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We describe a procedure for alleviating the fermion sign problem in which phase fluctuations are
explicitly subtracted from the Boltzmann factor. Several ansätze for fluctuations are designed and
compared. In the absence of a sufficiently high-quality ansatz, a neural network can be trained to
parametrize the fluctuations. Demonstrating on the staggered Thirring model in 1þ 1 dimensions, we
examine the performance of this method as deeper neural networks are used, and in conjunction with the
well-studied contour deformation methods.
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I. INTRODUCTION

Lattice Monte Carlo methods are the main computational
tool used today for strongly coupled field theories. The
partition function of the lattice system is expressed as an
integral, taken over a space of field configurations ϕ, of the
exponential of the action e−SðϕÞ. Expectation values—
derivatives of the logarithm of the partition function—thus

have the form hOi ¼
R

Dϕe−SðϕÞOR
Dϕe−SðϕÞ

. Where the action is real,

field-theoretic expectation values are therefore equal to
expectation values over a probability distribution propor-
tional to e−S, and can be efficiently computed via impor-
tance sampling.
For relativistic fermionic theories at finite chemical

potential, the action used for sampling generically has a
nonzero imaginary part. As a result, the Boltzmann factor
e−S is complex (or, at least, negative), and cannot be treated
as a probability distribution. This fermion sign problem is
the chief obstacle to the use of lattice Monte Carlo methods
to study relativistic field theories at nonzero fermion
density, including dense QCD matter.
A wide variety of methods have attempted to alleviate,

eliminate, or entirely circumvent the exponential scaling of
the average phase. Among them are complex Langevin [1],
the density of states method [2], canonical methods [3,4],
reweighting methods [5], series expansions in the chemical

potential [6], fermion bags [7], analytic continuation from
imaginary chemical potentials [8], and finally the contour
deformation methods [9].
The most straightforward way of dealing with a sign

problem, without substantially modifying the Monte Carlo
approach, is termed reweighting. A quenched expectation
value is defined as an expectation value taken over a
distribution that ignores the sign fluctuations:

hOiQ ≡
R
Dϕje−SðϕÞjOðϕÞR

Dϕje−SðϕÞj : ð1Þ

Such quenched expectation values are not of direct physical
interest. However, physical expectation values can now be
extracted as ratios of quenched expectation values:

hOi ¼ hOe−iImSiQ
he−iImSiQ

: ð2Þ

This method is frequently not usable by itself, as the
denominator (termed the average phase) is generically
exponentially small in the spacetime volume of the lattice.
As a result, exponentially many samples are required with
this method to reliably distinguish any observable from
infinity. Nevertheless, the technique of reweighting forms
the backbone of many methods for approaching the sign
problem, including the subject of this work. We will first
alleviate the sign problem to make the average phase
manageable, and then treat what remains as above.
This paper begins from the observation that for any

model whose Boltzmann factor e−SðϕÞ exhibits phase
fluctuations, those fluctuations can be entirely removed
by subtracting from the Boltzmann factor a function gðϕÞ
which integrates to zero (which we term a subtraction).
This modification does not affect the partition function, and
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therefore leaves suitably defined expectation values invari-
ant as well. The function gðϕÞ may be thought of as
capturing the phase fluctuations in the Boltzmann factor.
In order for this observation to be useful, we must be able

both to find good subtractions gðϕÞ, and to efficiently
guarantee that they do, in fact, integrate to 0. A first step in
this direction was taken in [10], where subtractions were
obtained by expanding the Boltzmann factor in some
parameter (e.g., a small coupling). Since the terms in such
an expansion could be analytically integrated, it was
possible to construct functions guaranteed to integrate to
0. In effect, this amounted to explicitly removing from the
Boltzmann factor all contributions to the sign problem at
some fixed order in perturbation theory.
In this paper we provide a more general prescription.

Rather than directly search for functions gðϕÞ, we will
construct and optimize a vector field viðϕÞ—that is, a
function from field configurations ϕ to elements of the
tangent space to the space of field configurations at ϕ. (For
example, in the case of single-component scalar fields on a
lattice with N sites, the space of field configurations is RN

and a vector field is a function RN → RN .) The subtraction
itself is obtained as gðϕÞ≡∇ · vðϕÞ, and is guaranteed to
have a vanishing integral by the divergence theorem as long
as either the field space is compact, or v decays sufficiently
quickly at infinity. The vector field can then be set to any
convenient ansatz—in Sec. V, a deep neural network—and
optimized.Atworst, the divergenceof the chosen ansatz does
not correlate well with the phase fluctuations of the
Boltzmann factor, and the average phase is not improved.
Regardless of the performance of the chosen ansatz, no
approximation has been made, and the result of the final
Monte Carlo calculation may be trusted (to within statistical
errors).
Early work along these lines is found in [11], where

similar techniques are used to reduce a sign problem in a
one-dimensional integral. This line of work was originally
motivated by a desire to alleviate certain difficulties
encountered by complex Langevin simulations [12,13].
This approach is closely related to the method of

optimized contour deformations (see [9] for a review of
the whole family of contour deformation methods). There,
the original domain of integration in the path integral is
viewed as a half-dimension integration contour in a larger
complex space. Cauchy’s theorem is then invoked to
deform this domain of integration without the partition
function or any physical observable being modified. This
deformation does, however, modify the average phase, and
the contour can be optimized via gradient descent to
maximize the resulting average phase [14–17]. Because
the deformed contour is typically parametrized (for com-
putational reasons) by the original contour, such contour
deformations can be reexpressed as subtractions of the form
above. This correspondence will allow us to apply some of
what is known about contour deformations to developing
subtractions.

