
Contact interaction model for the η and η0 mesons in a
Schwinger-Dyson-Bethe-Salpeter approach to QCD:
Masses, decay widths, and transition form factors

Bilgai Almeida Zamora ,1 Enrique Carreon Martínez ,2 Jorge Segovia,3 and J. J. Cobos-Martínez 4,*

1Departamento de Investigación en Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales,
Colonia Centro, Hermosillo, Sonora 83000, México
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We construct a contact interaction model for the η and η0 mesons in the SDE-BSE approach to QCD and
compute several static properties of these mesons and their transition form factors. We find that this model
gives an excellent description of the η and η0 static properties, namely, their masses, decay width, and decay
constants. However, a contact interaction disagrees with experimental data forQ2 greater than 2 GeV2, and
produces transition form factors in conflict with perturbative QCD prediction. This is not surprising and the
reasons for this are explained.
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I. INTRODUCTION

Quantum chromodynamics (QCD), the theory of quarks,
gluons, and their interactions, is the accepted theory of the
strong interactions at the fundamental level. Although QCD
dictates the dynamics of quarks and gluons, and therefore,
in principle, the strucure and dynamics of hadrons, which
are bound states of quarks and gluons, the nonperturbative
nature of QCD makes this a difficult problem. In the low
energy, nonperturbative regime of QCD, the emergent
phenomena of chiral symmetry breaking and confinement
govern the static and dynamic properties of hadrons; for
example, these are responsible for 99% of the mass of the
visible universe; see, for example, Refs. [1,2] and refer-
ences therein.
Within the framework of Schwinger-Dyson (SDE) and

Bethe-Salpeter equations (BSE) of QCD, we can inves-
tigate the structure and dynamics of hadrons through first
principles in the continuum. However, drawing a connec-
tion between QCD and hadron observables, through the

SDE-BSE system, is a difficult task due to the infinite
number of equations we need to confront—and that is why
modeling remains a keystone in hadron physics. Despite
this difficulty, great progress has been made for more than
three decades using the SDE-BSE approach to nonpertu-
bative QCD and hadron physics, and this has become a
powerful and reliable tool to investigate strong interaction
phenomena; see, for example, Refs. [3–6]. SDE and BSEs
for QCD have been extensively applied to the study of
hadrons in vacuum and at finite density and temperature in
a variety of truncation schemes and degrees of sophisti-
cation; see Ref. [6] for a recent review.
More than a decade ago a simple alternative within the

SDE-BSE approach was proposed, initially to study pion
properties, assuming that quarks interact not via massless
vector-boson exchange but instead through a symmetry
preserving vector-vector contact interaction (CI) [7,8].
Over the ensuing years, this contact interaction has been
used to investigate static and dynamic properties of hadrons
invacuum, such asmasses, decay constants, electromagnetic
elastic and transition form factors, parton distribution func-
tions, and generalized parton distribution functions [7–31]
and at finite temperature and density to study, for example,
the phase diagram of QCD [32–34].
The results obtained from the contact interaction model

are quantitatively comparable to those obtained using
sophisticated QCD model interactions. Furthermore, the
weaknesses and strengths of this interaction have been
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identified and understood. Despite its weaknesses, the
contact interaction has emerged as a powerful tool in the
investigation of hadron properties. We take this as a
sufficient justification to employ this interaction in order
to construct a contact interaction model for the η and η0
mesons in the SDE-BSE approach to QCD and compute
several static properties of these mesons and their transition
form factors. We will find that this model gives an excellent
description of the η and η0 static properties and this makes it
an excellent tool for the investigation of UAð1Þ symmetry
restoration at finite temperature and density in the SDE-
BSE approach to QCD. This will be reported elsewhere.
This article is organized as follows. In Sec. II, we briefly

present the Schwinger-Dyson and Bethe-Salpeter equations
of QCD in rainbow-ladder truncation with a contact inter-
action. Themodel parameters for this piece of the interaction
are fixed by pion and kaon static properties. In Sec. III, we
extend the rainbow-ladder truncation to include a phenom-
enological kernel that represents the non-Abelian anomaly.
Themodel parameters for this part of the interaction are fitted
by the masses and decay widths of the η and η0 mesons. In
Sec. IV,we compute the η and η0 transition form factors using
the constructed contact interaction model. Finally, in Sec. V
we give a summary and conclusions.

