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We calculate the color screening mass in thermalized and magnetized QCD matter in the frame of loop
resummation theory without restriction to the magnetic field strength. Our full calculation covers the often-
used approximations for a weak magnetic field at high temperature, and for a strong magnetic field at low
temperature. We find that while the magnetic field created in heavy ion collisions at RHIC and LHC
energies is probably the strongest one in nature, its effect on the QCD matter is still weaker in comparison
with the high temperature of the fireball, and therefore can safely be treated as a perturbation.

DOI: 10.1103/PhysRevD.107.114035

I. INTRODUCTION

The color charge of a quark in a quark-gluon plasma
(QGP) will be screened by the surrounding quarks, anti-
quarks, and gluons. This phenomenon in strong interaction
is in analogy to the well-known Debye screening of an
electric charge in electrodynamic interaction. The screening
strength is normally characterized by the Debye mass mD,
which is inversely proportional to the screening length rD.
When the distance between two colored quarks is larger than
the screening length, the averaged color interaction between
them disappears. For a quarkonium like J=ψ in a QGP, the
color screening effect reduces the potential between the
pair of heavy quarks and leads to a quarkonium suppression
in high-energy nuclear collisions [1]. In the limit of high-
temperature QGP, the hard thermal loop resummed pertur-
bation theory [2] works well and gives an analytic Debye
screening mass [3,4], m2

DðTÞ¼ðNc=3þNf=6Þg2T2, where
the first term comes from gluons and ghosts and the second
term is the contribution frommassless quarks,Nc andNf are
the numbers of color and flavor degrees of freedom, and T
and g are the plasma temperature and coupling constant in
quantum chromodynamics (QCD). The calculation has been
extended to any temperature, chemical potential, and aniso-
tropic medium [5–7].
Since the screening phenomenon happens in both strong

and electromagnetic interactions, a natural question is the
color screening in an external electromagnetic field. If the
field strength is strong enough, its effect on the color
screening may not be neglected. In fact, a hot QGP system
under a strong electromagnetic field is expected to be

created in the early stage of high-energy nuclear collisions
at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC), where the magnetic field
may reach eB ∼ 5m2

π and 70m2
π , respectively [8–15], with

mπ being the pion mass in vacuum. This is probably the
strongest magnetic field in nature and has led to a number
of interesting discussions in the study of high-energy
nuclear collisions—for instance, the effect of magnetic
catalysis or inverse magnetic catalysis on QCD phase
structure [16,17], spin-induced quantum fluctuations like
the chiral magnetic effect [18,19], the splitting of D- and
D̄-directed flow [20–22], and changes in quarkonium
properties and distributions [23–36]. On the electromagnetic
effect on color screening, most of the studies are in the two
limits of weak and strong magnetic field in comparison with
the medium temperature. For the former, one takes a Taylor
expansion of the field [37,38], and for the latter, the lowest
Landau level approximation is used [39–42]. In both cases,
the Debye screening mass mD increases with the magnetic
field strength. The other question we ask ourselves is about
the quark energy quantization. As is well-known in non-
relativistic quantum mechanics, the transverse energy of a
free fermion in an external magnetic field B is quantized as
ϵn ¼ ð2nþ 1ÞjqBj=ð2mÞ [43], with n being a positive
integer, m the fermion mass, and q the fermion electric
charge. Is there still this quantization in the quark loop
calculation?
Considering the fact that the magnetic field created in

high-energy nuclear collisions may not satisfy the condi-
tions to be weak or strong with respect to the fireball
temperature, it is necessary to go beyond the two limits and
study the magnetic field effect on the color screening
without restriction to the field strength. In this paper, we
generally calculate the color screening mass in the frame of
resummed QCD perturbation theory at finite temperature
and magnetic field. We will first introduce the quark
propagator in thermal and magnetized QGP, and then derive

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 114035 (2023)