Two key differences separate the approach described
here from those based on contour deformations. First,
contour deformations that entirely remove the sign problem
do not always exist (and in fact, the contour deformation
method is entirely inapplicable to theories in which the
Boltzmann factor is always real, but fluctuates in sign),
while perfect subtractions provably do. Second, contour
deformations have yet to be applied to path integrals with
discrete variables, while subtraction-based methods are
able to address such models naturally. Both these aspects
are discussed in more detail in later sections of this work.
In Sec. II we describe the lattice Thirring model (and its

quantum mechanical generalization), which has properties
fairly representative of other fermion sign problems and
will be used as a testbed throughout this paper. Section III
details the method proposed to alleviate the sign problem in
detail, and shows how it relates to the longstanding
approach of contour deformations. Strategies for analyti-
cally constructing subtractions are described and compared
in Sec. IV, and then deep learning approaches are used in
Sec. V. Section VI shows how the method proposed in this
work can be combined with contour deformations. Finally,
we conclude in Sec. VII with a discussion of future avenues
of work.
All code used in the simulations discussed in this paper is

available online [18].

II. THIRRING MODEL

This paper uses a staggered discretization of the Thirring
model [19] in 1þ 1 dimensions as a test bed for the method
proposed to alleviate the sign problem. The lattice action of
this model is [20]

S ¼
X

x;ν¼0;1

2

g2
ð1 − cosAνðxÞÞ − log detK½A�; ð3Þ

The fields AμðxÞ are valued on ½0; 2πÞ; equivalently, they
are the logarithms of Uð1Þ-valued link fields. The Dirac
matrix is defined by

K½A�xy ¼ mδxy þ
1

2

X
ν¼0;1

ηνeiAνðxÞþμδν;0δxþν;y

− ηνe−iAνðyÞ−μδν;0δyþν;x: ð4Þ

The staggered fermions are defined by η0 ¼ ð−1Þδ0;x0 and
η1 ¼ ð−1Þx0 . Indices x, y refer to sites on a lattice of
dimension β × L. The bare mass m and coupling g2, in this
paper always given in lattice units (i.e., the lattice spacing
is 1), determine the physical fermion mass and strength of
coupling of the theory.
The low-lying spectrum of this lattice Thirring model

consists of two flavors of fermion, and a set of bosonic bound
states each of a fermion and an antifermion.With bare lattice
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parameters of m ¼ 0.05 and g2 ¼ 1.0, the lightest fermion
mass is measured to be amF ¼ 0.35ð2Þ, and the lightest
boson mass amB ¼ 0.33ð1Þ. That the two masses are nearly
equal indicates that we are looking at a regime of strong
coupling. These bare couplings will be used throughout
this paper.
It is occasionally convenient to fall back to a 0þ 1-

dimensional generalization of the Thirring model,
described in [21,22]. The action is of essentially the same
form, but now with a one-dimensional lattice geometry and
one degree of freedom AðtÞ per site (i.e., the summation
over ν is removed):

Smechanics ¼
X
t

1

2g2
ð1 − cosAðtÞÞ − log detK½A� ð5Þ

The Dirac matrix K½A� is given by

K½A�tt0 ¼
1

2
½eμþiAðtÞδðtþ1Þt0 − e−μ−iAðt0Þδðt0þ1Þt

− eμþiAðtÞδtNδt01 þ e−μ−iAðt0Þδt1δt0N � þmδtt0 : ð6Þ

These formulations of the Thirring model have fre-
quently been used as a test bed for methods to alleviate
the sign problem [1,17,21–25]. Most relevantly here, the
Thirring model has played a central role in the development
of contour deformation methods, and therefore a good deal
is known about how its sign problem can be mitigated via
contour deformations.
The earliest contours studied in the context of the 1þ 1-

dimensional Thirring model were defined by the holomor-
phic gradient flow. Each point A on the initial, real surface
of integration (T2βL, henceforth referred to as the “real
plane”) is evolved according to the first-order differential
equation

dAμðxÞ
dt

¼
�

∂S
∂AμðxÞ

��
: ð7Þ

For a fixed flow time t, this equation defines an integration
contourMt ⊂ ðC=ZÞ2βL in the same homology class as the
real plane, which may be hoped to improve the sign
problem.
In fact, because the action of the Thirring model has

phase fluctuations on the real plane, it can be proved [26]
that there is some sufficiently small flow time t for which
the average phase is improved by the flow. Moreover, in
practice long flow times were found to be an effective
method for alleviating the sign problem [20].
Little is known about the contours Mt (for t ≠ 0;∞)

other than a host of algorithms for performing contour
integrals along them. A separate class of contours was
investigated in [16,17], and found to be competitive with
the holomorphic gradient flow. These contour deformations
are defined by the relations

ImA0ðxÞ ¼
X∞
n¼0

cn cosðnReA0ðxÞÞ; and

ImA1ðxÞ ¼ 0: ð8Þ

Because of the simple form of this ansatz—in particular,
because the determinant of the Jacobian can be computed in
linear time—a Monte Carlo integrating along this contour
typically outperforms one integrating along Mt, even
where the average phase of the latter might be larger.
A post-hoc rationalization for this ansatz was put

forward in [27]: in the limit of large chemical potential
aμ ≫ 1, the partition function factorizes and this form of
contour deformation exactly solves the sign problem. At
any finite chemical potential, of course, the sign problem
remains and is exponential in the volume.
Some of the algorithms discussed in the following

sections suffer due to the presence of zeros of the
Boltzmann factor. This can be alleviated by working with
an integration contour which avoids those zeros. One such
contour is easy to construct, defined by a simple shift of all
timelike vectors

Ã0 ¼ A0 þ iμ ð9Þ

and Ã1 ¼ A1 at each lattice site. This contour has the effect
of placing the chemical potential into the “bosonic” part of
the action (resulting in a term of the form cosA0 − iμ),
while removing it entirely from the Dirac matrix. Because
the μ ¼ 0 Dirac matrix has no zeros for real values of the
fields, this results in a Boltzmann factor and action which
are always finite.