II. SDE-BSE FORMALISM

In this section we briefly introduce the SDE-BSE
formalism of QCD. Our focus will be on the contact
interaction since this is employed to produce the results
reported in this article. See Refs. [3–6] for comprenhensive
reviews on the SDE-BSE approach to QCD and hadron
physics.

A. The quark SDE and the contact interaction

The f-flavor dressed-quark propagator Sf is obtained by
solving the quark SDE

S−1f ðpÞ ¼ iγ · pþmf þ ΣfðpÞ; ð1Þ

ΣfðpÞ ¼
Z

d4q
ð2πÞ4 g

2Dμνðp − qÞ λ
a

2
γμSfðqÞΓa

νðp; qÞ; ð2Þ

where g is the strong coupling constant, Dμν is the dressed
gluon propagator, Γa

ν is the dressed quark-gluon vertex, mf

is the f-flavor current-quark mass, and λa are the usual
Gell-Mann matrices. The chiral limit is defined by mf ¼ 0.
The SDEs constitute an infinite set of coupled nonlinear

integral equations and thus a tractable problem is defined
once a truncation scheme has been specified. In practice,
this is achieved by specifying the gluon propagator and the
quark-gluon vertex.
There is extensive literature [7–31] where it has been

shown that the static properties of low-lying mesons and
baryons can be described by assuming that the quarks

interact, not via massless vector-boson exchange, but
instead through a symmetry preserving vector-vector con-
tact interaction (CI) with a finite gluon mass

g2DμνðkÞ ¼ δμν
4παIR
m2

g
≡ αeffδμν; ð3Þ

Γa
μðp; qÞ ¼

λa

2
γμ; ð4Þ

where mg ∼ 500 MeV is an infrared gluon mass scale
which is generated dynamically in QCD [35–40], and
αIR is specified by the strength of the infrared interaction in
QCD. There is a critical value of αeff above which chiral
symmetry is dynamically broken.
Equations (3) and (4) specify the so-called rainbow

truncation of the quark SDE within a contact interaction.
This truncation scheme generates a momentum indepen-
dent dymamical massMf for the dressed-quark propagator
[7,8]

S−1f ðpÞ ¼ iγ · pþMf: ð5Þ

The dynamical, flavor-dependent, constant mass Mf is
obtained by solving

Mf ¼ mf þ
αeffMf

3π2

Z
∞

0

dq2
q2

q2 þM2
f

: ð6Þ

Since the integral in Eq. (6) is divergent, we must specify a
regularization prescription. We use the proper time regu-
larization scheme to write ðq2 þM2

fÞ−1 in Eq. (6) as

1

q2 þM2
f

¼
Z

∞

0

dτe−τðq
2þM2

fÞ

→
Z

τIR

τUV

dτe−τðq
2þM2

fÞ

¼ e−τUVðq
2þM2

fÞ − e−τIRðq
2þM2

fÞ

q2 þM2
f

: ð7Þ

In Eq. (7), τ−1IR ≡ Λ2
IR and τ−1UV ≡ Λ2

UV are infrared and
ultraviolet regulators, respectively, which will be specified
later. A nonzero value for τIR implements confinement by
ensuring the absence of quarks production thresholds [41].
It has been shown that an excitation described by a poleless
propagator would never reach its mass shell [41].
Moreover, since the CI is not renormalizable, ΛUV cannot
be removed, but instead plays a dynamical role and sets the
scale for all dimensioned physical quantities. After inte-
gration over q2, Eq. (6) can be written as

Mf ¼ mf þ
αeffMf

3π2

Z
τIR

τUV

dττ−2e−τM
2
f : ð8Þ
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By solving Eq. (8) we can obtain the dynamical mass of the
quark of flavor f.

B. The BSE and the contact interaction

In quantum field theory, meson bound states in a given
JPC channel, whose flavor structure is given by a non-
perturbative dressed quark-antiquark pair (fḡ), are
described by the Bethe-Salpeter equation (BSE) [42–45]

½ΓHðp;PÞ�tu ¼
Z

d4q
ð2πÞ4 ½Kðp; q;PÞ�rstu½χðq;PÞ�sr; ð9Þ

where χðq;PÞ ¼ SfðqþÞΓHðq;PÞSgðq−Þ; qþ ¼ qþ ηP,
q− ¼ q − ð1 − ηÞP; η ∈ ½0; 1� is a momentum-sharing
parameter, p (P) is the relative (total) momentum of the
quark-antiquark system, with P2 ¼ −m2

H and mH the mass
of the meson; SfðgÞ is the nonperturbative fðgÞ-flavor
dressed-quark propagator, already discussed; ΓHðp;PÞ is
the meson Bethe-Salpeter amplitude (BSA), where H
specifies the quantum numbers and flavor content of the
meson; r, s, t, and u represent color, flavor, and spinor
indices; and Kðp; q;PÞ is the quark-antiquark scattering
kernel.
Equations (3) and (4) define the kernel of the quark SDE.