2470-0010=2023=107(11)=114035(9) 114035-1 Published by the American Physical Society

https://orcid.org/0000-0001-8116-2359
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.114035&domain=pdf&date_stamp=2023-06-29
https://doi.org/10.1103/PhysRevD.107.114035
https://doi.org/10.1103/PhysRevD.107.114035
https://doi.org/10.1103/PhysRevD.107.114035
https://doi.org/10.1103/PhysRevD.107.114035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the gluon self-energy, and in turn, the color screening mass.
We will focus on the process of how the quark transverse
energy is quantized in the calculation of gluon polarization.
We will finally come back to the well-known results in the
two limits of weak and strong magnetic field. Since gluons
do not interact directly with the external magnetic field, the
field contribution to the gluon self-energy and screening
mass arises only from the quark loop.

II. QUARK PROPAGATOR

From the minimum coupling principle, the quark propa-
gatorGðx; x0Þ in an external (classical) magnetic field along
the z axis B ¼ Bez, derivable from the potential Aμ, is
controlled by the equation of motion,

ðiγ · ∂þ qγ · A −mÞGðx; x0Þ ¼ δðx − x0Þ: ð1Þ

Introducing the kinematical momentum operator
Π̂μ ¼ p̂μ þ qAμ, as distinguished from the canonical
momentum operator p̂μ, and solving the Dirac equation,
the operator Ĥ ¼ −ðγ · Π̂Þ2 ¼ −Π̂2 − ðq=2ÞσμνFμν, with
Fμν being the electromagnetic field tensor, satisfies the
eigenequation

Ĥjpi ¼ ð−p2
0 þ p2

z þ ϵ2lmlms
Þjpi; ð2Þ

with the Landau energy levels [43] ϵ2lmlms
¼ 2ljqBj þ

½1 − jmlj − sgnðqÞðml þ 2msÞ�jqBj characterized by the
quantum numbers l ¼ 0; 1;…;∞, ml ¼ −l;…; 0;…; l,
and ms ¼ −1=2; 1=2, and the four-momentum eigenstate
jpi ¼ jp0; pz; l; ml; msi. It is clear that Ĥ is the difference
between p2

0 and the on-shell energy square. For on-shell
quarks, the difference disappears, but in a general state with
arbitrary p0, the Landau energy levels ϵ2lmlms

≥ 0 and the

constraint −p2
0 ≥ 0 (in the imaginary time formalism of

finite-temperature field theory) lead to a positive definite Ĥ.
The quark propagator in the corresponding Euclidean

space can be represented in terms of Ĥ [44]:

Gðx; x0Þ ¼ hxj 1

γ · Π̂−m
jx0i

¼ −
Z

∞

0

dshxjðγ · Π̂þmÞe−ðm2þĤÞsjx0i: ð3Þ

Taking a transformation from the s-independent momen-
tum Π̂ to the s-dependent momentum Π̂ðsÞ ¼ Ûð−sÞ
Π̂ ÛðsÞ through ÛðsÞ ¼ e−Ĥs, the quark propagator can
be written as

Gðx; x0Þ ¼ −
Z

∞

0

dse−m
2shxjÛðsÞðγ · Π̂ðsÞ þmÞjx0i: ð4Þ

Similarly to the transformation from the Schrödinger
picture to the Heisenberg picture in quantum mechanics,
the s dependence of the momentum and coordinate
operators are controlled by the Heisenberg-like equations

∂sΠ̂μðsÞ ¼ ½Ĥ; Π̂μðsÞ� ¼ 2iqFμνΠνðsÞ;
∂sx̂μðsÞ ¼ ½Ĥ; x̂μðsÞ� ¼ −2iΠ̂μðsÞ; ð5Þ

which lead to the solutions

Π̂ðsÞ ¼ e2iFsΠ̂ð0Þ;
x̂ðsÞ ¼ x̂ð0Þ þN ðsÞΠ̂ð0Þ; ð6Þ

with the two matrices F and N ðsÞ defined as

F ¼ qFμ
ν ¼ −qB

2
66664

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

3
77775;