III. SUBTRACTIONS

Consider a general model with action S—a function of
some fields ϕ which will be elided for brevity. The partition
function of this system is Z ¼ R

e−S, and we can define a
quenched partition function by

R je−Sj, which is different
whenever there is a sign problem.
Let g be any function of the fields which integrates to zero.

Constructing a modified Boltzmann factor e−Ssub ≡ e−S − g,
note that the partition function is not changed: Z ¼ R

e−Ssub .
Physical expectation values, obtained by differentiating the
partition function with respect to appropriate source fields,
consequently do not change either. However, the quenched
partition function (and therefore the average phase) is
generically modified by this transformation:

ZQ;sub ¼
Z

je−Ssub j ¼
Z

je−S − gj ≠
Z

je−Sj: ð10Þ

We will refer to the function g as a “subtraction.” The
observation that the quenched partition function can be
modified while leaving physical expectation values
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untouched suggests that awell-constructed gmight provide a
way around a fermion sign problem.
As noted in [10], for any Boltzmann factor, a function g

can always be found that entirely removes the sign problem.
The most straightforward construction, in the case of a
compact field space, is

gexactðϕÞ ¼ e−SðϕÞ −
R
Dϕ0e−Sðϕ0ÞR

Dϕ0 : ð11Þ

This construction is far from unique. For example, let h be
any function supported on a region of field space where the
magnitude of the Boltzmann factor is bounded from below
by some nonzero constant. Then there exists some suffi-
ciently small ϵ for which g̃ ¼ gexact þ ϵh is also an exact
subtraction, in the sense that e−S − gexact − ϵh has no phase
fluctuations.
Although perfect subtractions are not unique objects,

they form a very small subset of the space of all functions
that integrate to zero. Recall that the average phase hσi≡
Z
ZQ

is exponentially small in spacetime volume: hσi ∼ e−V .

As a result, the typical magnitude of a subtracted
Boltzmann factor must be exponentially smaller than the
typical magnitude of the original Boltzmann factor. The
subtraction itself must therefore be equal to the original
Boltzmann factor within exponential (in V) precision.
In order to make use of a subtraction to construct an

unbiased Monte Carlo algorithm, we must be able to prove
that it integrates to 0. This may be accomplished by defining
g≡∇ · v for somevector field v. The resulting subtraction is
guaranteed to integrate to 0 by the divergence theorem. The
effective “subtracted action” is now defined by

e−S̃v ≡ e−S −∇ · v: ð12Þ

The vector field v used above will typically be required to
be of order e−S. Since the fluctuations of the action are
generally algebraic in the spacetime lattice volume, the
fluctuations in the magnitude of the vector field will be
exponential in the size of the system. Particularly when we
turn to using machine learning methods to train the vector
field in Sec. V, this will be difficult to accomplish. Therefore,
we find it useful to define a “scaled”vector field byv ¼ e−Su.
The vector field u may now be generically of order 1. The
effective subtracted action is now given by

e−Su ≡ e−S −∇ · e−Su ¼ e−Sð1þ u · ∇S −∇ · uÞ: ð13Þ

A large part of the appeal of modifying a Boltzmann factor
with subtractions—rather than, for instance, contour defor-
mations—is that following the discussion above, it is easy to
prove the existence of a “perfect” subtraction entirely
removing the sign problem. Unfortunately, this scaling trick,
while numerically valuable, can break this property. When
the Boltzmann factor e−S has a zero, any finite vector field u

will result in a scaled vector field vwith the same structure of
zeros. This is a nontrivial constraint that means that some
potential subtractions cannot be represented with this
method.
This is a technical obstacle with various possible work-

arounds. In this paper, it is sufficient to shift the integration
contour as per the discussion around Eq. (9) to obtain a
Boltzmann factor that has no zeros. For other models, other
tricks may be required (e.g., to allow the vector field u to
have well-controlled divergences), and in still other cases,
the issue does not appear (scalar field theories have no
zeros of the Boltzmann factor).
For a subtraction to be of practical use, we must also

specify a way to compute an observable via Monte Carlo.
The expectation value of a function OðϕÞ will be different
over the original distribution e−SðϕÞ and the subtracted
distribution e−S̃vðϕÞ, as a consequence of the fact that
although

R ∇ · v vanishes, there is no guarantee that
0 ¼ R

O∇ · v. One prominent exception deserves to be
mentioned before we move on: if v is trained with the
constraint that it be orthogonal to ∇O for some observable
O, then the function OðϕÞ will have the same expectation
value before and after the subtraction. We do not pursue this
approach further here.1

