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The step-scaling function, the discrete analog of the renormalization group β function, is presented for
the SU(3) gauge system with eight flavors in the fundamental representation. Our investigation is based on
generating dynamical eight-flavor gauge field configurations using stout-smeared Möbius domain wall
fermions and Symanzik gauge action. On these gauge field configurations we perform gradient flow
measurements using the Zeuthen, Wilson, or Symanzik kernel and consider the Symanzik, Wilson
plaquette, or clover operators to determine step-scaling functions for a scale change s ¼ 2 including large,
up to 484, volumes. Considering different flows and operators as well as the optional use of tree-level
improvement allows us to check for possible systematic effects. Our result covers the range of renormalized
coupling up to g2c ≲ 10. In the case ofNf ¼ 8we observe that the reach in g2c is limited due to an unphysical
first-order bulk phase transition presumably caused by large ultraviolet fluctuations. We compare our
findings to Nf ¼ 4, 6, 10 or 12 flavors results that are obtained using the same lattice action and analysis.
In addition we investigate the phase structure for simulations with different number of flavors using
stout-smeared Möbius domain wall fermions and Symanzik gauge actions to shed some light on the limited
reach in g2c.
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I. INTRODUCTION

The SU(3) gauge theory with Nf ¼ 8 fundamental
fermions is among the most interesting beyond quantum
chromodynamics (QCD) systems. Even though it has been
studied in lattice simulations extensively, its infrared
nature, i.e. whether it is conformal or chirally broken, is
still unknown (see e.g. [1–13] and references therein). It has
even been suggested that due to special anomaly cancella-
tions in the massless model, Nf ¼ 8 flavors might be the
sill of the conformal window [14].
In any case, the Nf ¼ 8 system is expected to be close to

the conformal window, making it an excellent choice for
composite Higgs models, either with all eight flavors
massless or as a mass-split system [15–20] where some
of the flavors are “heavy” and decouple in the infrared (IR)

limit. In applications like the composite Higgs model, it is
assumed that the system is chirally broken in the IR, but a
“nearby” infrared fixed point (IRFP) drives its low-energy
dynamics. Such an IRFP occurs at strong coupling where
a nonperturbative approach is necessary to study the IR
properties of the system. Several lattice groups have carried
out large scale simulations to investigate the phase structure
[2,6,13,14], the step-scaling renormalization group β func-
tion [1,4,5], and the hadron spectrum [3,7–12] of the SU(3)
8-flavor model. While lattice calculations support the
expectation that SU(3) with 8 fundamental fermions is
close to the conformal window, even the latest large-scale
simulations of the hadron spectrum could not unambigu-
ously determine its infrared nature [21]. The analysis of the
observed meson spectrum is consistent with a dilaton chiral
perturbative description as much as with conformal hyper-
scaling [22–26].
Many of the above mentioned works identified a bulk

phase transition of the Nf ¼ 8 model that prevented the
numerical simulations to investigate the strong coupling
regime of the system. Recently it was proposed to add a set
of Pauli-Villars (PV) style heavy bosons with mass at the
cutoff level to remove part of the discretization effects
introduced by the fermions [27]. First results for the
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Nf ¼ 8 system indicate that the first-order bulk phase
transition can be weakened and even made continuous
once the gauge fields are sufficiently smooth [14]. Finite-
size scaling analysis using PV improved actions predict
a continuous phase transition favoring a Berezinski-
Kosterlitz-Thouless (BKT) type “walking” scaling, i.e. a
renormalization group β function that just touches zero
[28–30]. This scaling behavior suggests that the 8-flavor
system could be the sill where the conformal window
opens up. This is an unexpected result that may have
important consequences not only for theories describing
beyond standard model physics but also for studies of four-
dimensional conformal systems in general. The conclusion
of “walking” scaling should be checked by independent
lattice studies preferably using different actions and/or
different lattice methods.
In this work we discuss results on the renormalization

group step-scaling function of the 8 flavor system using
Möbius domain wall fermions (MDWF). It completes our
systematic investigation of theories withNf ¼ 2–12 flavors.
In previous publications we reported on the Nf ¼ 4 and 6
[31], 10 [32,33], and 12 [33,34] flavor systems, while we
have published results using a slightly different quantity, the
continuous β function with Nf ¼ 2 [34,35] and 0 [36]
flavors. Figure 1 summarizes our findings in the c ¼ 0.3
gradient flow (GF) step-scaling scheme with scale change
s ¼ 2. Comparison of the nonperturbative results with
perturbation theory shows that the nonperturbative results
sit between the universal 2-loop and 3-loop GF scheme
prediction.While our 12 flavor data show a strong indication
of an infrared conformal fixed point, ourNf ¼ 10 data donot
reach strong enough couplings to unambiguously identify
a fixed point.1 The reach of our Nf ¼ 8 simulations is
similarly restricted. The limited range of accessible gauge
coupling is due to an unphysical bulk first-order phase
transitions in lattice simulations. Up to renormalized cou-
pling g2c¼0.3 ≲ 10 the step-scaling function of the 8-flavor
system shows a steady rise. This, however, is not in contra-
diction with the result of Ref. [14] that suggests 8-flavor
could be the sill of the conformal window. The predicted
value of the gauge coupling at the fixed point is g2c¼0.3 ≳ 25,
well outside the reach of the present work.2 Improved lattice
actions will be needed to reach stronger gauge couplings in
MDWF simulations to be able to verify the claims of
staggered fermion simulations in Ref. [14].

The limited reach in the renormalized coupling g2c
prompted us to study the phase structure of SU(3) gauge
system withNf ¼ 2–12 flavors in greater detail. Performing
dynamical MDWF simulations in the strong coupling region
on small 84 lattices, we compute the gradient flow coupling
g2c¼0.3 and show how its value varies as we change the bare
coupling3 βb in Fig. 2. For systems with six or more flavors,
weobserve a discontinuity that growswith the flavor number.
This first-order transition is at least partially related to lattice
ultraviolet fluctuations. For any given lattice action it
constrains the bare coupling values that are connected to
the perturbative Gaussian fixed point, and consequently
limits the largest renormalized coupling values in finite
volumes. With Nf ¼ 8 flavors the strongest renormalized
coupling we can reach is g2 ≈ 14.0 at βb ¼ 3.98. However,
the simulations show a wide hysteresis loop that indicates
that valueswith βb < 4.02 are in amixed phase. To avoid this
problemwe consider bare couplings βb ≥ 4.02. Using lattice
volumes 8 ≤ L=a ≤ 48, our predictions of the s ¼ 2 step-
scaling function in the SU(3) 8-flavor system are limited to
g2c ≲ 10. The accessible range of renormalized gauge cou-
plings could be increased by using larger volumes, or by
improving the lattice action.
In the next section we discuss the details of our lattice

setup investigating SU(3) with eight fundamental fermions
before we present our step-scaling calculation in Sec. III.
Subsequently we report further details on our investigations
of the bulk phase transition that restricts the accessible
parameter range with Nf ¼ 2–12 flavors and close by
summarizing our work in Sec. V.
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FIG. 1. Comparison of the step-scaling functions for Nf ¼ 4, 6,
8, 10 and 12 using the c ¼ 0.300 GF scheme and scale
change s ¼ 2.

1At present there is no consensus on the onset of the conformal
window for SU(3) gauge-fermion systems. While [2,14,37]
conclude Nf ¼ 8 to be conformal with the implication that also
Nf ¼ 10 and 12 are conformal, Refs. [38–42] see no sign of an
IRFP in their Nf ¼ 12 and 10 data and deduce the systems are
chirally broken.

2Figures 3 and 4 of Ref. [14] show that in the c ¼ 0.45 scheme
g2 ≈ 30 at the phase transition. The corresponding value is
somewhat smaller with c ¼ 0.30.

3We add a subscript “b” to better distinguish the bare gauge
coupling β from the renormalization group β function.
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II. DETAILS OF OUR CALCULATION

We simulate the SU(3) gauge system with eight dyna-
mical fermions in the fundamental representation using
the tree-level improved Symanzik (Lüscher-Weisz) gauge
action [43,44] and three times stout-smeared [45] MDWF
[46]. The domain wall height is M5 ¼ 1.0, the Möbius
parameters are b5 ¼ 1.5, c5 ¼ 0.5, and the stout-smearing
parameter ϱ ¼ 0.1. These are the same choices we used
for our previous investigations of SU(3) with Nf ¼ 2

flavors [35], 4 or 6 flavors [31], 10 [32,33] or 12 [33,34]
of fundamental fermions. Gauge field configurations are
generated with antiperiodic (periodic) boundary conditions
for the fermions (gauge field) in all four space-time direc-
tions using the hybrid Monte Carlo (HMC) [47] update
algorithm as implemented in GRID4 [48]. Choosing a
trajectory length of τ ¼ 2 molecular dynamic time units
(MDTU), we save, after thermalization, gauge field
configurations every five trajectories. As preferred for step-
scaling calculations, we simulate symmetric ðL=aÞ4 hyper-
cubic volumes with L=a ¼ 8, 10, 12, 16, 20, 24, 32, and 48
and choose amf ¼ 0. Our preferred analysis is based on
choosing the scale change s ¼ 2 considering the five
volume pairs ð8→ 16Þ, ð10→20Þ, ð12→24Þ, ð16→ 32Þ,
and ð24 → 48Þ. For all volumes we perform simulations
using bare gauge couplings βb≡6=g20 ∈ f7.00;6.50;6.00;
5.50;5.50;4.70;4.50;4.40;4.30;4.25;4.20;4.20;4.15;4.10;
4.05;4.03;4.02g, where the smallest βb values are, however,
only simulated on the smaller volumes to achieve on all
s ¼ 2 volume pairs roughly the same reach in the renor-
malized coupling and staying in the deconfined regime.
The number of generated, thermalized configurations as well

