
Heavy-quark potential in the Gribov-Zwanziger approach around the
deconfinement phase transition

Wan Wu , Guojun Huang, Jiaxing Zhao , and Pengfei Zhuang
Physics Department, Tsinghua University, Beijing 100084, China

(Received 19 July 2022; accepted 9 June 2023; published 27 June 2023)

The interaction potential between a pair of heavy quarks is calculated with the resummed perturbation
method in Gribov-Zwanziger (GZ) approach around the deconfinement phase transition. The resummed
loop correction makes the potential complex. While the real part is suppressed by color screening and
becomes short-ranged at high temperatures, the imaginary part is enhanced through decay processes in a
hot medium and becomes comparable with the real part around the phase transition. The strong imaginary
potential comes from the magnetic scale in the GZ approach and shows that both the color screening and
decay processes play important roles in quarkonium dissociation in high-energy nuclear collisions.
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Considering the large mass m and small velocity v, there
exists a hierarchy of energy scales m ≫ mv ≫ mv2 for
heavy quarks. When integrating out the momentum larger
than m and mv from the Quantum Chromodynamics
(QCD) respectively, one obtains the nonrelativistic QCD
(NRQCD) and potential nonrelativistic QCD (pNRQCD)
theories [1–3] for the study of heavy quark systems. At the
leading order, the equation of motion in pNRQCD returns
to the Schrödinger equation in quantum mechanics, and the
dynamics are fully described by an interaction potential.
The two-body Schrödinger equation with the Cornell
potential between a pair of heavy quarks successfully
describes the quarkonium properties in vacuum [4]. The
one-gluon exchange between two heavy quarks gives rise
to the Coulomb part of the potential, while the confinement
part should come from nonperturbative calculations
through for instance lattice simulations [5,6].
In recent years heavy-flavor hadrons are widely consid-

ered as a probe of the new state of matter—quark-gluon
plasma (QGP) created in relativistic heavy-ion collisions
[4,7–14]. This extends the study of heavy-quark potential
from vacuum to finite temperature. In a hot medium of light
quarks and gluons, the heavy-quark potential is expected to
become complex: The color screening by the surrounding
quarks and gluons reduces the Cornell potential [15–18], an
analogy to the Debye screening in electromagnetic systems,
and the imaginary part is introduced by the Landau damping
or color singlet-to-octet transition [19]. The potential can be

extracted from the quarkonium spectra via lattice QCD
simulations [20–25]. Recently, the machine learning method
[26] and some spectral extraction strategies [27,28] are used
to obtain the potential, indicating a large imaginary part.
At extremely high temperatures, the Landau damping

becomes dominant, and the potential can be well described
by the Hard-Thermal-Loop (HTL) resummed perturbation
[29,30]. However, the perturbation calculation shows poor
convergence at lower temperatures T ≤ 2Tc with Tc being
the QCD phase transition temperature. This weak conver-
gence appears also in the calculation of QCD thermody-
namics, attributed to the IR sector of QCD [31]. The electric
Debye mass can not remove all the infrared divergences of
QCD unless introducing a magnetic mass which is at the
order of g2T [31,32]. The magnetic mass enters only in
higher-order calculations, and its contribution is significant at
low temperatures where the coupling constant g is large.
In QCD ghosts are required by the gauge fixing in non-

Abelian theory [33]. In 1978 Gribov discovered that the
gauge fixing in the quantization is not complete, there exist
still gauge copies that could affect the infrared region of
those gauge quantities such as the gluon and ghost
propagators [34]. The Gribov action arises from the
restriction of the domain of the integration in Euclidean
space to the Gribov region Ω, which is defined as the set of
all gauge field configurations fulfilling a gauge (for
instance the Landau gauge ∂