An expression that always gives the correct expectation
value for an observable O, without requiring any con-
straints on the vector field used, is

hOi ¼
R
e−S̃v e−SO

e−S̃vR
e−S̃v

¼
�
e−SO

e−S̃v

�
S̃v

: ð14Þ

While appealingly simple, the corresponding algorithm is
also not useful in practice, as the expectation value with
respect to the subtracted distribution typically has a signal-
to-noise problem at least as severe as original sign problem.
This can be seen most clearly by considering the case of the
trivial observable O ¼ 1, and a perfect subtraction defined
by Eq. (11). In that case, the sampling is being performed
with respect to a flat distribution over field space, and the
average phase is being computed by a Monte Carlo without
importance sampling.
Instead, working from a subtraction of the form of

Eq. (13), from the numerator) the expectation value of
O is obtained according to

hOi ¼
�
O −

e−Su ·∇O
e−Su

�
Su

: ð15Þ

1This constraint has several obvious drawbacks, in particular
that it does not scale well to the computation of multiple
observables, and that there is no longer a guarantee that a perfect
subtraction is available. One less obvious (but serious in practice)
drawback is that, for fermionic theories, additional gradients of
the fermion determinant must be computed.
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Empirically, we find that this form of the numerator does
not have a severe sign-to-noise problem. However, we do
not have a good analytic argument for why this should be
the case, and it remains unclear if this expression is in any
sense optimal.
The fact that there is no unique expression for the

expectation value follows from the observation that, just
as we modified the denominator by subtracting the diver-
gence of an arbitrary vector field, the numerator can be
modified in the same way. Different subtractions in the
numerator yield different expressions for the same expect-
ation value, all taken over the same subtracted distribution.
The expression of Eq. (15) may be obtained by subtracting
∇ · ðvOÞ from the numerator. This perspective suggests
that, in future work, the numerator subtractions might be
optimized separately from the one in the denominator.
To conclude this section, it is instructive to consider the

connections between contour deformation methods and the
subtraction-based methods described here. First, as men-
tioned in the introduction, every contour deformation
parametrized by the real plane2 necessarily results in a
subtraction. In the case of a field ϕ ∈ RN complexified to
ϕ̃ðϕÞ ∈ CN , this subtraction is defined by:

gsubðϕÞ ¼ e−Sðϕ̃ðϕÞÞ det
∂ϕ̃

∂ϕ
− e−SðϕÞ ð16Þ

That gsub integrates to 0 may be established from Cauchy’s
integral theorem.
The converse does not hold: not all subtractions can be

formulated as contour deformations. A simple example is
given by a one-site lattice with Boltzmann factor
e−SðθÞ ¼ cos θ þ ϵ. The sign problem is entirely removed
by subtracting off cos θ, but there is no contour deformation
that increases the average phase [28].
When using a subtraction directly, one must make a

choice of how expectation values are to be computed [e.g.,
Eq. (14) versus Eq. (15)]. The expectation value obtained
does not depend on this choice, but the efficiency of the
algorithm does. When performing a contour deformation,
no such choice is available. Rather, the new form of the
observable is determined by analytic continuation of the
original observable to the deformed contour.
In the limit of small contour deformations, the behavior of

both the observable and the Boltzmann factor is determined
from their respective first derivatives alone. In this limit, the
contour deformation algorithm precisely matches the pre-
scription of Eq. (15), as we now demonstrate. Consider an

integration contour, parametrized by the real plane, defined
by a function ϕ̃∶ RN → CN :

ϕ̃iðϕÞ ¼ ϕi − uiðϕÞ ð17Þ
We are interested in the limit of small u, and will expand all
expressions to first order. Note that at this order, u may be
taken to be purely imaginary without loss of generality.
The effective Boltzmann factor, expanded to first order

in u, is

e−SeffðϕÞ ¼ e−Sðϕ̃ðϕÞÞ det
∂ϕ̃

∂ϕ

¼ e−SðϕÞ½1þ u ·∇S −∇ · u�: ð18Þ

The same expansion yields, for the numerator Oe−Seff :

Oðϕ̃ðϕÞÞe−SeffðϕÞ ¼ e−SeffðϕÞOðϕÞ − e−SðϕÞu ·∇O: ð19Þ

An infinitesimal contour deformation of the form Eq. (17)
therefore corresponds precisely to an infinitesimal sub-
traction—with observables evaluated according to Eq. (15)
—using precisely the same vector field u. The two methods
differ only at higher orders in the size of the vector field.
To conclude, we sketch the algorithm being proposed

(excluding the choice of vector field) in its entirety. Given a
suitable vector field defined on field space—uiðϕÞ—a
scaled vector v ¼ e−Su is constructed. Noting that the
divergence of v vanishes, we can define a subtracted
Boltzmann factor e−Su according to Eq. (13). The partition
function is unchanged by this transformation. Sampled
field configurations are collected via importance sampling
according to the new Boltzmann factor. With a set of
samples obtained, the expectation value of an operator
OðϕÞ is computed via Eq. (15).