as further details are listed in in Table I in Appendix A.
Typically we generated several hundred MDTU on the small
volumes, but only 170–200 MDTU on the largest L=a ¼ 48
volumes. We perform simulations with bare coupling βb >
4.20 using an extent of Ls ¼ 12 for the fifth dimension of
domain wall fermions, while Ls ¼ 16 is chosen for
βb ≤ 4.20. As demonstrated in our previous work [32–34]
but also shown in Fig. 3, this choice ensures that the residual
chiral symmetry breaking present for MDWF expressed as
the residual mass amres remains sufficiently small, below
10−4 for βb ≤ 4.10. However, amres increases rapidly for
even stronger coupling.
Subsequently we read-in these gauge field configura-

tions to perform gradient flow measurements. Gradient
flow measurements are separated by 10 MDTU and carried
out using Qlua5 [49]. We perform a total of three different
gradient flows; Wilson (W), Symanzik (S) and Zeuthen (Z)
[50,51] flow. For each flow we determine the Wilson
plaquette (W), Symanzik (S) and clover (C) operator to
estimate the energy density hEðtÞi as a function of the
gradient flow time t. In addition we estimate the topological
charge Q at flow time t.
While MDWF have in general good chiral properties

protecting our zero mass simulations from effects due to
nonzero topological charges, we do observe some topologi-
cal artifacts similar to those encountered in our Nf ¼ 10
simulations [52]. Since statistically only very few artifacts
show up within a given set of measurements, we decided
to simply project to the Q ¼ 0 sector by including
only configurations with jQj < 0.5 which is motivated by
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FIG. 3. Residual mass amres as a function of the bare coupling
βb determined on ðL=aÞ4 volumes with L=a ¼ 32 for SU(3)
gauge systems with Nf ¼ 4, 6, 8, 10, or 12 flavors. Different
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FIG. 2. The renormalized gauge coupling determined using
Symanzik gauge action, Zeuthen flow, and Symanzik operator in
the c ¼ 0.30 scheme on 84 volumes as the function of the bare
coupling for Nf ¼ 2–12 flavors.

4https://github.com/paboyle/Grid. 5https://usqcd.lns.mit.edu/w/index.php/QLUA.
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the more sophisticated procedure used by the Alpha
Collaboration [53,54]. Using these measurements we per-
form the statistical data analysis using the Γ-method [55] to
estimate and accounts for effects due to autocorrelations.

III. STEP-SCALING ANALYSIS

Central for the gradient flow step-scaling function,
is to define the finite volume gradient flow coupling
g2GFðt;L; βbÞ [56],

g2GFðt;L; βbÞ ¼
128π2

3ðN2 − 1Þ
1

Cðt; L=aÞ ht
2EðtÞi; ð1Þ

where the constants are chosen to match the perturbative
1-loop result in the MS scheme [57] with N ¼ 3 for
the SU(3) gauge group. The coefficient Cðt; L=aÞ is a
perturbatively computed tree-level improvement term6 [58].
When we analyze the data without tree-level improvement,
we compensate for zero modes of the gauge field in periodic
volumes by replacing Cðc; L=aÞ with 1=ð1þ δðt=L2ÞÞ [56].
The flow time t is connected to the lattice size L,

t ¼ ðcLÞ2=8; ð2Þ
and the parameter c specifies the finite volume renormaliza-
tion scheme. Inorder toobtain thegradient flowstep-scalingβ
function [56] for a scale change s, the difference of the
gradient flow coupling on volume ðL=aÞ4 and ðs · L=aÞ4
needs to be determined

βc;sðg2c;L; βbÞ ¼
g2cðsL; βbÞ − g2cðL; βbÞ

log s2
; ð3Þ

with g2cðL; βbÞ ¼ g2GFðt ¼ ðcLÞ2=8;L; βbÞ. Defining the
renormalized coupling g2c at a bare coupling βb implies that
g2c is subject to cutoff effects. The phenomenologically
meaningful result is obtained after taking the continuum
limit, which for the step-scaling function corresponds to
taking t=a2 → ∞, or equivalently L=a → ∞ while keeping
g2cðL; βbÞ fixed. Thus, at a fixed value of g2c, the bare coupling
is tuned toward the Gaussian fixed point i.e. g20 ¼ 6=βb → 0

for increasing L=a. In practice we perform simulations on a
limited set of lattice volumes and compensate for that by
simulating at different values of the bare coupling βb.
Combining these simulations at different bare coupling,
allows us to cover the investigated range of the renormalized
coupling and enables to take the L=a → ∞ continuum limit
of the step-scaling βc;sðg2c;LÞ at fixed g2c. In the end this leads
to the continuum step-scaling β function βc;sðg2cÞ in the
renormalization scheme c.
Our analysis starts by following Eq. (1) to calculate

renormalized couplings g2cðL; βbÞ for all volumes using

a given flow-operator combination (withorwithout tree-level
improvement) and either of the three renormalization
schemes (c ¼ 0.300, 0.275, and 0.250) considered. In the
following we refer to the different flow and operator
combinations using the shorthand notation [flow][operator]
(indicated by the first capital letter) and prefix an “n” when
the tree-level improvement termCðc; L=aÞ is included in our
analysis. Aswe detail later, our preferred analysis is based on
Zeuthen flow and Symanzik operator, both with and without
the use of tree-level improvement and referred to as (n)ZS.
For these (n)ZS combinations we list the renormalized
couplings together with corresponding integrated autocor-
relation times in Table I in Appendix A and will use (n)ZS in
the following to detail our analysis steps.
Nextwe calculate discrete βc;sðg2c;LÞ functions, defined in

Eq. (3), for all five volume pairs with scale change of s ¼ 2.
We show these discrete βc;sðg2c;LÞ functions by the colored
symbols in the top row plots in Fig. 4. Figure 4 shows our
analysis for the c ¼ 0.300 renormalization scheme and
corresponding plots for schemes c ¼ 0.275 and 0.250 are
shown in the Appendix B, Figs. 11 and 12, respectively.
Motivated by the perturbative expansion

βc;sðg2c;LÞ ¼
Xn

i¼0

big2ic : ð4Þ

we interpolate these discrete βc;sðg2c;LÞ functions by
performing a polynomial fit and achieve a good description
of our data using a polynomial of degree n ¼ 3. Since
discretization effects at weak coupling are sufficiently small
when using tree-level normalization (tln), we constrain the
intercept b0 to vanish but fit b0 without tln. The outcome of
these interpolating fits are listed in Table II and the resulting
finite volume discrete step-scaling functions βc;sðg2c;LÞ at
continuous values of g2c are shown in top row plots of
Figs. 4, 11, and 12 by the shaded bands in the same color as
the values of the discrete βc;sðg2c;LÞ functions.
In the next step we extrapolate these continuous-in-g2c

finite volume discrete step-scaling functions to the con-
tinuum limit at fixed values of g2c to obtain phenomeno-
logically meaningful results. Specifically we choose two
different fit ansätze to perform these extrapolations which
enables us to check for consistency. Our first choice is
to perform a linear fit in ða=LÞ2 using only our three lar-
gest volume pairs 12 → 24, 16 → 32, and 24 → 48. This
fit is shown by a solid black line with a gray error band
in top row plots of Figs. 4, 11, and 12 with corresponding
p-values given by the solid black in the second row plots.
Secondly we perform a quadratic fit in ða=LÞ2 using all five
volume pair and visualize it by the black dash-dotted lines.
Details of these continuum extrapolations fits are presented
for four selected values of g2c in the bottom two rows of
Figs. 4, 11, and 12. While linear and quadratic fits result in
consistent continuum step-scaling functions for nZS and
ZS for all c schemes across the range of g2c covered, the

6Numerical values for L=a ≤ 32 are listed Table III of Ref. [34]
and for L=a > 32 in Table V of Ref. [31].
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goodness of fit (p-value) is typically higher for nZS than
ZS. In particular quadratic fits for ZS in the range 5.5 ≤
g2c ≤ 8.5 exhibit low, if not zero, p-values. Taking a look at
the finite volume step-scaling functions in the top row plots,
these poor p-values correspond to the 8 → 16 and/or 10 →
20 data having a different “shape” than the other volume
pairs. This is a sign of these volumes being too small for
these strong coupling. Consequently, we use the linear fits
as our preferred analysis and only show quadratic fits for
consistency.
While the continuum results are expected to be free of

discretization effects, they may nevertheless be subject to

other systematic effects. In addition to varying the ansatz
for the continuum limit extrapolation, we therefore also
take advantage of our additional gradient flow measure-
ments and repeat the analysis for all different flow-operator
combinations with and without using tln. Choosing again
four selected values g2c across the rangewhere we have data,
we compare the different determinations of βc;sðg2cÞ in
Fig. 5 where the different rows show our three different c
schemes and the columns align different g2c values.
Highlighting our preferred (n)ZS analysis by the shaded
blue bands, we observe an overall consistency of the 18
different analysis mostly at the 1σ level. However, we note
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FIG. 5. Systematic effects on the Nf ¼ 8 results for βc;sðg2cÞ due to tree-level improvement, different flows and operators as well as
linear or quadratic continuum extrapolation fits. In all cases we obtain the continuum limit considering a linear extrapolation to the three
largest volume pairs and a quadratic extrapolation to all volume pairs. The columns show our continuum limit results at selective
g2c ¼ 2.0, 4.3, 6.6, and 9.0; the rows correspond to renormalization schemes c ¼ 0.300, 0.275, 0.250. Open symbols indicate
extrapolations with a p-value below 5%. The vertical shaded bands highlight our preferred (n)ZS analysis.
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that the spread increases as we move to smaller schemes c
and/or to stronger coupling g2c. The total number of “out-
liers” not touching the blue bands is very small. Therefore
we take the envelope of nZS and ZS to obtain our final
results which in particular for smaller c values visibly
increases the error of our final result.
We conclude our presentation on the Nf ¼ 8 step-scaling

function by showing in Fig. 6 how our final, nonperturbative
results7 based on nZSþ ZS compare to the universal
perturbative 1- and 2-loop predictions, the perturbative
3-loop prediction in the gradient flow scheme [60]. We also
include the 3-, 4-, and 5-loop predictions in the MS scheme
[61,62] in Fig. 6, though those are not universal and our
nonperturbative results are not expected to agree with them.
We show them only to illustrate the scheme dependence and
convergence of the perturbative expansions.
As in the case of our previous work for Nf ¼ 4 and 6

flavors [31], we observe that the perturbative step-scaling
function runs noticeable slower than the universal or MS-
scheme perturbative predictions. While 1- and 2-loop as
well as 3- and 4-loop are very close to each other, the 5-loop
prediction does not follow the trend sitting essentially
between the two groups. The 3-loop gradient flow scheme
prediction [60] shows poor convergence at strong coupling
(g2c ≳ 4) because it sharply turns around hinting at a fixed
point at g2c ∼ 7 where our nonperturbative β function grows
steadily. However, for weaker coupling 0 ≤ g2c ≲ 3.5 the
perturbative 3-loop GF prediction traces our nonperturba-
tive result. Hence, it would be extremely interesting to learn
how the GF perturbative scheme converges when higher-
loop corrections are considered.

