
Symmetries of meson correlators in high-temperature QCD
with physical ðu=d;s;cÞ domain-wall quarks

Ting-Wai Chiu *

Department of Physics, National Taiwan Normal University, Taipei, Taiwan 11677, Republic of China;
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China;

Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan 10617, Republic of China
and Center for Theoretical Physics, Department of Physics, National Taiwan University,

Taipei, Taiwan 10617, Republic of China

(Received 13 February 2023; accepted 15 May 2023; published 2 June 2023)

The correlation functions of meson interpolators in Nf ¼ 2þ 1þ 1 lattice QCD with optimal domain-
wall quarks at the physical point are studied for six temperatures in the range T ∼ 190–770 MeV. The
meson interpolators include a complete set of Dirac bilinears, and each for six combinations of
quark flavors. In this paper, we focus on the meson correlators of u and d quarks, and we discuss their
implications for the effective restoration of Uð1ÞA and SUð2ÞL × SUð2ÞR chiral symmetries, as well as the
emergence of approximate SUð2ÞCS chiral spin symmetry.
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I. INTRODUCTION

It is important to understand the nature of strongly
interacting matter at high temperatures, which is crucial
for themechanism ofmatter creation in the earlyUniverse, as
well as in relativisitic heavy ion collision experiments such as
those at the RHIC and LHC.A first step toward this goal is to
find out the symmetries of QCD at high temperatures, since
the nature of matter is likely to be unveiled from its
symmetries.
At low temperatures T < Tc, quarks and gluons are

confined in hadrons, and the chiral symmetry of QCD is
spontaneously broken, with the nonzero chiral condensate
[ΣðTÞ ≠ 0]:

ΣðTÞ¼− lim
mq→0

lim
V→∞

T
V

Z
1=T

0

dt
Z
V
d3xhTrðDcþmqÞ−1i: ð1Þ

Moreover, the Uð1ÞA symmetry is explicitly broken by the
chiral anomaly due to the quantum fluctuations of topo-
logically nontrivial gauge fields.
Since the quark mass explicitly breaks the Uð1ÞA

symmetry and the chiral symmetry, determining whether
the Uð1ÞA symmetry and the chiral symmetry are
broken/restored at any T should be performed in the

massless limit. Nevertheless, for QCD with physical
ðu; d; s; c; bÞ quarks with nonzero quark masses, as the
temperature T is increased, the SUðnfÞL × SUðnfÞR chiral
symmetry is effectively restored successively from nf ¼ 2

to 3, 4, and 5—say, as T ↗ Tu=d
c ↗ Ts

c ↗ Tc
c ↗ Tb

c . Since
the SUð2ÞL × SUð2ÞR chiral symmetry of physical u and d
quarks is effectively restored at T ≥ Tu=d

c , its counterpart T0
c

in QCD with massless ðu; d; s; c; bÞ quarks is supposed to
be at a lower temperature—i.e., T0

c < Tu=d
c . Now, assuming

that the Uð1ÞA symmetry in QCD with massless
ðu; d; s; c; bÞ quarks is also effectively restored at T0

c,
it is unclear whether the Uð1ÞA symmetry of u and d
quarks in QCD with physical ðu; d; s; c; bÞ quarks is also
effectively restored at T≥Tu=d

c , or at higher temperatures
T ≥ Tu=d

1 ≳ Tu=d
c .

Since 1987 [1], there have been many lattice studies using
spatial meson correlators (and their screening masses) to
investigate the effective restoration of Uð1ÞA and SUð2ÞL ×
SUð2ÞR chiral symmetries in high-temperature QCD—see,
e.g., Ref. [2] and references therein. In this paper, wewill use
the degeneracies of meson correlators of u and d quarks to
determine the effective restoration or the emergence of any
exact/approximate symmetries in high-temperature QCD, as
discussed in Sec. II. For example, we use the degeneracy of
meson correlators of vectors (Vk ≡ ūγkd) and axial vectors
(Ak ≡ ūγ5γkd) to determine the effective restoration of the
SUð2ÞL × SUð2ÞR chiral symmetry of u and d quarks, and
the degeneracy of the meson correlators of the scalar
(S≡ ūd) and the pseudoscalar (P≡ ūγ5d) to determine
the effective restoration of the Uð1ÞA symmetry of u and d
quarks.
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Now, the question is whether Uð1ÞA and SUð2ÞL ×
SUð2ÞR are the only symmetries of QCD with physical
ðu; d; s; c; bÞ quarks for T ≥ Tu=d

1 ≳ Tu=d
c , all the way up to

the temperatures where the effective coupling among
quarks and gluons becomes sufficiently weak (screened),
and the quarks and gluons behave like deconfined particles
forming the quark-gluon plasma. In particular, it is inter-
esting to find out whether there are any emergent sym-
metries which are manifested in observables (e.g., hadron
correlators) but not in the QCD action. Moreover, one may
ask whether quarks are deconfined or confined inside these
hadron-like objects for temperatures T ≳ Tu=d

c . In the latter
case, the properties of these hadron-like objects would be
quite different from those at T < Tu=d

c , since the chiral
symmetry has been restored with Σ ¼ 0.
Recently, it has been observed that in Nf ¼ 2 lattice

QCD with domain-wall fermions, at temperatures T ∼
220–500 MeV ∼ ð1.2–2.8ÞTc (where Tc ∼ 175 MeV for
Nf ¼ 2 lattice QCD), a larger symmetry group SUð2ÞCS
[with Uð1ÞA as a subgroup] [3,4] is approximately man-
ifested in the multiplets of correlators of the J ¼ 1 meson
interpolators [5,6], as an approximate emergent symmetry
in high-temperature QCD. This suggests the possible
existence of hadron-like objects which are predominantly
bound by chromoelectric interactions into color singlets for
a range of temperatures above Tc. Now, the question is one
of identifying the scenario of the emergence of approximate
SUð2ÞCS chiral spin symmetry in QCD with dynamical
light and heavy quarks. This motivates the present study.
In this paper, we study the temporal and spatial corre-

lation functions of meson interpolators in Nf ¼ 2þ 1þ 1

lattice QCD with ðu; d; s; cÞ optimal domain-wall quarks at
the physical point on the 323 × ð16; 12; 10; 8; 6; 4Þ lattices
for temperatures in the range T ∼ 190–770 MeV. The
meson interpolators include a complete set of Dirac
bilinears (scalar, pseudoscalar, vector, axial vector, tensor
vector, and axial-tensor vector), and each for six combi-
nations of quark flavors (ūd, ūs, ūc, s̄c, s̄s, and c̄c). We
discuss the implications of these results for the effective
restoration of the SUð2ÞL × SUð2ÞR and Uð1ÞA chiral
symmetries, as well as the emergence of approximate
SUð2ÞCS chiral spin symmetry. In this paper, we focus
on the meson correlators of u and d quarks. The results of
meson correlators with other flavor combinations (ūs, ūc,
s̄c, s̄s, and c̄c) will be analyzed in a forthcoming paper [7].
The outline of this paper is as follows: In Sec. II,

we discuss the relationship between various symmetries
[SUð2ÞL × SUð2ÞR, Uð1ÞA, SUð2ÞCS, and SUð4Þ] and
the degeneracies of meson correlators. In Sec. III, the
symmetry-breaking parameters for measuring various sym-
metries with the degeneracies of meson correlators are
defined. In Sec. IV, the features of the gauge ensembles of
Nf ¼ 2þ 1þ 1 lattice QCD at the physical point for this
study are outlined. The results of the temporal t correlators

for three temperatures in the range T ≃ 190–310 MeV are
presented in Sec. V, while those of the spatial z correlators
for six temperatures in the range T ≃ 190–770 MeV are
presented in Sec. VI. We discuss their implications for
the effective restoration of SUð2ÞL × SUð2ÞR and Uð1ÞA
chiral symmetries, and the emergence of the approximate
SUð2ÞCS chiral spin symmetry. We also compare our results
with those in Nf ¼ 2 lattice QCD [5,6], as well as the
noninteracting theory with free quarks. In Sec. VII, we
conclude with some remarks.

II. SYMMETRIES AND MESON CORRELATORS

In this section, we discuss the relationship between the
symmetry and the degeneracy of the meson correlators in
high-temperature QCD.
The correlation function of the meson interpolator q̄1Γq2

is measured according to the formula

CΓðt; x⃗Þ ¼ hðq̄1Γq2Þxðq̄1Γq2Þ†0i
¼ htr½ΓðDc þm1Þ−10;xΓðDc þm2Þ−1x;0�iconfs; ð2Þ

where ðDc þmqÞ−1 denotes the valence quark propagator
with quark mass mq in lattice QCD with exact chiral
symmetry, “tr” denotes the trace over the color and Dirac
indices, and the brackets h� � �iconfs denote averaging over
the gauge configurations. Here, the label of a lattice site x is
understood to stand for ðx1; x2; x3; x4Þ ¼ ðx; y; z; tÞ, and the
overall � sign due to γ4Γ†γ4 ¼ �Γ has been suppressed.
On a lattice of N3

x × Nt sites, the discrete Fourier
transform of Eq. (2) gives

C̃Γðt; p⃗; TÞ ¼
X

x1;x2;x3

expðip⃗ · x⃗ÞCΓðt; x⃗Þ; T ¼ 1

Nta
; ð3Þ

which is related to the spectral function ρΓðω; p⃗; TÞ through
the integral transform,

C̃Γðt; p⃗; TÞ ¼
Z

∞

0

dω
2π

cosh ½ωðt − 1
2TÞ�

sinhð ω
2TÞ

ρΓðω; p⃗; TÞ: ð4Þ

The time-correlation function (t correlator) of the meson
interpolator q̄1Γq2 is defined as

CΓðt; TÞ ¼
X

x1;x2;x3

CΓðt; x⃗Þ; ð5Þ

which is equal to C̃Γðt; p⃗ ¼ 0; TÞ and is related to the
spectral function at p⃗ ¼ 0.
Alternatively, one can study the spatial correlation

function in the z direction (z correlator):

CΓðz; TÞ ¼
X

x1;x2;x4

CΓðt; x⃗Þ; T ¼ 1

Nta
; ð6Þ
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which is related to the spectral function at p1 ¼ p2 ¼ 0
through the integral transform

CΓðz; TÞ ¼
Z

∞

0

dω
πω

Z þ∞

−∞

dp3

2π
expðip3zÞρΓðω; p3; TÞ: ð7Þ

If any symmetry manifests in the z correlator, it should also
appear in the spectral function ρðω; p⃗; TÞ, since in thermal
equilibrium, ρðω; p⃗; TÞ ¼ ρðω; jpj; TÞ, which is isotropic
in all directions of p⃗.
In the following, it is understood that CΓðt; TÞ is

normalized by CΓðnt ¼ 1; TÞ, and similarly CΓðz; TÞ is
normalized by CΓðnz ¼ 1; TÞ.

