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We present the results of first-principle numerical simulations of Euclidean SU(3) Yang-Mills plasma
rotating with a high imaginary angular frequency. The rigid Euclidean rotation is introduced via
“rotwisted” boundary conditions along the imaginary-time direction. The Polyakov loop in the corotating
Euclidean reference frame shows the emergence of a spatially inhomogeneous confining-deconfining
phase through a broad crossover transition. A mapping of our numerical results to Minkowski spacetime
suggests that the gluon plasma, rotating at real angular frequencies, produces a new inhomogeneous phase
possessing the confining phase near the rotation axis and the deconfinement phase in the outer regions.
The inhomogeneous phase structure has a purely kinematic origin, rooted in the Tolman-Ehrenfest effect
in a rotating medium. We also derive the Euclidean version of the kinematic Tolman-Ehrenfest law in
imaginary-time formalism and discuss two definitions of temperature at imaginary Euclidean rotation.
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I. INTRODUCTION

Noncentral collisions of relativistic heavy ions produce
quark-gluon plasma with extraordinarily high vorticity.
The experimental results of the STAR Collaboration at the
Relativistic Heavy Ion Collider indicate that the vorticity
of the rotating plasma reaches the values Ω ≈ ð9� 1Þ ×
1021 s−1 ∼ 0.03 fm−1=c ∼ 7 MeV [1], while the theoretical
analysis predicts that the plasma can rotate even faster
depending on the initial parameters of the collisions [2,3].
One expects that sufficiently fast rotation influences the

local properties of quark-gluon plasma leading to a series of
spin polarization effects [4,5] that also allow us to interpret
the experimental response of a rotating plasma fireball in
terms of its local vortical structure. Various theoretical
arguments suggest that vorticity also affects the thermo-
dynamic characteristics of the quark-gluon plasma.
Consequently, the rotation was proposed to modify the
phase diagram by shifting the existing transition line that
separates the hadronic and plasma phases [6–14] and also
by introducing a new inhomogeneous phase characterized
by spatial phase separation due to rotation [15].
Theoretical approaches often consider a rigid rotation

of the quark-gluon plasma. Although the rigid nature of
the rotation drastically simplifies the analytical treatment of

the system [16,17], the global consensus on the thermo-
dynamic properties of rotating quark-gluon plasma is still
lacking. Our work considers a globally rotating gluon
plasma using analytical and first-principle numerical
methods.
The finite-temperature QCD phase transition is accom-

panied by deconfinement of color and chiral symmetry
restoration. There is a general agreement in the community
that the uniform rotation reduces the temperature of the
chiral phase transition [6–12] implying that the global
rotation should restore the chiral symmetry at lower critical
temperatures than it happens in nonrotating quark-gluon
plasmas. The mechanism behind this phenomenon is a
generalization of the Barnett effect [18] found in 1915:
the rotation tends to align the spins of quarks and anti-
quarks along the rotation axis, thus suppressing the scalar
pairing and, therefore, lowering the scalar fermionic con-
densate [7].
Contrary to the chiral properties of quark-gluon plasma,

the first numerical simulation of pure gluon plasma has
revealed that the bulk critical temperature of the deconfin-
ing phase transition increases with the increase of the
global rotation frequency [13]. This conclusion, achieved in
lattice SU(3) Yang-Mills theory, has been confirmed in the
subsequent study [14], where independence of the bulk
effect on the type of spatial boundary conditions has also
been reported.
However, two independent theoretical approaches to the

same problem, a holographic technique in Ref. [19] and the
effective model of the hadron resonance gas in Ref. [20],
give the opposite outcome, implying that the temperature of
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the deconfinement decreases as the vorticity of the plasma
raises. While the second scenario complies with the
chiral properties of the rotating plasma [6–11,21] (in the
assumption that the chiral and deconfining transitions
happen simultaneously under rotation), they contradict
the lattice data of Refs. [13,14].
A third scenario of the rotational effect on the phase

diagram has been put forward in Ref. [15], arguing that
rotation leads to a qualitative change of the QCD phase
diagram, leading to a new mixed confining-deconfining
phase. Consequently, the deconfining phase transition,
inherent to the nonrotating plasma, should split at non-
vanishing angular frequency Ω ≠ 0 into two deconfining
transitions: the first transition at T ¼ Tc1ðΩÞ separates the
pure confinement phase and the new mixed inhomogeneous
phase, while the second transition at T ¼ Tc2ðΩÞ > Tc1ðΩÞ
separates the mixed and pure deconfinement phases at higher
temperatures. This scenario is different from the existing
observations in that the relativistic rotation can lead to
inhomogeneities in a single phase (for example, for the
chiral condensate in the low-temperature phase [22]).
In the Euclidean imaginary-time formalism, accessible to

lattice simulations, the real angular momentum Ω becomes
the imaginary quantity ΩI ¼ −iΩ similar to the baryon
chemical potential [13–15,23–25]. The Euclidean Yang-
Mills theory at imaginary rotation is interesting by itself
[24], especially for the discussion of the justification of
analytical continuation to real rotation used in numerical
lattice simulations [13,14]. The analytical approaches show
that the theory with imaginarily rotated time possesses
(stable) ghostlike excitations [15] characterized by fractal
thermodynamics and a “ninionic” type of statistics [26,27].
Moreover, the Euclidean action in the curved metric corre-
sponding to the imaginary angular frequency has no cau-
sality-related singularity [13,14,23] so that the Euclidean
theory with imaginary rotation has a well-defined thermo-
dynamic limit [24]. There is also an interesting implemen-
tation for the topology of gauge fields: the Yang-Mills
instanton under the imaginary rotation delocalizes over
constituents that carry fractional topological charge. It
becomes the axially symmetric “circulon” solution in a
high-temperature limit [25] (see also earlier discussion of the
discrete rotational map for calorons in Ref. [28]).
The structure of this paper is as follows. Section II

discusses theoretical aspects of real and imaginary rota-
tions, including the Tolman-Ehrenfest effect in Minkowski
and Euclidean spacetimes, the phase diagram of Yang-
Mills theory under real and imaginary rotation, and the
validity of the analytical continuation under the Wick
transformation. Section III presents the first-principle
numerical investigation of the spatial structure of the
rapidly rotating quark-gluon plasma, which allows us to
clarify some of the mentioned properties and also find new
puzzles. Finally, the last section is devoted to conclusions
and discussions.