IV. PHASE DIAGRAM FROM Nf = 2�12
WITH DOMAIN WALL FERMIONS

Figure 1 summarizes our results for the s ¼ 2 step
scaling function with Nf ¼ 4, 6, 8, 10, and 12 flavors.
The reach in the renormalized coupling g2c is limited by
the onset of chiral symmetry breaking for Nf ¼ 2 and 4
flavors and on larger volumes also forNf ¼ 6 flavors. With
Nf ≥ 8 the simulations even on our largest volumes never
reach the regime where chiral symmetry is broken, the
accessible gauge coupling is limited by the onset of a strong
first-order bulk phase transition. The situation is similar to
staggered fermion simulations where systems with Nf ≥ 8

undergo a bulk transition, thus limiting the value of the
strongest finite volume GF coupling. In most cases this
bulk transition is triggered by strong UV fluctuations and
can be mitigated by improving the action. Reference [27]
has shown that the inclusion of heavy Pauli-Villars type
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FIG. 6. Comparison of our final Nf ¼ 8 continuum results
obtained from our preferred (n)ZS dataset for c ¼ 0.300 (top),
0.275 (middle), and 0.250 (bottom) to universal 1- and 2-loop
perturbative predictions (red), 3-loop perturbative predictions in
the gradient flow scheme (purple) and 3-, 4-, and 5-loop MS
scheme predictions (orange). The latter three describe the step-
scaling function in a different scheme and are not expected to
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7ASCII files containing the data corresponding to our final
results (envelope of nZS and ZS) are uploaded as Supplemental
Material [59].
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bosons counter the induced gauge action of the fermions
and lead to numerical simulations with smoother gauge
fields at identical renormalized gauge coupling. The bulk
phase transition caused by UV fluctuations are shifted by
the smoother gauge fields and stronger gauge couplings are
accessible in simulations. Studies of the Nf ¼ 8 system
with staggered fermions and sufficient number of heavy PV
bosons suggest that the bulk first-order phase transition
turns to a bulk continuous phase transition that favors
“walking scaling”, i.e. a β function that just touches zero.
This scenario would make Nf ¼ 8 the sill of the conformal
window, a possibility that most likely is related to ’t Hooft
anomaly cancellation with two sets of staggered fermions
[63,64]. The phase transition occurs at a rather strong g2�
gauge coupling. The value of g2� depends on the renorm-
alization scheme, preliminary results indicate g2� ≳ 25 in the
c ¼ 0.30 GF scheme and not in the range of existing
simulations that do not utilize PV improvement.
Our MDWF simulations has similar limitations as

staggered ones. With our action we cannot reach the regime
g2c ≳ 10. Trying to push the simulations to stronger cou-
pling we first observe that residual mass amres, para-
metrizing the residual chiral symmetry breaking present
in domain wall fermions, starts to grow. As we show in
Fig. 3, the residual mass at weak coupling does not show
any dependence on the number of flavors. This changes
when the bare coupling drops below 5.5 where slight
differences in amres for different Nf become visible. These
differences grow for stronger coupling likely related to the
phase structure of the system.
To get a better understanding of the phase structure and

bulk transitions of SU(3) gauge systems with Nf ¼ 2, 4, 6,
8, 10, or 12 flavors we performed a large number of
dedicated small 84 simulations using the same stout-
smeared MDWF with Symanzik gauge action. For all
these simulations we fix the fifth extent of domain-wall
fermions to be Ls ¼ 12. First we explore the weak coupling
“branch” by starting from existing configurations at βb ¼
4.05 and decrease βb in steps of 0.02 down to 3.91. We
observe clear first-order phase transitions for Nf ≥ 6, while
Nf ¼ 2 and 4 show a smooth behavior. Near the transitions
we fill in steps of 0.01. Second we explore the strong
coupling branch starting from configurations at βb ¼ 3.91
and increase βb in steps of 0.02 again filling in steps of 0.01
near the transitions. For all simulations we generate at least
1000 trajectories with trajectory length τ ¼ 2 MDTU and
use at least 200 trajectories for thermalization. In cases
where the transition occurs “late” or we observe interesting
fluctuations, we run these ensembles for at least another
1000 trajectories. With our statistics we have not observed
multiple tunneling in any of the systems, and in some cases
we cannot exclude that a tunneling event may occur later.
We investigate the behavior of the plaquette, the

Polyakov line, the chiral condensate, and the finite volume
renormalized gauge coupling in the c ¼ 0.30 scheme as the

function of the bare coupling βb. We have already discussed
the renormalized gauge coupling in the Introduction, where
in Fig. 2 we show only the weak coupling branch. In
Figs. 7–9 we show the plaquette, the absolute value of the
Polyakov line, and the chiral condensate both from the
weak and strong coupling start simulations. All quantities
show the bulk phase transition at identical bare couplings
for Nf ≥ 6, while Nf ¼ 2 and 4 are consistent with a
crossover transition. The increased width of the hysteresis
loop is consistent with the increasing discontinuity of the
phase transition for Nf ≥ 6.
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TheNf ¼ 2 and 4 systems do not show any discontinuity,
though at strong coupling both the Polyakov line (Fig. 8) and
the chiral condensate (Fig. 9) indicate a transition from the
deconfined weak to the confining strong coupling regime.
This transition occurs at strong bare coupling where we
expect the residual mass to be large, amres ≳ 0.1. These
simulations probe the system at finite mass and are not
necessarily indicative of the finite temperature chiral tran-
sition. We observe a very different behavior for Nf ≥ 6. All
observables indicate a first-order phase transition from the
deconfined phase with large Polyakov line to a confined
phase where the Polyakov line is small (Fig. 8). The chiral
condensate also shows a transition from a chirally symmetric
to a chirally broken regime, but the condensate is very
different from the behavior observed for the Nf ¼ 2 and 4
flavor systems. After a discontinuity, hψ̄ψi decreases as the
gauge coupling gets stronger, while with small number of
flavorsweobserve the opposite trend.At this pointwe cannot
tell if we observe a new phase, possibly the analogue of the
single site shift symmetry (S4) broken phase observed in
many staggered fermion simulations [65], or the breakdown
of the MDWF action where the mobility edge of the domain
wall kernel is comparable or below the domain wall height
[66,67]. Simulations with improved actions where the first-
order phase transition occurs on smoother gauge configura-
tions could clarify this uncertainty in the future.
Independent on the nature of the bulk phase transition, it

limits the accessible parameter range of the simulations. The
finite volume gradient flow coupling is defined at a fixed
fraction of the lattice volume,

ffiffiffiffi
8t

p ¼ cL. Larger volumes
allow larger flow times, thus larger renormalized couplings.
In practice the smallest lattice volumes used in the analysis

determines the strongest renormalized gauge coupling of the
step-scaling function. In Fig. 2 we show g2c¼0.3 on 84

volumes. On larger volumes the gauge coupling at fixed c
increases, but its value is still limited. In addition, numerical
simulations very close to the bulk transition could pick up
scaling behavior characteristic to that transition. In this work
we limited the bare couplings to βb ≥ 4.02 to avoid con-
tamination from the bulk transition.

V. SUMMARY

In this work we have reported our results of the step-
scaling function of the SU(3) gauge Nf ¼ 8 fundamental
flavors system. Our continuum limit results are consistent
with prior calculations based on staggered lattice fermions
as shown in Fig. 10. While all numerical results in Fig. 10
use the same gradient flow renormalization scheme
c ¼ 0.30, the scale change is different. Judging from the
differences between the 4-loop perturbative results in the
MS scheme for s ¼ 2 and s ¼ 1.5 shown for reference in
Fig. 10, we infer that the difference caused by switching
from s ¼ 2 to s ¼ 1.5 in the nonperturbative numerical
calculation could be of similar magnitude as the observed
changes of the nonperturbative results. We tried to confirm
this by repeating our analysis with s ¼ 1.5 forming the
volume pairs ð8 → 12Þ, ð16 → 24Þ, and ð32 → 48Þ but
unfortunately were not able to obtain a conclusive result.
The two larger volume pairs, ð16 → 24Þ and ð32 → 48Þ
turn out to be too noisy, whereas 84 volumes are too small
to be reliable in a linear continuum extrapolation in a2=L2.
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This completes our first approach to investigate the
renormalization group properties of SU(3) gauge systems
with Nf ¼ 2–12 fundamental fermions using chirally sym-
metric Möbius domain wall fermions and Symanzik gauge
action.
Most existing numerical simulations of many-flavor

systems encounter a first-order bulk phase transition at
strong coupling. This phase transition limits the parameter
range of the simulations and restricts the strongest renor-
malized gauge coupling that can be reached at energy
scales comparable to the inverse lattice size. Comparison of
results obtained using different lattice actions shows that
the discontinuity of the bulk transition depends strongly on
the action. This suggests that, at least to some extent, the
bulk phase transition is caused by strong ultraviolet lattice
fluctuations, and improved lattice actions may open up the
parameter space allowing to study many-flavor systems at
stronger gauge couplings.
The results presented in this work reach up to g2c ∼ 10,

much below the possible continuous phase transition
suggested in Ref. [14]. The phase diagram shows that
the simulations are limited by a bulk first-order transition
and an improvement similar to the case of staggered
fermions could help opening up the parameter space.
This is, however, beyond the scope of the present work.
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APPENDIX A: RENORMALIZED COUPLINGS g2c AND DETAILS
OF THE POLYNOMIAL INTERPOLATION