A. Classification of meson interpolators

The meson interpolators are classified according to their
transformation properties as listed in Table I. The Γmatricies
are given for the t correlators in the second column, and for
the z correlators in the third column. Note that V4 and A4 are
omitted for the t correlators, since CV4

ðtÞ and CA4
ðtÞ do not

propagate in the t direction when the chiral symmetry of u
and d quarks is effectively restored for T > Tc. Similarly, V3

and A3 are omitted for the z correlators.
For the vector meson correlators, the rotational sym-

metry in the continuum is reduced to the discrete permu-
tation symmetry on the lattice. For the t correlators, the
rotational symmetry becomes the S3 symmetry of the x, y,
and z components, which gives CV1

¼ CV2
¼ CV3

, CA1
¼

CA2
¼ CA3

, CT1
¼ CT2

¼ CT3
, and CX1

¼ CX2
¼ CX3

.
For the z correlators, it becomes the S2 symmetry of the
x and y components, which gives CV1

¼ CV2
, CA1

¼ CA2
,

CT1
¼ CT2

, and CX1
¼ CX2

.

B. Uð1ÞA symmetry

For the scalar (S) and the pseudoscalar (P) bilinears, their
correlators can be transformed into each other by the global
Uð1ÞA transformations

qðxÞ → expðiγ5θÞqðxÞ; q̄ðxÞ → q̄ðxÞγ4 expð−iγ5θÞγ4:
ð8Þ

Similarly, for the tensor vector (Tk) and the axial-tensor
vector (Xk), their correlators can be transformed into each
other by the global Uð1ÞA transformations. If Uð1ÞA is
effectively restored for T ≳ Tq

1 (where Tq
1 depends on the

masses of q1 and q2), the correlators of the scalar (S) and
pseudoscalar (P) are degenerate, and also those of tensor
vectors (Tk) and axial-tensor vectors (Xk)—i.e.,

CSðtÞ ¼ CPðtÞ; CTk
ðtÞ ¼ CXk

ðtÞ; k ¼ 1; 2; 3;

CSðzÞ ¼ CPðzÞ; CTk
ðzÞ ¼ CXk

ðzÞ; k ¼ 1; 2; 4:

Thus, the effective restoration of the Uð1ÞA symmetry is
equivalent to the emergence of two multiplets

ðS; PÞ; ðfTkg; fXkgÞ; ð9Þ

where k ¼ 1, 2, 3 for t correlators and k ¼ 1, 2, 4 for z
correlators.

C. SUð2ÞL × SUð2ÞR flavor chiral symmetry

For the SUð2Þ flavor doublet q ¼ ðq1; q2ÞT , we consider
the vector bilinears (Vk)

q̄ðxÞγk
τ�
2
qðxÞ; τ� ¼ τ1 � iτ2;

where fτ1; τ2; τ3g are Pauli matrices, and fτi=2; i ¼ 1; 2; 3g
are the generators of the SUð2Þ group in the flavor space.
Similarly, the axial-vector bilinears (Ak) can be written as

q̄ðxÞγ5γk
τ�
2
qðxÞ:

The correlators of vector and axial-vector bilinears can
be transformed into each other by the flavor nonsinglet
axial rotations

qðxÞ → exp
�
iγ5

τ⃗

2
· θ⃗
�
qðxÞ;

q̄ðxÞ → q̄ðxÞγ4 exp
�
−iγ5

τ⃗

2
· θ⃗

�
γ4: ð10Þ

If the SUð2ÞL × SUð2ÞR chiral symmetry of the flavor
doublet is effectively restored for T ≳ Tq

c (where Tq
c

depends on the masses of q1 and q2), the correlators of
the vector bilinears (Vk) and the axial-vector bilinears (Ak)
are degenerate—i.e., CVk

¼ CAk
. Thus, the effective resto-

ration of SUð2ÞL × SUð2ÞR chiral symmetry is equivalent
to the emergence of the multiplet

ðfVkg; fAkgÞ; ð11Þ

where k ¼ 1, 2, 3 for t correlators and k ¼ 1, 2, 4 for z
correlators.

TABLE I. The classification of meson interpolators q̄1Γq2, and
their names and notations. The Γ matricies in the second column
are for the t correlators, while those in the third column are for the
z correlators.

Name and notation Γ (for t correlators) Γ (for z correlators)

Scalar (S) 1 1
Pseudocalar (P) γ5 γ5
Vector (Vk) γk (k ¼ 1, 2, 3) γk (k ¼ 1, 2, 4)
Axial vector (Ak) γ5γk (k ¼ 1, 2, 3) γ5γk (k ¼ 1, 2, 4)
Tensor vector (Tk) γ4γk (k ¼ 1, 2, 3) γ3γk (k ¼ 1, 2, 4)
Axial-tensor
vector (Xk)

γ5γ4γk (k ¼ 1, 2, 3) γ5γ3γk (k ¼ 1, 2, 4)
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D. SUð2ÞCS chiral spin symmetry

The SUð2ÞCS chiral spin transformations [3,4] are
defined by

qðxÞ → exp

�
i
Σ⃗μ

2
· θ⃗

�
qðxÞ;

q̄ðxÞ → q̄ðxÞγ4 exp
�
−i

Σ⃗μ

2
· θ⃗

�
γ4; μ ¼ 1; 2; 3; 4; ð12Þ

where Σ⃗μ ¼ fγμ; iγμγ5; γ5g, and θ⃗ are global parameters.
The choice of μ for a given observable is fixed by the
requirement that the SUð2ÞCS transformations not mix
operators with different spin.
The QCD Lagrangian is not invariant under SUð2ÞCS

transformations, but only the chromoelectic part of the
quark-gluon interaction, and also the color charge Qa ¼R
d4xq†ðxÞTaqðxÞ. In a given reference frame (e.g., the rest

frame of the medium), the quark-gluon interaction in the
QCD Lagrangian can be decomposed into temporal and
spatial parts:

q̄ðxÞ
�
γ4½∂4þ igTaAa

4ðxÞ�þ
X

k¼1;2;3

γk½∂kþ igTaAa
kðxÞ�

�
qðxÞ;

where the chromoelectric interaction term igq†ðxÞTa ×
Aa
4ðxÞqðxÞ is invariant under the SUð2ÞCS transformations,

while the chromomagnetic interaction and the kinetic terms
break the SUð2ÞCS symmetry. If the SUð2ÞCS chiral spin
symmetry turns out to be exact for a range of temperatures
in high-temperature QCD, then the quarks cannot behave
like free fermions at these temperatures, since the latter
break the SUð2ÞCS symmetry. Consequently, it is likely that
there are hadron-like objects which are predominantly
bound by the chromoelectric interactions into color sin-
glets. On the other hand, if SUð2ÞCS is an approximate
emergent symmetry, then the chromomagnetic interactions
could also play some role in forming these hadron-like
objects, and the dominance of the chromoelectric inter-
actions depends on to what extent the SUð2ÞCS symmetry
emerges as an exact symmetry.
In the following, we discuss the SUð2ÞCS multiplets of

vector meson correlators, which are generated by the
SUð2ÞCS transformations.
For the t correlators, the choice of μ ¼ 4 satisfies the

requirement that the SUð2ÞCS transformations not mix
operators with different spin. Then, the SUð2ÞCS × S3
transformations generate one triplet and one nonet:

ðA1; A2; A3Þ; ðV1; V2; V3; T1; T2; T3; X1; X2; X3Þ: ð13Þ

For T ≳ Tq
c, the SUð2ÞL × SUð2ÞR chiral symmetry of

the flavor doublet ðq1; q2Þ is effectively restored (i.e.,

CAk
¼ CVk

; k ¼ 1, 2, 3), and then the triplet and the nonet
are degenerate into a single multiplet:

ðA1; A2; A3; V1; V2; V3; T1; T2; T3; X1; X2; X3Þ: ð14Þ

This suggests the possibility of a larger symmetry group
SUð4Þ for T > Tq

c which contains SUð2ÞL × SUð2ÞR ×
SUð2ÞCS as a subgroup. For the full SUð4Þ × S3 symmetry,
the multiplet in Eq. (14) is enlarged to include the flavor-
singlet partners of Vk, Tk, and Xk, while the flavor-singlet
partners of A1, A2, and A3 are SUð4Þ singlets—i.e.,

ðA0
1; A

0
2; A

0
3Þ;ðV1; V2; V3; A1; A2; A3; T1; T2; T3; X1; X2; X3;

V0
1; V

0
2; V

0
3; T

0
1; T

0
2; T

0
3; X

0
1; X

0
2; X

0
3Þ; ð15Þ

where the superscript “0” denotes the flavor singlet.
For the z correlators, μ ¼ 1 and μ ¼ 2 each satisfy the

requirement that the SUð2ÞCS transformations not mix
operators with different spin. Then, the SUð2ÞCS × S2
transformations with μ ¼ 1 and μ ¼ 2 together generate
the following multiplets:

ðV1; V2Þ; ðA1; A2; T4; X4Þ; ð16Þ

V4; ðA4; T1; T2; X1; X2Þ: ð17Þ

For T ≳ Tq
c, the SUð2ÞL × SUð2ÞR chiral symmetry of the

ðq1; q2Þ doublet is effectively restored, and the multiplets in
Eqs. (16) and (17) become two sextets:

ðV1; V2; A1; A2; T4; X4Þ; ð18Þ

ðV4; A4; T1; T2; X1; X2Þ: ð19Þ

This suggests the possibility of a larger symmetry group
SUð4Þ for T > Tq

c which contains SUð2ÞL × SUð2ÞR ×
SUð2ÞCS as a subgroup. For the full SUð4Þ × S2 symmetry,
each of the multiplets in Eqs. (18) and (19) is enlarged to
include the flavor-singlet partners of Ak, Tk, and Xk, while
the flavor-singlet partners of V1, V2, and V4 are SUð4Þ
singlets—i.e.,

ðV0
1; V

0
2Þ; ðV1; V2; A1; A2; T4; X4; A0

1; A
0
2; T

0
4; X

0
4Þ; ð20Þ

V0
4; ðV4; A4; T1; T2; X1; X2; A0

4; T
0
1; T

0
2; X

0
1; X

0
2Þ: ð21Þ

To investigate the full SUð4Þ symmetry, it is necessary to
examine the degeneracies of the correlators in the multip-
lets of Eqs. (15), (20), and (21) which involve the flavor
singlets. Since the evaluations of the correlators of flavor
singlets require the disconnected diagrams which have
been omitted in this work, we are not in a position to
determine the emergence of the full SUð4Þ symmetry,
even if its subgroup SUð2ÞL × SUð2ÞR × SUCSð2Þ is man-
ifested approximately due to the effective restoration of
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SUð2ÞL × SUð2ÞR chiral symmetry and the emergence of
approximate SUð2ÞCS chiral spin symmetry. Nevertheless,
the splittings between the correlators of the flavor singlet
and the nonsinglet of u and d quarks are usually very small
compared to the correlators of the nonsinglet. Thus, we can
envision that the flavor singlets in Eqs. (15), (20), and (21)
would be approximately degenerate with all members in the
multiplet. In order to justify this, computing the correlators
of flavor singlets is indispensible.
To investigate the manifestation of various symmetries

from the degeneracies of the t correlators and the z
correlators of vector mesons, in view of the S3 and S2
symmetries, it suffices to focus on the “1” components of
the vector meson correlators (i.e., CV1