II. REAL vs IMAGINARY ROTATIONS

A. Rotation and the Tolman-Ehrenfest effect

The Tolman-Ehrenfest (TE) effect implies that the local
temperature T ¼ TðxÞ of a system residing in a global
thermal equilibrium in a time-independent gravitational
field is an inhomogeneous quantity [29,30],

TðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p
¼ T0; ð1Þ

where g00 is the component of the metric tensor and T0 is a
reference temperature.
Let us apply the TE law (1) to a body that rotates rigidly

with the constant angular frequency Ω around the z axis.
The local temperature is defined in the corotating reference
system in which the rotating body appears static. In
cylindrical coordinates, xμ ¼ ðρ;φ; z; tÞ, the corotating
reference frame is given by a curvilinear metric with the
line element

ds2 ¼ gμνdxμdxν ¼ ð1 −Ω2ρ2Þdt2 − 2Ωρ2dtdφ

− dρ2 − ρ2dφ2 − dz2: ð2Þ

Reading off the relevant metric element from Eq. (2),
g00 ¼ 1 − Ω2ρ2, one finds that the local temperature (1) is
an increasing function of the radial distance ρ,

TTEðρÞ ¼
T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Ω2ρ2
p . ð3Þ

The quantity T0 in Eq. (3) corresponds to the local
temperature on the axis of rotation T0 ≡ TTEðρ ¼ 0Þ.
The causality requirement enforces the bound ρjΩj < 1,
which defines the light cylinder of a rotating system
(a rotational analog of the light cone). If this limit is
violated, the first term in Eq. (3) turns negative, and the line
element becomes imaginary.
The emergence of the new inhomogeneous phase in

QCD (and in Yang-Mills theory) becomes apparent after a
lengthy calculation in an analytically solvable confining
model [15]. However, the physical origin of this inhomo-
geneous phase has a simple kinematic reason rooted in
the simple TE relation (3) stating that the temperature of the
rotating system is higher in the peripheral regions (at the
largest ρ ≠ 0) as compared to its center (ρ ¼ 0).
Consider a system of a cylindrical geometry of the radius

R rotating with a constant angular velocity Ω residing in
thermal equilibrium. At vanishing temperature at the center
T0 ¼ 0, the global temperature of the cylinder is zero,
so that TðρÞ ¼ 0 for all ρ. Now, let us gradually increase
the temperature T0 at the center of the sample. As the
peripheral layers of the system are always hotter than the
interior, according to Eq. (3), the deconfining temperature
T ¼ Tc1 will be achieved first at the boundary ρ ¼ R.

CHERNODUB, GOY, and MOLOCHKOV PHYS. REV. D 107, 114502 (2023)

114502-2



The system will enter the mixed deconfining phase (with
confined interior and deconfined exterior) above the first
critical temperature [15],

Tc1 ¼ Tc;∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ω2R2

p
: ð4Þ

Here T ¼ Tc;∞ is the deconfining transition in the thermo-
dynamic limit of a nonrotating system. When this temper-
ature is reached, the whole system becomes deconfined.
The global deconfinement in the whole space appears at the
second critical point,

Tc2 ¼ Tc;∞: ð5Þ

Thus, we have a confining and deconfining phases below
Tc1 and above Tc2, respectively, with the new inhomo-
geneous phase emerging at the intermediate range of
temperatures, Tc1 < T < Tc2.
The phase structure of gluon plasma of cylindrical

geometry rotating with a fixed frequency Ω is shown, as
a function of temperature T, in the upper panel of Fig. 1.
The same phase diagram, now depicted in the ðT;ΩÞ plane,
is illustrated in Fig. 2(a).

B. Inverse hadronization effect

The three-phase structure of the rotating gas is the
consequence of the TE law (1) which has a kinematic
origin related to the simple property that thermal wave-
length gets redshifted (or blueshifted) as hot matter
traverses the static gravitational field. The TE law also
leads to a counterintuitive “inverse hadronization effect”

implying that as the global temperature (dictated by T0) of
the rotating quark-gluon plasma decreases, the hadroniza-
tion occurs first at the axis of rotation, followed by the
hadronization at the boundary [15]. The inverse hadroni-
zation effect contradicts our daily experience, which tells us
that the cooling (“hadronization”) of a hot system being in
contact with a colder environment first starts from its
boundary and not from its interior. Of course, in the first
example, there is no contact with the external environment
where the cooling in the center of rotation appears as the
relativistic kinematic phenomenon caused by the TE effect.

C. Analytical continuation

The numerical simulations in thermodynamic equilib-
rium are performed in the Euclidean spacetime after the
Wick transformation1 from Minkowski spacetime,

t → −iτ: ð6Þ

Here, the arrow → means “identified with.” Under the
Wick transformation, the angular frequency becomes an
imaginary quantity similar to, for example, a baryon
chemical potential. Indeed, the angular frequency corre-
sponds to an angle at which the system turns per a unit
of time. Under the identification (6), the time variable
becomes an imaginary quantity (while the angle always
stays real), suggesting that it is natural to consider the
imaginary frequency

ΩI ¼ −iΩ: ð7Þ

The first-principle lattice simulations of rotating systems
are performed at the imaginary angular frequency ΩI [23].

FIG. 1. Suggested phase structure of rotating (quark-)gluon
plasma at finite temperature T. Upper: effect of real rotation in
Minkowski spacetime: the phase diagram of gluon plasma in a
cylinder of the radius R that rotates rigidly with the angular
frequency Ω. Lower: effect of imaginary rotation in Euclidean
space: the phase diagram of gluon plasma in an infinite volume
that rotates rigidly with the imaginary angular frequency ΩI. The
upper panel is adopted from Ref. [15].

(a) (b)

FIG. 2. The phase diagram (a) the in ðT;ΩÞ plane for real
rotation in Minkowski spacetime; (b) in the ðT;ΩIÞ plane for
imaginary rotation in Euclidean, imaginary-time formalism. The
insets illustrate the spatial phase structure following Fig. 1.

1This transformation is usually called “the Wick rotation.”
To avoid confusion, we will call it “transformation” instead of
“rotation,” since in our article, we are also considering real- and
imaginary-space rotations.
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To obtain the results for real physical systems rotating at
real-valued frequencies Ω, an analytical continuation of the
lattice results to the real frequency domain is usually done
using the simple identification [13,14],

Ω2
I ↔ −Ω2: ð8Þ

The analytical continuation (8) has certain subtle features
that could make this procedure questionable [24]. This
property could be the reason for the inconsistency of the
lattice results [13,14], obtained via the analytical continu-
ation (8), with the predictions of the analytical models
[15,19–21]. The properties of real and imaginary rotations
are considered in detail for a free scalar field in Ref. [15].
While we also briefly discuss the analytical continuation
from imaginary to real angular frequencies, our paper is
mostly devoted to the Euclidean system rotating with an
imaginary frequency ΩI.