TABLE I. Details of our preferred analysis for Nf ¼ 8 based on Zeuthen flow and Symanzik operator. For each ensemble specified by
the spatial extent L=a and bare gauge coupling βb we list the number of measurementsN as well as the renormalized couplings g2c for the
analysis with (nZS) and without tree-level improvement (ZS) for the three renormalization schemes c ¼ 0.300, 0.275 and 0.250. In
addition the integrated autocorrelation times estimated using the Γ-method [55] are listed in units of 10 MDTU.

c ¼ 0.300 c ¼ 0.275 c ¼ 0.250

L=a βb N g2cðnZSÞ g2cðZSÞ τint g2cðnZSÞ g2cðZSÞ τint g2cðnZSÞ g2cðZSÞ τint

8 7.00 991 1.4494(21) 1.5233(22) 0.51(5) 1.4427(17) 1.5506(18) 0.50(5) 1.4342(14) 1.5962(15) 0.50(5)
8 6.50 1041 1.6582(24) 1.7427(25) 0.53(6) 1.6486(20) 1.7719(21) 0.52(6) 1.6368(16) 1.8217(17) 0.52(6)
8 6.00 1001 1.9504(28) 2.0498(30) 0.51(6) 1.9354(24) 2.0801(26) 0.54(6) 1.9173(19) 2.1339(21) 0.53(6)
8 5.50 1041 2.3478(35) 2.4674(36) 0.53(7) 2.3271(29) 2.5011(31) 0.56(6) 2.3020(24) 2.5620(26) 0.56(6)
8 5.00 1091 2.9989(48) 3.1517(50) 0.61(7) 2.9627(37) 3.1842(40) 0.54(6) 2.9196(29) 3.2494(32) 0.50(4)
8 4.70 1091 3.6321(64) 3.8172(67) 0.62(8) 3.5762(52) 3.8436(56) 0.61(8) 3.5107(42) 3.9072(47) 0.60(8)
8 4.50 1001 4.2508(82) 4.4675(86) 0.68(9) 4.1754(67) 4.4877(73) 0.66(9) 4.0861(55) 4.5477(61) 0.65(9)
8 4.40 862 4.6547(93) 4.8919(98) 0.62(8) 4.5647(76) 4.9060(82) 0.59(8) 4.4583(61) 4.9619(67) 0.56(7)
8 4.30 1031 5.2072(98) 5.473(10) 0.62(8) 5.0962(81) 5.4773(87) 0.60(7) 4.9627(66) 5.5232(73) 0.58(7)
8 4.25 957 5.560(13) 5.843(14) 0.7(1) 5.432(11) 5.838(12) 0.7(1) 5.2778(93) 5.874(10) 0.7(1)
8 4.20 637 5.985(16) 6.290(17) 0.57(9) 5.840(13) 6.277(14) 0.56(8) 5.661(11) 6.301(12) 0.55(7)

(Table continued)
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TABLE I. (Continued)

c ¼ 0.300 c ¼ 0.275 c ¼ 0.250

L=a βb N g2cðnZSÞ g2cðZSÞ τint g2cðnZSÞ g2cðZSÞ τint g2cðnZSÞ g2cðZSÞ τint

8 4.15 415 6.555(23) 6.889(24) 0.51(7) 6.373(21) 6.849(22) 0.57(10) 6.149(17) 6.844(19) 0.58(10)
8 4.10 405 7.390(37) 7.766(39) 0.9(2) 7.144(32) 7.678(34) 0.9(2) 6.840(27) 7.612(30) 1.0(2)
8 4.05 398 8.741(63) 9.186(66) 1.2(3) 8.365(54) 8.990(58) 1.3(3) 7.903(45) 8.796(50) 1.4(4)
8 4.03 368 9.669(95) 10.16(10) 1.6(5) 9.189(80) 9.876(86) 1.5(5) 8.617(68) 9.591(75) 1.6(5)
8 4.02 356 10.06(12) 10.57(13) 1.8(6) 9.56(11) 10.27(11) 1.9(6) 8.940(85) 9.950(94) 1.8(6)

10 7.00 605 1.4735(28) 1.5026(29) 0.58(9) 1.4663(24) 1.5077(24) 0.59(9) 1.4576(20) 1.5193(21) 0.59(10)
10 6.50 605 1.6971(36) 1.7307(37) 0.7(1) 1.6862(30) 1.7339(31) 0.6(1) 1.6735(24) 1.7443(25) 0.62(10)
10 6.00 605 1.9964(41) 2.0358(42) 0.57(8) 1.9801(32) 2.0361(33) 0.50(4) 1.9619(26) 2.0449(27) 0.49(4)
10 5.50 605 2.4311(49) 2.4791(50) 0.55(8) 2.4060(39) 2.4740(40) 0.51(6) 2.3781(31) 2.4788(32) 0.49(6)
10 5.00 605 3.1295(69) 3.1913(70) 0.61(10) 3.0885(56) 3.1757(57) 0.57(8) 3.0428(44) 3.1716(45) 0.54(8)
10 4.70 605 3.7937(74) 3.8686(75) 0.51(6) 3.7352(59) 3.8407(61) 0.47(5) 3.6707(49) 3.8261(51) 0.49(4)
10 4.50 605 4.4778(91) 4.5662(93) 0.51(7) 4.3981(75) 4.5223(77) 0.49(7) 4.3103(61) 4.4927(63) 0.49(7)
10 4.40 605 4.962(12) 5.060(13) 0.7(1) 4.8611(97) 4.9985(100) 0.59(9) 4.7516(75) 4.9528(78) 0.53(9)
10 4.30 605 5.536(17) 5.645(17) 1.0(2) 5.422(14) 5.575(15) 1.0(2) 5.296(11) 5.520(12) 0.9(2)
10 4.20 605 6.415(17) 6.542(18) 0.7(1) 6.268(14) 6.446(15) 0.6(1) 6.106(12) 6.365(12) 0.62(10)
10 4.15 603 7.045(20) 7.185(21) 0.8(1) 6.881(17) 7.075(18) 0.8(1) 6.691(14) 6.974(15) 0.7(1)
10 4.10 600 7.917(39) 8.073(40) 1.8(5) 7.727(33) 7.945(34) 1.7(4) 7.498(27) 7.815(28) 1.5(4)
10 4.05 584 9.443(53) 9.629(54) 1.6(4) 9.202(46) 9.462(48) 1.4(3) 8.868(38) 9.243(40) 1.3(3)
10 4.03 567 10.596(54) 10.806(56) 1.1(3) 10.281(50) 10.572(51) 1.2(3) 9.863(45) 10.281(47) 1.1(3)

12 7.00 487 1.5027(36) 1.5170(36) 0.7(1) 1.4937(28) 1.5137(28) 0.7(1) 1.4832(21) 1.5123(22) 0.6(1)
12 6.50 498 1.7292(40) 1.7456(40) 0.7(1) 1.7171(31) 1.7402(32) 0.6(1) 1.7031(24) 1.7365(25) 0.53(8)
12 6.00 495 2.0341(48) 2.0535(48) 0.7(1) 2.0179(41) 2.0449(41) 0.7(1) 1.9991(33) 2.0383(34) 0.7(1)
12 5.50 491 2.4939(59) 2.5176(59) 0.6(1) 2.4676(46) 2.5007(46) 0.57(9) 2.4383(36) 2.4862(37) 0.52(8)
12 5.00 491 3.224(11) 3.255(11) 1.1(3) 3.1835(82) 3.2262(83) 0.9(2) 3.1376(60) 3.1992(62) 0.8(2)
12 4.70 494 3.941(12) 3.978(13) 1.1(2) 3.879(10) 3.931(11) 1.1(2) 3.8115(85) 3.8863(87) 1.1(2)
12 4.40 466 5.162(21) 5.211(21) 1.3(3) 5.063(16) 5.131(16) 1.1(3) 4.956(13) 5.053(13) 1.0(2)
12 4.30 467 5.859(23) 5.914(24) 1.1(3) 5.725(18) 5.802(18) 1.0(2) 5.584(14) 5.693(15) 0.9(2)
12 4.20 491 6.798(22) 6.862(22) 0.9(2) 6.638(18) 6.727(18) 0.8(2) 6.469(14) 6.596(15) 0.8(2)
12 4.15 490 7.429(32) 7.500(33) 1.3(3) 7.261(27) 7.358(27) 1.2(3) 7.081(22) 7.220(22) 1.1(3)
12 4.10 590 8.397(30) 8.477(30) 1.0(2) 8.205(24) 8.315(24) 0.9(2) 8.004(19) 8.161(19) 0.8(1)
12 4.05 577 9.866(48) 9.959(48) 1.6(4) 9.689(42) 9.819(42) 1.6(4) 9.468(35) 9.654(35) 1.4(3)
12 4.03 557 10.895(54) 10.999(54) 1.5(4) 10.711(52) 10.854(52) 1.6(4) 10.487(50) 10.693(51) 1.6(4)