, CA1
, CT1

, CX1
,

and their flavor-singlet partners), while all “2” and “3”
components can be suppressed. With this convention, the
multiplets of SUð2ÞCS in Eqs. (13), (16), and (17) can be
abbreviated as

t correlators: ðA1Þ; ðV1; T1; X1Þ; ð22Þ

z correlators: ðV1Þ; ðA1; T4; X4Þ; ð23Þ

ðV4Þ; ðA4; T1; X1Þ; ð24Þ

and the degeneracies in the above triplets signal the
emergence of SUð2ÞCS chiral spin symmetry. Similarly,
the SUð4Þ multiplets in Eqs. (15), (20), and (21) can be
abbreviated as

t correlators: A0
1; ðA1; V1; T1; X1; V0

1; T
0
1; X

0
1Þ; ð25Þ

z correlators: V0
1; ðV1; A1; T4; X4; A0

1; T
0
4; X

0
4Þ; ð26Þ

V0
4; ðV4; A4; T1; X1; A0

4; T
0
1; X

0
1Þ; ð27Þ

and the degeneracies in the above multiplets signal the
emergence of SUð4Þ symmetry.
For T >Tq

1≳Tq
c, the SUð2ÞL × SUð2ÞR andUð1ÞA chiral

symmetries are effectively restored, and CVk
¼ CAk

,
CTk

¼ CXk
, C0

Vk
¼ C0

Ak
, and C0

Tk
¼ C0

Xk
. Thus, to examine

the SUð2ÞCS symmetry, one only needs to check the
degeneracy of the t correlators of ðV1; T1Þ in Eq. (22),
the degeneracy of the z correlators of ðA1; T4Þ in Eq. (23),
and the degeneracy of the z correlators of ðA4; T1Þ in
Eq. (24). Meanwhile, for the SUð4Þ symmetry, one only
needs to check the degenerancy of the t correlators of
ðV1; T1; V0

1; T
0
1Þ in Eq. (25), the degeneracy of the z

correlators of ðA1; T4; A0
1; T

0
4Þ in Eq. (26), and also of

ðA4; T1; A0
4; T

0
1Þ in Eq. (27).

III. SYMMETRY-BREAKING PARAMETERS

In order to give a quantitative measure for the
manifestation of symmetries from the degeneracy of

temporal/spatial correlators, we consider the symmetry-
breaking parameters as follows. To this end, we write
the meson correlators as functions of dimensionaless
variables

tT ¼ ðntaÞ=ðNtaÞ ¼ nt=Nt; ð28Þ

zT ¼ ðnzaÞ=ðNtaÞ ¼ nz=Nt; ð29Þ

where T is the temperature.

A. Uð1ÞA and SUð2ÞL × SUð2ÞR symmetry-breaking
parameters

For theUð1ÞA symmetry, its breaking in the pseudoscalar
(P) and scalar (S) channels can be measured by

κPSðtTÞ ¼ 1 −
CSðtTÞ
CPðtTÞ

; nt > 1; ð30Þ

κPSðzTÞ ¼ 1 −
CSðzTÞ
CPðzTÞ

; nz > 1; ð31Þ

where CS and CP are normalized correlators (with nor-
malization equal to 1 at nt ¼ 1 or nz ¼ 1). If CP and CS are
exactly degenerate at T, then κPS ¼ 0 for any tT (zT), and
the Uð1ÞA symmetry is effectively restored at T. On the
other hand, if there is any discrepancy between CP and CS
at any tT (zT), then κPS is nonzero at this tT (zT), and this
suggests that Uð1ÞA is not completely restored at T.
Obviously, this criterion is more stringent than the equality
of the thermal masses from the temporal correlators as well
as the screening masses from the spatial correlators.
Similarly, the Uð1ÞA symmetry breaking in the channels
of tensor vectors (Tk) and axial-tensor vectors (Xk) can be
measured by

κTXðtTÞ ¼ 1 −
CXk

ðtTÞ
CTk

ðtTÞ ; nt > 1; ðk ¼ 1; 2; 3Þ; ð32Þ

κTXðzTÞ ¼ 1 −
CXk

ðzTÞ
CTk

ðzTÞ ; nz > 1; ðk ¼ 1; 2; 4Þ: ð33Þ

Due to the S3 symmetry of the t correlators, it suffices only
to examine the k ¼ 1 component in Eq. (32). Similarly, due
to the S2 symmetry of the z correlators, one only needs to
examine the k ¼ 1 and k ¼ 4 components of Eq. (33). In
practice, there is no difference between k ¼ 1 and k ¼ 4
components (up to the statistical uncertainties); thus, the
k ¼ 4 component is suppressed in the following.
By the same token, the breaking of SUð2ÞL × SUð2ÞR

chiral symmetry can be measured by

κVAðtTÞ ¼ 1 −
CAk

ðtTÞ
CVk

ðtTÞ ; nt > 1; ðk ¼ 1; 2; 3Þ; ð34Þ
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κVAðzTÞ ¼ 1 −
CAk

ðzTÞ
CVk

ðzTÞ ; nz > 1; ðk ¼ 1; 2; 4Þ: ð35Þ

If CAk
and CVk

are degenerate, then κVA ¼ 0 for any tT
(zT), and the SUð2ÞL × SUð2ÞR chiral symmetry is effec-
tively restored. Following the above discussion for κTX,
the components of k ¼ 2, 3, 4 in Eqs. (34) and (35) are
suppressed.

B. SUð2ÞCS symmetry breaking and fading parameters

For the t correlators, the SUð2ÞCS symmetry breaking
can be measured by the splitting of V1 and T1 in the
multiplet [Eq. (22)]:

κATðtTÞ ¼
CV1

ðtTÞ
CT1

ðtTÞ − 1; nt > 1; ð36Þ

where V1 and T1 are connected by the SUð2ÞCS trans-
formations. In general, the splitting between V1ðtTÞ and
T1ðtTÞ is a monotonic decreasing function of T for a fixed
tT, and so is κATðtTÞ.
As the temperature T is increased, the separation

between the multiplets of SUð2ÞCS and Uð1ÞA is decreased.
Therefore, at sufficiently high temperatures, the SUð2ÞCS ×
SUð2ÞL × SUð2ÞR multipletM1 ¼ ðA1; V1; T1; X1Þ and the
Uð1ÞA multiplet M0 ¼ ðP; SÞ merge together, and then the
approximate SUð2ÞCS symmetry becomes washed out,
and only the Uð1ÞA × SUð2ÞL × SUð2ÞR chiral symmetry
remains. The fading of the approximate SUð2ÞCS symmetry
can be measured by the ratio of the splitting between V1

and T1 in the M1 multiplet to the separation of M1 and M0

multiplets:

κðtTÞ ¼ CV1
ðtTÞ − CT1

ðtTÞ
CM0

ðtTÞ − CM1
ðtTÞ ; nt > 1; ð37Þ

where

CM0
ðtTÞ ¼ 1

2
½CPðtTÞ þ CSðtTÞ�;

CM1
ðtTÞ ¼ 1

4
½CA1

ðtTÞ þ CV1
ðtTÞ þ CT1

ðtTÞ þ CX1
ðtTÞ�:

In general, κðtTÞ is a monotonic increasing function of T
for a fixed tT. If κðtTÞ ≪ 1 for a range of T, then the
approximate SUð2ÞCS symmetry is well defined for this
window of T. On the other hand, if κðtTÞ≳ 1 for T > Tf,
then the approximate SUð2ÞCS symmetry becomes washed
out, and only the Uð1ÞA × SUð2ÞL × SUð2ÞR chiral sym-
metry remains.
Thus, to determine to what extent the SUð2ÞCS symmetry

is manifested in the t correlators, it is necessary to examine
whether both κðtTÞ and κATðtTÞ are sufficiently small. For
a fixed tT, the condition

ðjκATðtTÞj < ϵCSÞ ∧ ðjκðtTÞj < ϵCSÞ ð38Þ

serves as a criterion for the emergence of approximate
SUð2ÞCS symmetry in the t correlators, where ϵCS specifies
the precision of SUð2ÞCS symmetry. Once ϵCS is given, the
range of temperatures satisfying Eq. (38) can be determined
for a fixed tT. Roughly speaking, if there exists a window
of temperatures satisfying Eq. (38) with ϵCS ≤ 0.01, then
the SUð2ÞCS symmetry can be regarded as an exact
symmetry emerging in this window. Here, the upper bound
0.01 is estimated based on the maximum values of κPSðtTÞ,
κTXðtTÞ, and κVAðtTÞ among all values of T and tT in this
study, as given in Sec. VA. On the other hand, if no
temperatures satisfying Eq. (38) exist with ϵCS < 0.50, then
the SUð2ÞCS symmetry can be regarded as not emerging
in this theory—e.g., the noninteracting theory with free
fermions on the lattice. Otherwise, 0.01 < ϵCS ≤ 0.5, and
the SUð2ÞCS symmetry can be regarded as an approximate
emergent symmetry in this window.
Next, we turn to the SUð2ÞCS symmetry-breaking and

fading parameters for the z correlators. Note that at
sufficiently high temperatures, the Uð1ÞA multiplet
M0 ¼ ðP; SÞ and the SUð2ÞCS × SUð2ÞL × SUð2ÞR multi-
plet M2 ¼ ðV1; A1; T4; X4Þ merge together, and then the
approximate SUð2ÞCS symmetry becomes washed out,
and only the Uð1ÞA × SUð2ÞL × SUð2ÞR chiral symmetry
remains. On the other hand, the SUð2ÞCS × SUð2ÞL ×
SUð2ÞR multiplet M4 ¼ ðV4; A4; T1; X1Þ never merges
with M0 and M2, even in the limit T → ∞ (i.e., the
noninteracting theory with free quarks), which can be seen
from Eqs. (48) and (49). Thus, the multipletM4 is irrelevant
to the fading of the approximate SUð2ÞCS symmetry.
Now, it is straightforward to transcribe Eqs. (36)–(38)

to their counterparts for the z correlators. This gives the
SUð2ÞCS symmetry-breaking and fading parameters

κATðzTÞ ¼
CA1

ðzTÞ
CT4

ðzTÞ − 1; nz > 1; ð39Þ

κðzTÞ ¼ CA1
ðzTÞ − CT4

ðzTÞ
CM0

ðzTÞ − CM2
ðzTÞ ; nz > 1; ð40Þ

where

CM0
ðzTÞ≡ 1

2
½CPðzTÞ þ CSðzTÞ�;

CM2
ðzTÞ≡ 1

4
½CV1

ðzTÞ þ CA1
ðzTÞ þ CT4

ðzTÞ þ CX4
ðzTÞ�;

and the criterion for the emergence of approximate
SUð2ÞCS symmetry in the z correlators is