But they also define the kernel of the BSE, Eq. (9), through
the axial-vector Ward-Takahashi identity (axWTI) [46]

−iPμΓ5μðk;PÞ ¼ S−1ðkþÞγ5 þ γ5S−1ðk−Þ: ð10Þ

This identity, which encodes the phenomenological fea-
tures of dynamical chiral symmetry breaking in QCD,
relates the axial-vector vertex, Γ5μðk;PÞ, to the quark
propagator, SðkÞ, which in turn implies a relationship
between the kernel in the BSE, Eq. (9), and that in the
quark SDE, Eq. (1). This relation must be preserved by any
viable truncation scheme of the SDE-BSE coupled system,
thus constraining the content of the quark-antiquark scat-
tering kernel Kðp; q;PÞ. For the CI, Eq. (10) implies that
the quark-antiquark scattering kernelKðp; q;PÞ is given by

½KLðp;q;PÞ�rstu ¼−g2Dμνðp−qÞ
�
λa

2
γμ

�
ts

�
λa

2
γν

�
ru
; ð11Þ

where g2DμνðkÞ is given by Eq. (3).
Thus, the homogeneous BSE (we use η ¼ 1 in this

work), in rainbow-ladder (RL) truncation, with a contact
interaction, takes the simple form

ΓHðp;PÞ ¼ −
4

3
αeff

Z
d4q
ð2πÞ4 γμSfðqþÞΓHðq;PÞSgðq−Þγμ:

ð12Þ

We note that some of the integrals that appear in Eq. (12)
are also divergent but will be regulated using the proper

time regularization scheme, Eq. (7), as we will do with all
divergent integrals in this work.
Since the kernel of Eq. (11) in RL truncation with a

contact interaction does not depend on the external relative
momentum, a symmetry-preserving regularization will give
solutions which are also independent of it. Therefore, for
example, the general form of the BSA for a pseudoscalar
meson is given by

ΓPsðPÞ ¼ γ5

�
iEPsðPÞ þ

1

2MR
γ · PFPsðPÞ

�
; ð13Þ

whereMR ¼ MfMg=ðMf þMgÞ. We are interested only in
pseudoscalar mesons but similar expressions to Eq. (13)
can be written down for other channels.
The BSE is a homogeneous equation and thus the BSA

has to be normalized by a separate condition. In the RL
approximation, the normalization condition is [42–45]

1 ¼ Nc
∂

∂P2

Z
d4q
ð2πÞ4 Tr½Γ̄Hð−QÞSðqþÞΓHðQÞSðq−Þ�jQ¼P;

ð14Þ

where P2 ¼ −m2
H, ΓH is the normalized BSA of the meson

H, and Γ̄H is its charge-conjugated version.
Once the BSA has been canonically normalized, we can

compute observables with it. For example, the leptonic
decay constant of a pseudoscalar meson, fPs, can be
calculated from

PμfPs ¼ Nc

Z
d4q
ð2πÞ4 Tr½γ5γμSfðqþÞΓPsðPÞSgðq−Þ�; ð15Þ

where the trace is over Dirac indices.

C. Numerical results with the RL contact interaction

We work in the isospin symmetric limit, where mu ¼ md
and use the notationml ≡mu for the currentmass of the light
quarks. The model parameters in the RL truncation are thus
ml, the strange current quark massms, the effective coupling
αeff (or αIR sincemg is fixed to 500MeV), and the ultraviolet
regulator ΛUV. The infrared regulator ΛIR is fixed to
approximately ΛQCD ¼ 240 GeV. The three parameters
ml, αeff (or αIR), and ΛUV were fixed in Ref. [7] from the
pion mass, pion decay constant, and chiral condensate using
a least-squares procedure.Weuse a normalizationof theBSA
amplitude such that the experimental pion decay constant is
fπ ¼ 93 MeV. Reference [7] gives ml ¼ 8 MeV, αeff ¼
1=ð110 MeVÞ2 ¼ 8.3 × 10−5 MeV−2 (this gives αIR ¼
0.52π for mg ¼ 500 MeV), and ΛUV ¼ 823 MeV.
In order to determine the currentmass of the strange quark,

we fit experimental values of kaon mass, mK ¼ 497 MeV.
This gives ms ¼ 187 MeV, and we predict the value fK ¼
96 MeV for the kaon decay constant. The value obtained
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here for fK is similar to the one obtained in theNJLmodel of
QCD, where it is found that fK ¼ 91 MeV [47]. Recent
experimental analyses of the current quark masses and
pseudoscalar meson leptonic decay constants have found
ms=ml ¼ 27.33þ0.67