16 7.00 592 1.5479(34) 1.5526(34) 0.7(1) 1.5363(25) 1.5429(25) 0.56(8) 1.5238(20) 1.5333(20) 0.52(7)
16 6.50 555 1.7838(44) 1.7893(44) 0.8(1) 1.7696(35) 1.7772(35) 0.7(1) 1.7541(28) 1.7650(28) 0.7(1)
16 6.00 305 2.1350(89) 2.1415(90) 1.2(3) 2.1112(69) 2.1202(69) 1.0(3) 2.0857(51) 2.0987(52) 0.8(2)
16 5.50 195 2.6065(93) 2.6145(94) 0.6(2) 2.5759(78) 2.5870(79) 0.6(2) 2.5429(65) 2.5588(65) 0.6(2)
16 5.00 339 3.379(17) 3.390(17) 1.6(5) 3.335(14) 3.350(14) 1.5(5) 3.287(11) 3.307(11) 1.4(4)
16 4.70 431 4.221(18) 4.234(18) 1.4(4) 4.143(14) 4.161(14) 1.2(3) 4.062(11) 4.087(11) 1.2(3)
16 4.50 208 5.015(40) 5.030(40) 2.4(10) 4.910(31) 4.931(31) 2.0(8) 4.802(23) 4.832(23) 1.7(6)
16 4.40 261 5.578(47) 5.595(47) 3(1) 5.456(36) 5.480(37) 3(1) 5.330(27) 5.363(28) 2.4(9)
16 4.30 369 6.258(23) 6.277(23) 1.0(3) 6.119(18) 6.145(18) 0.9(2) 5.974(14) 6.012(14) 0.8(2)
16 4.25 232 6.728(46) 6.748(46) 1.9(7) 6.574(37) 6.602(37) 1.9(7) 6.413(31) 6.453(31) 1.9(7)
16 4.20 481 7.282(27) 7.304(27) 1.3(3) 7.106(21) 7.136(21) 1.1(3) 6.924(17) 6.967(17) 1.0(2)
16 4.15 487 8.082(34) 8.107(34) 1.4(4) 7.867(26) 7.901(26) 1.3(3) 7.650(20) 7.698(21) 1.2(3)
16 4.10 569 9.054(46) 9.082(46) 2.5(7) 8.817(36) 8.855(36) 2.2(6) 8.583(28) 8.637(28) 2.0(5)
16 4.05 443 10.623(38) 10.655(38) 1.1(3) 10.365(33) 10.409(34) 1.2(3) 10.121(29) 10.184(29) 1.2(3)
16 4.03 356 11.484(64) 11.520(64) 1.6(5) 11.239(56) 11.288(56) 1.7(5) 11.032(46) 11.100(46) 1.5(5)
16 4.02 515 12.139(54) 12.176(54) 1.5(4) 11.920(46) 11.971(47) 1.4(3) 11.736(42) 11.809(42) 1.3(3)

20 7.00 291 1.5782(65) 1.5802(65) 1.1(3) 1.5665(52) 1.5693(52) 1.1(3) 1.5539(38) 1.5579(38) 0.9(2)
20 6.50 220 1.829(11) 1.831(11) 1.7(6) 1.8134(89) 1.8166(89) 1.6(6) 1.7966(69) 1.8013(69) 1.4(5)
20 6.00 165 2.154(11) 2.157(11) 0.9(3) 2.1360(92) 2.1398(92) 0.9(3) 2.1151(75) 2.1206(76) 0.9(3)
20 5.50 164 2.675(20) 2.678(20) 2.1(9) 2.644(15) 2.649(15) 1.8(7) 2.611(11) 2.617(11) 1.5(6)

(Table continued)
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TABLE I. (Continued)

c ¼ 0.300 c ¼ 0.275 c ¼ 0.250

L=a βb N g2cðnZSÞ g2cðZSÞ τint g2cðnZSÞ g2cðZSÞ τint g2cðnZSÞ g2cðZSÞ τint

20 5.00 128 3.554(32) 3.559(32) 1.9(9) 3.497(25) 3.504(25) 1.6(7) 3.437(18) 3.446(19) 1.4(5)
20 4.70 271 4.416(23) 4.422(23) 1.2(4) 4.328(18) 4.335(18) 1.1(3) 4.237(14) 4.248(14) 1.1(3)
20 4.50 271 5.288(28) 5.294(28) 1.7(6) 5.169(21) 5.178(21) 1.5(5) 5.048(17) 5.061(17) 1.4(5)
20 4.40 271 5.879(42) 5.887(43) 2.3(9) 5.746(31) 5.756(31) 1.9(7) 5.608(23) 5.623(23) 1.6(6)
20 4.30 271 6.703(60) 6.712(61) 3(1) 6.532(46) 6.543(46) 3(1) 6.357(32) 6.373(33) 2.3(8)
20 4.20 271 7.855(76) 7.864(76) 4(2) 7.630(56) 7.643(56) 3(1) 7.408(39) 7.427(39) 3(1)
20 4.15 257 8.627(50) 8.638(50) 1.9(7) 8.374(39) 8.389(39) 1.7(6) 8.124(30) 8.145(30) 1.6(5)
20 4.10 269 9.643(57) 9.655(57) 1.8(6) 9.359(45) 9.375(45) 1.6(6) 9.079(34) 9.102(34) 1.4(5)
20 4.05 267 11.23(11) 11.25(11) 4(2) 10.927(87) 10.946(87) 4(2) 10.626(61) 10.653(62) 3(1)
20 4.03 236 12.299(75) 12.315(75) 1.9(7) 11.931(59) 11.952(59) 1.7(6) 11.621(48) 11.651(48) 1.5(5)

24 7.00 323 1.6101(81) 1.6111(81) 2.0(6) 1.5963(58) 1.5977(58) 1.4(4) 1.5816(42) 1.5836(43) 1.2(3)
24 6.50 315 1.866(11) 1.867(11) 2.5(9) 1.8483(82) 1.8500(82) 2.0(6) 1.8299(63) 1.8322(63) 1.7(5)
24 6.00 212 2.233(13) 2.234(13) 1.6(6) 2.208(11) 2.210(11) 1.5(5) 2.1811(85) 2.1838(86) 1.4(5)
24 5.50 261 2.805(19) 2.807(19) 2.5(10) 2.761(15) 2.763(15) 2.1(8) 2.715(11) 2.718(11) 1.8(6)
24 5.00 296 3.683(19) 3.685(19) 1.7(5) 3.617(14) 3.621(14) 1.4(4) 3.550(11) 3.554(11) 1.3(4)
24 4.70 259 4.603(25) 4.605(25) 1.7(6) 4.508(20) 4.512(20) 1.6(6) 4.410(16) 4.415(16) 1.5(5)
24 4.50 315 5.588(39) 5.591(39) 3(1) 5.452(30) 5.457(30) 2.7(10) 5.313(23) 5.320(23) 2.4(9)
24 4.40 208 6.177(40) 6.180(40) 1.8(7) 6.024(31) 6.029(31) 1.6(6) 5.868(24) 5.876(24) 1.5(5)
24 4.30 230 7.005(86) 7.009(86) 4(2) 6.827(65) 6.833(65) 3(2) 6.646(47) 6.654(47) 3(1)
24 4.20 281 8.258(59) 8.263(59) 3(1) 8.026(47) 8.033(47) 3(1) 7.790(36) 7.800(36) 2.5(9)
24 4.15 269 9.094(91) 9.100(91) 5(2) 8.819(69) 8.827(69) 4(2) 8.544(52) 8.554(52) 4(2)
24 4.10 282 10.157(94) 10.163(94) 4(2) 9.840(72) 9.849(72) 4(1) 9.533(55) 9.545(55) 3(1)
24 4.05 269 11.984(78) 11.991(78) 1.9(7) 11.570(60) 11.580(60) 1.7(6) 11.187(46) 11.201(46) 1.5(5)
24 4.03 255 12.917(94) 12.925(94) 2.1(8) 12.514(68) 12.525(68) 1.7(6) 12.139(55) 12.154(55) 1.6(6)

32 7.00 216 1.657(13) 1.657(13) 3(1) 1.6413(100) 1.6417(100) 3(1) 1.6249(77) 1.6256(77) 2.3(10)
32 6.50 201 1.910(12) 1.910(12) 2.0(8) 1.8949(91) 1.8954(91) 1.7(6) 1.8777(67) 1.8785(67) 1.3(5)
32 6.00 201 2.326(14) 2.327(14) 2.0(8) 2.296(12) 2.296(12) 1.8(7) 2.2640(92) 2.2649(92) 1.7(6)
32 5.50 201 2.887(38) 2.888(38) 6(3) 2.851(31) 2.852(31) 6(3) 2.811(24) 2.812(24) 5(3)
32 5.00 203 3.922(43) 3.923(43) 6(3) 3.848(32) 3.849(32) 4(2) 3.771(23) 3.772(23) 4(2)
32 4.70 205 4.980(83) 4.981(83) 9(5) 4.850(64) 4.851(64) 8(4) 4.721(48) 4.723(48) 7(4)
32 4.40 201 6.80(11) 6.80(11) 8(5) 6.607(81) 6.608(81) 7(4) 6.408(56) 6.411(56) 5(3)
32 4.30 201 7.710(69) 7.711(69) 3(1) 7.488(56) 7.490(56) 3(1) 7.259(43) 7.262(44) 3(1)
32 4.20 332 9.204(67) 9.206(67) 5(2) 8.875(50) 8.877(50) 4(2) 8.555(36) 8.559(36) 3(1)
32 4.15 171 10.04(11) 10.04(11) 3(1) 9.689(86) 9.692(86) 3(1) 9.345(65) 9.348(65) 2(1)
32 4.10 329 11.45(14) 11.46(14) 7(3) 11.02(11) 11.02(11) 6(3) 10.595(79) 10.600(80) 5(2)
32 4.05 271 13.21(14) 13.21(14) 6(3) 12.689(98) 12.693(98) 5(2) 12.209(72) 12.214(73) 4(2)

48 7.00 101 1.714(21) 1.714(21) 6(3) 1.702(16) 1.703(16) 5(3) 1.689(11) 1.689(11) 3(2)
48 6.50 100 2.008(13) 2.009(13) 1.6(8) 1.990(12) 1.991(12) 1.8(9) 1.970(11) 1.971(11) 1.9(10)
48 6.00 101 2.486(32) 2.486(32) 5(3) 2.451(27) 2.451(27) 5(3) 2.413(23) 2.414(23) 5(3)
48 5.50 100 3.107(61) 3.107(61) 6(3) 3.059(55) 3.059(55) 6(3) 3.008(49) 3.009(49) 6(3)
48 5.00 100 4.326(86) 4.326(86) 7(4) 4.239(67) 4.239(67) 7(4) 4.144(49) 4.144(49) 5(3)
48 4.70 102 5.54(15) 5.55(15) 9(4) 5.39(11) 5.39(11) 9(4) 5.237(79) 5.237(79) 8(4)
48 4.40 131 7.81(13) 7.81(13) 6(3) 7.534(95) 7.534(95) 6(3) 7.266(70) 7.267(70) 5(3)
48 4.30 91 8.535(97) 8.536(97) 4(2) 8.321(80) 8.321(80) 3(2) 8.090(62) 8.091(62) 3(2)
48 4.20 91 10.37(18) 10.37(18) 6(3) 10.04(14) 10.04(14) 6(3) 9.70(11) 9.71(11) 5(3)
48 4.15 87 11.63(16) 11.63(16) 5(3) 11.18(13) 11.18(13) 5(3) 10.744(99) 10.745(99) 4(2)
48 4.10 96 13.00(26) 13.00(26) 7(4) 12.54(19) 12.54(19) 7(4) 12.08(14) 12.09(14) 6(3)
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TABLE II. Results of the interpolation fits for the five Nf ¼ 8 lattice volume pairs for our preferred ZS (top half) and nZS (bottom
half) analysis using renormalization schemes c ¼ 0.300, 0.275, and 0.250. Since discretization effects are sufficiently small for nZS, we
constrain the constant term b0 ¼ 0 in Eq. (4) whereas for ZS the intercept b0 is fitted. In addition we list the degree of freedom (d.o.f.),
χ2=d:o:f: as well as the p-value.