ðjκATðzTÞj < ϵCSÞ ∧ ðjκðzTÞj < ϵCSÞ; ð41Þ

where ϵCS is not necessarily equal to that in Eq. (38). In
general, for a fixed zT, κATðzTÞ is a monotonic decreasing
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function of T, while κðzTÞ is a monotonic increasing
function of T. Once ϵCS is given, the range of temperatures
satisfying Eq. (41) can be determined for a fixed zT.
Note that even for the same ϵCS and tT ¼ zT, the window
satisfying Eq. (38) is most likely different from that
satisfying Eq. (41). Nevertheless, the classification of the
emergent SUð2ÞCS symmetry as an (exact, approximate,
nonexisting) symmetry according to ϵCS ¼ ð≤0.01; ð0.01;
0.5�; >0.5Þ can be used in both cases. Here, the upper
bound 0.01 for exact SUð2ÞCS symmetry is estimated based
on the maximum values of κPSðzTÞ, κTXðzTÞ, and κVAðzTÞ
among all values of T and zT in this study, as given in
Sec. VI B.
Finally, we note that the κðtTÞ defined in Ref. [6] for the t

correlators can be written as

κðtTÞ ¼ −
CV1

ðtTÞ − CT1
ðtTÞ

CSðtTÞ − CV1
ðtTÞ ; ð42Þ

where the denominator is different from that in Eq. (37).
However, for T > T1 ≳ Tc, with the effective restoration
of Uð1ÞA and SUð2ÞL × SUð2ÞR of u and d quarks, then
CP ¼ CS, CV1

¼ CA1
, and CT1

¼ CX1
. Thus, the difference

between the denominators of Eqs. (42) and (37) is equal to
½CT1

ðtTÞ − CV1
ðtTÞ�=2, which is negligible compared with

the denominator ½CSðtTÞ − CV1
ðtTÞ� itself. Thus, the dis-

crepancy due to two different definitions of κðtTÞ in
Eqs. (42) and (37) is negligible for the meson correlators
of u and d quarks, except for an overall minus sign.
Moreover, the κðzTÞ defined in Ref. [5] for the z

correlators can be written as

κðzTÞ ¼
����CA1

ðzTÞ − CT4
ðzTÞ

CSðzTÞ − CA1
ðzTÞ

����; ð43Þ

where the denominator is different from that in Eq. (40).
Again, for T > T1 ≳ Tc, with CP ¼ CS, CV1

¼ CA1
, and

CT4
¼ CX4

, the difference between the denominators of
Eqs. (43) and (40) is equal to ½CT4

ðzTÞ − CA1
ðzTÞ�=2,

which is negligible compared with the denominator
½CSðzTÞ − CA1

ðzTÞ� itself. Thus, the discrepancy due to
two different definitions of κðzTÞ in Eqs. (43) and (40) is
negligible for the meson correlators of u and d quarks.

IV. GAUGE ENSEMBLES

The gauge ensembles in this study are generated
by hybrid Monte Carlo (HMC) simulation of lattice
QCD with Nf ¼ 2þ 1þ 1 optimal domain-wall quarks
[8] at the physical point, on the 323 × ð16; 12; 10; 8; 6; 4Þ
lattices, with the plaquette gauge action at β ¼ 6=g2 ¼
f6.20; 6.18g. This set of ensembles are generated with the
same actions [9,10] and algorithms as their counterparts on
the 643 × ð20; 16; 12; 10; 8; 6Þ lattices [11], but with one-
eighth of the spatial volume. The simulations were per-
formed on a GPU cluster of 32 nodes (64 GPUs) with
various Nvidia GPUs consisting of GTX-970/1060/1070/
1080 and TITAN-X. The initial thermalization of each
ensemble was performed in one node with one GPU or two
GPUs with peer-to-peer communication via the PCIe bus.
The initial thermalization of each ensemble was performed
in one node with 1–2 GPUs. After thermalization, a set
of gauge configurations were sampled and distributed to
16–32 simulation units, and each unit (1–2 GPUs) per-
formed an independent stream of HMC simulation. For
each HMC stream, one configuration was sampled for
every five trajectories. Finally, collecting all sampled
configurations from all HMC streams gives the total
number of configurations of each ensemble. The lattice
parameters and statistics of the gauge ensembles for
computing the meson correlators in this study are summa-
rized in Table II. The temperatures of these six ensembles
are in the range ∼190–770 MeV, all above the pseudoc-
ritical temperature Tc ∼ 150 MeV.
The lattice spacing and the (u=d, s, c) quark masses are

determined on the 323 × 64 lattices, with the number of
configurations (221,292) for β ¼ ð6.18; 6.20Þ, respectively.
The lattice spacing is determined using the Wilson flow
[12,13] with the condition ft2hEðtÞigjt¼t0 ¼ 0.3 and the
input

ffiffiffiffi
t0

p ¼ 0.1416ð8Þ fm [14]. The physical (u=d, s, c)
quark masses are obtained by tuning their masses such
that the masses of the lowest-lying states extracted from
the time-correlation functions of the meson operators
fūγ5d; s̄γis; c̄γicg are in good agreement with the physical
masses of π�ð140Þ, ϕð1020Þ, and J=ψð3097Þ.
The chiral symmetry breaking due to finite Ns ¼ 16 (in

the fifth dimension) can be measured by the residual mass

TABLE II. The lattice parameters and statistics of the six gauge ensembles for computing the meson correlators. The last three
columns are the residual masses of u=d, s, and c quarks.

β a[fm] Nx Nt mu=da msa mca T[MeV] Nconfs ðmu=daÞres ðmsaÞres ðmcaÞres
6.20 0.0641 32 16 0.00125 0.040 0.550 193 583 1.9ð2Þ × 10−5 1.5ð2Þ × 10−5 4.3ð7Þ × 10−6

6.18 0.0685 32 12 0.00180 0.058 0.626 240 781 1.9ð2Þ × 10−5 1.6ð1Þ × 10−5 3.8ð5Þ × 10−6

6.20 0.0641 32 10 0.00125 0.040 0.550 307 481 5.7ð7Þ × 10−6 5.1ð6Þ × 10−6 1.4ð2Þ × 10−6

6.20 0.0641 32 8 0.00125 0.040 0.550 384 468 6.3ð9Þ × 10−6 6.0ð7Þ × 10−6 3.0ð9Þ × 10−6

6.20 0.0641 32 6 0.00125 0.040 0.550 512 431 5.8ð9Þ × 10−6 5.6ð8Þ × 10−6 3.4ð7Þ × 10−6

6.20 0.0641 32 4 0.00125 0.040 0.550 768 991 1.2ð2Þ × 10−6 1.2ð2Þ × 10−6 1.2ð2Þ × 10−6
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of each quark flavor [15], as given in the last three columns
of Table II. The residual masses of (u=d, s, c) quarks are
less than (1.5%, 0.04%, 0.001%) of their bare masses,
amounting to less than ð0.06; 0.05; 0.02Þ MeV=c2, respec-
tively. This asserts that the chiral symmetry is well
preserved, such that the deviation of the bare quark mass
mq is sufficiently small in the effective 4D Dirac operator of
optimal DWF, for both light and heavy quarks. In other
words, the chiral symmetry in the simulations is sufficiently
precise to guarantee that the hadronic observables (e.g.,
meson correlators) can be evaluated to high precision, with
the associated uncertainty being much less than those due
to statistics and other systematics.

V. TEMPORAL CORRELATORS OF ūΓd

A. Results of Nf = 2 + 1 + 1 lattice QCD

In the left panels of Fig. 1, the temporal correlators of
ūΓd are plotted as a function of the dimensionless variable
tT [Eq. (28)]. Each panel displays the normalized t
correlators (with the normalization equal to 1 at nt ¼ 1)
for all meson interpolators (see Table I), for nt from 1 to
Nt=2. Due to the degeneracy (the S3 symmetry) of the “1,”
“2,” and “3” components in the t correlators of J ¼ 1
mesons, only the “1” components are plotted in Fig. 1.
For the three temperatures in the range T ∼ 190 –

310 MeV, the Uð1ÞA symmetry seems to be effectively
restored, as shown by the degeneracies CPðtÞ ¼ CSðtÞ and
CT1

ðtÞ ¼ CX1
ðtÞ. Moreover, the SUð2ÞL × SUð2ÞR chiral

symmetry is also effectively restored, as shown by the
degeneracy CV1

ðtÞ ¼ CA1
ðtÞ.

Due to the effective restoration of Uð1ÞA and SUð2ÞL ×
SUð2ÞR chiral symmetries, in each left panel of Fig. 1,
there emerge three distinct multiplets: ðP; SÞ, ðV1; A1Þ, and
ðT1; X1Þ. They appear in the order

CP;S > CV1;A1
> CT1;X1

; for nt > 1; ð44Þ

which is consistent with Nf ¼ 2þ 1þ 1 lattice QCD
at T < Tc ∼ 150 MeV.
As the temperature T is increased from 193 MeV to

307 MeV, the multiplets ðV1; A1Þ and ðT1; X1Þ tend to
merge together to form a single multiplet M1 ¼ ðA1; V1;
T1; X1Þ, in agreement with the SUð2ÞCS multiplets
[Eq. (22)] and the SUð4Þmultiplet [Eq. (25)]. This suggests
the emergence of approximate SUð2ÞCS and SUð4Þ sym-
metries. Moreover, we observe that the separation between
M1 and the Uð1ÞA multiplet M0 ¼ ðP; SÞ becomes smaller
and smaller as T is increased from 193 MeV to 307 MeV.
Therefore, at sufficiently high temperatures above
307 MeV—say, T ≥ Tf—M1 and M0 would merge
together, and then the approximate SUð2ÞCS and SUð4Þ
symmetries become washed out, and only the Uð1ÞA ×
SUð2ÞL × SUð2ÞR chiral symmetry remains. In other
words, the approximate SUð2ÞCS and SUð4Þ symmetries

can only appear in a range of temperatures above Tc—say
Tc < TCS ≲ T ≲ Tf—where TCS and Tf depend on the ϵCS
in the criterion [Eq. (38)] for the emergence of approximate
SUð2ÞCS symmetry in the t correlators.
Next, we examine the symmetries in the temporal

correlators with the symmetry-breaking parameters as
defined by κPS [Eq. (30)], κTX [Eq. (32)], κVA [Eq. (34)],
κAT [Eq. (36)], and κ [Eq. (37)] in Sec. III. In Fig. 1, the
symmetry-breaking parameters are plotted in the right
panels, with one-to-one correspondence to the t correlators
in the left panels.
For all three temperatures in the range T ∼ 190 –

310 MeV, the SUð2ÞL × SUð2ÞR chiral symmetry is effec-
tively restored with the maximum value of κVA equal to
5.2ð8Þ × 10−4 at T ∼ 193 MeV and tT ¼ 0.5.
For the Uð1ÞA symmetry, there are tiny breakings at