N ðsÞ ¼ −
1

qB

2
6664
2isqB 0 0 0

0 i sinhð2qBsÞ −2sinh2ðqBsÞ 0

0 2sinh2ðqBsÞ i sinhð2qBsÞ 0

0 0 0 2isqB

3
7775: ð7Þ

Combining the two solutions in Eq. (6) together, the momentum operator is represented by the coordinate operator,

Π̂ðsÞ ¼ e2iFsN −1ðsÞ½x̂ðsÞ − x̂ð0Þ�; ð8Þ
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and the first matrix element in the quark propagator
[Eq. (4)] becomes

hxjÛðsÞΠ̂ðsÞjx0i ¼ e2iFsN −1ðsÞðx − x0ÞhxjÛðsÞjx0i: ð9Þ
The second matrix element satisfies the evolution equation

∂shxjÛðsÞjx0i ¼ −hxjÛðsÞĤjx0i; ð10Þ
which results in the solution

hxjÛðsÞjx0i ¼ 1

16π2s2
eðx−x

0ÞμKμνðsÞðx−x0Þν−ln½sinhðqBsÞqBs �þ1
2
qσμνFμνs

ð11Þ

with

KμνðsÞ¼
qB
4
diag

�
1

qBs
;−

1

tanhðqBsÞ;−
1

tanhðqBsÞ ;−
1

qBs

�
:

ð12Þ
In the limit of s → 0, the matrix element hxjÛðsÞjx0i goes
back to the delta function, lims→0hxjÛðsÞjx0i ¼ δðx − x0Þ.
Substituting the two matrix elements [Eqs. (9) and (11)]

into the quark propagator [Eq. (4)], taking the replacements
of s → −is, and then introducing a dimensionless variable
v ¼ jqBjs, we obtain, after a Fourier transformation from
coordinate space to momentum space, the quark propagator
in the external magnetic field,

GðpÞ ¼ −
Z

∞

0

dv
jqBj

�
½mþ ðγ · pÞjj�½1 − isgnðqÞγ1γ2 tanh v� −

ðγ · pÞ⊥
cosh2v

�
e−

v
jqBj½m2−p2

jjþtanh v
v p2⊥�: ð13Þ

The magnetic field breaks down the rotational invariance.
The quark momentum p is separated into longitudinal and
transverse parts pjj and p⊥, parallel and perpendicular to
the magnetic field. Note that, except for a Schwinger phase,
the propagator in Eq. (13) is the same as originally derived
by Schwinger 70 years ago [45,46]. Since the two phase
factors for the quark and antiquark of a loop will cancel to
each other in the calculation of color screening mass, we
will neglect the phase in the following.

III. GLUON POLARIZATION

With the known quark propagator, we can now calculate
the gluon polarization function—namely, the quark loop

function ΠμνðkÞ. After the usually used summation over
quark loops on a chain, one can derive a nonperturbative
gluon propagator [2]. Since we are interested in the color
screening mass which is determined by the pole of the
gluon propagator, we will focus on the polarization in the
limit of zero momentum: limk→0 Πμνðk0 ¼ 0; kÞ [2].
Considering the fact that the thermal and magnetized
medium does not bring in any new divergence in the field
calculation, we directly calculateΠμνð0; 0Þ in the following,
and we explicitly express its temperature and magnetic field
dependence as ΠμνðT; BÞ.
Using the invariance of the quark loop under the sub-

stitution of the integrated quark momentum pμ → −pμ, the
polarization can be simplified as

ΠμνðT; BÞ ¼
g2T

2jqBj2
X
npv1v2

Tr

�ðγ · pÞ⊥γμðγ · pÞ⊥γν
cosh2v1cosh2v2

þ ½1 − isgnðqÞγ1γ2 tanh v1�ðm2γμ − ω2
nγ0γμγ0 þ p2

zγ3γμγ3Þ

× ½1 − isgnðqÞγ1γ2 tanh v2�γν
�
e−

ðv1þv2Þðm2þω2nþp2z Þþðtanh v1þtanh v2Þp2⊥
jqBj ð14Þ

with the summation and integration
P

npv1v2 ¼
P∞

n¼−∞
R
d3p=ð2πÞ3 R∞

0 dv1dv2, where the Matsubara summation is over
the quark frequency ωn ¼ −ip0 ¼ ð2nþ 1ÞπT. Using the exchange symmetry between v1 and v2 and computing the trace
in Dirac space gives