Analysis c d.o.f. χ2=d:o:f: p-value b3 b2 b1 b0

8 → 16 ZS 0.300 12 0.764 0.689 −0.00313ð34Þ 0.0489(50) −0.071ð21Þ 0.027(23)
10 → 20 ZS 0.300 10 0.431 0.932 −0.00420ð44Þ 0.0637(69) −0.107ð30Þ 0.086(34)
12 → 24 ZS 0.300 9 0.386 0.943 −0.00221ð47Þ 0.0347(74) 0.018(32) −0.034ð37Þ
16 → 32 ZS 0.300 8 0.608 0.772 −0.00327ð71Þ 0.057(11) −0.064ð50Þ 0.045(60)
24 → 48 ZS 0.300 7 0.960 0.459 −0.0011ð16Þ 0.025(23) 0.07(10) −0.10ð12Þ
8 → 16 ZS 0.275 12 0.751 0.702 −0.00237ð31Þ 0.0418(44) −0.071ð18Þ 0.013(19)
10 → 20 ZS 0.275 10 0.421 0.937 −0.00407ð38Þ 0.0609(58) −0.104ð25Þ 0.076(28)
12 → 24 ZS 0.275 9 0.367 0.951 −0.00258ð38Þ 0.0385(60) −0.001ð25Þ −0.018ð29Þ
16 → 32 ZS 0.275 8 0.609 0.771 −0.00344ð58Þ 0.0569(90) −0.066ð40Þ 0.046(47)
24 → 48 ZS 0.275 7 0.931 0.481 −0.0013ð13Þ 0.027(20) 0.061(84) −0.090ð97Þ
8 → 16 ZS 0.250 12 0.774 0.679 −0.00107ð29Þ 0.0300(39) −0.067ð15Þ −0.012ð17Þ
10 → 20 ZS 0.250 10 0.441 0.927 −0.00370ð33Þ 0.0565(49) −0.102ð20Þ 0.065(22)
12 → 24 ZS 0.250 9 0.474 0.893 −0.00282ð32Þ 0.0410(49) −0.017ð20Þ −0.007ð23Þ
16 → 32 ZS 0.250 8 0.652 9.734 −0.00361ð48Þ 0.0571(72) −0.068ð32Þ 0.047(37)
24 → 48 ZS 0.250 7 0.932 0.480 −0.0014ð11Þ 0.029(16) 0.050(68) −0.074ð77Þ
8 → 16 nZS 0.300 13 0.835 0.623 −0.00321ð19Þ 0.0478(18) −0.0147ð32Þ � � �
10 → 20 nZS 0.300 11 0.999 0.445 −0.00338ð20Þ 0.0488(23) −0.0190ð49Þ � � �
12 → 24 nZS 0.300 10 0.433 0.931 −0.00267ð22Þ 0.0419(26) −0.0043ð57Þ � � �
16 → 32 nZS 0.300 9 0.604 0.795 −0.00283ð37Þ 0.0490(40) −0.0247ð79Þ � � �
24 → 48 nZS 0.300 8 0.935 0.486 −0.00232ð74Þ 0.0445(79) −0.017ð15Þ � � �
8 → 16 nZS 0.275 13 0.763 0.701 −0.00271ð18Þ 0.0450(16) −0.0130ð27Þ � � �
10 → 20 nZS 0.275 11 1.085 0.369 −0.00340ð18Þ 0.0483(19) −0.0190ð40Þ � � �
12 → 24 nZS 0.275 10 0.371 0.960 −0.00290ð18Þ 0.0431(21) −0.0081ð44Þ � � �
16 → 32 nZS 0.275 9 0.647 0.757 −0.00299ð30Þ 0.0491(32) −0.0245ð63Þ � � �
24 → 48 nZS 0.275 8 0.923 0.496 −0.00238ð63Þ 0.0444(65) −0.016ð12Þ � � �
8 → 16 nZS 0.250 13 0.813 0.647 −0.00169ð18Þ 0.0400(15) −0.0086ð24Þ � � �
10 → 20 nZS 0.250 11 1.163 0.307 −0.00322ð16Þ 0.0468(16) −0.0175ð33Þ � � �
12 → 24 nZS 0.250 10 0.439 0.928 −0.00308ð16Þ 0.0441(17) −0.0108ð35Þ � � �
16 → 32 nZS 0.250 9 0.758 0.655 −0.00314ð24Þ 0.0491(25) −0.0243ð49Þ � � �
24 → 48 nZS 0.250 8 0.931 0.489 −0.00239ð51Þ 0.0437(52) −0.0139ð94Þ � � �
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APPENDIX B: ANALYSIS FOR c= 0.275 AND 0.250
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FIG. 11. Discrete step-scaling β-function for Nf ¼ 8 in the c ¼ 0.275 gradient flow scheme for our preferred nZS (left) and ZS (right)
datasets. The symbols in the top row show our results for the finite volume discrete β function with scale change s ¼ 2. The dashed lines
with shaded error bands in the same color of the data points show the interpolating fits. We consider two continuum limits: a linear fit
(black line with gray error band) in a2=L2 to the three largest volume pairs and a quadratic fit to all volume pairs (black dash-dotted line).
The p-values of the continuum extrapolation fits are shown in the plots in the second row. Further details of the continuum extrapolation
at selected g2c values are presented in the small panels at the bottom where the legend lists the extrapolated values in the continuum limit
with p-values in brackets.

HASENFRATZ, REBBI, and WITZEL PHYS. REV. D 107, 114508 (2023)

114508-14



[1] Thomas Appelquist, George T. Fleming, and Ethan T. Neil,
Lattice Study of the Conformal Window in QCD-Like
Theories, Phys. Rev. Lett. 100, 171607 (2008).

[2] Albert Deuzeman, Maria Paola Lombardo, and Elisabetta
Pallante, The physics of eight flavours, Phys. Lett. B 670, 41
(2008).

[3] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi,
and Chris Schroeder, Nearly conformal gauge theories in
finite volume, Phys. Lett. B 681, 353 (2009).

[4] Anna Hasenfratz, David Schaich, and Aarti Veernala, Non-
perturbative β function of eight-flavor SU(3) gauge theory,
J. High Energy Phys. 06 (2015) 143.

0.00

0.50

1.00

1.50

2.00

2.50

c,
s
(g

c2
)

N
f
=8, nZS, c=0.25, s=2

8 16
10 20
12 24
16 32
24 48
linear
quadratic

0 1 2 3 4 5 6 7 8 9 10 11

g c
2

0

0.25

0.5

0.75

1

eulav-p

0.00

0.04

0.08

0.12

c,
s
(g

c2
)0.2

=

ZS linear: =0.132(7) [22%]
ZS quadratic: =0.127(8) [2%]
nZS linear: =0.120(6) [22%]
nZS quadratic: =0.124(6) [24%]

N
f
=8 

c=0.250
s=2 

0 0.005 0.01 0.015

(a/L) 2

0.20

0.40

0.60

0.80

c,
s
(g

c2
=

4.
3)

ZS linear: =0.60(2) [72%]
ZS quadratic: =0.57(2) [68%]
nZS linear: =0.58(2) [58%]
nZS quadratic: =0.58(2) [34%]

N
f
=8 

c=0.250
s=2 

0.00

0.50

1.00

1.50

2.00

2.50

c,
s
(g

c2
)

N
f
=8, ZS, c=0.25, s=2

8 16
10 20
12 24
16 32
24 48
linear
quadratic

0 1 2 3 4 5 6 7 8 9 10 11

g c
2

0

0.25

0.5

0.75

1

eulav-p

0.60

0.90

1.20

1.50

c,
s
(g

c2
)6.6

=

ZS linear: =1.24(3) [9%]
ZS quadratic: =1.19(3) [0%]
nZS linear: =1.20(3) [54%]
nZS quadratic: =1.25(3) [6%]

N
f
=8 

c=0.250
s=2 

0 0.005 0.01 0.015

(a/L) 2

1.00

1.50

2.00

2.50

c,
s
(g

c2
=

9.
0)

ZS linear: =1.85(5) [81%]
ZS quadratic: =1.92(6) [4%]
nZS linear: =1.80(5) [60%]
nZS quadratic: =2.02(6) [32%]

N
f
=8 

c=0.250
s=2 

FIG. 12. Discrete step-scaling β-function for Nf ¼ 8 in the c ¼ 0.250 gradient flow scheme for our preferred nZS (left) and ZS (right)
datasets. The symbols in the top row show our results for the finite volume discrete β function with scale change s ¼ 2. The dashed lines
with shaded error bands in the same color of the data points show the interpolating fits. We consider two continuum limits: a linear fit
(black line with gray error band) in a2=L2 to the three largest volume pairs and a quadratic fit to all volume pairs (black dash-dotted line).
The p-values of the continuum extrapolation fits are shown in the plots in the second row. Further details of the continuum extrapolation
at selected g2c values are presented in the small panels at the bottom where the legend lists the extrapolated values in the continuum limit
with p-values in brackets. Only statistical errors are shown.