IV. ANALYTIC SUBTRACTIONS

In many cases, useful subtractions can be obtained
analytically, without needing any machine learning meth-
ods. In this section we construct a few candidates and
compare their performance. In subsequent sections we will
also see that the constructions of this section provide useful
information about what sorts of “feature engineering” may
be helpful for a neural network (i.e., what functions of the
field configuration might be precomputed and passed
directly as inputs to the network).
The 0þ 1-dimensional generalization of the Thirring

model—see Eq. (6)—is exactly solvable [29]. The partition
function is given by

Z ¼ e
− β

2g221−β
�
Iβ1

�
1

2g2

�
Iðcosh βμÞ

þ Iβ0

�
1

2g2

�
Iðcoshðβsinh−1mÞÞ

�
: ð20Þ

2This includes all contour deformations considered in the
literature on alleviating sign problems, but not all possible
contour deformations: there is no need for an integration contour
to be homeomorphic to the real plane in order to be in the same
homology class.
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Above, Inð·Þ is the modified Bessel function of the first
kind. As a result, an exact subtraction is immediately
obtained from Eq. (11).
For models that aren’t exactly solvable (including that of

primary interest here, the Thirring model in 1þ 1 dimen-
sions), it was suggested in [10] to derive a subtraction via
an analytically tractable expansion. The heavy-dense
expansion, in which aμ ≫ 1, is particularly useful for this
purpose. Expanding the determinant of the Dirac matrix via
the polymer representation [30], the dominant term in this
limit is

detK ¼ eβLμ
�
2−βLei

P
x
A0ðxÞ þOðe−βμÞ

	
: ð21Þ

This term does not couple different A fields, and the bosonic
part of the action does not either. As a result, we can perform
the integration of this term analytically, and exactly remove
its contribution to the partition function—and therefore the
average phase. Because this term is the dominant term at
large μ, it represents a substantial contribution to the sign
problem, and removing it is a significant improvement. The
final heavy-dense subtraction is

ghdðAÞ ¼ e
2

g2

P
x;ν

cosAνðxÞ2−βLeβLμþi
P

x
A0ðxÞ

− eβLμð4πÞ−βLðI0ð2=g2ÞI1ð2=g2ÞÞβL: ð22Þ

We can also obtain a useful subtraction by beginning
with the construction of Eq. (13) and expanding in the limit
of small u. (In light of the gradient descent-based methods
to be discussed in the following section, this technique can
be viewed as performing gradient descent in the space of all
possible vector fields u.) Expanding the subtracted
quenched partition function to first order in u yields

ZQ;u ¼
Z

je−Sj½1þ Reðu · ∇S −∇ · uÞ þOðu2Þ�; ð23Þ

and as a result the first functional derivative with respect to
u is (see Appendix) for details)

δ

δuðϕÞZQ;u ¼ −i∇ImS: ð24Þ

Performing a single step of gradient descent in the space of
possible vector fields u then results in u ∝ δ

δu ZQ;u, with the
constant of proportionality to be determined by numerical
optimization. The gradient descent-based algorithm used in
practice for this optimization is detailed in the next section,
where it is applied to much larger optimization problems
with subtractions parametrized by neural networks.
This construction of a subtraction has a particularly close

relationship with the “sign-optimized contour” approach
[14–17]. As noted in the previous section, to leading order
in the size of the subtraction and contour deformation, these

two methods yield identical effective actions. In either case,
the effective Boltzmann factor postsubtraction is

e−Seff ¼ e−S þ iϵe−S½∇2ImS −∇S · ∇ImS�; ð25Þ

with ϵ an arbitrary constant to be determined by
optimization.
This connection, although conceptually convenient, is

cause for some concern. Notably, contour deformations
cannot cure certain sign problems, such as that associated
with the Boltzmann factor (cos θ þ ϵ), or the mean-field
Thirring model [26]. This implies that there are some actions
for which a single step of gradient descent parallel to Eq. (24)
will provide no improvement. In fact, (cos θ þ ϵ) is precisely
such an example. The imaginary part of the action is locally
constant at every non-singular point, and therefore the
functional derivative is almost everywhere zero.
In hopes of having a remedy available, we will now

consider two other possible subtractions derived from
gradient descent. The underlying intuition is that the path
taken by gradient descent is dependent on the local metric
chosen to define distances on the space being explored.
Evaluating a functional derivative with respect to u is a
choice—convenient for several reasons, but ultimately
arbitrary. Making different choices will yield different
“first-order subtractions,” which may have better perfor-
mance characteristics, depending on the circumstances.
The first, and perhaps most obvious, alternative is to

begin with Eq. (12), and perform gradient descent on the
unscaled field v. Again expanding the quenched partition
function to leading order in v, we find that

ZQ;v ¼
Z

je−Sj½1 − ReeS∇ · vþOðv2Þ�: ð26Þ

In this case, taking the functional derivative (see again
Appendix for details), we obtain a gradient of

δ

δvðϕÞZQ;v ¼ ie−iImS∇ImS: ð27Þ

Once again, this subtraction is not able to make any
progress on the sign problem from an action
S ¼ − logðcos θ þ ϵÞ. Fundamentally, this is because we
are differentiating only with respect to local impulses of the
vector field.
We can do better by evolving the Boltzmann factor

according to the heat equation. Define StðϕÞ to be the
solution to the partial differential equation

d
dt

e−StðϕÞ ¼ −
X
i

∂
2

∂ϕ2
i
e−StðϕÞ ð28Þ

with initial condition S0ðϕÞ ¼ SðϕÞ. In the limit of long
times, this must asymptote to a constant action, which
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necessarily has no sign problem. Meanwhile, because the
time-derivative of the Boltzmann factor is a total derivative
(with respect to the fields), the partition function itself is
never modified by this transformation.
Of course, it is not practical to perform this PDE

evolution, which would require exponential resources in
the physical volume. Nevertheless, it motivates a subtrac-
tion obtained by considering a single time-step of this
evolution.

e−S → e−S − ðΔtÞ
�X

i

∂
2

∂ϕ2
i
e−SðϕÞ

�
ð29Þ

Note that in the case of the action S ¼ − logðcos θ þ ϵÞ, a
single step of gradient descent (with sufficiently large step
size) is enough to entirely remove the sign problem.
Figure 1 compares the performance of two of the various

subtractions constructed here to the naive sign problem.
The subtraction defined from Eq. (24) is referred to as
“scaled,” and that from Eq. (29) is marked by the label
“heat.” In both cases there is a single free parameter, the
magnitude of the subtraction, which has been optimized by
stochastic gradient descent. From the figure it is clear that,
although both subtractions result in a measurable improve-
ment to the average phase, that of Eq. (24) is considerably
superior.