−0.77 and fK=fπ ¼ 1.193ð2Þ [48]. Our
results for these ratios are ms=ml ¼ 23.375 and
fK=fπ ¼ 1.03, which reasonably agree with the experimen-
tal values. In Table I we give a summary of the values for the
CI-RL model parameters.

III. INCLUDING THE NON-ABELIAN ANOMALY

The RL kernel is insufficient to describe the η and η0
properties, since, for example, it does not produce mixing
between uū, dd̄, and ss̄ correlations. A way to introduce
mixing between these correlations, and therefore improve
the description of the η and η0 mesons, is to go beyond the
RL truncation and add to KL, given in Eq. (11), a term that
represents the non-Abelian anomaly; that is

Kðp; q;PÞ ¼ KLðp; q;PÞ þ KAðp; q;PÞ; ð16Þ

where [49]

½KAðp; q;PÞ�rstu ¼ ξðcos2θ½Ziγ5�rs½Ziγ5�tu
þ sin2θ½ẐPγ5�rs½ẐPγ5�tuÞ ð17Þ

with Z ¼ diagð1; 1;Ml=MsÞ and Ẑ ¼ ð1=MlÞZ matrices
in flavor space. Here, the dynamical masses of the lightMl
and strange Ms quarks are fixed only from pion and kaon
phenomenology. We note that the origin of KA is phenom-
enological; see Ref. [49].
In Eq. (17), the model parameters are ξ and θ: ξ is a

dimensionless coupling strength and θ controls the relative
strength of the two tensor structures. In principle, ξ would
also depend on the relative momenta between the quark and
the antiquark; however, to be consistent with the contact
interaction RL kernel, we require ξ to be a constant. Then,
this gives a BSA for the η and η0 independent of the relative
momentum between the quark and the antiquark, which is a
signature of a contact interaction. The model parameters ξ

and θ are determined from experimental values of the
masses, decay constants, and decay widths of the η and η0.

A. Leptonic decay constants and two-photon
widths for the η and η0

We now discuss the η and η0 static properties in our
contact interaction model. For this, it is convenient to work
with theNf ¼ 3 quark flavor basis, where the η and η0 wave
functions can be written as [50–52]

χhðp;PÞ ¼ dlχlhðp;PÞ þ dsχshðp;PÞ; h ¼ η; η0; ð18Þ

where dl ¼ diagð1; 1; 0Þ, ds ¼ diagð0; 0; ffiffiffi
2

p Þ are matrices
in flavor space. Here χlhðp;PÞ and χshðp;PÞ are Bethe-
Salpeter wave functions for the ll̄ and ss̄ correlations in the
η and η0 mesons, and the corresponding Bethe-Salpeter
amplitudes are obtained from

χfhðp;PÞ ¼ SfðpþÞΓf
hðp;PÞSfðp−Þ; ð19Þ

where f ¼ l, s. Thus, the BSA of the η and η0 are given by
(h ¼ η; η0)

Γhðp;PÞ ¼ dlΓl
hðp;PÞ þ dsΓs

hðp;PÞ: ð20Þ

Inserting Eqs. (18), (19), and (20) into the Bethe-Salpeter
equation, Eq. (9), we obtain a set of coupled equations for
the light and strange correlations Γl

h and Γs
h in the η and η0

mesons, which can be solved by matrix methods [15]:

Γl
hðp;PÞ ¼ −

4

3

Z
d4q
ð2πÞ4 g

2Dμνðk − qÞγμχlhðq;PÞγν

þ ξ

Z
d4q
ð2πÞ4 cos

2θTr½Zγ5χhðq;PÞ�iγ5

þ ξ

Z
d4q
ð2πÞ4

sin2θ
M2

l

Tr½Zγ5Pχhðq;PÞ�γ5P; ð21Þ

Γs
hðp;PÞ ¼ −

4

3

Z
d4q
ð2πÞ4 g

2Dμνðk − qÞγμχshðq;PÞγν

þ ξνAffiffiffi
2

p
Z

d4q
ð2πÞ4 cos

2θTr½Zγ5χhðq;PÞ�iγ5

þ ξνAffiffiffi
2

p
Z

d4q
ð2πÞ4

sin2θ
M2

l

Tr½Zγ5Pχhðq;PÞ�γ5P;