D. Imaginary rotation on Euclidean space

In lattice gauge theory in Euclidean spacetime, the
choice of the imaginary ΩI is favored over the real Ω
because in the latter case, the action becomes imaginary
(and thus inappropriate for Monte Carlo algorithms), while
the former choice guarantees its real valuedness [23]. The
imaginary rotation ΩI in lattice simulations can be intro-
duced in two ways.
First, one can identify the lattice action in the curved

Euclidean spacetime with the following Euclidean distance
element [13,14,23]:

ds2E ¼ gEμνdxμdxν ¼ ð1þ Ω2
Iρ

2Þdτ2 þ 2ΩIρ
2dτdφ

þ dρ2 þ ρ2dφ2 þ dz2: ð9Þ

Equation (9) follows from its rigidly rotating Minkowski
counterpart (2) by applying the Wick transformation to the
time variable (6), passing to the imaginary frequency (7),
and identifying the line elements as follows: ds2 → −ds2E.
Second, in the imaginary-time formalism, the imaginary

rotation can be understood as a geometrical rotation in the
Euclidean spacetime [15,24]. As the imaginary time τ
increases, the system uniformly rotates with the imaginary
angular frequency ΩI around a (“spatial”) axis that is
normal to the time direction.
At finite temperature T, the Euclidean direction is

compactified to the circle S1τ of the length β ¼ 1=T. In the
absence of rotation, the boundary conditions in the circle S1τ
are periodic for the bosonic fields, ϕðx; τÞ ¼ ϕðx; τ þ βÞ,
and antiperiodic for fermionic fields, ψðx;τÞ¼−ψðx;τþβÞ.
However, if the system experiences an imaginary rotation,
then the boundary conditions change,

ϕðx; τÞ ¼ ϕðR̂ðβΩIÞx; τ þ βÞ; ð10Þ

ψðx; τÞ ¼ −Λ̂χψðR̂ðβΩIÞx; τ þ βÞ; ð11Þ

where R̂ðχ Þ denotes a 3 × 3 matrix of the spatial rotation,
x → x0 ¼ R̂ðβΩIÞx, by the angle χ ≡ jχ j about the axis
eχ ¼ χ=jχj. The matrix Λ̂χ represents the rotation in the
spinor space (a similar factor should appear for vector
bosons).
For definiteness, we consider the rotation around the z

axis, and therefore the boundary condition for the bosonic
field (10) can be written in the cylindrical coordinates in the
following form:

ϕðρ;φ; z; τÞ ¼ ϕðρ;φ − βΩI; z; τ þ βÞ; ð12aÞ

ψðρ;φ; z; τÞ ¼ −Λ̂χψðρ;φ − βΩI; z; τ þ βÞ: ð12bÞ

These boundary conditions are visualized in Fig. 3.
We call Eqs. (12) the rotwisted boundary conditions

(from the combination of the words rotation and twisted).
They share similarities with the “shifted” boundary con-
ditions [31], where an imaginary-time translation over the
full period is supplemented by a spatial translation. The
translationally shifted boundary conditions are related to
the generating function of the momentum distribution of
fields. They allow one, for example, to compute thermo-
dynamic potentials [32] and renormalize the energy-
momentum tensor nonperturbatively [33].
Evidently, the effect of imaginary rotation exhibits the

2πT ≡ 2π=β periodicity for an expectation value O in a
bosonic theory,

(a) (b)

FIG. 3. (a) The periodic boundary conditions for a nonrotating
system: Illustration of a finite-temperature nonrotating (ΩI ¼ 0)
system with the standard boundary conditions along the com-
pactified imaginary time τ: the points A and A0, P and P0, as well
as, respectively, O and O0, are identified pairwise as the
imaginary-time advances for the full period, τ → τ þ β. (b) Rot-
wisted boundary conditions with the same identifications of
the points at the imaginary rotation (12a) at ΩI ≠ 0. The spatial
three-dimensional space rotates at the angle χ, given in Eq. (14),
about the axis z before the identification of the τ ¼ 0 and τ ¼ β
time slices.
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OðΩIÞ ¼ OðΩI þ 2πn=βÞ; for n ∈ Z; ð13Þ

and the 4π=β periodicity for the fermionic fields [15].
Below, we concentrate on bosonic theories only.
The angle of rotation between τ ¼ 0 and τ ¼ β time

slices is

χ ¼ ½ΩIβ�2π; ð14Þ

where

½x�2π ¼ xþ 2πk ∈ ½−π; πÞ; k ∈ Z: ð15Þ

The angle χ in Eq. (14) is the 2π-periodic function (13).
While this periodicity is not evident from the light element
(9), one notices that the metric in the rotating frame (9)
can be obtained from the laboratory (static) metric by the
identification of the laboratory and corotating variables,
respectively: φlabðτÞ ¼ φ −ΩIτ. These two types of imagi-
nary rotations, imposed by the curved metric (9) and by the
boundary conditions (12a) can only be equivalent at low
angular frequencies, βjΩIj ≪ 2π, where the periodicity in
ΩI is negligible. Thus, the discussed implementations of
the imaginary rotation differ from each other.
The periodicity (13) also highlights the fact that, contrary

to the real rotation Ω, the causality does not restrict the
value of the imaginary frequency ΩI, which can be an
arbitrarily large quantity. Indeed, in the imaginary space-
time, there is no light cone (and, consequently, no light
cylinder), and the gττ component never flips its sign in the
Euclidean metric (9).
Curiously, the imaginary rotation leads to unusual spin-

statistic relations for bosonic and fermionic theories and
implies the equivalence of the thermal states for bosonic,
fermionic, and exotic ghost fields at certain imaginary
frequencies [15,26].

E. Euclidean Tolman-Ehrenfest relation

In a nonrotating system ΩI ¼ 0, the order parameter of
the deconfinement phase is the expectation value hPi of the
Polyakov loop,

PðxÞ ¼ TrP exp

�
i
I
C
Âa
τ ðx; τÞdτ

�
; ð16Þ

where Âμ ≡ taAa
μ is the SUðNcÞ gauge field and ta with

a ¼ 1;…; N2
c − 1 are the generators of the SUðNcÞ gauge

group. The operator P stands for the path ordering and the
integration takes place along the path C directed along the
imaginary-time direction τ. The Polyakov loopPðxÞ inserts
an infinitely heavy static quark Q at the point x. Its
expectation value is related to the free energy of a single
quark FQ as follows: FQ ¼ −β−1 lnhPi.
In an infinite spatial volume, the expectation value of

the Polyakov loop hPi vanishes in the confining phase,

signaling that the global center ZNc
symmetry is unbroken

and the free energy of an isolated quark is infinite. The
Polyakov loop gets a nonzero expectation value in the
deconfinement phase where the breaking of the center
symmetry occurs.
The operator (16) is a gauge-invariant quantity because

the integration path is closed due to the periodic boundary
conditions. Such a path, for example, is given by the
segments O0O, PP0, or A0A in Fig. 3(a). The integration
path C winds once about the (imaginary) time direction.
The path is collinear with the time axis that identifies the
Euclidean “Killing vector” [34] with the imaginary-time
direction.
In the (imaginarily) rotating system, a single-winding