ΠμνðT; BÞ ¼
2g2T
jqBj2

X
npv1v2

�
gμνp2⊥ þ 2ðp − pjjÞμðp − pjjÞν

cosh2v1cosh2v2
þm2½gμν þ ðgjjμν − g⊥μνÞ tanh v1 tanh v2�

þ ω2
n½g⊥μν − δjjμν − ðg⊥μν þ δjjμνÞ tanh v1 tanh v2� þ p2

z ½g⊥μν þ δjjμν − ðg⊥μν − δjjμνÞ tanh v1 tanh v2�
�

× e−
ðv1þv2Þðm2þω2nþp2z Þþðtanh v1þtanh v2Þp2⊥

jqBj ; ð15Þ
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with the definitions of p2⊥¼p2
xþp2

y, g
jj
μν¼diagð1;0;0;−1Þ,

g⊥μν¼diagð0;−1;−1;0Þ, δjjμν ¼ diagð1; 0; 0; 1Þ, and δ⊥μν ¼
diagð0; 1; 1; 0Þ.
It is easy to see that all the off-diagonal elements (μ ≠ ν)

of the polarization vanish automatically, and we need to
consider the diagonal elements only. We can further divide
the diagonal polarization into parallel and perpendicular

parts: Πjj
μμ with μ ∈ f0; 3g, and Π⊥

μμ with μ ∈ f1; 2g. Let us
first calculate the parallel part, which is directly related to
the color screening mass; see the next section. Taking into
account the rotational symmetry around the z axis, the
parallel polarization becomes

Πjj
μμðT;BÞ¼ 2g2T

jqBj2
X
npv1v2

�
gjjμμp2⊥

cosh2v1cosh2v2

þð1þ tanhv1 tanhv2Þ½δjjμμð−ω2
nþp2

zÞþgjjμμm2�
�

×e−
ðv1þv2Þðm2þω2nþp2z Þþðtanhv1þtanhv2Þp2⊥

jqBj : ð16Þ

Introducing functions dnðαÞ defined through the
Legendre functions dnðαÞ¼ð−1Þne−α½Lnð2αÞ−Ln−1ð2αÞ�
with L−1ð2αÞ¼0, the completeness relation

P∞
n¼0dn

ðαÞe−2inv¼e−iα tanhv can alternatively be expressed as [44]

X∞
n¼0

dnðαÞe−2nv ¼ e−α tanh v;

X∞
n¼0

2ndnðαÞe−2nv ¼
α

cosh2 v
e−α tanh v;

X∞
n¼0

d0nðαÞe−2nv ¼ − tanhve−α tanhv ð17Þ

by applying the replacement of v by −iv. Choosing α ¼
p2⊥=jqBj and expressing cosh vi and tanh vi with i ¼ 1, 2 by
the above summations, the parallel polarization can be
written as

Πjj
μμðT; BÞ ¼ 2g2T

jqBj2
X

npv1v2n1n2

�
4jqBjgjjμμ n1n2dn1ðαÞdn2ðαÞ

α

þ ½dn1ðαÞdn2ðαÞ þ d0n1ðαÞd0n2ðαÞ�

× ½δjjμμð−ω2
n þ p2

zÞ þ gjjμμm2�
�

× e−2ðn1v1þn2v2Þ−ðv1þv2Þ
m2þω2nþp2z

jqBj ; ð18Þ

with the summation
P∞

n1;n2¼0.
We then change the transverse momentum integration

to α integration; the rotational symmetry in the transverse
plane leads to

R
d3p=ð2πÞ3 ¼ R∞

−∞ dpz=ð2πÞ2
R∞
0 dp⊥p⊥ ¼R∞

−∞ dpz=ð2πÞ2jqBj=2
R∞
0 dα. Using the orthogonal rela-

tions for the functions dn,

Z
∞

0

dα
n1n2
α

dn1ðαÞdn2ðαÞ ¼ n1δn1n2 ;Z
∞

0

dα½dn1ðαÞdn2ðαÞ þ d0n1ðαÞd0n2ðαÞ� ¼ ð2− δn10Þδn1n2 ;