ð22Þ

where the trace is over flavor and Dirac indices. Indeed,
these are a set of coupled equations for Γl

h and Γs
h since

χhðq;PÞ (h ¼ η; η0), given by Eq. (19), contains both
correlations and thus produces mixing. Since the non-
Abelian kernel does not introduce any dependence in the

TABLE I. Results for pion and kaon static properties (in MeV)
obtained withml¼8MeV,ms¼187MeV, αeff¼1=ð110MeVÞ2¼
0.91×10−4MeV−2, andΛUV ¼ 823 MeV. The dynamical masses
for the light and strange quarks are Ml ¼ 410 MeV,
Ms ¼ 557 MeV, respectively. The values in the second row are
taken from the Particle Data Group [48].

mπ mK fπ fK

PDG [48] 140 497 93 110
RL-CI 141 500 94 96
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relative momenta between the quark and the antiquark
(recall that we take ξ to be independent of momenta), the
BSA for the correlations Γl

h and Γs
h has the general structure

Γf
hðPÞ ¼ γ5

�
iEf

hðPÞ þ
1

Mf
PFf

hðPÞ
�
; ð23Þ

for h ¼ η; η0 and f ¼ l, s.
Using standard projection methods [15], Eqs. (21) and

(22) can be written terms of the pseudoscalar (El;s
h ) and

pseudovector (Fl;s
h ) components, which, in turn, can be

written as a eigenvalue equation for the vector
ðEl

h; F
l
h; E

s
h; F

s
hÞT for h ¼ η; η0:

0
BBBBB@

El
h

Fl
h

Es
h

Fs
h

1
CCCCCA

¼ ½KhðP2Þ�4×4

0
BBBBB@

El
h

Fl
h

Es
h

Fs
h

1
CCCCCA
; ð24Þ

where the matrix elements of KhðP2Þ will be reported
elsewhere. We note that the mixing between the light and
strange correlations is proportional to ξ. This mixing
vanishes when ξ ¼ 0 and the light and strange correlations
decouple, since KA ¼ 0 and Kh reduce to the RL kernel,
Kh ¼ KL.
The masses of the η and η0 are computed from the

condition

det ½KhðP2 ¼ m2
hÞ − I4×4� ¼ 0: ð25Þ

That is, we adjust mh, for h ¼ η; η0, until Eq. (25) is
satisfied.
Since the kernel now depends on the meson momentum

P, the canonical normalization condition is more compli-
cated. For this reason, it is useful to introduce an alter-
native, but equivalent, normalization condition. To this end,
eigenvalue λðP2Þ is introduced on the left-hand side of
Eq. (24) such that it has solutions for all P. In terms of
λðP2Þ the bound state condition now becomes

λðP2 ¼ m2
hÞ ¼ 1: ð26Þ

That is, we adjust mh, for h ¼ η; η0, until Eq. (26) is
satisfied. The smallest mass is identified with the η mass
and the largest with that of the η0.
In terms of λðP2Þ, the normalization condition for the

BSA is [53,54]

�
d ln λðP2Þ

dP2

�−1
P2¼m2

h

¼ 2Tr
Z

d4q
ð2πÞ4

�
Γ̄l
hð−PÞχlhðq;PÞ

þ Γ̄s
hð−PÞχshðq;PÞ

�
; ð27Þ

where trace is over color and Dirac indices.
Once the BSA has been normalized, observables such as

the lepton decay constants and 2-photon decay widths can
be calculated. The decay widths h → γγ can be computed
from [49]

Γh→γγ ¼
9α2em
64π3

m3
h

�
cl

flh
ðflÞ2 þ cs

fsh
ðfsÞ2

�
2

; ð28Þ

with αem ¼ 1=137, cl ¼ 5=9, cs ¼
ffiffiffi
2

p
=9 and ðflÞ2 ¼

ðflηÞ2 þ ðflη0 Þ2, ðfsÞ2 ¼ ðfsηÞ2 þ ðfsη0 Þ2. The leptonic decay
constants flh and fsh, for h ¼ η; η0, for the light and strange
correlations Γl

h and Γs
h, respectively, can be obtained from

Eq. (15) with g ¼ f ¼ l, s, and Γf
hðPÞ ¼ ΓPsðPÞ (f ¼ l, s).