Polyakov loop should be defined only in the frame that
corotates with the matter. For example, in Fig. 3(b), the
closed loop is given by the curve P0P, which represents the
world path of the rotating matter in Euclidean spacetime.
The corresponding operator PCP0P is a gauge-invariant
quantity. On the contrary, at any spatial point x different
from the origin, x ≠ 0, the loop C cannot be parallel to the
imaginary-time vector of the laboratory frame. A relevant
example is given by the A0B segment in Fig. 3(b), which is
not a closed curve due to the rotwisted boundary condition
(10) or (12a). Consequently, the corresponding operator
PCA0B is a not gauge-invariant quantity and, therefore,
cannot serve as an order parameter.
What is the local equilibrium temperature of the rotating

matter? In the standard, nonrotating case, the temperature is
identified with the inverse length, T ≡ 1=β ¼ 1=Lτ, of the
compactified time S1τ . The quantity Lτ corresponds to the
length of the imaginary path of a static quark. For a quark
that resides in the (imaginary) rotating matter, this path is
given by the shortest trajectory of a heavy particle rotating
together with matter (plasma). Such a trajectory (worldline)
fulfills the rotwisted boundary conditions (12a). A relevant
example is given by the segments A0A or P0P in Fig. 3(b).
The length of the worldline of a rotating heavy quark

in the Euclidean space is LτðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ χ2ρ2

p
, where the

angle χ is given in Eq. (14). Therefore, the heavy quark
finds itself immersed in a rotating heat bath with the
temperature TE

TE ¼ 1=LτðρÞ, or

TE
TEðρ;ΩIÞ ¼

T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2T2

0½ΩI=T0�22π
p ; ð17Þ

where the superscript “E” indicates that Eq. (17) general-
izes the TE relation to the imaginary-time formalism in the
Euclidean space. The quantity T0 ≡ TE

TEð0;ΩIÞ has the
sense of temperature at the axis of imaginary rotation,
at ρ ¼ 0. Notice that the Euclidean TE temperature (17)
possesses the periodicity (13) with respect to the shifts
TE
TEðρ;ΩIÞ ¼ TE

TEðρ;ΩI þ 2πTÞ.
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For imaginary rotations in the elementary domain of
angular frequencies, the Euclidean TE relation (17) reduces to

TE
TEðρ;ΩIÞ ¼

T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2Ω2

I

p ; for jΩIj < πT0; ð18Þ

which, after the analytical continuation (8) to Minkowski
space, leads us to the familiar TE relation (3). Given this
relation, the quantity (17) can be interpreted as the temper-
ature of the heat bath as observed by the heavy quarks
(particles, in general) that corotate together with the plasma.
Notice that Eq. (17) has a kinetic nature with no

dynamical arguments involved in the derivation. This
relation can be considered as a consequence of a redshift
effect in the Euclidean geometry subjected to the imaginary
rotation. In addition, there is no restriction on the imaginary
angular velocity ΩI, which could appear as a result of
causality. There is no light cone and no causality in
Euclidean spacetime. On the contrary, in Minkowski
spacetime, the TE temperature becomes imaginary (3) at
jΩj > R−1, highlighting the physical need to impose the
causality constraints.

F. Phase structure at imaginary rotation

The Euclidean TE relation (17) suggests a particular
structure for the phase structure of rotating Euclidean Yang-
Mills theory (and also of rotating QCD since the above
relation has a kinetic nature). The sketch of the phase
diagram for a fixed ΩI in a cylinder of a fixed radius R is
shown in the lower panel of Fig. 1.
Since the local temperature (17) is a decreasing function

of the radius ρ, then the first critical point is given by the
transition temperature in the infinite volume Tc;∞,

TE
c1 ¼ Tc;∞: ð19Þ

Indeed, if the temperature of the system in the center of
rotation T0 is lower than Tc;∞, then the whole volume
resides in the confinement phase. The first critical temper-
ature for imaginary rotation (19) corresponds to the second
critical temperature for the real rotation (4).
If the temperature in the center exceeds the first critical

temperature (19) for imaginary rotation, then the center
experiences a deconfining transition. However, as we move
further from the axis of rotation, the temperature drops
down, and the system enters the confining phase again.
Therefore, right above the first critical temperature (19), we
have an inhomogeneous phase in Euclidean space similar
to the mixed phase of the rotating gluon gas in Minkowski
spacetime (shown in the lower panel of Fig. 1) with,
however, confining and deconfining phases swapped.
The whole space becomes deconfined if the temperature

(defined in the rotating reference frame) exceeds the second
critical point,

TE
c2 ¼ Tc;∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω2

IR
2

q
; for − π ≤ ΩIβ < π: ð20Þ

For the sake of simplicity, we restricted the imaginary
angular velocity ΩI to the elementary segment. The
generalization to other ΩI, because of periodicity (13), is
straightforward.
In summarizing, the gluon gas in the cylindrical

geometry, rotating with imaginary angular frequency in
Euclidean space, possesses the phase diagram shown in the
lower panel of Fig. 1. The critical temperatures are given by
Eqs. (19) and (20). For the same geometry, the real rotation
in Minkowski spacetime provides us with the phase
diagram shown in the upper panel of the same figure, with
critical temperatures given by Eqs. (4) and (5). These phase
diagrams are related to each other by the analytical
continuation (8), which maps the corresponding TE
laws (3) and (18), respectively. This one-to-one matching
allows us to use the Euclidean simulations to probe the
structure of the rotating gluon gas in Minkowski spacetime.
For instance, the observation of the inhomogeneous
confinement-deconfinement phase in the imaginary-
rotating Euclidean gluon plasma at TE

c1 < T < TE
c2 implies

the existence of the inhomogeneous mixed phase of gluons
rotating in Minkowski spacetime at the range of temper-
atures Tc1 < T < Tc2.
Coming closer to the simulations of lattice Yang-Mills

theory, we remind the reader that the rotation in Euclidean
space has no causality requirements. Therefore, there is no
physical reason to bound the Euclidean lattice system in a
cylindrical geometry (which would make our simulations
more difficult). Consequently, we consider the Euclidean
system in a large spatial volume sending, effectively, the
radius of the cylinder R to infinity. The second critical
temperature (20) becomes large (infinite), and the phase
diagram of rotating Yang-Mills gas acquires the two-phase
structure with the single critical temperature (19), which
separates the low-temperature confinement phase from the
high-temperature mixed confinement-deconfinement
phase. The expected phase diagram in the ðT;ΩIÞ plane
is shown in Fig. 2(b).