ð19Þ

the integration over v1, v2, and α gives

Πjj
μμðT; BÞ ¼ g2TjqBj

X
npzn1n2

1

m2 þ ω2
n þ p2

z þ 2n1jqBj
1

m2 þ ω2
n þ p2

z þ 2n2jqBj

×
n
4gjjμμn1jqBj þ ð2 − δn10Þ½δjjμμð−ω2

n þ p2
zÞ þ gjjμμm2�

o
δn1n2 ; ð20Þ

with the longitudinal integration
P

pz
¼ R

dpz=ð2πÞ2.
Performing the summation over n2 analytically and em-
ploying the derivative relation,

∂

∂pz

�
pz

m2 þ ω2
n þ p2

z þ 2n1jqBj
�

¼ m2 þ ω2
n − p2

z þ 2n1jqBj
ðm2 þ ω2

n þ p2
z þ 2n1jqBjÞ2

; ð21Þ

the parallel polarization is finally simplified as

Πjj
μμðT;BÞ ¼ g2TjqBj

X
npzn1

ð2− δn10Þðδjjμμþ gjjμμÞð−ω2
nþp2

zÞ
ðm2þω2

nþp2
z þ 2n1jqBjÞ2

:

ð22Þ
The physics of the positive integer n1 becomes now

clear. It is well known that in quantum mechanics, the
transverse Landau energy levels of a quark propagating in
the external magnetic field are
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ϵ2n1 ¼ 2n1jqBj; n1 ¼ 0; 1;…;∞: ð23Þ

We now turn to the calculation of the perpendicular polarization

Π⊥
ii ðT; BÞ ¼

2g2T
jqBj2

X
npv1v2

�
−p2⊥ þ 2p2

i

cosh2v1cosh2v2
− ð1 − tanh v1 tanh v2Þðω2

n þ p2
z þm2Þ

�

× e−
ðv1þv2Þðm2þω2nþp2z Þþðtanh v1þtanh v2Þp2⊥

jqBj ; ð24Þ

with i ¼ 1, 2 and p1 ¼ px, p2 ¼ py. When the magnetic
field disappears, it is easy to check that the perpendicular
polarization vanishes automatically:

Π⊥
ii ðT; 0Þ ¼ 2g2T

X
np

−ω2
n þ 2p2

i − p2 −m2

ðω2
n þ p2 þm2Þ2

¼ −2g2T
X
np

∂

∂pi

pi

ω2
n þ p2 þm2

¼ 0: ð25Þ

This comes back to the known result at finite temperature
[2–4].
To see the magnetic field effect, we consider the differ-

ence between the two cases with and without magnetic
field. From the exchange symmetry between px and py,
the difference in the perpendicular polarization can be
expressed as

δΠ⊥
ii ðT;BÞ¼Π⊥

ii ðT;BÞ−Π⊥
ii ðT;0Þ

¼ 2g2T
jqBj2

X
npv1v2

�
ðω2

nþp2
zþm2Þ

�
e−ðv1þv2Þ

p2⊥
jqBj−ð1− tanhv1 tanhv2Þe−ðtanhv1þtanhv2Þ

p2⊥
jqBj

��
e−ðv1þv2Þ

m2þω2nþp2z
jqBj : ð26Þ

Similarly to the treatment for the parallel part, we again introduce the variable α ¼ p2⊥=jqBj and the sums over n1 and n2
using the completeness relations [Eq. (17)]. Then, by integrating out v1, v2, and α and using the orthogonal relation