μAa
μ ¼ 0) and for which the

Faddeev-Popov operator Mab ¼ −∂μðδab∂μ − gfabcAμ
cÞ is

strictly positive [34,35]. The original Gribov Lagrangian
includes a nonlocal term and is hard to calculate. Zwanziger
used the BRST method [36–38] to modify the Lagrangian
through the introduction of a set of auxiliary fields and
derived the Gribov-Zwanziger (GZ) Lagrangian in a local
form which is now used widely [39–42]. The GZ approach
is further revised by considering the gluon condensate and
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including some mass terms in the Lagrangian [43]. From
the original GZ approach, one can read off the gluon
propagator. For instance, in the Landau gauge [34] it is

Dab
μνðpÞ ¼ δab

�
δμν −

pμpν

p2

�
p2

p4 þm4
G
; ð1Þ

wheremG is the Gribov mass parameter. In comparison with
the normal gluon propagator in the limit ofmG → 0, the GZ
propagator has complex poles at p2 ¼ �im2

G and is sup-
pressed in the infrared region. This structure does not allow
us to attach the usual particle meaning to the gluon
propagator, invalidating the interpretation of gluons as an
excitation of the physical spectrum. Gluons are confined by
the Gribov condition. The Gribovmass parametermG ∼ g2T
[39] at high temperature is proportional to themagneticmass.
Therefore, the magnetic scale is automatically incorporated
into the framework of the GZ approach. The QCD thermo-
dynamic quantities are investigated in the GZ approach and
consistent with the lattice data [42,44]. In the following
calculation, we choose the Coulomb gauge; the correspond-
ing gluon propagator can be found in Ref. [45].
Because the confinement is already reflected in the gluon

propagator (1) at the lowest order, the GZ approach
provides a possibility to perturbatively calculate the
heavy-quark potential. This can provide a way to under-
stand the physics of the complex potential extracted from
the lattice data. The calculation at the one-loop level in
vacuum shows a Coulomb potential and a linear term
modified by a logarithm [46]. To understand the parton
deconfinement at finite temperature, we study in this paper
the heavy quark potential in the GZ approach at finite
temperature in the frame of resummed perturbation theory.
We will focus on the region around the deconfinement
temperature Tc (T ≤ 2Tc) which can be realized in high-
energy nuclear collisions and where the normal perturba-
tion theories like HTL are not suitable. Since the heavy
quark potential is characterized by the gluon propagator,
the restriction on gluon field configurations in the GZ
approach is thus expected to considerably affect the real
and imaginary parts of the potential. We calculate firstly
the gluon loop, then the gluon propagator in terms of the
resummation of gluon and quark loops, and finally the
heavy quark potential through constructing the real-time
Wilson loop. We summarize in the end.
The Gribov mass parametermG is not a free parameter of

the theory. It is a dynamical quantity, being determined in a
self-consistent way through a gap equation by minimizing
the vacuum energy of the system. At the lowest level, it can
be derived from the contribution of a closed loop to the
gluon self-energy. In Coulomb gauge, it reads [39]

X
n;p

1

ð−ω2
n þ p2Þp2 þm4

G
¼ 3

2Ncg2
; ð2Þ

where gðTÞ as a function of temperature is the QCD
running coupling constant, Nc the number of color degrees
of freedom, and

P
n;p ¼ T

R
d3p=ð2πÞ3Pn includes a

summation over the Matsubara frequency ωn ¼ 2nπT
and a three-momentum integration. By evaluating the
frequency summation, the gap equation is simplified as

Z
d3p
ð2πÞ3

1

ϵpp2

�
1þ 2

eϵp=T − 1

�
¼ 3

Ncg2
; ð3Þ

where ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm4

G=p
2

p
can be considered as the

effective gluon energy. By making use of the formula

μ4−D
Z

dD−1p
ð2πÞD−1

D−2

2ϵpp2

¼
�
m
μ

�
D−4 D−2

2ð4πÞD=2

ΓððD−2Þ=4ÞΓðð4−DÞ=4Þ
ΓððD−1Þ=2Þ ; ð4Þ

we can isolate the divergence in the integration. By taking
the standard MS renormalization scheme, the gap equation
becomes