III. IMAGINARY ROTATION ON THE LATTICE

A. Quarter imaginary rotation on the lattice

Can we implement the imaginary rotation (12a) in the
standard hypercubic geometry, which is used for simula-
tions of lattice gauge theories? Yes, this is possible, but the
rotation angle βΩI must be consistent with the lattice
symmetries dictated by the underlyingC4 rotation group. In
other words, after a full imaginary-time period τ → τ þ β,
the system can rotate only at quarter-quantized angles
βΩI ¼ ðπ=2Þk with k ∈ Z. The periodicity of the imagi-
nary rotation implies that the only plausible choice of the
angular frequency is as follows:
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ΩI ¼
π

2

1

β
; ð21Þ

which is visualized in Fig. 4. According to Eq. (12a), the
imaginary counterclockwise rotation (21) corresponds to
the matching at the boundaries,

ðx; y; z; τÞ → ð−y; x; z; τ þ βÞ: ð22Þ

Another possible option of the imaginary frequency on the
hypercubic lattice ΩI ¼ π=β corresponds to a half-rotation,

ðx; y; z; τÞ → ð−x;−y; z; τ þ βÞ; ð23Þ

which is neither clockwise nor counterclockwise. The
same proposal to consider the imaginary frequency (21)
has also been put forward in Ref. [24] (see also the
Acknowledgments). The illustration of the π=2-rotwisted
boundary condition (21) in comparison with the standard
periodic boundary condition is shown in Fig. 4.
The imaginary rotation with the angular frequency (21)

corresponds to a very fast rotation, which might bring into
question the validity of (even formal) analytical continu-
ation (8) from the Euclidean space to Minkowski space-
time. Moreover, the choice (21) should generate lattice
artifacts stipulated by the C4 lattice group. However, our
article aims to perform an exploratory study of the
qualitative effects of rotation properties of thermal Yang-
Mills plasma, including a possible indication of the two-
phase structure. Therefore, we concentrate below on the

fast imaginary rotation with the single value of the
imaginary frequency (21).

B. Polyakov order parameter in rotating matter

The phase structure of the theory can be revealed with
the help of the relevant order parameters. In the case of the
thermal deconfining transition in Yang-Mills theory, the
order parameter is the Polyakov loop (16), which is closed
via the temporal boundary conditions.
In the standard, nonrotating case, the Polyakov loop is a

straight line parallel to the imaginary-time direction, as
shown in Fig. 5(a). For the π=2-rotwisted boundary
condition (21) with the boundary matching (22), there
are two possible choices for the Polyakov loop:

(i) One can consider a static fourfold loop P4 of length
4Lτ that pierces the lattice four times, thus making a
full 2π ¼ 4 × π

2
angle, Fig. 5(b),

P4 ¼ TrUP0
1
P1
UP0

2
P2
UP0

3
P3
UP0

4
P4
; ð24Þ

where UP0
aPa

indicates the segment of the ordered
product of the elementary link matrices Ul along the
straight line P0

aPa. The operator P4 corresponds to
the order parameter defined in the laboratory frame,
which does not rotate with the thermal matter.
The latter reason leads to suspicion, from the very
beginning, that this fourfold operator should be
irrelevant for the thermal transition.

(ii) One can also define a single-winding loop P shown
in Fig. 5(c),

P ¼ TrUP0P: ð25Þ

This loop has a “jumper” segment in the spatial
space, which makes it closed given the identification
(22) of the points P and P0 via the rotwisted
boundary conditions. The discrete loop P0P in
Fig. 5(c) is the lattice version of the loop P0P in
the continuum theory, Fig. 3(b).

Both laboratory-frame (fourfold) Polyakov loop P4 and
corotating-frame (singlefold) Polyakov loop P are sensitive
to the center Z3 symmetry, respectively,

P → e
2πi
3
nP; P4 → e4

2πi
3
nP4; n ¼ 0; 1; 2; ð26Þ

as both transform nontrivially for the nonunit elements of
the center group because, due to the periodicity of the
phase, both nontrivial elements of the center group with
n ¼ 1 and n ¼ 2 transform both Polyakov loops in Eq. (26)
in a nontrivial way with a nonzero phase.
Below, we present the numerical results for all three

physical cases shown in Fig. 5.

(a) (b)

FIG. 4. The hypercubic Euclidean lattice. (a) The periodic
boundary conditions at vanishing imaginary angular frequency
ΩI ¼ 0: the points A and A0 as well as, respectively, B and B0, are
pairwise identified. (b) The rotwisted boundary conditions
imposed on the quarter-rotated lattice with π=2 angle (21) with
the identification of the temporal boundaries (22). As in Fig. 3,
the axis z and τ are shown symbolically: as the imaginary-time
advances for the full period τ → τ þ β along the compactified
direction S1τ , the xy plane either (a) does not rotate for the periodic
conditions or (b) rotates for the rotwisted conditions at the angle
π=2 along the compactified direction S1τ . The identification of the
link and plaquettes is evident from the global geometrical
orientation of the xy planes shown by the coloring.
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C. Numerical results

1. Setup

We simulate the SU(3) gauge model with the standard
Wilson action

S ¼ βL
X
P

�
1 −

1

3
ReTrUP

�
; ð27Þ

on the lattices N3
s × Nτ with the temporal extension Nτ ¼ 8

and the spatial sizes Ns ¼ 32 and 48. We use the standard
heat bath formalism [35] to generate 105 configurations at
each numerical measurement. In order to discriminate the
lattice couplings βL from the thermal length β, we use
the superscript “L” in the former. The physical value of the
lattice spacing, as a function of the lattice coupling,
a ¼ aðβLÞ, is taken from Ref. [36]. The SU(3) lattice
Yang-Mills theory experiences a weak first-order deconfin-
ing phase transition at the critical lattice coupling βL;c ¼
6.0609ð9Þ at the 323 × 8 lattice [37].

2. Polyakov order parameter in the corotating frame

We start our discussion from the most exciting case of
the Polyakov loop P defined in the corotating frame as
shown in Fig. 5(c). To simulate the imaginary rotation,
we use (i) the π=2-rotwisted boundary conditions (22)—
visualized in Fig. 4(b)—for the imaginary-time direction τ,
(ii) the periodic boundary conditions along the axis of
rotation in the direction z, and (iii) open boundaries for x
and y directions in the transverse, to the rotation axis, plane.
The size of the lattice Ns in the a and y directions is
determined by the number of the lattice sites. Therefore, for
even Ns, the geometrical center of the lattice is located in
the center of a plaquette, as shown in Fig. 5.
The single-winding loop P in the corotating frame

contains a spacelike jumper that matches the points P

and P0 of Fig. 5(c). For a nonvanishing distance from the
center of rotation, the minimal path (modulo imaginary-
time translations) can be constructed in various ways. We
have checked explicitly that our results do not depend on
the choice of the minimal-length path so that this ambiguity
does not affect our results.
In Fig. 6, we show the numerical results for the spatial

structure of the expectation value of the corotating
Polyakov loop P in the ðx; yÞ plane perpendicular to the
axis of rotation z. The local value of the loop, defined at a
spatial point ðx; y; zÞ, is first averaged along the z axis and
then the absolute value of this average is taken.
Our theoretical expectations, based on the kinematic

relations provided by the Euclidean TE law (18), suggest

(a) (b) (c)

FIG. 5. The Polyakov loop order parameters. (a) Elementary single-fold winding loop P for a static (ΩI ¼ 0) nonrotating plasma with
P and P0 denoting the same point identified via the periodic boundary condition. A rapidly rotating plasma with the π=2 imaginary
frequency (21): (b) a fourfold all-straight closed Polyakov loop P4 in the laboratory frame with the points Pa and P0

a (a ¼ 1;…; 4)
pairwise identified; (c) single-fold winding loop P in the corotating frame, with a spacelike jumper that allows one to match the points P
and P0. The latter lattice contour is a lattice analog of the P0P closed curve in Fig. 3(b).

