iðx0; xÞ. The partial trace
over the internal space of the matrix Aðx0; xÞ†Aðx0; xÞ,
where Hermitian conjugation and matrix multiplication are
understood to apply only to the internal indices, satisfies the
bound

trIAðx0; xÞ†Aðx0; xÞ ¼ trIAðx0; xÞAðx0; xÞ†
≡X

I;I0
AI0Iðx0; xÞAI0Iðx0; xÞ�

≤ dim IkAk2; ðA15Þ

where kAk is the usual operator norm of A. This is equal to
the square root of the largest eigenvalue of the matrix A†A,
where Hermitian conjugation and matrix multiplication are
understood to apply to all the indices [see Eqs. (9) and (10)
for the notation].
Proof By the spectral theorem, the Hermitian matrix

A†A can be written as follows,

A†A ¼
X
n

a2nϕnϕ
†
n;

ðA†AÞI0Iðx0; xÞ ¼
X
n

a2nϕnI0 ðx0ÞϕnIðxÞ�; ðA16Þ

where a2n are its real positive eigenvalues and ϕn are a
complete set of orthonormal eigenvectors, ðA†AÞϕn ¼
a2nϕn, with

ðϕn0 ;ϕnÞ≡
X
x;I

ϕn0IðxÞ�ϕnIðxÞ ¼ δn0n;

X
n

ϕnI0 ðx0ÞϕnIðxÞ� ¼ δI0Iδðx0; xÞ: ðA17Þ

Since trIAðx0; xÞ†Aðx0; xÞ ≥ 0 for any x0, one finds

trIAðx0; xÞ†Aðx0; xÞ ¼ trIðA†Þðx; x0ÞAðx0; xÞ ≤
X
x0
trIðA†Þðx; x0ÞAðx0; xÞ ¼ trIðA†AÞðx; xÞ

¼
X
I;n

a2nϕnIðxÞϕnIðxÞ� ≤ ðmax
n0

a2n0 Þ
X
I;n

ϕnIðxÞϕnIðxÞ� ¼ kAk2
X
I

δIIδðx; xÞ

¼ dim IkAk2: ðA18Þ
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4. Extension to absolutely integrable MAB

The requirement of continuity of MAB, used in Sec. IV
to boundKM independently of the gauge configuration and
uniformly in the volume, can be relaxed to the requirement
that the entries MAB be absolutely integrable, a condition
conveniently expressed as

hKMðx; yÞ12iG ¼ hðtrFCDfMðx; yÞMðx; yÞ†gÞ12iG < ∞:

ðA19Þ

Since jX1j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i jXij2
p

≤
P

i jXij, this condition is
equivalent to hjMABðx; yÞjiG < ∞ ∀ A;B. It is further
assumed that Eq. (A19) remains true in the thermody-
namic limit.
Under the assumption of a positive integration measure,

and under assumption (1.) in Sec. II on the norm of the
propagator, this suffices to prove convergence of hOMi.
Using this assumption in the first inequality in Eq. (40) one
finds

jhOMij ≤ n!ðNfNcNDÞn2hKMðx; yÞ12kSMkniG
≤
n!ðNfNcNDÞn2

mn
0

hKMðx; yÞ12iG; ðA20Þ

which under the absolute-integrability condition discussed
above is a finite bound that remains so as V → ∞.

Using also assumption (2.) in Sec. II one can prove the
impossibility of vector flavor symmetry breaking. Starting
from Eq. (27), and using Eqs. (33) and (35) and the
assumptions on kSMk and kΔDk, one finds
��� ∂

∂θa
hOθ

Mi
���
θ¼0

��� ≤ δmC̄nhKMðx; yÞ12kSMknþ1kΔDkiG

≤ δm
C̄nΔDmax

mnþ1
0

hKMðx; yÞ12iG; ðA21Þ

where C̄n ≡ nn!ðNfNcNDÞn2ð 1
2Nf

Þ12. Since the last factor is

finite with a finite thermodynamic limit thanks to the
assumption of absolute integrability, the desired result,
Eq. (38), follows.
The case of finite transformations is obtained by a

straightforward extension of the argument of Appendix
A 1: since the right-hand side of Eq. (A21) is unchanged
when replacing M → Mαθ, one has

jhOθ
M −OMij ≤

X
a

jθaj
Z

1

0

dαjhCaOMαθij

≤ δm
C̄nΔDmax

mnþ1
0

hKMðx; yÞ12iG
X
a

jθaj;

ðA22Þ
from which Eq. (A11) follows under the assumption of
absolute integrability.
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