GRADIENT FLOW STEP-SCALING FUNCTION FOR SU(3) … PHYS. REV. D 107, 114508 (2023)

114508-15

https://doi.org/10.1103/PhysRevLett.100.171607
https://doi.org/10.1016/j.physletb.2008.10.039
https://doi.org/10.1016/j.physletb.2008.10.039
https://doi.org/10.1016/j.physletb.2009.10.040
https://doi.org/10.1007/JHEP06(2015)143


[5] Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal,
Daniel Nogradi, and Chik HimWong, The running coupling
of 8 flavors and 3 colors, J. High Energy Phys. 06 (2015)
019.

[6] David Schaich, Anna Hasenfratz, and Enrico Rinaldi (Lattice
Strong Dynamics Collaboration), Finite-temperature study
of eight-flavor SU(3) gauge theory, Origin of Mass and
Strong Coupling Gauge Theories (SCGT15) (World Scien-
tific, 2018), pp. 351–354, 10.1142/9789813231467_0051.

[7] T. Appelquist, R. C. Brower, G. T. Fleming, J. Kiskis, M. F.
Lin, E. T. Neil, J. C. Osborn, C. Rebbi, E. Rinaldi, D.
Schaich, C. Schroeder, S. Syritsyn, G. Voronov, P. Vranas,
Evan Weinberg, and O. Witzel (Lattice Strong Dynamics
Collaboration), Lattice simulations with eight flavors of
domain wall fermions in SU(3) gauge theory, Phys. Rev. D
90, 114502 (2014).

[8] Yasumichi Aoki, Tatsumi Aoyama, Masafumi Kurachi,
Toshihide Maskawa, Kei-ichi Nagai, Hiroshi Ohki,
Akihiro Shibata, Koichi Yamawaki, and Takeshi
Yamazaki (LatKMI Collaboration), Walking signals in
Nf ¼ 8 QCD on the lattice, Phys. Rev. D 87, 094511
(2013).

[9] Yasumichi Aoki, Tatsumi Aoyama, Masafumi Kurachi,
Toshihide Maskawa, Kohtaroh Miura et al., A light
composite scalar in eight-flavor QCD on the lattice, Proc.
Sci., LATTICE2013 (2013) 070 [arXiv:1309.0711].

[10] Yasumichi Aoki, Tatsumi Aoyama, Ed Bennett, Masafumi
Kurachi, Toshihide Maskawa, Kohtaroh Miura, Kei-ichi
Nagai, Hiroshi Ohki, Enrico Rinaldi, Akihiro Shibata,
Koichi Yamawaki, and Takeshi Yamazaki (LatKMI Col-
laboration), Light flavor-singlet scalars and walking signals
in Nf ¼ 8 QCD on the lattice, Phys. Rev. D 96, 014508
(2017).

[11] T. Appelquist, R. C. Brower, G. T. Fleming, A. Hasenfratz,
X.-Y. Jin, J. Kiskis, E. T. Neil, J. C. Osborn, C. Rebbi, E.
Rinaldi, D. Schaich, P. Vranas, E. Weinberg, and O. Witzel
(Lattice Strong Dynamics Collaboration), Strongly interact-
ing dynamics and the search for new physics at the LHC,
Phys. Rev. D 93, 114514 (2016).

[12] T. Appelquist, R. C. Brower, G. T. Fleming, A. Gasbarro, A.
Hasenfratz, X.-Y. Jin, E. T. Neil, J. C. Osborn, C. Rebbi, E.
Rinaldi, D. Schaich, P. Vranas, E. Weinberg, and O. Witzel
(Lattice Strong Dynamics), Nonperturbative investigations
of SU(3) gauge theory with eight dynamical flavors, Phys.
Rev. D 99, 014509 (2019).

[13] Andrey Yu. Kotov, Daniel Nogradi, Kalman K. Szabo, and
Lorinc Szikszai, More on the flavor dependence of mϱ=fπ ,
J. High Energy Phys. 07 (2021) 202.

[14] Anna Hasenfratz, Emergent strongly coupled ultraviolet
fixed point in four dimensions with eight Kähler-Dirac
fermions, Phys. Rev. D 106, 014513 (2022).

[15] A. Hasenfratz, R. C. Brower, C. Rebbi, E. Weinberg, and O.
Witzel, Strongly coupled gauge theories: What can lattice
calculations teach us?, Int. J. Mod. Phys. A 32, 1747003
(2017).

[16] R. C. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg, and O.
Witzel, Composite Higgs model at a conformal fixed point,
Phys. Rev. D 93, 075028 (2016).

[17] Anna Hasenfratz, Claudio Rebbi, and Oliver Witzel, Large
scale separation and hadronic resonances from a new
strongly interacting sector, Phys. Lett. B 773, 86 (2017).

[18] Anna Hasenfratz, Claudio Rebbi, and Oliver Witzel, Infra-
red properties of a prototype model for beyond-standard
model physics, Proc. Sci. LATTICE2016 (2016) 226.

[19] Thomas Appelquist, Richard C. Brower, Kimmy K.
Cushman, George T. Fleming, Andrew D. Gasbarro,
Anna Hasenfratz, Xiao-Yong Jin, Ethan T. Neil, James C.
Osborn, Claudio Rebbi, Enrico Rinaldi, David Schaich,
Pavlos Vranas, and Oliver Witzel (Lattice Strong Dynamics
Collaboration), Near-conformal dynamics in a chirally
broken system, Phys. Rev. D 103, 014504 (2021).

[20] Oliver Witzel, Anna Hasenfratz, and Curtis T. Peterson,
Composite Higgs scenario in mass-split models, Proc. Sci.
ICHEP2020 (2021) 675.

[21] G. T. Fleming, Update on light composite scalar in eight-
flavor SU(3) gauge theory, Poster Presented at “The 39th
International Symposium on Lattice Field Theory”, Bonn,
Germany (2022), https://indico.hiskp.uni-bonn.de/event/40/
contributions/627/.

[22] Thomas Appelquist, James Ingoldby, and Maurizio Piai,
Dilaton EFT framework for lattice data, J. High Energy
Phys. 07 (2017) 035.

[23] T. Appelquist et al. (Lattice Strong Dynamics Collabora-
tion), Nonperturbative investigations of SU(3) gauge theory
with eight dynamical flavors, Phys. Rev. D 99, 014509
(2019).

[24] Thomas Appelquist, James Ingoldby, and Maurizio Piai,
Dilaton potential and lattice data, Phys. Rev. D 101, 075025
(2020).

[25] Maarten Golterman, Ethan T. Neil, and Yigal Shamir, Appli-
cation of dilaton chiral perturbation theory to Nf ¼ 8, SUð3Þ
spectral data, Phys. Rev. D 102, 034515 (2020).

[26] Thomas Appelquist, James Ingoldby, and Maurizio Piai,
Nearly Conformal Composite Higgs Model, Phys. Rev.
Lett. 126, 191804 (2021).

[27] Anna Hasenfratz, Yigal Shamir, and Benjamin Svetitsky,
Taming lattice artifacts with Pauli-Villars fields, Phys. Rev.
D 104, 074509 (2021).

[28] David B. Kaplan, Jong-Wan Lee, Dam T. Son, and Mikhail
A. Stephanov, Conformality lost, Phys. Rev. D 80, 125005
(2009).

[29] Luca Vecchi, The conformal window of deformed CFT’s in
the planar limit, Phys. Rev. D 82, 045013 (2010).

[30] Victor Gorbenko, Slava Rychkov, and Bernardo Zan,
Walking, weak first-order transitions, and Complex CFTs,
J. High Energy Phys. 10 (2018) 108.

[31] Anna Hasenfratz, Claudio Rebbi, and Oliver Witzel, Gra-
dient flow step-scaling function for SU(3) with Nf ¼ 6 or 4
fundamental flavors, Phys. Rev. D 106, 114509 (2022).

[32] Anna Hasenfratz, Claudio Rebbi, and Oliver Witzel, Gra-
dient flow step-scaling function for SU(3) with ten funda-
mental flavors, Phys. Rev. D 101, 114508 (2020).

[33] A. Hasenfratz, C. Rebbi, and O. Witzel, Nonperturbative
determination of β functions for SU(3) gauge theories with
10 and 12 fundamental flavors using domain wall fermions,
Phys. Lett. B 798, 134937 (2019).

HASENFRATZ, REBBI, and WITZEL PHYS. REV. D 107, 114508 (2023)

114508-16

https://doi.org/10.1007/JHEP06(2015)019
https://doi.org/10.1007/JHEP06(2015)019
https://doi.org/10.1142/9789813231467_0051
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/PhysRevD.87.094511
https://doi.org/10.1103/PhysRevD.87.094511
https://arXiv.org/abs/1309.0711
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1103/PhysRevD.93.114514
https://doi.org/10.1103/PhysRevD.99.014509
https://doi.org/10.1103/PhysRevD.99.014509
https://doi.org/10.1007/JHEP07(2021)202
https://doi.org/10.1103/PhysRevD.106.014513
https://doi.org/10.1142/S0217751X17470030
https://doi.org/10.1142/S0217751X17470030
https://doi.org/10.1103/PhysRevD.93.075028
https://doi.org/10.1016/j.physletb.2017.07.058
https://doi.org/10.22323/1.256.0226
https://doi.org/10.1103/PhysRevD.103.014504
https://doi.org/10.22323/1.390.0675
https://doi.org/10.22323/1.390.0675
https://indico.hiskp.uni-bonn.de/event/40/contributions/627/
https://indico.hiskp.uni-bonn.de/event/40/contributions/627/
https://indico.hiskp.uni-bonn.de/event/40/contributions/627/
https://indico.hiskp.uni-bonn.de/event/40/contributions/627/
https://indico.hiskp.uni-bonn.de/event/40/contributions/627/
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1103/PhysRevD.99.014509
https://doi.org/10.1103/PhysRevD.99.014509
https://doi.org/10.1103/PhysRevD.101.075025
https://doi.org/10.1103/PhysRevD.101.075025
https://doi.org/10.1103/PhysRevD.102.034515
https://doi.org/10.1103/PhysRevLett.126.191804
https://doi.org/10.1103/PhysRevLett.126.191804
https://doi.org/10.1103/PhysRevD.104.074509
https://doi.org/10.1103/PhysRevD.104.074509
https://doi.org/10.1103/PhysRevD.80.125005
https://doi.org/10.1103/PhysRevD.80.125005
https://doi.org/10.1103/PhysRevD.82.045013
https://doi.org/10.1007/JHEP10(2018)108
https://doi.org/10.1103/PhysRevD.106.114509
https://doi.org/10.1103/PhysRevD.101.114508
https://doi.org/10.1016/j.physletb.2019.134937


[34] Anna Hasenfratz, Claudio Rebbi, and Oliver Witzel, Gra-
dient flow step-scaling function for SU(3) with twelve
flavors, Phys. Rev. D 100, 114508 (2019).