FIG. 6. The absolute value of the expectation value of the local
Polyakov loop P calculated numerically in finite-temperature
SU(3) gauge theory under the ΩI ¼ πT=2 imaginary rotation.
The loop is defined in the corotating frame as illustrated in
Fig. 5(c). The expectation values are shown in the ðx; yÞ plane
normal to the axis of rotation. In the temporal direction, the
rotwisted boundary condition (12a) corresponding to the π=2
imaginary rotation (21) is implied. Temperature T and the
position of the phase transition T ¼ Tc (the orange arrow)
correspond to the nonrotating thermal gluon plasma.
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that the rotation creates an inhomogeneous phase (with the
phase diagrams shown in Figs. 1 and 2). Our numerical
results, presented in Fig. 6, indeed show the emergence of
the expected inhomogeneity: the hot plasma domain
appears close to the center of rotation. The gluonic plasma
is surrounded by a cold, confining region [cf. Figs. 2(a)
and 2(b)]. The observation of the inhomogeneous plasma
structure in Euclidean spacetime implies the validity of the
kinetic TE picture and points out the existence of the
rotation-induced inhomogeneous phase in the Minkowski
spacetime. Notice that, after the Wick transformation, the
positions of the confining and deconfining phases are
reversed in the inhomogeneous phase, Fig. 1.
There are a few technical remarks about Fig. 6. First, the

plasma has a square shape as a reminder of the discrete C4

group of lattice rotations. The effect is enhanced by strong
(imaginary) rotation with the large imaginary frequency
(21) produced by the π=2-rotwisted boundary conditions
along the compactified (temperature) direction. Second, the
signatures of the inhomogeneous plasma appear already in
the confining phase. This observation is a consequence
of a finite-volume effect since we take the mean of the
local Polyakov loop over the small volume 1 × 1 × Ns. We
have two sources of finite-volume effects related to (i) finite
total lattice volume N3

s and (ii) the finite extension Ns of
the z axis available for taking the mean of the local
Polyakov loop.
In Fig. 7, we show the expectation value of the corotating

Polyakov loop at the center of rotation.2 The data for the
lattices with the spatial sizes Ns ¼ 32 and Ns ¼ 48 are
almost superimposed on each other, so we conclude that the
effects imposed by the finite spatial lattice volume are small.
In the deconfining phase, the expectation value of the

corotating local Polyakov loop at the rotation axis, with
ΩI ¼ π=ð2βÞ, approaches the expectation value of the
volume-averaged (bulk) Polyakov loop calculated in the
nonrotating lattice (with ΩI ¼ 0). Thus, above the decon-
fining temperature T > T∞

c , the gluons at the center of the
imaginary rotation reside in the deconfinement phase (it is
not a trivial fact since, at the same time, at T > T∞

c , the
gluons far from the rotation axis appear to be in the
confining phase as it is seen from Fig. 6).
As temperature diminishes, the bulk Polyakov loop at

ΩI ¼ 0 rapidly vanishes, while the corotating loop at ΩI ¼
πT=ð2βÞ approaches very slowly a nonvanishing expect-
ation value. The smoothness of the ΩI ¼ π=ð2βÞ transition
could be a physical effect since in the nonrotating case,
with ΩI ¼ 0, the on-axis Polyakov loop behaves much
sharper. The data for the latter quantity, shown in the same

Fig. 7, show qualitative insignificance of the type of the
boundary conditions (open vs periodic) and exhibit insen-
sitivity to the spatial lattice size (Ns ¼ 32 vs Ns ¼ 48).
The nonvanishing value of corotating is a finite-volume

effect of the second type related to the locality of the on-
axis Polyakov loop. This fact is seen from the coincidence
of the values of the corotating loop atΩI ¼ π=ð2βÞwith the
results for the local Polyakov loop for the nonrotating
lattice in Fig. 7.
The spatial structure of the rotating Yang-Mills theory

revealed in this paper with the help of rotwisted boundary
conditions atΩI ∼ Tc, differs from the results obtained with
the help of the curved rotational metric imposed on the
lattice at low angular frequencies ΩI ≪ Tc [13,14]. In the
latter case, no pronounced inhomogeneity at the center is
seen: the local order parameter, the Polyakov loop, depends
on the spatial boundary conditions near the system’s edges
but not in bulk. The origin of this discrepancy can be related
to the qualitative difference in the implementation of
imaginary rotation (rotwisted boundary condition vs curved
lattice spacetime) as well as ascribed to the quantitative
factor: our imaginary frequency is an order of magnitude
higher than the one imposed in Refs. [13,14].
We also do not see a clear deconfinement transition for

the rotating gas at an elevated temperature TcðβΩI¼π=2Þ>
TcðΩI¼0Þ as it was suggested recently in Ref. [24]. On the
contrary, our data for the rotating gas, reported in Fig. 7,
show a slow rise of the on-axis Polyakov loop starting in
the confinement phase. One could attempt to attribute the
smooth behavior of the on-axis Polyakov loop to a finite-
volume effect, since we average the local Polyakov loop in
a small spatial volume Ns × 12 along the z axis. However,
as we mentioned above, the same local Polyakov loop in
the nonrotating Yang-Mills theory shows a clear signature

FIG. 7. The absolute value of the local expectation value of the
corotating Polyakov loop P in the bulk (for the nonrotating lattice
at ΩI ¼ 0 only) and at the center of rotation as the function of the
lattice coupling βL for open and periodic (for the xy plane)
boundary conditions for the lattices with Ns ¼ 32 and Ns ¼ 48
spatial sizes. The dashed orange line shows the critical coupling
βc ≡ βL;cðΩI ¼ 0Þ of the thermodynamic bulk phase transition
for a nonrotating lattice.

2Notice that since the actual axis of rotation is located at the
center of the center plaquette, the loop is placed at the distanceffiffiffi
2

p
a from the rotation axis. Since this distance is very short, we

identify the Polyakov loop piercing the sites of the center xy
plaquette with the “on-axis” Polyakov loop.
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of the phase transition, thus excluding the finite-volume
argument. Therefore, our data suggest that the Euclidean
Yang-Mills plasma rotating with the imaginary frequency
ΩI ¼ π=ð2βÞ possesses the single crossover-type decon-
finement transition in the spatial region close to the rotating
axis at the temperature close to the critical deconfining
temperature of the nonrotating gas.
Finally, one could also ask whether the physical picture

of the single-winding Polyakov loop in the corotating
frame, described above and also shown in Fig. 7, works
not only at the axis of rotation, but also at some distances
from the axis. In Fig. 8, we plot the local expectation value
of the corotating loopP as the function of the distance from
the axis of rotation R (shown in lattice units for an Ns ¼ 46
lattice) and compare it to the reference loop in the static
ΩI ¼ 0 case. The results agree with our expectations: in the
center of the system, the corotating Polyakov loop takes
large values comparable with the deconfining values in
the nonrotating case. As we move out of the center, the
expectation value of the loop decreases.