Z
∞

0

dα½dn1ðαÞdn2ðαÞ − d0n1ðαÞd0n2ðαÞ� ¼ δjn1−n2j;1; ð27Þ

the difference becomes

δΠ⊥
ii ðT;BÞ ¼ g2T

X
npzn1n2

ðω2
n þp2

z þm2Þ
�

δn10δn20
m2 þω2

n þp2
z
−

jqBjδjn1−n2j;1
ðm2 þω2

n þp2
z þ 2n1jqBjÞðm2 þω2

n þp2
z þ 2n2jqBjÞ

�
: ð28Þ

Taking the relation on the summation over n1 and n2 for any constant λ,

X∞
n1;n2¼0

δjn1−n2j;1
ðλþ 2n1Þðλþ 2n2Þ

¼
X

n2>n1≥0

δjn1−n2j;1
n2 − n1

�
1

λþ 2n1
−

1

λþ 2n2

�

¼
X
n1≥0

�
1

λþ 2n1
−

1

λþ 2n1 þ 2

�
¼ 1

λ
; ð29Þ

the difference vanishes:

δΠ⊥
ii ðT; BÞ ¼ g2T

X
npz

ðω2
n þ p2

z þm2Þ
�

1

m2 þ ω2
n þ p2

z
−

1

m2 þ ω2
n þ p2

z

�
¼ 0: ð30Þ

Therefore, there is no perpendicular polarization in any case, both with and without magnetic field, Π⊥
μμð0Þ ¼ 0.
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IV. COLOR SCREENING MASS

At one-loop level, the gluon propagator is controlled by
not only the quark loop, but also the gluon loop and ghost
loop. Since gluons and ghosts do not carry charge, they are
not coupled to the external magnetic field, and the temper-
ature dependence of the gluon- and ghost-induced gluon
polarization Π̄μνðkÞ is well investigated in the literature [2].
After resummation over the quark loops, gluon loops and
ghost loops, one derives the total gluon propagator, and in
turn, the total screening mass:

m2
DðT; BÞ ¼ m2

QðT; BÞ þm2
GðTÞ;

m2
QðT; BÞ ¼ −Πjj

00ðT; BÞ;
m2

GðTÞ ¼ −Π̄jj
00ðTÞ: ð31Þ

The gluon- and ghost-loop-induced screening mass
m2

GðTÞ, which is independent of electromagnetic interac-
tion, can be taken from Ref. [5],

m2
GðTÞ ¼

Nc

3
g2T2; ð32Þ

and the quark-loop-induced screening mass m2
QðT; BÞ is

controlled by the parallel polarization Πjj
00,

m2
QðT;BÞ

¼ −g2TjqBj
X
npzn1

�
ð2− δn1;0Þ

m2 −ω2
n þp2

z þ 2n1jqBj
ðm2 þω2

n þp2
z þ 2n1jqBjÞ2

�
:

ð33Þ

Considering the Landau energy levels as the quark trans-
verse momentum p2⊥ ¼ 2n1jqBj, and using the trace
computation,

Tr

�
γ0

1

γ ·p−m
γ0

1

γ ·p−m

�
¼ 4

m2 −ω2
n þ p2

ðm2 þω2
n þ p2Þ2 ; ð34Þ

the summation over the Landau energy levels
P

n1 can be
effectively expressed, together with the pz integration, as a
three-dimensional integration,

m2
QðT;BÞ ¼−

g2

2
T
X
p0p

Tr

�
γ0

1

γ ·p−m
γ0

1

γ ·p−m

�
ρBðp2⊥Þ;

ð35Þ

where ρB is the magnetic-field-controlled transverse
momentum distribution,

ρBðp2⊥Þ ¼ jqBj
X∞
n1¼0

ð2 − δn1;0Þδðp2⊥ − 2n1jqBjÞ; ð36Þ

and the δ function means the Landau quantization: quarks
are confined on the quantum orbit in phase space
p2⊥ ¼ 2n1qB.
It can be proven that this general screening mass covers

the known result in the limit of a weak magnetic field.
When the magnetic field disappears, the summation over
the Landau levels becomes an integration, according to the
Riemann summation rule:

lim
B→0

ρBðp2⊥Þ ¼
Z

∞

0

dξδðp2⊥ − ξÞ ¼ 1: ð37Þ

We therefore go back to the familiar screening mass as a
function of temperature for massless quarks [5]:

m2
QðT; 0Þ ¼

Nf

6
g2T2; ð38Þ

where Nf comes from the flavor summation.
We now subtract the pure temperature effect from the

screening mass to focus on the magnetic-field-induced
mass shift:

δm2
DðT; BÞ ¼ m2

DðT; BÞ −m2
DðT; 0Þ

¼ −
g2

2
T
X
p0p

Tr

�
γ0

1

γ · p −m
γ0

1

γ · p −m

�

× ½ρBðp2⊥Þ − 1�: ð39Þ

For massless quarks, by summing up the Landau levels,
one obtains the Taylor expansion of the screening mass in
terms of jqBj in the limit of a weak magnetic field,

δm2
DðT; BÞ ¼ −g2T

X
f

�X
npz

�
p2
z − ω2

n

ðp2
z þ ω2

nÞ2
jqfBj þ

4

3

p2
z − ω2

n

ðp2
z þ ω2

nÞ3
jqfBj2

�
þOðjqfBj4Þ

�

¼
X
f

�
7ζð3Þ
48π4

g2

T2
jqfBj2 þOðjqfBj4Þ

�
: ð40Þ

Here, we have considered the contribution from different flavors and the flavor dependence of the quark charge q → qf in
the quark loop calculation. This result agrees with the one derived in Refs. [37,38]. It is straightforward to calculate the
corrections from higher orders.
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For the other limit of a strong magnetic field, we can take
only the lowest Landau level (nL ¼ 0). For massless
quarks, we analytically obtain

m2
QðT; BÞ ¼

g2

4

X
f

jqfBj
T

X
pz

1

cosh2 ðjpzj=ð2TÞÞ

¼ g2

4π2
X
f

jqfBj: ð41Þ

This result is exactly what people derived previously
[39,40]. It is straightforward to consider the correction
from higher Landau levels to the screening mass in
our frame.
We now generally calculate the mass shift δm2

DðT; BÞ
without considering any restriction to the temperature or
magnetic field. Again, we consider massless quarks.
Summing up all the Landau levels in the quark-loop-
induced polarization [Eq. (22)] leads to

δm2
DðT; BÞ ¼ g2T

X
npzf

p2
z − ω2

n

jqfBj
K
�
p2
z þ ω2

n

2jqfBj
�
; ð42Þ

where the function K is defined as KðxÞ ¼ x−2=2þ x−1 −
ψ 0ðxÞ with ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ. Note that, in the Taylor
expansion of the mass shift in terms of jqfBj, the linear term
disappears automatically [see Eq. (40)], so we can safely
subtract x−2=2 from KðxÞ. Taking the integrated function as
KðxÞ − x−2=2 and doing partial integration, we have

p2
z − ω2

n

jqfBj
�
K
�
p2
z þ ω2

n

2jqfBj
�
−

2jqfBj2
ðp2

z þ ω2
nÞ2

�

¼ 2

Z
∞

0

dξ

�
1 −

jqfBjξ2=ð2π2T2Þ
1 − e−

jqfBjξ2
2π2T2

�
e−

2p2z ξ
2

4π2T2
∂

∂ξ
e
p2z−ω

2
n

4π2T2
ξ2

¼ 2

Z
∞

0

dξe−
p2zþω2n
4π2T2

ξ2
�
−

∂

∂ξ
þ p2

z

π2T2
ξ

�

×

�
1 −

jqfBjξ2=ð2π2T2Þ
1 − e−

jqfBjξ2
2π2T2

�
; ð43Þ

which results in

p2
z −ω2

n

jqfBj
K
�
p2
z þω2

n

2jqfBj
�
¼ 2

Z
∞

0

dξe−
p2zþω2n
4π2T2

ξ2
�
−

∂

∂ξ
þ p2

z

π2T2
ξ

�

×

�
1−

jqfBjξ2
4π2T2

coth

�jqfBjξ2
4π2T2

��
:

ð44Þ

Now, we can analytically sum up the Matsubara frequency
and integrate the longitudinal momentum. The mass shift is
finally written as

δm2
DðT; BÞ ¼

2g2T2

π1=2

X
f

Z
∞

0

dξ
ϑ2ð0; e−ξ2Þ

ξ2
M

�jqfBjξ2
4π2T2

�
;

ð45Þ

where ϑ2 is the elliptic theta function ϑ2ðu; xÞ ¼
2x1=4

P∞
n¼0 x

nðnþ1Þ cos½ð2nþ 1Þu�, and M is defined as
MðxÞ ¼ 1 − x2= sinh2 x. Considering the relations
ϑ2ð0; e−ξ2Þ ¼

ffiffiffi
π

p
=ξϑ4ð0; e−π2=ξ2Þ and ϑ2ð0; e−ξ2Þ ≈

ffiffiffi
π

p
=ξ

in the limit ξ → 0þ, which corresponds to the limit of a
strong magnetic field, we obtain

δm2
DðT; BÞ ¼

g2

4π2
X
f

jqfBj þ
2g2T2

π1=2

×
X
f

Z
∞

0

dξ
ϑ2ð0; e−ξ2Þ −

ffiffiffi
π

p
=ξ

ξ2

×M
�jqfBjξ2

4π2T2

�
: ð46Þ

The numerical results for the Debye screening
mass mDðT; BÞ and the mass shift δmDðT; BÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

DðT; BÞ −m2
DðT; 0Þ

p
are shown in Figs. 1 and 2 as

functions of T and jeBj. In the frame of one-loop
resummation, the screening mass square is at the order
of g2, and therefore the scaled mass mD=g and mass shift
δmD=g are coupling-constant independent. In the hot and
magnetized medium created in high-energy nuclear colli-
sions at LHC, the screening mass induced by temperature,
mDðT; 0Þ=g ¼

ffiffiffiffiffiffiffiffi
3=2

p
T ∼ 0.6 GeV at T ¼ 0.5 GeV, is

much larger than the one induced by the magnetic field,
mDð0; BÞ=g ¼ 0.13 GeV at eB ¼ 0.5 GeV2 ∼ 25m2

π . With
increasing temperature, the broken translation invariance
caused by the magnetic field is gradually restored by the

FIG. 1. The total Debye screening mass scaled by the coupling
constant mDðT; BÞ=g as a function of temperature T and external
magnetic field strength jeBj.
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thermal motion, and the mass shift drops down
continuously.
We now take numerical comparison of our full calcu-

lation with the approximations of weak [Eq. (40)] and
strong [Eq. (41)] magnetic field in Fig. 3, where the weak
and strong limits are relative to the medium temperature.
In order to make our comparison meaningful, we take a
temperature T ¼ 500 MeV corresponding to the initial
fireball in high-energy nuclear collisions at RHIC and
LHC energies where the created magnetic field is the
strongest. It is clear that while the magnetic field created
in the initial stage of heavy ion collisions is extremely
strong, its effect on the hot QCD matter can safely be
considered as a perturbation with respect to the initial
fireball temperature.

V. SUMMARY

The color interaction is screened in QCD matter at finite
temperature and further suppressed in the external magnetic
field. We calculated in this paper the color screening mass

in the frame of resummed perturbative QCD theory without
restriction of the magnetic field strength. In the quark loop
calculation, the Landau energy levels ϵ2n ¼ 2njqBj for the
propagating quark and antiquark are naturally embedded
into the screening mass. Our full calculation covers the
often-used limit of a weak magnetic field at high temper-
ature and the limit of a strong magnetic field at low
temperature. While the magnetic field created in high-
energy nuclear collisions at RHIC and LHC energies is
perhaps the strongest in nature, its effect on the formed
quark-gluon plasma is still weaker in comparison with the
temperature effect and can safely be considered as a
perturbation.
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