1

4
ln

�
e
2

μ2

m2
G

�
þ
Z

∞

0

dx
u

1

emGu=T − 1
¼ 3π2

Ncg2ðTÞ
; ð5Þ

with u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1=x2

p
, where μ is the renormalization scale

that controls the vacuum value of the Gribov mass.
The temperature dependence of the Gribov mass is

characterized by not only the statistical distribution but
also the coupling constant g2ðTÞ ¼ 4παsðTÞ. At very high
temperatures with T ≳ 3Tc, the IR and UV behaviors of the
coupling are obtained through lattice simulations [18], and
the results are qualitatively consistent with the perturbative
QCD calculation up to two loops [18], as shown in Fig. 1.

FIG. 1. The running coupling constant αsðTÞ calculated by
lattice IR and UV [18], perturbative QCD up to two loops [18],
potential models [4,24], and interpolation. The deconfinement
temperature Tc is chosen to be 170 MeV [24].
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In a vacuum the coupling can be extracted by fitting the
quarkonium spectra via potential model [4] or fitting the
vacuum potential with Cornell potential [23], both give a
coupling αs ≈ 0.5. For the gap around Tc where charmo-
nium and bottomonium states are expected to be disso-
ciated, which we are interested in for this paper, the
nonperturbative effect is strong, and it is hard to find
precise calculation. We take an interpolation to continu-
ously connect the vacuum and high-temperature values; see
the solid line in Fig. 1.
With the running coupling extracted from the interpo-

lation, we solve the gap equation numerically and obtain
the Gribov mass mG as a function of temperature,
shown in Fig. 2. The vacuum value is chosen to be
mGð0Þ ¼ 0.55 GeV, corresponding to the renormalization
scale μ ¼ 10.92 GeV in the gap equation. We will see in
the following that this value can reproduce the Cornell
potential well. The Gribov mass drops down rapidly in the
beginning, when the temperature is below the deconfine-
ment temperature, and then becomes smooth in the
deconfinement phase. In the limit of high temperature
T → ∞, the solution of the gap equation becomes

mGðTÞ ¼
Nc

23=23π
g2ðTÞT ð6Þ

and behaves like the standard magnetic mass m ∼ g2ðTÞT
[39,44]. In the asymptotic free interval with T → ∞, g2 ∼
1= lnT goes to zero, and theGribovmassmG ∼ T= lnT goes
to infinity. We think this is not a physical result. The
divergent Gribov mass here may come from the running
coupling which is calculated in QCD rather than the GZ
approach. Considering the self-consistency, we need to
calculate both the running coupling and the gap equation
in the GZ approach up to order g2. While this will not
remarkably change our result around the phase transition,
wewill consider the self-consistent calculation in the future.
To include loop correction to the gluon propagator (1),

we calculate first the gluon loop. Since the interaction

potential between two heavy quarks is only related to the
componentD00 of the gluon propagatorDμν, we consider in
the following only the component Π00 of the loop function
ΠμνðpÞ. Defining ΠGðpÞ ¼ −Π00ðpÞ=ðg2Ncp2Þ, a direct
calculation leads to

ΠGðpÞ ¼ J1ðpÞ − J2ðpÞ;

J1ðpÞ ¼
X
n;k

3pipjTijðkÞ
ðϵ2k þ ω2

nÞp2ðk − pÞ2 ;

J2ðpÞ ¼
X
n;k

TijðkÞTijðk − pÞðϵ2k − ω2
n − iωnp0Þ

ðϵ2k þ ω2
nÞðϵ2k−p − ðiωn − p0Þ2Þp2

; ð7Þ

with TijðkÞ ¼ δij − kikj=k2, i; j ¼ 1; 2; 3. Similar to the
treatment for the gap equation (2), here J1 and J2 can be
separated into a vacuum part and a thermal part. The latter
is convergent, and the former is divergent and needs to be
regularized. Introducing a momentum-cutoff Λ and using
the renormalization scheme MS, the divergence can be
attracted into the running coupling,