3. Rotwisted boundary condition and physical
temperature

One could also mention another intriguing possibility
which implies that the rotwisted boundary condition,
imposed along the imaginary-time direction, modifies the
temperature in the whole lattice. Analysis of classical
solutions shows that the system subjected to the imaginary
rotation with the rational angular frequency βΩI=ð2πÞ ¼
p=q with natural nonzero numbers p; q ∈ N, could be
exposed to the thermal bath with the following laboratory-
frame temperature [25]:

T lab ¼
1

qLτ
; ΩI ¼

2π

T
p
q
; ð28Þ

where Lτ ≡ aNτ is the length of the lattice in the imagi-
nary-time direction. The subsequent thermodynamic

analysis demonstrates that free particle theories with
rotwisted boundary conditions exhibit fractal-type thermo-
dynamics for which the thermal properties of the ensemble
change in an irregular, nonanalytical way withΩI [26]. The
latter fact leads to a no-go theorem that forbids the
analytical continuation from the imaginary angular fre-
quency ΩI to the real frequency Ω provided the former is
introduced via the rotwisted boundary conditions (12). The
no-go theorem does not apply to the Tolman-Ehrenfest law,
which has a purely kinematic (geometric) origin with
Minkowski (3) and Euclidean (17) versions related by a
simple analytical mapping.
For the π=2 rotation, the physical temperature should

be lower by the factor of 4, T lab ¼ T0=4≡ 1=ð4LτÞ, as
compared both to the naively computed temperature T0 ¼
1=Lτ and to the Euclidean TE temperature (17). This factor
is consistent with the fourfold increase in the length of the
Polyakov loop P4, Fig. 5(b), with respect to the length of
the compact time dimension, Fig. 5(b). Therefore, our
results for the deconfining order parameter at the nonzero
ΩI , shown in Fig. 7, could also formally refer to a confining
phase of the theory from the point of view of the laboratory-
defined operator P4.
In order to check the qualitative validity of our results,

we extended our calculations to very large lattice couplings,
βL ¼ 10. We consistently observed the presence of the
inhomogeneous, two-phase structure in the whole domain
of studied couplings. Moreover, the coincidence of the on-
axis Polyakov loop in the rotating frame (the blue dataset in
Fig. 7) and the bulk Polyakov loop of the nonrotating lattice
(the red dataset in the same figure) extends to all measured
points in the deeply deconfining domain (we checked the
validity of this coincidence until βL ¼ 7). Thus, the center
of the imaginarily rotating plasma in the deconfinement
phase (T > Tc) stays in the deconfinement phase, while the
exterior is confining.
Our expectations are also supported by the probability

distribution of the order parameter. We remind the reader that
the corotating-frame Polyakov loop P is sensitive to the
centerZ3 symmetry (26) and therefore its distribution should
clearly signal whether the center symmetry is broken or not.
This distribution is shown in Fig. 9 at the lattice coupling
βL ¼ 7.0 for three different distances from the axis of
rotation. As we expected, this scatter plot shows a triangle-
like distribution typical to the deconfined phase for the
corotating loop close to the center of the rotating gluonic gas.
Moreover, we observe a symmetric structure far from the
rotation axis, which signals restoration of the symmetry that
characterizes the confinement phase. Thus, we again con-
clude that the interior of the imaginarily rotating plasma in
the deconfinement phase (T > Tc) stays in the deconfine-
ment phase, while its outer regions are confining.
Thus, the imaginary rotation in Euclidean space gen-

erates the inhomogeneous structure of the gluon plasma,
consisting of the hot plasma domain close to the rotation

FIG. 8. The absolute value of the local expectation value of the
corotating Polyakov loop P of rotating lattice for different values
of distance R from the rotation axis and the lattice coupling βL.
The red curve represents the P value for nonrotating lattice as a
reference.
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axis, surrounded by the confining phase in bulk. In the
confining phase, the central plasma domain disappears, and
the confining phase occupies the whole volume. This result
in Euclidean space supports the Minkowski picture shown
in Fig. 1.

4. Polyakov order parameter in the laboratory frame

In the laboratory frame of the ΩI ¼ πT=2 rotation, the
Polyakov loop P4 winds four times about the imaginary-
time axis, as illustrated in Fig. 5(b). Our Monte Carlo
results for the spatial distribution of the expectation value of
this loop are shown in Fig. 6. The fourfold loop P4 appears
to be relatively insensitive to temperature. Moreover,
contrary to the corotating Polyakov loop P, Fig. 10, no
spatial structure in its expectation value of P4 is seen in the
laboratory frame.
Our numerical results for the on-axis expectation value

of the fourfold Polyakov loop P4 are shown in Fig. 11.

Despite the fourfold loop being sensitive to the center Z3

symmetry (26), no signature of the Z3 symmetry breaking
is observed from the expectation value of this operator in
the explored region of lattice couplings βL. We remind the
reader, however, that this operator has a rather questionable
theoretical interpretation since it is defined in the laboratory
frame of the rotating system. Since theP4 operator does not
introduce a heavy test quark corotating with the gluon
plasma, its expectation value does not coincide with the free
energy of the heavy quark in the rotating plasma.
As for the larger βL region, we found that the bulk

expectation value of the fourfold Polyakov loop P4 stays at
the low constant value until the lattice coupling reaches
βL ∼ 9. Above this coupling, the loop P4 starts to rise
(see Fig. 12). This behavior indicates, most probably, the

FIG. 9. The distribution of the local values of the Polyakov loop
in the complex plane for three different distances R to the axis of
rotation (given in lattice units) for the lattice coupling βL ¼ 7.0 at
the lattice Ns ¼ 48.

FIG. 10. The same as in Fig. 6 but for fourfold Polyakov loop
P4, Fig. 5(b), defined in the laboratory frame at the imaginary
angular frequency ΩI ¼ π

2
T.

FIG. 11. The expectation value of the fourfold Polyakov loop
P4 in the laboratory frame under the imaginary ΩI ¼ π

2
T rotation

(the blue and yellow lines) compared with the bulk expectation
value of the standard Polyakov loop P in the nonrotating SU(3)
gauge theory (the red line). The dashed orange arrow marks the
phase transition corresponding to the nonrotating case.

FIG. 12. The bulk expectation value of the fourfold Polyakov
loopP4 for the larger region of lattice couplings βL for two values
of spatial lattice size Ns ¼ 32 and Ns ¼ 48 is shown in
comparison with the expectation value of the Polyakov loop
with the spacelike jumper for the rotating lattice, as well as the
expectation value of the standard “reference” Polyakov loop P
for a nonrotating lattice.
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presence of the deconfinement transition caused by the
finite physical volume of the system. Should any physical
thermodynamics transition exist for the rotwisted lattice at
high temperatures, it will be overshadowed by this finite-
volume effect for our lattice volumes.