V. MACHINE LEARNING

In this section we apply deep learning to the construction
and optimization of a vector field, which will define a
subtraction via Eq. (13). A neural network represents the
vector field u, i.e., its inputs are the field values A (or
chosen functions of A), and the output is the V-dimensional
complex vector u. Here V is the real dimension of the field
space, which is equal to double the number of lattice
sites for the lattice Thirring model defined via Eq. (3).

The divergence ∇ · ðe−SuÞ gives the subtraction function.
To optimize the vector field, we apply the same method
introduced in [17] for training contour deformations.
The cost function—strictly speaking, a functional from
the space of vector fields v to the non-negative real
numbers—is

C½u� ¼ − loghσiu: ð30Þ

As mentioned in Sec. III, a perfect subtraction always
exists, and moreover is far from unique. As any function
with an integral of zero may be written as the divergence of
some vector field (again, typically in a nonunique way), the
cost function attains a global minimum of C½u� ¼ 0 at least
one point. In fact, when viewed on the space of all vector
fields (rather than merely those representable by a neural
network of fixed size), the only local minima and saddle
points of the cost function must also be global minima.
Unfortunately (and as discussed briefly in Sec. III), for

numerical reasons it is necessary towork in terms of a scaled
vector field u; in other words, the subtraction is constructed
according to Eq. (13) rather than Eq. (12). The learning
process performs much better in practice; however, we lose
the nice property that we are guaranteed that a perfect
subtraction may be obtained. This stems from the fact that
the neural network representing u is unable to represent a
function with a singularity. For concreteness, consider once
again the example of a theory with one degree of freedom,
θ, governed by the action S ¼ − logðcos θ þ ϵÞ. The
Boltzmann factor cos θ þ ϵ has two zeros, separating the
region of positive weight from the region of negative weight.
In order for a subtraction∇ · v to remove the sign problem, it
is necessary that positive weight be transported from one
region to the other, through those zeros. As a result, we must
have v ≠ 0 where 0 ¼ cos θ þ ϵ. However, if we work in
terms of a scaled vector fieldu, so that the subtraction is given
[following Eq. (13)] by ∇ · ðcos θ þ ϵÞu, then this is clearly
not possible for u constrained to be finite.
It is unclear how large of a handicap this is in practice. It is

likewise unclear if a method exists to restore the guarantee of
perfect subtractions, while preserving the nice algorithmic
properties of the scaled vector fields. For the remainder of
this work we focus on numerical optimization of scaled
vector fields, leaving such questions to future work.
The cost function of Eq. (30) itself is as expensive to

compute as any other observable. However, noting that the
partition function does not depend on the choice of vector
field u, the gradient of the cost function with respect to
some parameter λ defining the vector field is

∂

∂λ
C½uðλÞ� ¼ ∂

∂λ
logZðλÞ

Q ¼ −hReSiQ: ð31Þ

Thus the gradient of the cost function, which is all that is
needed in order to apply an optimization algorithm like

FIG. 1. Comparison of the performance of analytically con-
structed subtractions, on a 6 × 6 lattice with bare parameters as
described in the text. Each data point corresponds to 5 × 104

samples.
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ADAM [31], has the form of a quenched expectation value
and can therefore be computed relatively efficiently.
The real and imaginary parts of the vector field u are

obtained from a multilayer perceptron—that is, a densely
connected neural network. Each hidden layer is given awidth
of 4V, whereV is the number of lattice sites. The inputs to the
network are the sine and cosine of each link variable
AμðxÞ—4V values in total. Hidden layers are acted on by
the CELU activation function [32]. Finally, the network has
4V outputs, interpreted as the real and imaginary parts of
each of 2V complex components of a vector.
The training is performed with ADAM [31] according to a

scheduled learning rate defined by

ηðnÞ ¼
(
10−4 þ 10−2−10−4

200
n 1 ≤ n ≤ 200

10−2 × 0.1
n−200
C×102 200 ≤ n

: ð32Þ

In other words, for the first 200 steps of training, the
learning rate is increased linearly from 10−4 to 10−2;
afterwards the learning rate falls exponentially. The training
continues until the learning rate drops below 2 × 10−5, at
which point the process is considered complete. The
influence of the free parameter C, governing the rate of
the exponential decay, is considered in detail later in this
section.
At each training step, 100 samples are used to estimate

the gradient. As discussed in [33], it is advantageous to
perform multiple steps of gradient descent while reusing
the same set of samples. To decide when the samples are
stale and a new Monte Carlo should be performed, we
define an “average reweighting” according to