B. Numerical results for the η and η0 masses, leptonic
decay constants, and two-photon decay widths

The model parameters for the rainbow-ladder part of the
kernel, together with the current masses of the light and
strange quarks, are fixed by pion and kaon static properties;
see Table I. The remaining parameters to be fixed are ξ and
θ and these define the non-Abelian contribution to the
kernel. We fix these parameters from experimental values
of the masses, decay constants, and decay widths of the η
and η0, using a least-squares procedure. The experimental
values of these constants are given in Table II.
We now fix ξ and θ by minimizing the root-mean-square

fractional error for the η and η0 masses and decay widths.
The results for the parameters found in this way are given in
the second row of Table III, and the corresponding values
for the η and η0 masses and decay widths are given in the
first row of Table IV. As can be seen, the results are in

TABLE II. Experimental values for the masses, decay widths,
and leptonic decay constants for η and η0 mesons. All quantities
are in MeV, except the decay widths which are in keV.

mη mη0 Γηγγ Γη0γγ

PDG [48]. 548 958 0.516(22) 4.35(36)

TABLE III. Parameters for the non-Abelian anomaly contribu-
tion the kernel. ΛUV is given in MeV.

ξ cos2 θ ΛUV

CI model (fit-I) 8.15 0.898 823
CI model (fit-II) 5.54 0.999 810
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excellent agreement with experimental data, except for the
decay width of the ηmeson, but we can do better as we now
explain.
The UV cutoff parameter,ΛUV, was introduced in Eq. (7)

to regularize the divergent integrals appearing in the quark
SDE and meson BSE. Together with αIR, these parameters
specify the RL contact interaction model. Recall that these
parameters were determined using pion and kaon static
properties. Similar, divergent integrals to Eq. (6) also
appear in the non-Abelian part of the kernel, see
Eqs. (21) and (22). Thus, in order to have a better
description of the masses and decay widths for the η
and η0 mesons, we introduce another ultraviolet cutoff Λ̃UV
into the divergent integrals that appear in the non-Abelian
part of the kernel in Eqs. (21) and (22), and fix ξ, θ, and
Λ̃UV by minimizing the root-mean-square fractional error
for the η and η0 masses and decay widths. This does not
affect the results obtained for the pion and kaon. The reason
for doing this is that the decay constants, and thus the decay
widths, are sensitive to the ultraviolet cutoff used in the
proper time regularization The results for the parameters,
found in this way, are given in the second row of Table III,
and the corresponding values for the η and η0 masses and
decay widths are given in the third row of Table IV. Clearly,
our results agree nicely with experimental data for all four
observables. In Table IV, we also list the results obtained in
other approaches. The corresponding leptonic decay con-
stants are given in Table V and also are in really good
agreement with experimental data.
With all the parameters fixed, we now proceed to

compute the transition form factors for the η and η0
mesons.

IV. TRANSITION FORM FACTORS FOR THE η
AND η0 MESONS IN A CONTACT INTERACTION

The transition process γ�γ → h (h ¼ η; η0) is character-
ized by a single transition form factor GhðQ2Þ, where Q2 is
the photon virtuality. For each meson, the transition form
factor can be computed from, in a rainbow-ladder trunca-
tion, by [49]

αem
2π

ϵμναβq1αq2βGhðq21; q1 · q2; q22Þ

¼ αem
2π

ϵμναβq1αq2β½Gl
hðQ2Þ þ Gs

hðQ2Þ�

¼ TrD

Z
d4q
ð2πÞ4 ½iclχ

l
μðk; k1ÞΓl

hðk1; k2ÞSlðk2ÞiΓl
νðk2; kÞ

þicsχsμðk; k1ÞΓs
Mðk1; k2ÞSsðk2ÞiΓs

νðk2; kÞ�; ð29Þ

where the trace is over Dirac indices; the momentum
distribution is k1 ¼ kþ q1 and k2 ¼ q − q2; and the
kinematic conditions are q21 ¼ Q2, q22 ¼ 0, and 2q1 · q2 ¼
−ðQ2 þm2

hÞ (h ¼ η; η0). χfμðk; pÞ ¼ SfðkÞiΓf
νðk; pÞSfðpÞ

(f ¼ l, s) is the unamputated quark-photon vertex, and
Γf
ν the (amputated) quark-photon vertex. In Eq. (29), all

quantities have been determined earlier, namely we have
already determined the model parameters and the masses of
the η and η0 mesons. Furthermore, we have obtained
previously all quark propagators and Bethe-Salpeter ampli-
tudes by solving their respective integral equations.
Although the quark-photon vertex has been obtained in
previous work, see for example, Ref. [16], we discuss it
briefly for completeness.