T ¼ 193 MeV and tT ¼ 0.5 with the maximum value of
κTX equal to 3.5ð5Þ × 10−3, while that of κPS is equal to
2.1ð3Þ × 10−2. This seems to suggest that the effective
restoration of Uð1ÞA symmetry occurs at temperatures
higher than 193 MeV. To confirm or refute this requires
us to determine κPS and κTX in the continuum limit, which
is beyond the scope of this paper.
For the SUð2ÞCS chiral spin symmetry, it turns out to

be a rather approximate symmetry in comparison with the
Uð1ÞA and SUð2ÞL × SUð2ÞR chiral symmetries, as shown
in the right panels of Fig. 1. Also, this can be seen by
plotting κAT and κ versus the temperature T, for tT ¼ 0.50
and tT ¼ 0.25, as shown in Fig. 2. Here, the data points
at T ¼ 307 MeV (Nt ¼ 10) for tT ¼ 0.25 are obtained
by interpolation between tT ¼ 0.2 and tT ¼ 0.3. For
tT ¼ 0.5, κAT is decreased from 0.34(3) to 0.21(2) to
0.04(2) as T is increased from 193 MeV to 307 MeV, while
κ is changed from 0.056(4) to 0.08(1) to 0.04(3). The last
data point of κ at T ¼ 307 MeV looks exceptional.
Presumably, for any fixed tT, κ is a monotonic increasing
function of T. It is unknown why the data of κ at
T ¼ 307 MeV are not a clean cut. It could be just due
to the finite-size effects of the small Nt ¼ 10 in the
temporal direction. Further investigations are needed to
clarify this. For tT ¼ 0.25, κAT is decreased from 0.50(1)
to 0.36(1) to 0.21(1) as T is increased from 193 MeV to
307 MeV, while κ is increased from 0.170(4) to 0.26(1) to
0.34(2).
Now, using the data of κAT and κ as plotted in Fig. 2

and the criterion in Eq. (38), the ranges of temperatures for
the emergence of approximate SUð2ÞCS symmetry can be
determined, as tabulated in Table III, for tT ¼ ð0.5; 0.25Þ
and ϵCS ¼ ð0.20; 0.10; 0.05; 0.03Þ.
For tT ¼ 0.5 in the second column of Table III, the lower

bound of T is increased as the ϵCS is decreased, and then
at ϵCS ¼ 0.03, the window is shrunk to zero. The upper
bounds of the window for ϵCS ¼ ð0.20; 0.10; 0.05Þ are Tx,
Ty, and Tz, which have yet to be determined. The fact that
the window is shrunk to zero for ϵCS ≤ 0.03 implies that the
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FIG. 1. The left panels are the normalized t correlators of ūΓd in Nf ¼ 2þ 1þ 1 lattice QCD at the physical point for
T ¼ ð193; 240; 307Þ MeV, while the right panels are the symmetry-breaking parameters corresponding to the left panels.
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SUð2ÞCS symmetry of the temporal correlators of u and d
quarks in Nf ¼ 2þ 1þ 1 lattice QCD is at most an
approximate emergent symmetry, which never becomes
an exact symmetry, unlike the Uð1ÞA × SUð2ÞL × SUð2ÞR
chiral symmetry, which is effectively restored as an exact
symmetry for T > T1 ≳ Tc.
For tT ¼ 0.25 in the third column of Table III, there are

no temperatures satisfying the criterion [Eq. (38)] with
ϵCS ≤ 0.20. Note that the t correlators at tT ¼ 0.25 (with a
small t) have large contributions from the excited states;
thus, they may not suitable for the criterion of Eq. (38).

B. Comparison with the noninteracting theory

The t correlators of ūΓd constructed with free-quark
propagators are plotted in the left panels of Fig. 3. The free-
quark propagators are computed with the same boundary
conditions, the same lattice size, and the same u=d quark
masses as those in Nf ¼ 2þ 1þ 1 QCD, but with all link
variables equal to the identity matrix. Note that the lattice
spacing a and the temperature T ¼ 1=ðNtaÞ are not defined
for the free quarks. Thus, the label tT of the horizontal
axis in Fig. 3 should be regarded as tT ¼ nt=Nt. In the
following, the temperature T for all quantities with free
quarks is always understood to be the corresponding
temperature T ¼ 1=ðNtaÞ in Nf ¼ 2þ 1þ 1 lattice QCD
with the same Nt.

In the left panels of Fig. 3, for all three lattice sizes
323 × ð16; 12; 10Þ, the Uð1ÞA × SUð2ÞL × SUð2ÞR chiral
symmetry is almost exact in spite of the nonzero u=d quark
masses, as shown by the degeneracies CPðtÞ ¼ CSðtÞ,
CT1

ðtÞ ¼ CX1
ðtÞ, and CV1

ðtÞ ¼ CA1
ðtÞ. Consequently, it

appears that there are only three distinct t correlators in
each left panel of Fig. 3. They are in the order of

CP;SðfreeÞ > CV1;A1
ðfreeÞ > CT1;X1

ðfreeÞ;
for 1 < nt < Nt=4; ð45Þ

CP;SðfreeÞ < CV1;A1
ðfreeÞ < CT1;X1

ðfreeÞ;
for nt ≥ Nt=4; ð46Þ

which is different from the order [Eq. (44)] of the Nf ¼
2þ 1þ 1 lattice QCD at T ∼ 190–310 MeV.
Next, we examine the symmetries in the t correlators

of free quarks with the symmetry-breaking parameters, as
defined in Sec. III. In the right panels of Fig. 3, the
symmetry-breaking parameters are plotted versus tT ¼
nt=Nt for Nt ¼ ð16; 12; 10Þ. For Uð1ÞA and SUð2ÞL ×
SUð2ÞR chiral symmetries, κPS ≃ κTX ≃ κVA < 10−6, which
shows that theUð1ÞA × SUð2ÞL × SUð2ÞR chiral symmetry
is almost exact in the noninteracting theory with free
quarks, in spite of the nonzero u=d quark masses. For
the SUð2ÞCS symmetry, the symmetry-breaking and fading
parameters κATðtTÞ and κðtTÞ are much larger than those
(κPS, κTX, and κVA) of the Uð1ÞA and SUð2ÞL × SUð2ÞR
chiral symmetries. Since κðtTÞ ≳ 1 for any tT ¼ nt=Nt and
Nt, there does not exist any Nt satisfying the criterion of
Eq. (38) with ϵCS < 1. Thus, the SUð2ÞCS symmetry does
not emerge in the noninteracting theory on a lattice, in
contrast to the Nf ¼ 2þ 1þ 1 lattice QCD at the physical
point, with the emergence of approximate SUð2ÞCS sym-
metry in the windows, as tabulated in Table III. This implies
that u and d quarks at these temperatures must be

FIG. 2. The SUð2ÞCS symmetry-breaking and fading parameters ðκAT; κÞ in Nf ¼ 2þ 1þ 1 lattice QCD at the physical point, for
tT ¼ ð0.5; 0.25Þ and T ¼ ð193; 240; 307Þ MeV.

TABLE III. The approximate ranges of temperatures satisfying
the criterion in Eq. (38) with ϵCS ¼ ð0.20; 0.10; 0.05; 0.03Þ for
tT ¼ ð0.5; 0.25Þ. In the second column (tT ¼ 0.5), Tx, Ty, and Tz

have yet to be determined.

ϵCS tT ¼ 0.5 tT ¼ 0.25

0.20 ∼244 MeV�Tx NULL
0.10 ∼280 MeV�Ty NULL
0.05 ∼304 MeV�Tz NULL
0.03 NULL NULL
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FIG. 3. The left panels are t correlators of ūΓd constructed by the free-quark propagators (see text for details). The right panels are the
symmetry-breaking parameters (κPS, κTX, κVA, κAT, and κ) corresponding to the t correlators in the left panels.
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dynamically very different from the free or quasifree
fermions. If the deconfined quarks in high-temperature
QCD behave like free or quasifree fermions, then the u and
d quarks in Nf ¼ 2þ 1þ 1 lattice QCD at the temper-
atures with approximate SUð2ÞCS emergent symmetry are
likely to be confined inside hadron-like objects, which are
predominantly bound by the chromoelectric interactions
into color singlets. Moreover, since the emergent SUð2ÞCS
symmetry is not an exact symmetry, the role of chromo-
magnetic interactions in forming these hadron-like objects
cannot be neglected.

C. Comparison with the Nf = 2 lattice QCD

In Ref. [6], the symmetries of temporal correlators of
ūΓd were studied in Nf ¼ 2 lattice QCD at T ¼ 220 MeV
with Möbius domain-wall fermions, on the 483 × 12 lattice
with lattice spacing a ¼ 0.075 fm.
Comparing the t correlators of Nf ¼ 2þ 1þ 1 lattice

QCD at T ¼ 240 MeV (in the middle-left panel of Fig. 1)
with those of Nf ¼ 2 lattice QCD at T ¼ 220 MeV [6], we
see that in both cases, the order of Eq. (44) is satisfied, and
UAð1Þ and SUð2ÞL × SUð2ÞR chiral symmetries are effec-
tively restored. However, the SUð2ÞCS symmetry breakings
in Nf ¼ 2þ 1þ 1 lattice QCD are larger than those in
Nf ¼ 2 lattice QCD. This can be seen from the approx-
imately degenerate multiplets ðV1; A1Þ and ðT1; X1Þ in the
middle-left panel of Fig. 1 versus the highly degenerate
multiplets ðV1; A1Þ and ðT1; X1Þ in the right panel of Fig. 2
in Ref. [6]. Consequently, the values of κAT [Eq. (36)] of
Nf ¼ 2þ 1þ 1 lattice QCD (as shown in the middle-right
panel of Fig. 1) are larger than their counterparts of Nf ¼ 2

lattice QCD (which are not shown explicitly in Ref. [6]).
Next, we compare the SUð2ÞCS symmetry-fading param-

eter κ [Eq. (37)] between Nf ¼ 2þ 1þ 1 and Nf ¼ 2

lattice QCD. In Fig. 4, the values of κ are plotted for

Nf ¼ 2 lattice QCD at T ¼ 220 MeV [which are read off
from Fig. 3 of Ref. [6], after multiplying by (−1) due to
different definitions of κ], and also for Nf ¼ 2þ 1þ 1

lattice QCD at T ¼ ð193; 240Þ MeV (same as the values of
κ in the right panels of Fig. 1). Evidently, the κ values of
Nf ¼ 2þ 1þ 1 lattice QCD at T ¼ ð193; 240Þ MeV are
larger than those of Nf ¼ 2 lattice QCD at T ¼ 220 MeV.