R ¼ 1

100

X
k





 log e−SðϕkÞ − g̃ðϕkÞ
e−SðϕkÞ − gðϕkÞ





: ð33Þ

Here gð·Þ is the subtraction used to perform the
Monte Carlo, g̃ð·Þ is the current subtraction (after some
number of steps of gradient descent), and ϕk for k ¼
1…100 denote the 100 samples collected. The same set of
samples are re-used until either 100 steps of gradient
descent have been taken, or the average reweighting R
rises above 0.3.
To ensure that the path integral modified by the machine-

learned subtraction gives the correct physics, we compare
the expectation value of the density n ¼ 1

βV log
∂Z
∂μ with and

without the subtraction. As shown in Fig. 2, the density on
the 4 × 4 lattice with m ¼ 0.05, g2 ¼ 1.0, and varying
chemical potential μ agree at high precision. The subtrac-
tion is defined from a neural network as described above,
with 2 internal layers and trained with C ¼ 1.0. In this
demonstration, the average phase and the density are
computed with 105 samples from MCMC.
We now consider the dependence of the average phase

attained on the size of the network (parametrized by the
number of layers) and how it is trained [the parameter C in
Eq. (32)]. We use the same multilayer perceptron with the
CELU activation function as we vary the number of internal
layers. The choice of CELU activation function is made so
that we avoid the vanishing gradient problem while ensuring
that the output vector field be smooth. The training procedure
is the same as the previous demonstration in Fig. 2—100
samples are used to estimate the gradient at each training step
and those samples are reused according to Eq. (33). The
training is performed with ADAM [31] according to the
scheduled learning rate in Eq. (32). We did use not further
techniques for training deep neural networks such as skip
connections or dropout. The results are shown in Figure 3 for
a 6 × 6 lattice with m ¼ 0.05, g2 ¼ 1.0, and μ ¼ 0.5.
All training procedures attempted showed a substantial

improvement in average phase over the naive (subtraction-
free) calculation; however, the size of the improvement

FIG. 2. Precision test of the correctness of the Monte Carlo on a subtracted Boltzmann factor, comparing number densities computed
on a 4 × 4 lattice at various chemical potentials. Each data point corresponds to 105 samples.
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varied by a factor of ∼3 between a shallow, quickly trained
network, and a deep, carefully trained one. That deeper
networks systematically outperform shallower ones indicates
that the large number of parameters in those ansätze is
important. However, for the deeper networks (of two ormore
layers), increasing the training time is typically a more
effective way to improve the average phase than increasing
the depth, suggesting that future work focus on applying
methods to improve the speed of the training rather than the
size of the ansatz.
Finally, note the scale on Fig. 3—the largest network,

with the longest training, remained more than a factor of 10
away from being a perfect subtraction with hσi ¼ 1.
Furthermore, deeper networks with larger training times
all cluster around the same value of hσi, indicating that the
training has in some sense converged. This is in tension
with the observation made in previous sections, that perfect
subtractions do exist. It is unclear why the machine learning
procedure shows a clear indication of having reached a
barrier at hσi ∼ 0.09.

VI. CONTOUR DEFORMATIONS

The intellectual precursor to the method being proposed
in this paper was that of contour deformations. The purpose
of this section is to show how this method can be combined
with the subtractions constructed in this paper to obtain an
algorithm yielding superior average phases to either indi-
vidual method.
As already mentioned, the contour deformation approach

suffers from one difficulty above all others: it is unclear
whether, and under what conditions, contour deformations
exist that can remove the exponential decay of the average
phase. In a small number of contexts it is known that

contour deformations are not helpful at all. For example,
infinitesimal contour deformations are proven not to
improve the average phase when the Boltzmann factor
on the real plane is real [26].
Notwithstanding the uncertainties regarding this

approach’s general applicability, a small family of contour
deformations was proposed for the Thirring model in [17]
and found to perform sufficiently well to enable calcu-
lations of the equation of state on moderately sized 2þ 1-
dimensional lattices [16]. Simple contour deformations
have similarly been found effective for lattice scalar ϕ4

theory with a complex coupling [34] or a chemical
potential [35].
The contour proposed for the Thirring model in [17],

defined by the relations

ImA0ðxÞ ¼
X∞
n¼0

cn cosðnReA0ðxÞÞ and

ImA1ðxÞ ¼ 0; ð34Þ

is not strictly optimal. To establish this, it is sufficient to
consider the distribution of the imaginary part of the action
when sampling is performed on the contour with respect to
the quenched distribution. As shown in [26], on a locally
optimal integration contour—defined as one from which no
infinitesimal deformation can improve the average phase—
the derivative of the imaginary part of the action vanishes
everywhere except at zeros of the Boltmann factor.
Equivalently, the distribution of ImS is discrete. A histo-
gram of the imaginary part of the action on a numerically
optimized contour of the form of Eq. (34) is shown in
Fig. 4. No evidence of multimodality is present, establish-
ing that there are small deformations available along which
the average phase would improve.
The existence of small deformations also means that

there are infinitesimal subtractions that would improve the
average phase. To find one such subtraction, it is sufficient

FIG. 3. Average phase for different network depths and training
times. The different data series correspond to increasing the
parameter C described in the text; the x-axis shows the number of
hidden layers. Training time is linear both in the number of layers
and C. Each data point corresponds to 106 samples; the shaded
region shows the 1-sigma error bars on the average phase with no
subtraction applied, computed with 2 × 105 samples.