[35] Anna Hasenfratz and Oliver Witzel, Continuous renormal-
ization group β function from lattice simulations, Phys. Rev.
D 101, 034514 (2020).

[36] Curtis T. Peterson, Anna Hasenfratz, Jake van Sickle, and
Oliver Witzel, Determination of the continuous β function of
SU(3) Yang-Mills theory, Proc. Sci. LATTICE2021 (2022)
174.

[37] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, and T. Yoshie,
Phase structure of lattice QCD for general number of
flavors, Phys. Rev. D 69, 014507 (2004).

[38] Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal,
Daniel Nogradi, and Chik HimWong, Fate of the conformal
fixed point with twelve massless fermions and SU(3) gauge
group, Phys. Rev. D 94, 091501 (2016).

[39] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi,
and Chik Him Wong, Extended investigation of the twelve-
flavor β-function, Phys. Lett. B 779, 230 (2018).

[40] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi,
and Chik Him Wong, The twelve-flavor β-function and
dilaton tests of the sextet scalar, EPJ Web Conf. 175, 08015
(2018).

[41] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi,
and Chik Him Wong, Fate of a recent conformal fixed point
and β-function in the SU(3) BSM gauge theory with ten
massless flavors, Proc. Sci. LATTICE2018 (2018) 199.

[42] Julius Kuti, Zoltán Fodor, Kieran Holland, and Chik Him
Wong, From ten-flavor tests of the β-function to αs at the
Z-pole, Proc. Sci. LATTICE2021 (2022) 321.

[43] M. Lüscher and P. Weisz, On-shell improved lattice gauge
theories, Commun. Math. Phys. 97, 59 (1985); 98, 433(E)
(1985).

[44] M. Lüscher and P. Weisz, Computation of the action for on-
shell improved lattice gauge theories at weak coupling,
Phys. Lett. 158B, 250 (1985).

[45] Colin Morningstar and Mike J. Peardon, Analytic smearing
of SU(3) link variables in lattice QCD, Phys. Rev. D 69,
054501 (2004).

[46] Richard C. Brower, Harmut Neff, and Kostas Orginos, The
Möbius domain wall fermion algorithm, Comput. Phys.
Commun. 220, 1 (2017).

[47] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,
Hybrid Monte Carlo, Phys. Lett. B 195, 216 (1987).

[48] Peter Boyle, Azusa Yamaguchi, Guido Cossu, and Antonin
Portelli, Grid: A next generation data parallel Cþþ QCD
library, Proc. Sci. LATTICE2015 (2015) 023.

[49] Andrew Pochinsky, Writing efficient QCD code made
simpler: QA(0), Proc. Sci. LATTICE2008 (2008) 040.

[50] Stefan Sint and Alberto Ramos, On O(a2) effects in gradient
flow observables, Proc. Sci. LATTICE2014 (2015) 329.

[51] A. Ramos and S. Sint, Symanzik improvement of the
gradient flow in lattice gauge theories, Eur. Phys. J. C
76, 15 (2016).

[52] Anna Hasenfratz and Oliver Witzel, Dislocations under
gradient flow and their effect on the renormalized coupling,
Phys. Rev. D 103, 034505 (2021).

[53] Patrick Fritzsch, Alberto Ramos, and Felix Stollenwerk,
Critical slowing down and the gradient flow coupling in the
Schrödinger functional, Proc. Sci. Lattice2013 (2014) 461.

[54] Mattia Dalla Brida, Patrick Fritzsch, Tomasz Korzec,
Alberto Ramos, Stefan Sint, and Rainer Sommer (ALPHA
Collaboration), Slow running of the gradient flow coupling
from 200 MeV to 4 GeV in Nf ¼ 3 QCD, Phys. Rev. D 95,
014507 (2017).

[55] Ulli Wolff (ALPHACollaboration), Monte Carlo errors with
less errors, Comput. Phys. Commun. 156, 143 (2004).

[56] Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi,
and Chik Him Wong, The Yang-Mills gradient flow in finite
volume, J. High Energy Phys. 11 (2012) 007.

[57] Martin Lüscher, Properties and uses of the Wilson flow in
lattice QCD, J. High Energy Phys. 08 (2010) 071.

[58] Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal,
Daniel Nogradi, and Chik Him Wong, The lattice gradient
flow at tree-level and its improvement, J. High Energy Phys.
09 (2014) 018.

[59] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.107.114508 for more de-
tails ASCII files containing our final result of the step-
scaling beta function for the three renormalization schemes
c ¼ 0.300; 0.275; 0.250.

[60] Robert V. Harlander and Tobias Neumann, The perturbative
QCD gradient flow to three loops, J. High Energy Phys. 06
(2016) 161.

[61] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Five-Loop
Running of the QCD Coupling Constant, Phys. Rev. Lett.
118, 082002 (2017).

[62] Thomas A. Ryttov and Robert Shrock, Infrared zero of β
and value of γm for an SU(3) gauge theory at the five-loop
level, Phys. Rev. D 94, 105015 (2016).

[63] Simon Catterall, Chiral lattice fermions from staggered
fields, Phys. Rev. D 104, 014503 (2021).

[64] Nouman Butt, Simon Catterall, Arnab Pradhan, and Goksu
Can Toga, Anomalies and symmetric mass generation
for Kähler-Dirac fermions, Phys. Rev. D 104, 094504
(2021).

[65] Anqi Cheng, Anna Hasenfratz, and David Schaich, Novel
phase in SU(3) lattice gauge theory with 12 light fermions,
Phys. Rev. D 85, 094509 (2012).

[66] Maarten Golterman, Yigal Shamir, and Benjamin Svetitsky,
Mobility edge in lattice QCD, Phys. Rev. D 71, 071502
(2005).

[67] Maarten Golterman, Yigal Shamir, and Benjamin Svetitsky,
Localization properties of lattice fermions with plaquette
and improved gauge actions, Phys. Rev. D 72, 034501
(2005).

[68] Jonathon Anderson, Patrick J. Burns, Daniel Milroy, Peter
Ruprecht, Thomas Hauser, and Howard Jay Siegel,
Deploying RMACC summit: An HPC resource for the
Rocky Mountain region, Proceedings of PEARC17 (IEEE,
2017), Vol. 8, p. 1, 10.1145/3093338.3093379.

[69] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A.
Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr,
Xsede: Accelerating scientific discovery, Comput. Sci. Eng.
16, 62 (2014).

GRADIENT FLOW STEP-SCALING FUNCTION FOR SU(3) … PHYS. REV. D 107, 114508 (2023)

114508-17

https://doi.org/10.1103/PhysRevD.100.114508
https://doi.org/10.1103/PhysRevD.101.034514
https://doi.org/10.1103/PhysRevD.101.034514
https://doi.org/10.22323/1.396.0174
https://doi.org/10.22323/1.396.0174
https://doi.org/10.1103/PhysRevD.69.014507
https://doi.org/10.1103/PhysRevD.94.091501
https://doi.org/10.1016/j.physletb.2018.02.008
https://doi.org/10.1051/epjconf/201817508015
https://doi.org/10.1051/epjconf/201817508015
https://doi.org/10.22323/1.334.0199
https://doi.org/10.22323/1.396.0321
https://doi.org/10.1007/BF01206178
https://doi.org/10.1007/BF01205792
https://doi.org/10.1007/BF01205792
https://doi.org/10.1016/0370-2693(85)90966-9
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1016/j.cpc.2017.01.024
https://doi.org/10.1016/j.cpc.2017.01.024
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.22323/1.251.0023
https://doi.org/10.22323/1.066.0040
https://doi.org/10.22323/1.214.0329
https://doi.org/10.1140/epjc/s10052-015-3831-9
https://doi.org/10.1140/epjc/s10052-015-3831-9
https://doi.org/10.1103/PhysRevD.103.034505
https://doi.org/10.22323/1.187.0461
https://doi.org/10.1103/PhysRevD.95.014507
https://doi.org/10.1103/PhysRevD.95.014507
https://doi.org/10.1016/S0010-4655(03)00467-3
https://doi.org/10.1007/JHEP11(2012)007
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP09(2014)018
https://doi.org/10.1007/JHEP09(2014)018
http://link.aps.org/supplemental/10.1103/PhysRevD.107.114508
http://link.aps.org/supplemental/10.1103/PhysRevD.107.114508
http://link.aps.org/supplemental/10.1103/PhysRevD.107.114508
http://link.aps.org/supplemental/10.1103/PhysRevD.107.114508
http://link.aps.org/supplemental/10.1103/PhysRevD.107.114508
http://link.aps.org/supplemental/10.1103/PhysRevD.107.114508
http://link.aps.org/supplemental/10.1103/PhysRevD.107.114508
https://doi.org/10.1007/JHEP06(2016)161
https://doi.org/10.1007/JHEP06(2016)161
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevD.94.105015
https://doi.org/10.1103/PhysRevD.104.014503
https://doi.org/10.1103/PhysRevD.104.094504
https://doi.org/10.1103/PhysRevD.104.094504
https://doi.org/10.1103/PhysRevD.8594509
https://doi.org/10.1103/PhysRevD.71.071502
https://doi.org/10.1103/PhysRevD.71.071502
https://doi.org/10.1103/PhysRevD.72034501
https://doi.org/10.1103/PhysRevD.72034501
https://doi.org/10.1145/3093338.3093379
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80