1

g2ðΛÞNc
¼ 1

48π2

�
11 log

Λ2

Λ2

MS

−
49

3
þ22 log2

�
; ð8Þ

where the momentum-cutoff in the scheme MS is taken as
ΛMS ¼ mG=1.62, including the quark contribution [46].
J2 can further be separated into three parts:

J2ðpÞ ¼ J2AðpÞ þ J2BðpÞ þ J2CðpÞ;

J2AðpÞ ¼
X
n;k

TijðkÞTijðk − pÞ
ððiωn − p0Þ2 − ϵ2k−pÞp2

;

J2BðpÞ ¼
X
n;k

−2ϵ2kTijðkÞTijðk − pÞ
ðω2

n þ ϵ2kÞððiωn − p0Þ2 − ϵ2k−pÞp2
;

J2CðpÞ ¼
X
n;k

iωnp0TijðkÞTijðk − pÞ
ðω2

n þ ϵ2kÞððiωn − p0Þ2 − ϵ2k−pÞp2
: ð9Þ

Because a statical potential is calculated at time t → ∞
which corresponds to p0 → 0, J2C disappears in this limit.
Taking into account the Matsubara summations,

T
X
n

−1
ω2
n þ ϵ2k

¼ −
1

2ϵk
coth

ϵk
2T

;

T
X
n

−1
ðω2

n þ ϵ2kÞððiωn − p0Þ2 − ϵ2k−pÞ

¼ −
X

η1;η2¼�

η1η2
4ϵkϵk−p

fBðη2ϵk−pÞ − fBðη1ϵkÞ
p0 − η1ϵk þ η2ϵk−p

; ð10Þ

where fBðxÞ ¼ 1=ðex=T − 1Þ is the Bose-Einstein distribu-
tion function, J1 and J2 can be expressed asFIG. 2. The Gribov mass mGðTÞ=T.
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J1ðpÞ ¼
Z

d3k
ð2πÞ3

3pipjTijðkÞ
2ϵkp2ðk − pÞ2 coth

ϵk
2T

;

J2AðpÞ ¼ −
Z

d3k
ð2πÞ3

TijðkÞTijðkþ pÞ
2ϵkp2

coth
ϵk
2T

;

J2BðpÞ ¼ −
Z

d3k
ð2πÞ3

X
η1;η2¼�

η1η2ϵkTijðkÞTijðk − pÞ
2ϵk−pp2

×
fBðη2ϵk−pÞ − fBðη1ϵkÞ
p0 − η1ϵk þ η2ϵk−p

: ð11Þ

We now take an analytic extension of p0 → p0 þ iϵ
which leads to the real and imaginary parts of the gluon
loop function,

ReΠGðpÞ ¼ J1ðpÞ − J2AðpÞ − J2BðpÞ;

ImΠGðpÞ ¼ −π
Z

d3k
ð2πÞ3

X
η1η2¼�

η1η2ϵk
2ϵk−pp2

× ½fBðη2ϵk−pÞ − fBðη1ϵkÞ�ð1þ cos2θÞ
× δðp0 − η1ϵk þ η2ϵk−pÞ; ð12Þ

where θ is the angle between the two momentum vectors k
and k − p, and the δ function means the energy conservation
during the decay process from one gluon to two gluons.
The Gribov region Ω changes only the path integration

of the gauge field, the free quark propagator, and in turn,
the quark loop function is not affected by the Gribov
condition and can be found in textbooks [47]:

ReΠQðpÞ ¼
Nf

Ncp2

�
T2

12
þ
Z

d3k
ð2πÞ3

X
η1η2¼�

η1η2

×
k · ðk − pÞ
jkjjk − pj

fFðη2jk − pjÞ − fFðη1jkjÞ
p0 − η1jkj þ η2jk − pj

�
;

ImΠQðpÞ ¼ −
πNf

Ncp2

Z
d3k
ð2πÞ3

X
η1η2¼�

η1η2k · ðk − pÞ
jkjjk − pj

× ½fFðη2jk − pjÞ − fFðη1jkjÞ�
× δðp0 − η1jkj þ η2jk − pjÞ; ð13Þ

where fFðxÞ ¼ 1=ðex=T þ 1Þ is the Fermi-Dirac distribu-
tion function. While the quark loop ΠQ is not explicitly
affected by the GZ approach, its renormalization in a
vacuum is coupled to the Gribov mass mG through the
momentum cutoff ΛMS.
The total loop function contains both gluon and quark

loops,

ΠðpÞ ¼ ΠGðpÞ þ ΠQðpÞ: ð14Þ

By summarizing overall gluon and quark loops on a chain
[47], one derives the loop-corrected gluon propagator:

D00ðpÞ ¼
1

p2
½1 − Π00ðpÞ=p2 þ ð−Π00ðpÞ=p2Þ2 þ � � ��

¼ 1

p2
1

1 − g2NcΠðpÞ
: ð15Þ

We now turn to the calculation of heavy quark potential
via the gluon propagator D. Aiming to an in-medium
potential, we follow the strategy in Ref. [29] to construct a
real-time Wilson loop that characterizes the propagation of
two infinitely heavy quarks. The evolution of the Wilson
loop satisfies the Schrödinger equation where the potential
to the first order of g2 reads [29]

V>ðt; rÞ ¼ g2CF

Z
d3p
ð2πÞ3

2 − eip3r − e−ip3r

2

×

�
1

p2ð1 − g2NcΠð0; pÞÞ
þ
Z

dp0

π
fBðp0Þp0

× ðep0=Te−ip0t − eip0tÞ
��

1

p2
−

1

p2
0

�
ρEðpÞ

−
�
1

p2
−

1

p2
3

�
ρTðpÞ

��
; ð16Þ

with the constant CF ¼ ðN2
c − 1Þ=ð2NcÞ, where ρEðpÞ and

ρTðpÞ are the two spectral functions [29]. Using the relation
limt→∞ðeip0t − e−ip0tÞ=p0 ¼ 2πiδðp0Þ and the approxima-
tion fBðp0Þ ≈ T=p0 for thermalized gluons, we obtain the
static potential in the limit of t → ∞:

VðrÞ¼ lim
t→∞

V>ðt;rÞ¼VRðrÞþ iVIðrÞ

VRðrÞ¼−
CF

Nc

Z
d3p
ð2πÞ3

1

p2ReΠð0;pÞð1−eip3rÞ;

VIðrÞ¼
CF

Nc
T
Z

d3p
ð2πÞ3

p2Fð0;pÞ
jpjðp2ReΠð0;pÞÞ2 ð1−eip3rÞ ð17Þ

with

FðpÞ ¼ 2
jpj
p0

ImΠðpÞ: ð18Þ

In a vacuum there is no Landau damping, the imaginary
parts of the loop function, propagator, and potential
disappear automatically, and the potential is reduced to