FIG. 4. Distribution of the imaginary part of the action on the
deformed contour of Eq. (34). The contour is optimized on a
6 × 6 lattice at μ ¼ 0.5.
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to recall that the ansatz of Eq. (13) has a close correspon-
dence with infinitesimal contour deformations: to leading
order in the size of the contour deformation, it is equivalent
to a subtraction of the form given in that equation.
The use of the ansatz Eq. (13) can be naturally combined

with the expressive power of neural network via feature
engineering. Relevant functions, inspired by the form of the
ansatz, are pre-computed and fed as inputs to the neural
network. For demonstration purposes, we append (to the
usual 4V inputs described above) the 2V gradients of the
model’s action with respect to the field values AμðxÞ. Each
gradient is a complex number, fed into the network as a
separate real and imaginary part—therefore there are 4V
additional inputs. The remaining architecture of the net-
work is unchanged.
Figure 5 compares the average phase on optimized

contours of the form of Eq. (34) with the average phase
obtained by using that contour and then applying a
subtraction. The subtraction is defined by a zero-layer
neural network, with engineered features as described
above, and trained with C ¼ 3.0. For small values of μ,
the “hybrid” approach yields a lower average phase than
the contour deformation alone. This is attributable to noise
in the stochastic gradient descent, and this feature would be
removed with a larger value of C.
Note that, since the features input to the neural network are

the first derivatives of the action, computing the subtraction
involves computing the matrix of second derivatives, due to
the additional divergence taken in constructing the subtrac-
tion. We find that this is a serious drawback of the feature
engineering approach in practice. Natural choices of features
all have reference to the fermion determinant, and therefore
higher derivatives of that object are required.

VII. DISCUSSION

We have demonstrated a family of methods for alleviat-
ing the fermion sign problem, by building a representation

of the phase fluctuations in the Boltzmann factor. This
representation can be an approximate analytical expression
(Section IV) or a neural network trained via gradient
descent (Sec. V). In practice, at least with the specific
methods used in this paper applied to the Thirring model,
this method is outperformed by previously studied contour
deformation-based methods [16,17]. The two methods can
be combined, yielding a higher average phase than either
alone can achieve (Sec. VI); however, this imposes a large
cost for a relatively small benefit (compared to contour
deformations alone).
The machine learning-based method used in this paper

comprises a search for a specific object—termed a sub-
traction—which can be proven to exist. This contrasts
sharply with the situation respecting contour deformations,
where contour deformations completely solving the sign
problem likely do not exist for many models (but establish-
ing this fact rigorously is difficult even for simple models).
A notable computational advantage of the method we
propose compared to the contour deformation methods is
that our method needs no computation of a Jacobian
determinant—the Boltzmann factor is modified to alleviate
the sign problem without performing a change of variables.
It is also worth noting that the idea of modifying a

Boltzmann factor by a subtraction assumes nothing about
the structure of the space of field configurations. In
particular, contour deformations cannot easily be applied
to models with discrete field values, since there is no
natural complex structure on (an extension of) field space.
By contrast, finite differences can be defined on a discrete
space of field configurations, and the discrete equivalent of
the divergence theorem allows the methods of this paper to
be applied. The task of demonstrating this, we leave to
future work.
In Section VI we noted that the histogram of ImS on the

optimal contour defined by Eq. (34) indicates that there are
small deformationsof that contourwhich improve the average
phase. It may therefore be profitable to explore a deep-NN
ansatz for contour deformations in the Thirring model.
Finally, in this work we showed that the average phase

improves substantially as the size of the network is
increased. This is in sharp contrast with many efforts to
find contour deformations, where nearly all of the improve-
ment in the sign problem was found to stem from a small
number of parameters [23,33]. However, the improvement
in average phase reached a clear plateau at three or four
nonlinear layers. It may be that this plateau can be lifted
with more advanced methods, for example exploiting
translational symmetry, using sparser networks to speed
up training, or using an entirely different ansatz (such as
neural ODEs [36]).
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APPENDIX: CALCULATION
OF FUNCTIONAL DERIVATIVES

In this appendix we sketch the derivation of equa-
tions (24) and (27). We begin with Eq. (24). In order to
take the functional derivative it is easiest to first manipulate
the quenched partition function into a slightly different
form. Noting that ∇ · fu ¼ u ·∇f þ f∇ · u, observe that
Eq. (23) may be rewritten

ZQ;u ¼
Z

je−Sj½1þ Reðu ·∇iImSÞ þOðu2Þ�: ðA1Þ

We are therefore interested in the functional derivative, with
respect to u, of ½Re R je−Sju ·∇iImS�.

This functional derivative refers to a direction of steepest
ascent, rather than a functional equivalent of the holomor-
phic (i.e. Wirtinger) derivative. To avoid confusion, we may
explicitly split the vector field into its real and imaginary
parts u ¼ uR þ iuI and differentiate with respect to those
individually, finding that

δ

δuR

�
Re

Z
je−SjuR ·∇iImS

�
¼ 0 and ðA2Þ

δ

δuI

�
Re

Z
je−SjiuI ·∇iImS

�
¼ −∇ImS: ðA3Þ

Combining the two yields Eq. (23) as the direction of
steepest ascent.
The unscaled subtraction of Eq. (27) is derived in much

the same way. Beginning with Eq. (26) and rewriting, as
above, to isolate v without any derivatives, we obtain

ZQ;v ¼
Z

je−Sj þ Re
Z

eiImSv ·∇iImSþOðv2Þ: ðA4Þ

Splitting v into real and imaginary parts, differentiating,
and recombining as before, we obtain Eq. (27).
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