A. The quark-photon vertex

The coupling of a photon with the bound state’s charged
constituent is given by the quark-photon vertex Γf

νðp; k;QÞ,
where f denotes the flavor of the quark that interacts with
the photon, p (k) is the incoming (outgoing) quark
momentum, and Q ¼ p − k is the photon momentum.
The quark-photon vertex satisfies its own SDE but it is
also constrained by the gauge invariance of quantum
electrodynamics through the Ward-Takahashi identity

iQμΓμðk; p;QÞ ¼ S−1ðkÞ − S−1ðpÞ: ð30Þ

Satisfying this identity, and its Q → 0 limit, is crucial for
the conservation of the electromagnetic current [16].
In the RL truncation with a contact interaction, the SDE

for the quark-photon vertex is [16]

ΓμðQÞ ¼ γμ −
4

3
αeff

Z
d4q
ð2πÞ4 γνSðqþQÞΓμðQÞSðqÞγν:

ð31Þ

TABLE IV. Masses and decay widths for η and η0 mesons. All
quantities are in GeV, except the decay widths are in keV.

mη mη0 Γηγγ Γη0γγ

PDG [48] 548 958 0.516(22) 4.35(36)
CI model (fit-I) 548 920 0.287 4.62
CI model (fit-II) 558 920 0.418 4.16
Ding [49] 560 960 0.420 4.66
Osipov [55] 547 930 0.523 5.22
Takizawa [56] 510 � � � 0.503� � � �

TABLE V. Leptonic decay constants for the η and η0 mesons.
All quantities are in GeV.

flη fsη flη0 fsη0

PDG [48] 0.090(13) −0.093ð28Þ 0.073(14) 0.094(8)
CI model (fit-I) 0.074 −0.060 0.078 0.086
CI model (fit-II) 0.081 −0.049 0.073 0.097
Ding [49] 0.074 −0.094 0.068 0.101
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Note that the RL truncation together with the contact
interaction gives a quark-photon vertex that is independent
of the relative momenta between the quark and the
antiquark, and thus Γμ depends only on the photon
momenta Q [16]. Therefore, the quark-photon vertex is
given by

ΓμðQÞ ¼ γTμPTðQ2Þ þ γLμPLðQ2Þ; ð32Þ

whereQμΓT
μ ¼ 0, and γTμ þ γLμ ¼ γμ. The functions PTðQ2Þ

and PLðQ2Þ can be found from Eq. (31) using standard
projection methods; see Ref. [16] for details. It is found that
PL ¼ 1 and

PTðQ2Þ ¼ 1

1 − KVðQ2Þ ; ð33Þ

where KVðQ2Þ is the Bethe-Salpeter bound state kernel in
the vector channel within the RL truncation of the SDE-
BSE; see Eqs. (A10)–(A13) in Ref. [15]. Thus, because of
the dressing of the quark-photon vertex, electromagnetic
elastic and transition form factors will have a pole at
Q2 ¼ −m2

V , where mV is the mass of the vector meson. In
the RL truncation, the lowest masses are that of the ρ and ϕ
vector mesons.

B. Numerical results for GhðQ2Þ (h= η; η0)
In Fig. 1 we present our contact interaction results for the

γ�γ → η and γ�γ → η0 transition form factors, GηðQ2Þ and
Gη0 ðQ2Þ, respectively, as a function of the photon virtuality
Q2, up to 20 GeV2. In each case, we preset two curves, one

where we use the same cutoffΛUV as in the RL contribution
to the kernel and one where we modify it to be Λ̃UV; see
Table III. In the case of the static properties, changing ΛUV
in the non-Abelian part of the kernel, gives a better
description of masses and decay constants. However, as
can be seen, in the case of the transition form factor these
two values give nearly equal results for both mesons.
From Fig. 1 we can see that both GηðQ2Þ and Gη0 ðQ2Þ

decrease as functions of Q2, decreasing rapidly for small
values of Q2. However, for larger values of Q2