VI. SPATIAL CORRELATORS OF ūΓd

A. The issue of unphysical meson states
and its resolution

In Fig. 5, the normalized z correlators of ūΓd (see
Table I) at T ¼ 193 MeV are plotted in the left panel, while
their counterparts constructed with the free-quark propa-
gators are plotted in the right panel. Here, the normalized z
correlators are plotted as a function of the dimensionless
variable zT [Eq. (29)]. Due to the degeneracy (the S2
symmetry) of the “1” and “2” components in the z
correlators of vector meson interpolators, only the “1”
components are plotted.
We note that CV4;A4

and CT1;X1
at large distances with

nz ≥ 12 are seriously distorted by the contribution of
unphysical meson states, which have the opposite sign
from physical meson states. Consequently, the cancellation
between the contributions of the physical and the
unphysical meson states produces large statistical errors
for CV4;A4

and CT1;X1
at nz ≥ 12. In the case of free quarks,

the issue of unphysical meson states is even more serious,
as shown in the right panel of Fig. 5, in which CV4;A4

< 0

for nz ≥ 12, and CT1;X1
< 0 for nz ≥ 11. The issue due to

the unphysical meson states is also visible in the meson
spatial correlators of Nf ¼ 2 lattice QCD [5], and it was
discussed in Ref. [16].
The unphysical meson states are essentially due to the

superposition of þẑ (forward) and −ẑ (backward) running
quark propagators, which are nothing but the finite size
effects. Since the unphysical meson states change sign if
the boundary condition in the z direction is changed from
periodic to antiperiodic, this leads to the following pre-
scription for eliminating the contribution of unphysical
meson states to the spatial z correlators:
First, we compute two sets of quark propagators with

periodic and antiperiodic boundary conditions in the z
direction, while their boundary conditions in the ðx; y; tÞ
directions are the same: i.e., periodic in the ðx; yÞ direc-
tions, and antiperiodic in the t direction. Each set of quark
propagators is used to construct the z correlators independ-
ently, and we finally take the average of these two z
correlators. Then, the contribution of unphysical meson
states to the z correlators can be cancelled configuration by
configuration, up to the numerical precision of the quark
propagators. Using this prescription, the averaged z corre-
lators of ūΓd at T ¼ 193 MeV are plotted in the left panel
of Fig. 6, while their counterparts constructed with the

FIG. 4. Comparision of the SUð2ÞCS symmetry-fading param-
eter κ between Nf ¼2þ1þ1 lattice QCD at T¼ð193;240ÞMeV
(this work) and Nf ¼ 2 lattice QCD at T ¼ 220 MeV [6].
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free-quark propagators are plotted in the right panel.
Evidently, the contributions of unphysical meson states
are eliminated in both Nf ¼ 2þ 1þ 1 lattice QCD and the
noninteracting theory with free quarks. Note that there is
another viable prescription for eliminating the unphysical
meson states, which will be discussed in Sec. VII.

B. Results of Nf = 2 + 1 + 1 lattice QCD

In the following section, for the spatial z correlators, we
always use the average of two z correlators constructed
from two sets of quark propagators with periodic and

antiperiodic boundary conditions in the z direction. In each
panel of Fig. 7, the normalized z correlators of ūΓd (see
Table I) are plotted as a function of the dimensionless
variable zT [Eq. (29)]. Due to the degeneracy (the S2
symmetry) of the “1” and “2” components in the z
correlators of vector mesons, only the “1” components
are plotted.
For all six temperatures in the range T ∼ 190–770 MeV,

the SUð2ÞL × SUð2ÞR chiral symmetry is effectively
restored, as manifested in the degeneracy CV1

ðzÞ¼CA1
ðzÞ.

Moreover, the Uð1ÞA symmetry is effectively restored,
as manifested in the degeneracies CPðzÞ ¼ CSðzÞ

FIG. 6. The contribution of unphysical meson states to the z correlators in Fig. 5 are eliminated with the proposed precription. Here,
each z correlator is the average of two z correlators constructed from two sets of quark propagators with periodic and antiperiodic
boundary conditions in the z direction. (See text for details.)

FIG. 5. The normalized z correlators of meson interpolators ūΓd on the 323 × 16 lattice at T ¼ 193 MeV (left panel), and their
counterparts constructed with the free-quark propagators (right panel). The quark propagators are computed with periodic boundary
conditions in the ðx; y; zÞ directions and an antiperiodic boundary condition in the t direction.
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FIG. 7. The spatial z correlators of ūΓd in Nf ¼ 2þ 1þ 1 lattice QCD for T ≃ 190–770 MeV.
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(except for the small breakings at large z at T ¼ 193 MeV)
and CT1

ðzÞ ¼ CX1
ðzÞ.

Due to the effective restoration of Uð1ÞA and SUð2ÞL ×
SUð2ÞR chiral symmetries, it appears that there are only
five distinct z correlators in each panel of Fig. 7. They are in
the order

CP;S >CV1;A1
>CT4;X4

>CV4;A4
>CT1;X1

; for nz≥7: ð47Þ
Note that there is a “level crossing” in the channels of
ðT4; X4Þ and ðV4; A4Þ at T ¼ 193 MeV: namely, CT4;X4

<
CV4;A4

for 1 < nz ≤ 7, while CT4;X4
> CV4;A4

for nz > 7.
As the temperature is increased from 193 MeV to

768 MeV, we see the emergence of three distinct multiplets,

M0 ¼ ðP; SÞ;
M2 ¼ ðV1; A1; T4; X4Þ;
M4 ¼ ðV4; A4; T1; X1Þ;

which become more pronounced at higher temperatures.
Note that the emergence of the multiplets M2 and M4 is in
agreement with the SUð2ÞCS multiplets [Eqs. (16) and (17)]
and the SUð4Þ multiplets [Eqs. (20) and (21)]. This
suggests the emergence of the approximate SUð2ÞCS and
SUð4Þ symmetries for T ∼ 380–770 MeV. Moreover, the
splitting between the multiplets M2 and M0 is decreased
as the temperature is increased. Thus, at sufficiently high
temperatures, M2 and M0 would merge together to form a
single multiplet, and then the approximate SUð2ÞCS and
SUð4Þ symmetries become washed out, and only the
Uð1ÞA × SUð2ÞL × SUð2ÞR chiral symmetry remains. In
other words, the approximate SUð2ÞCS and SUð4Þ sym-
metries can only appear in a range of temperatures above
Tc—say Tc < TCS ≲ T ≲ Tf—where TCS and Tf depend
on the ϵCS in the criterion [Eq. (41)] for the emergence of
approximate SUð2ÞCS symmetry in the z correlators.
Note that the multiplet M4 never merges with the

multiplets M0 and M2, even in the limit T → ∞ (the
noninteracting theory with free quarks). This can be seen as
follows. In the noninteracting theory, the z correlators of
M4 have different asymptotic behaviors from those of M0

and M2—namely,

lim
z→∞

CP;S;V1;A1;T4;X4
ðzÞ → c0

e−2πzT

z
; ð48Þ

lim
z→∞

CV4;A4;T1;X1
ðzÞ → c4

e−2πzT

z2
; ð49Þ

where c0 and c4 are fixed by the normalization
CΓðnz ¼ 1Þ ¼ 1. Evidently, Eq. (49) never merges with
Eq. (48), which can be easily seen by plotting log½CΓðzÞ�
versus z. Thus, turning on the QCD interactions must make
M4 further apart from M0 and M2.

Next, we examine the symmetries in the spatial corre-
lators with the symmetry-breaking parameters as defined
by Eqs. (31), (33), (35), (39), and (40) in Sec. III. In Fig. 8,
the symmetry-breaking parameters κPS, κVA, κTX, κAT,
and κ corresponding to Fig. 7 are plotted versus zT, for
temperatures T ∼ 193–768 MeV.
For all six temperatures in the range T ∼ 193–768 MeV,

the SUð2ÞL × SUð2ÞR chiral symmetry is effectively
restored with the maximum value of κVA equal to
8.7ð4Þ × 10−4 at T ∼ 193 MeV and zT ¼ 0.75.
For the Uð1ÞA symmetry, there are tiny breakings

(especially at large z) at T ∼ 193 MeV with the maximum
value of κTX equal to 8.7ð8Þ × 10−3 at zT ¼ 0.6875, while
that of κPS is equal to 5.1ð6Þ × 10−2 at zT ¼ 0.8125.
Therefore, it seems that κPS and κTX give incompatible
answers at T ∼ 193 MeV (similar to their counterparts in
the t correlators, as shown in the top-right panel of Fig. 1),
and this also suggests that the effective restoration ofUð1ÞA
symmetry is likely to occur at temperatures higher than
193 MeV. To confirm or refute this, it is necessary to
determine κPS and κTX in the continuum limit, which is
beyond the scope of this paper.
For the SUð2ÞCS symmetry, the symmetry-breaking

and -fading parameters κATðzTÞ and κðzTÞ are much
larger than those (κPS, κTX, and κVA) of the Uð1ÞA and
SUð2ÞL × SUð2ÞR chiral symmetries, as shown in Fig. 8.
In Fig. 9, κATðzTÞ and κðzTÞ are plotted versus the

temperature T, for zT ¼ ð0.5; 1; 2Þ. In general, for any
fixed zT, κAT is a monotonic decreasing function of T,
while κ is a monotonic increasing function of T.
Using the data of κAT and κ in Fig. 9 and the criterion in

Eq. (41) for the emergence of approximate SUð2ÞCS
symmetry, the range of temperatures satisfying Eq. (41)
can be determined for any zT and ϵCS. In Table IV, the
ranges of temperatures satisfying Eq. (41) with ϵCS ¼
ð0.20; 0.10; 0.05Þ are tabulated for zT ¼ ð2.0; 1.0; 0.5Þ.
Note that for zT ¼ 2, the upper bounds of the windows,
Txð> 770 MeVÞ and Tyð> 770 MeVÞ, have not yet been
determined, since the highest temperature in this study is
∼770 MeV. In general, for any fixed zT, the window of
temperatures is shrunk as ϵCS is decreased [i.e., a more
precise SUð2ÞCS symmetry]. At ϵCS ¼ 0.10, the window is
shrunk to zero for zT ¼ ð2.0; 1.0; 0.5Þ. In other words, the
approximate SUð2ÞCS symmetry of the z correlators of ūΓd
in Nf ¼ 2þ 1þ 1 lattice QCD cannot become a more
precise symmetry with ϵCS ≤ 0.10, unlike the Uð1ÞA ×
SUð2ÞL × SUð2ÞR chiral symmetry, which is effectively
restored as an exact symmetry for T > T1 ≳ Tc.
Consequently, in the range of temperatures with approxi-
mate SUð2ÞCS symmetry, even if the chromoelectic
interactions may play a predominant role in binding u
and d quarks into hadron-like objects, the role of
chromomagnetic interactions in their bindings cannot
be neglected.
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FIG. 8. The symmetry-breaking parameters of z correlators of ūΓd in Nf ¼ 2þ 1þ 1 lattice QCD for six temperatures in the range
∼190–770 MeV.
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C. Comparison with the noninteracting theory