IV. CONCLUSION AND DISCUSSION

We studied the properties of hot Euclidean Yang-Mills
plasma subjected to rotation with imaginary angular fre-
quency. Such rotation is supported by the rotwisted
(originating from merging the words rotation and twisted)
boundary conditions in the imaginary-time formalism in a
finite-temperature field theory. The rotwisted boundary
condition is a generalization of the usual periodic (anti-
periodic) boundary condition imposed on bosonic (fer-
mionic) fields in the compactified imaginary-time
direction, Eqs. (10) and (11): the imaginary-time translation
at the whole period β ¼ 1=T is supplemented with a rigid
rotation of the three-dimensional space about a fixed spatial
axis. The rotation angle (14) is determined by the imaginary
frequency ΩI. Since the rotation takes place in the
Euclidean spacetime, it is called the imaginary rotation,
as opposed to the real rotation in Minkowski spacetime.
According to the Tolman-Ehrenfest law [29,30], the real

rigid rotation of a thermally equilibrated plasma leads to the
increase of local temperature toward the outer plasma
regions (3). We derived the Euclidean version of the TE
law (17), which is valid for imaginary rotations in the
imaginary-time formalism. The Euclidean version shows
the expected periodicity in the imaginary frequency (13). It
also reduces to the usual TE law after the Wick trans-
formation (8) to Minkowski spacetime. The TE temperature
corresponds to the temperature experienced by a heavy
particle (a quark) corotating with the thermal ensemble.
We performed numerical Monte Carlo simulations of

SU(3) Yang-Mills theory with the imaginary angular
frequency ΩI ¼ πT=ð2βÞ. This particular frequency corre-
sponds to the π=2-rotwisted boundary condition, which is
consistent with the symmetries of the hypercubic lattice.
The π=2-rotwisted boundary conditions correspond, using
a formal analytical continuation, to a very fast real rotation
with the angular frequency Ω ∼ 300 MeV (at deconfining
critical temperature Tc) if compared to the estimated
Ω ∼Oð10 MeVÞ in noncentral realistic collisions of heavy
ions [1].
The rotwisted Polyakov loop defined in the Euclidean

corotating frame, Fig. 5(c), points to the emergence of
the inhomogeneous, spatially nonuniform confining-
deconfining phase generated due to the imaginary rotation.
Our data demonstrate that Euclidean Yang-Mills plasma
rotating with the imaginary frequency ΩI ¼ πT=ð2βÞ
possesses the single crossover-type deconfinement transi-
tion in the spatial region in the vicinity of the rotating axis
at the temperature close to the critical deconfining temper-
ature of the nonrotating gas. While the central near-axis

spatial domain experiences the deconfining transition, the
outer regions remain in the confining phase.
Our Euclidean results indicate that the gluon plasma,

rotating rigidly at real angular frequencies Ω in Minkowski
spacetime, produces a new, spatially nonuniform confining-
deconfining phase. This inhomogeneous phase possesses a
phase boundary that separates the confining central domain
near the rotation axis from the deconfining region in the
outer region of the plasma (notice that, under the Wick
transformation from Euclidean space to Minkowski space-
time, the confining and deconfining regions of the inhomo-
geneous mixed phase switch their places, Fig. 1). This result,
which has a pure kinematic origin, confirms the validity of
the Tolman-Ehrenfest arguments in the context of the
rotating Yang-Mills plasma [15].
We also studied the Polyakov loop in the Euclidean

laboratory frame. This operator is defined on a closed
contour that winds four times around the compactified time
direction, Fig. 5(b). Its expectation value does not show any
local sign of the deconfining phase and, surprisingly, no
breaking of the global center Z3 symmetry at a conven-
tional range of lattice couplings β that correspond to the
deconfining phase transition in the conventional, nonrotat-
ing SU(3) Yang-Mills theory. However, the physical
interpretation of the global center Z3 symmetry can be
questioned because our system possesses two locally
separated phases (with broken and unbroken symmetry,
respectively), coexisting in the global thermal equilibrium.
Our results suggest that we can define two types of

temperatures for Euclidean field theory rotating with the
imaginary angular frequency. One of them is the local
Tolman-Ehrenfest temperature based on the purely kin-
ematic definition (3). The thermal bath with this temper-
ature is experienced by a heavy test particle (or measured
by a thermometer), which rotates together with the thermal
plasma. The change of the local temperature with rotation
is a kinematic effect related to a local redshift of the
thermal wavelength in curved spacetime. In the context
of a confining theory in Euclidean spacetime, the rotating
thermal bath temperature is probed by the rotwisted
Polyakov loop, Fig. 5(c). For spatially constrained systems
with jΩIjR < 1, the local Euclidean TE temperature (17)
can be analytically continued to the thermal bath temper-
ature (3) in a rotating system in Minkowski spacetime.
Another definition of temperature is probed by the

Polyakov loop in the laboratory frame, Fig. 5(b). This
“laboratory” temperature is determined via Eq. (28) [25].
We argued that, for π=2≡ 1

4
× 2π-rotwisted boundary

conditions, this laboratory temperature T lab ¼ 1=ð4LτÞ is
4 times lower than is naively expected from the length Lτ

of the compactified imaginary-time direction. While
this Euclidean laboratory temperature cannot be analyti-
cally continued to Minkowski spacetime, it can be asso-
ciated with a heat bath of particles with exotic, ninionic
statistics [26].
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The ambiguity in the definition of temperature is a
particular feature of the Euclidean imaginary formulation
of thermal field theory. The ambiguity does not appear in
the Minkowski spacetime, where a single equilibrium
temperature is identified in a local thermal frame (in our
case, the corotating frame) using, for example, thermal
particle occupation numbers. In the laboratory frame,
related to the corotating frame by a diffeomorphism trans-
formation (a local Lorentz boost), the particle distribution is
not thermal, but it is still determined by the temperature in
the thermal frame.
The emergence of two notions of temperature becomes

apparent after noticing that the order parameter, the
Polyakov loop, is a nonlocal operator that involves a closed
path in the imaginary time. For a theory subjected to a
rotwisted boundary condition, this nonlocality allows us to
identify two types of operators, one in the Euclidean rotating
frame and another in the Euclidean laboratory frame. The
former quantity gives us the free energy of a test quark
exposed to the heat bath with a local TE temperature that is
related, via a formal analytical continuation, to the real TE
temperature in Minkowski spacetime. The meaning of the
latter definition of temperature remains to be clarified.
A word of caution on our results comes from the

presence of the conformal anomaly in non-Abelian field

theories. In inhomogeneous environments, the conformal
anomaly affects the thermal properties of quantum systems
in such as way that the local pressure and local energy
density become dependent not only on local temperature
but they also acquire a dependence on temperature gra-
dients and higher derivatives [38]. Concerning the rotating
quark-gluon plasma, which is necessarily inhomogeneous,
this property could imply that the local kinetic temperature
determined by the Tolman-Ehrenfest relation (17) does not
correspond to the actual local temperature in the system,
which may also render the real rigid rotation unstable [39].
The interference of the conformal anomaly and rotation
requires further investigation.
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