(> 4 GeV2), this decreasing is slower for both GηðQ2Þ
and Gη0 ðQ2Þ. In Fig. 2, we plot Q2Gη and Q2Gη0 , for
ΛUV ¼ 0.810 GeV in the divergent integrals of the non-
Abelian part of the kernel. From Figs. 1 and 2 we can see
that both GηðQ2Þ and Gη0 ðQ2Þ decrease slower than Q2, in
disagreement with perturbative QCD, which predicts that
for very large Q2 the product Q2GhðQ2Þ becomes a
constant [57–59]. This is not surprising for a contact
interaction model, as we explain below. Finally, in Fig. 3
we compare our contact interaction results for Gη (top
panel) and Gη0 (bottom panel), with ΛUV ¼ 0.810 GeV, to
the experimental results from CELLO [60], CLEO [61],
and BABAR [62] Collaborations. We note that the data has
been normalized to one at Q2 ¼ 0. For this we need the
transition form factors at Q2 ¼ 0. This can be extracted
from the experimental values for the decay widths, using
Γh→γγ ¼ ð1=4Þπαemm3

hjGhðQ2 ¼ 0Þj2 to obtain Gηð0Þ ¼
0.2736 and Gη0 ð0Þ ¼ 0.3412 [48].
Clearly, while capable of describing η and η0 static

properties, a contact interaction framework markedly dis-
agrees with experimental data for Q2 greater than 2 GeV2,
and produces transition form factors in conflict with
perturbative QCD. This is not surprising since the contact
interaction produces a momentum independent dressed-
quark mass function [7–31] and also Bethe-Salpeter equa-
tion kernels that are independent of the relative momentum
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FIG. 1. Contact interaction results for transition form factorsGη

and Gη0 , normalized to one at Q2 ¼ 0, for two values of the
ultraviolet cutoff in the divergent integrals of the non-Abelian part
of the kernel. Solid and dashed curves (color: black and red)
correspond to η and η0 transition form factors with
ΛUV ¼ 0.823 GeV, respectively, and dotted and dot-dash curves
(color: green and blue) to the transition form factor with
ΛUV → Λ̃UV ¼ 0.810 GeV, respectively.
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between the quark and the antiquark [7–31], in contrast to
QCD-based SDE studies and lattice QCD, These two
features are fundamentally the source of the discrepancy
between the elastic and transition form factor obtained with
a contact interaction and those provided by experiment.
However, our work highlights, and complements others
[8,9,15,16,21,26], that elastic and transition form factor
observables are very sensitive to the running (with momen-
tum) of the dressed-quark mass; see Ref. [31] for a
comparison of predictions for the nucleon and Δ elastic
and transition form factors, made using interaction kernels
that possess QCD-like momentum dependence with results
obtained using a symmetry-preserving treatment of a
vector × vector contact interaction.
Reference [31] makes clear that experiments are sensi-

tive to the momentum dependence of the running couplings

and masses in QCD and highlights that in describing
hadron properties it is crucial that a veracious expression
of dynamical chiral symmetry breaking be incorporated in
the bound-state problem. A momentum dependent gluon
propagator, such as the one produced by lattice QCD
simulations [63] or phenomenological studies of QCD’s
SDEs, consistent with QCD’s gauge sector [37–40,64–69],
will produce a momentum dependent dressed-quark mass
function and Bethe-Salpeter amplitudes that are dependent
of the relative momentum between the quark and the
antiquark and therefore, for example, elastic and transition
form factor of hadrons whose Q2 dependence is in better
agreement with experiment and perturbative QCD [31].
However, such improvement in the gluon propagator
necessarily needs to be accompanied by a Bethe-Salpeter
kernel that incorporates the non-Abelian anomaly. Only in
this way can a proper description of the η and η0 mesons be
given [49].

V. SUMMARY AND CONCLUSIONS

We have constructed a contact interaction model for the η
and η0 mesons in a SDE-BSE approach to QCD and
computed masses, decay widths and transition form factors.
Tables IV and V show that this model gives an excellent
description of the η and η0 static properties, namely, their
masses, decay width, and decay constants. Although
contact interaction results for the η and η0 transition form
factors markedly disagree with experimental data for Q2

greater than 2 GeV2, and produces transition form factors
in conflict with perturbative QCD, the fact that this model
gives a very good description of the η and η0 static
properties makes it an excellent tool for the investigation
of UAð1Þ symmetry restoration at finite temperature and
density in the SDE-BSE approach to QCD. Work on this
direction is under way and will be reported elsewhere.
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