The spatial z correlators of ūΓd constructed with free-
quark propagators are plotted in Fig. 10. The free-quark
propagators are computed with the same set of boundary
conditions (see Sec. VI A), the same lattice size, and the
same u=d quark masses as those in Nf ¼ 2þ 1þ 1 lattice
QCD, but with all link variables equal to the identity
matrix. Note that the lattice spacing a and the temperature
T ¼ 1=ðNtaÞ are not defined for the free quarks. Thus,
the label zT of the horizontal axis in Fig. 10 should be
regarded as zT ¼ nz=Nt. In the following, the temperature
T for all quantities with free quarks is always understood
to be the corresponding temperature T ¼ 1=ðNtaÞ in
Nf ¼ 2þ 1þ 1 lattice QCD with the same Nt.
In Fig. 10, for all six lattice sizes 323 × ð16; 12; 10; 8;

6; 4Þ, the Uð1ÞA × SUð2ÞL × SUð2ÞR chiral symmetry is
almost exact in spite of the nonzero u=d quark masses, as
shown by the degeneraciesCPðzÞ¼CSðzÞ,CTk

ðzÞ¼CXk
ðzÞ,

and CVk
ðzÞ ¼ CAk

ðzÞ for k ¼ 1, 2, 4. Consequently, it
appears that there are only five distinct z correlators in each
panel of Fig. 10. They appear in the order

CT4;X4
ðfreeÞ > CV1;A1

ðfreeÞ > CP;SðfreeÞ
> CV4;A4

ðfreeÞ > CT1;X1
ðfreeÞ; for nz ≥ 7;

ð50Þ

which is different from that of Nf ¼ 2þ 1þ 1 lattice QCD
for T ∼ 190–770 MeV in Eq. (47)—i.e.,

CP;S > CV1;A1
> CT4;X4

> CV4;A4
> CT1;X1

; for nz ≥ 7;

where the latter is consistent with that of lattice QCD at
T < Tc ∼ 150 MeV. Note that the orderings ofCP;S, CV1;A1

,
and CT4;X4

in Eq. (50) are reversed from those in Eq. (47).
Next, we examine the symmetries in the z correlators of

free quarks with the symmetry-breaking parameters as
defined in Sec. III.
In Fig. 11, the symmetry-breaking parameters are

plotted versus zT ¼ nz=Nt for Nt ¼ ð16; 12; 10; 8; 6; 4Þ.
For Uð1ÞA and SUð2ÞL × SUð2ÞR chiral symmetries,
κPS ≃ κTX ≃ κVA < 10−7, which shows that the Uð1ÞA ×
SUð2ÞL × SUð2ÞR chiral symmetry is almost exact in the
noninteracting theory with free quarks, in spite of the
nonzero u=d quark masses. For the SUð2ÞCS symmetry,
the symmetry-breaking and -fading parameters κATðzTÞ
and κðzTÞ are much larger than those (κPS; κTX; κVA) of
Uð1ÞA and SUð2ÞL × SUð2ÞR chiral symmetries.
In Fig. 12, the data of κATðzTÞ and κðzTÞ in Fig. 11 of the

noninteracting theory are plotted versus the corresponding
temperature T ¼ 1=ðNtaÞ in Nf ¼ 2þ 1þ 1 lattice QCD
with the same Nt, for zT ¼ nz=Nt ¼ ð0.5; 1; 2Þ. In general,
for any fixed zT, jκATj ≲ 0.3, and κ > 0.89 for any T.
Obviously, there does not exist any window satisfying the
criterion of Eq. (41) with ϵCS < 0.89. Thus, the SUð2ÞCS

TABLE IV. The approximate ranges of temperatures satisfying the criterion in Eq. (41) with ϵCS ¼ ð0.20; 0.15;
0.10Þ, for zT ¼ ð2.0; 1.0; 0.5Þ. In the second column, Tx (> 770 MeV) and Ty (> 770 MeV) have yet to be
determined.

ϵCS zT ¼ 2.0 zT ¼ 1.0 zT ¼ 0.5

0.20 ∼550 MeV�Txð> 770 MeVÞ ∼380–730 MeV NULL
0.15 ∼660 MeV�Tyð> 770 MeVÞ ∼480–580 MeV NULL
0.10 NULL NULL NULL

FIG. 9. The SUð2ÞCS symmetry-breaking and -fading parameters (κAT, κ) of Nf ¼ 2þ 1þ 1 lattice QCD at six temperatures in the
range ∼190–770 MeV, for zT ¼ ð0.5; 1; 2Þ.
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FIG. 10. The spatial z correlators of ūΓd meson interpolators constructed with the free-quark propagators.
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FIG. 11. The symmetry-breaking parameters of the z correlators of ūΓd with free quarks.
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symmetry does not emerge in the noninteracting theory
on a lattice, in contrast to the Nf ¼ 2þ 1þ 1 lattice QCD
at the physical point, with the emergence of approximate
SUð2ÞCS symmetry in the windows, as tabulated in
Table IV. This implies that u and d quarks at these
temperatures must be dynamically very different from
the free or quasifree fermions. If the deconfined quarks
in high-temperature QCD behave like free or quasifree
quarks, then the u and d quarks in Nf ¼ 2þ 1þ 1 lattice
QCD at the temperatures with approximate emergent
SUð2ÞCS symmetry are likely to be confined inside
hadron-like objects, which are predominantly bound by
the chromoelectric interactions into color singlets.
Moreover, since SUð2ÞCS is a rather approximate emergent
symmetry, the role of chromomagnetic interactions in
forming these hadron-like objects cannot be neglected.

D. Comparison with the Nf = 2 lattice QCD

In Ref. [5], the symmetries of z correlators of ūΓd were
studied in Nf ¼ 2 lattice QCD with Möbius domain-wall

fermions, using nine ensembles of lattice sizes ½323 × ð12;
8; 6; 4Þ� and lattice spacings ½a ¼ ð0.051; 0.065; 0.075;
0.096; 0.113Þ fm�, covering the temperatures in the range
∼220–960 MeV.
Comparing the z correlators of Nf ¼ 2þ 1þ 1 lattice

QCD in Fig. 7 with those of Nf ¼ 2 lattice QCD in Fig. 1
of Ref. [5], we see that in both cases, the order of Eq. (47) is
satisfied. Also, the UAð1Þ and SUð2ÞL × SUð2ÞR chiral
symmetries are effectively restored for all studied temper-
atures, in terms of the degeneracies CPðzÞ ¼ CSðzÞ,
CTk

ðzÞ ¼ CXk
ðzÞ, and CVk

ðzÞ ¼ CAk
ðzÞ for k ¼ 1, 2, 4.

For the SUð2ÞCS symmetry, its breaking in Nf ¼ 2þ
1þ 1 lattice QCD is larger than that in Nf ¼ 2 lattice QCD
at the same temperature T. This can be seen by comparing
the degeneracy in the multiplet M2 ¼ ðV1; A1; T4; X4Þ in
Fig. 7 with that in Fig. 1 of Ref. [5], and similarly for
the multiplet M4 ¼ ðV4; A4; T1; X1Þ. Moreover, this can
be seen by comparing the SUð2ÞCS symmetry-breaking
and -fading parameters [κATðzTÞ, κðzTÞ] between
Nf ¼ 2þ 1þ 1 and Nf ¼ 2 lattice QCD.

FIG. 12. The SUð2ÞCS symmetry-breaking and -fading parameters (κAT, κ) of the spatial meson correlators with free quarks, versus the
corresponding temperature T ¼ 1=ðNtaÞ in Nf ¼ 2þ 1þ 1 lattice QCD with the same Nt, for zT ¼ nz=Nt ¼ ð0.5; 1; 2Þ.

FIG. 13. The SUð2ÞCS symmetry-breaking and -fading parameters (κAT, jκj), at zT ¼ 2 for six temperatures T ∼ 260–960 MeV
in Nf ¼ 2 lattice QCD. The data points of κAT ¼ CA1

=CT4
− 1 in the left panel are read off from the ratio CA1

=CT4
shown in Figs. 3

and 4 of Ref. [5], while the right panel exactly matches Fig. 5 of Ref. [5].
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Reading off the ratio CA1
ðzTÞ=CT4

ðzTÞ from Figs. 3 and
4 of Ref. [5], the value of κATðzTÞ ¼ CA1

ðzTÞ=CT4
ðzTÞ − 1

can be obtained for Nf ¼ 2 lattice QCD. At zT ¼ 2, the
values of κAT for six temperatures are plotted in the left
panel of Fig. 13, while those of jκj are shown in the
right panel of Fig. 13, which exactly matches Fig. 5
of Ref. [5].
Using the data of κAT and κ as shown in Fig. 13 and the

criterion in Eq. (41) for the emergence of approximate
SUð2ÞCS symmetry, we obtain the ranges of temperatures
satisfying Eq. (41) for ϵCS ¼ ð0.20; 0.15; 0.10; 0.05; 0.01Þ,
as tabulated in the second column of Table V. For
comparison, the corresponding results of Nf ¼ 2þ 1þ 1

lattice QCD are also tabulated in the third column, which
are taken from the second column of Table IV.
First, for a given ϵCS, the lower bound of the window in

Nf ¼ 2þ 1þ 1 lattice QCD is shifted to a higher temper-
ature than that inNf ¼ 2 lattice QCD. This is mainly due to
the fact that the value of κAT in the former is larger than that
in the latter at the same temperature. Thus, the former needs
to go to a higher temperature in order to attain the same
value of κAT.
Second, for Nf ¼ 2 lattice QCD, the window satisfying

the criterion in Eq. (41) is shrunk as ϵCS is decreased [i.e., a
more precise SUð2ÞCS symmetry]. On the other hand,
for Nf ¼ 2þ 1þ 1 lattice QCD, since the upper bounds
Txð> 770 MeVÞ and Tyð> 770 MeVÞ have yet to be
determined, it is unclear whether the window is shrunk
as ϵCS is decreased from 0.20 to 0.15. Since the window is
shrunk to zero as ϵCS is decreased from 0.15 to 0.10, we
speculate that the window is also shrunk as ϵCS is decreased
from 0.20 to 0.15.
Third, the window in Nf ¼ 2 lattice QCD is nonzero

even when ϵ is decreased to 0.05, while the window in
Nf ¼ 2þ 1þ 1 lattice QCD has been shrunk to zero for
ϵCS ≤ 0.10. Finally, the window in Nf ¼ 2 lattice QCD is
shrunk to zero as ϵCS is decreased to 0.01.
Evidently, the SUð2ÞCS symmetry in Nf ¼ 2þ 1þ 1

lattice QCD is a more approximate emergent symmetry
than that in Nf ¼ 2 lattice QCD.