VðrÞ ¼ CFg2
Z

d3p
ð2πÞ3D00ð0; pÞð1 − eip·rÞ; ð19Þ

which reproduces well the Cornell potential VðrÞ ¼
−α=rþ σr with α ¼ 0.4105 and σ ¼ 0.2 GeV2 [4], see
the comparison in Fig. 3.
The heavy quark potential in the medium contains real

and imaginary parts, shown in Figs. 4 and 5 at several
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temperatures. The real part VRðrÞ is, as usually discussed in
literature [17], controlled by color screening. In a vacuum,
the potential increases linearly with the distance and is
never saturated, which means parton confinement. In a hot
medium, the long-distance potential is screened, and the
screening length decreases with increasing temperature.
When the screening length is comparable with a quarko-
nium radius rQQ̄, the quarkonium starts to be dissociated.
This screening picture is widely used to explain the
quarkonium suppression observed in high-energy nuclear
collisions [17].
Besides the Debye screening, quarkonia will also suffer

dynamic dissociation induced by Landau damping and the
breakup of a color-singlet bound state into a color-octet
heavy quark-antiquark pair by absorption of a thermal
gluon. The dissociation processes can effectively be sum-
marized in the imaginary part VIðrÞ of the potential. We can
see that the imaginary part calculated with the GZ approach
keeps zero in a vacuum and increases with the relative
distance r at finite temperature. This r-dependence is

reasonable because the dissociation becomes easy for
large-size quarkonia. Around the phase transition temper-
ature, the strength of VI is comparable with VR at r ∼
rQQ̄ ∼ 0.5 fm and much stronger than VR at r > rQQ̄.
We now compare our results with the ones obtained with

lattice simulations and in the HTL approach. For the real
potential, our calculation is similar to the lattice data [24] in
a wide temperature region, while due to the very large
uncertainty in the lattice-simulated imaginary potential
[24], it is hard to see the difference between our calculated
VI and the lattice data.

FIG. 3. The vacuum potential VðrÞ scaled by the condition V ¼
0 at r ¼ 1 fm. The dashed and solid lines are calculated via
Cornell potential and the Gribov-Zwanziger approach.

FIG. 4. The real potential VRðrÞ at finite temperature, scaled by
the condition VR ¼ 0 at r ¼ 1 fm.

FIG. 5. The imaginary potential VIðrÞ at finite temperature.

FIG. 6. The comparison of the real potential VRðrÞ calculated
via the Gribov-Zwanziger (solid lines) and HTL approach
(dashed lines).
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The heavy quark potential in the HTL approach [29] can
be expressed as

VðrÞ ¼ −
CFg2

4π

��
mD þ e−mDr

r

�
þ iTϕðmDrÞ

�
;

ϕðxÞ ¼ 2

Z
∞

0

dz
z

ðz2 þ 1Þ2
�
1 −

sinðzxÞ
zx

�
; ð20Þ

wheremD ¼ gT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc=3þ Nf=6

p
is theDebyemass. The real

and imaginary potentials calculated in the GZ and HTL

approach are compared in Figs. 6 and 7. Firstly, it should be
pointed out that it looks not very reasonable to use the HTL
approach around the phase transition region since the HTL
approach is a good approximation only in high-temperature
limits. While the real potentials in the two approaches are
close to each other at high temperatures (see Fig. 6), the
imaginary part in the GZ approach is much stronger than
the one in the HTL approach even at temperature T ¼
0.35 GeV ∼ 2Tc (see Fig. 7). The reason is the lack of the
magnetic scale in the HTL approach with only one-loop
correction. The introduction of the Gribov mass, which is
proportional to the magnetic mass, makes our calculation
around the phase transition reasonable and leads to the big
difference in the imaginary potential between the two
approaches.
In summary, we have calculated the loop-corrected

heavy quark potential in the Gribov-Zwanziger approach
in a strongly coupled quark-gluon plasma. Besides the
color screening shown in the real part of the potential, there
exists a large imaginary part of the potential, especially
around the phase transition temperature, see the upper
panel of Fig. 7. We can use the Schrödinger equation to
effectively describe the quarkonium decay rate by the
imaginary potential [48],

Γ ¼ 2

Z
d3xð−VIðxÞÞjψðxÞj2; ð21Þ

where ψ is the quarkonium wave function. Since VI is
negative, this decay in the quark-gluon plasma will enhance
the quarkonium suppression in high-energy heavy-ion
collisions.
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