VII. CONCLUSIONS AND OUTLOOK

In this study, we have generated six gauge ensembles
of Nf ¼ 2þ 1þ 1 lattice QCD with (u=d, s, c) optimal
domain-wall quarks at the physical point, on the
323 × ð16; 12; 10; 8; 6; 4Þ lattices with two lattice spacings
a ∼ ð0.064; 0.069Þ fm, for six temperatures in the range
∼190–770 MeV, as summarized in Table II. The plan is to
complete 17 gauge ensembles with three lattice spacings
a ∼ ð0.064; 0.069; 0.075Þ fm, which can be used to extract
the continuum limit of the observables, for temperatures in
the range ∼160–770 MeV.
Using six gauge ensembles, we computed the temporal

and spatial correlators for the complete set of Dirac
bilinears (scalar, pseudoscalar, vector, axial vector, tensor
vector, and axial-tensor vector), and each for six combi-
nations of quark flavors (ūd, ūs, ūc, s̄c, s̄s, and c̄c). In this
paper, we focus on the meson correlators of u and d quarks,
while those of other flavor combinations will be analyzed
in a forthcoming paper [7].
We examine the implications of these results for the

effective restoration of the SUð2ÞL × SUð2ÞR and Uð1ÞA
chiral symmetries, as well as the emergence of approximate
SUð2ÞCS chiral spin symmetry in Nf ¼ 2þ 1þ 1 lattice
QCD, using the symmetry-breaking parameters κPS, κTX,
κVA, and ðκAT; κÞ as discussed in Sec. III. The window of
temperatures for the emergence of approximate SUð2ÞCS
symmetry is determined for temporal and spatial correlators
according to the criteria in Eqs. (38) and (41), respectively.
Comparing the windows in Table III (of the temporal
correlators) with those in Table IV (of the spatial correla-
tors), we see that the former are nonzero for ϵCS down to
0.05 (at tT ¼ 0.5), while the latter are shrunk to zero for
ϵCS ≤ 0.10 (at any zT). Theoretically, the temporal and
spatial correlators have very different physical contents—
e.g., the former are related to the thermal masses of the
melting mesons, while the latter are related to the screening
masses. Thus, it is not surprising to see that the approxi-
mate SUð2Þ symmetry emerges differently in these two sets
of correlators.
Comparing Nf ¼ 2þ 1þ 1 lattice QCD (in this work)

with Nf ¼ 2 lattice QCD in Refs. [5,6], we see that in both
cases, the UAð1Þ and SUð2ÞL × SUð2ÞR chiral symmetries
are effectively restored for all studied temperatures, in
terms of the degeneracies CPðzÞ¼CSðzÞ, CTk

ðzÞ ¼ CXk
ðzÞ,

and CVk
ðzÞ ¼ CAk

ðzÞ, for both spatial and time correlators.
However, for the approximate SUð2ÞCS symmetry, it
emerges differently in Nf ¼ 2þ 1þ 1 and Nf ¼ 2 lattice
QCD, as shown in Fig. 4 for the fading parameter κ of the
temporal correlators, and by comparing Fig. 9 with Fig. 13
for the SUð2ÞCS symmetry-breaking and -fading parame-
ters ðκAT; κÞ of the spatial correlators. In general, the
SUð2ÞCS symmetry breaking in Nf ¼ 2þ 1þ 1 lattice
QCD is larger than that in Nf¼2 lattice QCD at the same
temperature T, for both spatial and temporal correlators.

TABLE V. The ranges of temperatures satisfying the criterion
in Eq. (41) with ϵCS ¼ ð0.20; 0.15; 0.10; 0.05; 0.01Þ at zT ¼ 2.0,
for Nf ¼ 2 lattice QCD (Ref. [5]) and Nf ¼ 2þ 1þ 1 lattice
QCD (this work). The third column (Nf ¼ 2þ 1þ 1) is taken
from Table IV, where Tx (> 770 MeV) and Ty (> 770 MeV)
have yet to be determined.

ϵCS Nf ¼ 2 [5] Nf ¼ 2þ 1þ 1 (this work)

0.20 ∼320–500 MeV ∼550 MeV�Txð> 770 MeVÞ
0.15 ∼326–500 MeV ∼660 MeV�Tyð> 770 MeVÞ
0.10 ∼350–500 MeV NULL
0.05 ∼380–430 MeV NULL
0.01 NULL NULL
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Comparing the windows for the emergence of approximate
SUð2ÞCS symmetry as tabulated in Table V for zT ¼ 2.0,
we see that the window of Nf ¼ 2þ 1þ 1 lattice QCD is
shrunk to zero for ϵCS ≤ 0.10, while that of Nf ¼ 2 lattice
QCD is nonzero as ϵCS is decreased to 0.05, and then finally
it is shrunk to zero for ϵCS ≤ 0.01.
Since both Nf ¼ 2 and Nf ¼ 2þ 1þ 1 lattice results

have not been extrapolated to the continuum, there are

discrepancies due to the discretization uncertainties.
Moreover, even in the continuum limit, there are discrep-
ancies between Nf ¼ 2þ 1þ 1 and Nf ¼ 2 QCD due to
the quantum fluctuations of heavy c and s quarks, which
are present in the former but absent in the latter. This can
be seen explicitly from the quantum expectation value
of the meson correlation function of u and d quarks in
Nf ¼ 2þ 1þ 1 lattice QCD with exact chiral symmetry,

CΓðt; x⃗Þ ¼
1

Z

Z
½dU�e−AgðUÞ Y

f¼u;d;s;c

det ½ðDc þmfÞð1þ rDcÞ−1�tr½ΓðDc þmuÞ−1x;0ΓðDc þmdÞ−10;x�;

Z ¼
Z

½dU�e−AgðUÞ Y
f¼u;d;s;c

det ½ðDc þmfÞð1þ rDcÞ−1�; ð51Þ

where AgðUÞ is the gauge action at temperature T ¼
1=ðNtaÞ, Dc is the chirally symmetric Dirac operator [17],
and ðDc þmfÞ−1 is the valence quark propagator [18].
Moreover, the explicit breakings of Uð1ÞA, SUð2ÞL ×
SUð2ÞR, and SUð2ÞCS symmetries due to the quark masses
of s and c heavy quarks are much larger than those of u and
d light quarks. The former enters Eq. (51) only through the
quark determinants, while the latter also enters the meson
correlator of each configuration through the u=d quark
propagators.
In physical reality, it is necessary to incorporate the

b-quark determinant in Eq. (51)—i.e., to perform HMC
simulations of Nf ¼ 2þ 1þ 1þ 1 lattice QCD with (u=d,
s, c, b) quarks [19]. This gives more diverse quantum
fluctuations than those in Eq. (51). Moreover, since the b
quark is much heavier than ðu; d; s; cÞ quarks, its explicit
breakings of Uð1ÞA, SUð2ÞL × SUð2ÞR, and SUð2ÞCS
symmetries must be much larger than those due to
ðu; d; s; cÞ quarks. Consequently, the effective restoration
of UAð1Þ and SUð2ÞL × SUð2ÞR chiral symmetries in
Nf ¼ 2þ 1þ 1þ 1 lattice QCD would occur at different
temperatures from those in Nf ¼ 2þ 1þ 1 lattice QCD.
Moreover, for the emergence of approximate SUð2ÞCS
symmetry with a fixed ϵCS in the criteria of Eqs. (41)
or (38), the lower bound of the window in Nf ¼ 2þ 1þ
1þ 1 lattice QCD is likely to occur at a higher temperature
than that in Nf ¼ 2þ 1þ 1 lattice QCD. Also, as ϵCS is
decreased, the window of Nf ¼ 2þ 1þ 1þ 1 lattice QCD
would shrink to zero while the window of Nf ¼ 2þ 1þ 1

lattice QCD is still nonzero. The above speculations
are based on the scenario of going from Nf ¼ 2 to
Nf ¼ 2þ 1þ 1 lattice QCD, as shown in Table V. Our
worry is that the SUð2ÞCS symmetry might not emerge in
lattice QCD with physical ðu; d; s; c; bÞ quarks—say, for
ϵCS < 0.5 in the criteria of Eqs. (41) and (38).
Comparing Nf ¼ 2þ 1þ 1 lattice QCD at the physical

point with the noninteracting theory on the lattice, we see

that u and d quarks behave dynamically very differently
from the free (and quasifree) fermions, since the SUð2ÞCS
symmetry does not emerge in the latter, in contrast to the
former with the approximate emergent SUð2ÞCS symmetry
in the windows as tabulated in Tables III and IV. If the
deconfined quarks in high-temperature QCD behave
like free or quasifree fermions, then the u and d quarks
in Nf ¼ 2þ 1þ 1 lattice QCD at the temperatures with
approximate emergent SUð2ÞCS symmetry are likely to be
confined inside hadron-like objects, which are predomi-
nantly bound by the chromoelectric interactions into color
singlets. Nevertheless, the role of chromomagnetic inter-
actions in forming these hadron-like objects cannot be
neglected, since the emergent SUð2ÞCS symmetry is not an
exact symmetry. It is interesting to find out the relationship
between the degree of dominance of the chromoelectric
interactions in these hadron-like objects and the ϵCS in the
criteria of Eqs. (38) and (41).
To clarify the nature of these meson-like objects, it is

necessary to examine the spectral functions of the J ¼ 1
mesons (i.e., Vk, Ak, Tk, and Xk) which are relevant to
the SUð2ÞCS symmetry. If bound-state peaks exist in the
spectral functions of the J ¼ 1 mesons, in the window
ðTCS; TfÞ of the emergence of approximate SUð2ÞCS
symmetry, and also the widths of these peaks gradually
broaden, and the peaks eventually disappear as T → Tf,
similar to what has been observed in the spectral function of
the J ¼ 0 mesons ðP; SÞ for Nf ¼ 2 lattice QCD [20], then
the degrees of freedom in the J ¼ 1mesons can be asserted
to be color-singlet (melting) mesons rather than deconfined
quarks and gluons. To this end, it is necessary to generalize
the approach of Refs. [21,22] for J ¼ 0 mesons to J ¼ 1
mesons. Also, the spatial correlators of J ¼ 1 mesons
are required to be evaluated to high precision even at
large distances, without the contamination of unphysical
meson states, such that the damping factor Dm;βðu⃗Þ [22]
of each J ¼ 1 meson channel can be extracted reliably.
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The proposed prescription in Sec. VI A provides a viable
way to attain this goal—that is, to compute two sets of quark
propagators with periodic and antiperiodic boundary con-
ditions in the z direction, while their boundary conditions in
ðx; y; tÞ directions are the same [i.e., periodic in the ðx; yÞ
directions, and antiperiodic in the t direction]. Then, each set
of quark propagators is used to construct the z correlators
independently, finally taking the average of these two spatial
z correlators. Finally, there is another viable prescription
for eliminating the contribution of the unphysical meson
states, as follows: First, the backward (−ẑ) running quark
propagator is eliminated for each configuration by averaging
two quark propagators with periodic and antiperiodic
boundary conditions in the z direction. Then, the resulting
quark propagator is used for constructing the z correlators
of this configuration. Consequently, the z correlators are free
of backward-propagating meson states as well as the
unphysical meson states, and they behave like ∼e−Mz rather
than ∼ cosh½MðLz=2 − zÞ�. The advantage of the new

prescription is that the effective mass Meff
Γ ðzÞ ¼ ln½CΓðnzÞ=

CΓðnz þ 1Þ� has a longer plateau than that of the proposed
prescription in Sec. VI A, which is essential for the
determination of screening mass reliably. Once two sets
of quark propagators with periodic and antiperiodic boun-
dary conditions in the z direction are computed, then the z
correlators of these two prescriptions can be constructed
respectively.
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