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We consider the heavy-quark expansion for the nonleptonic decay rates of heavy hadrons, and compute
the next-to-leading-order QCD corrections to power terms up to order 1=m2

Q. We neglect the masses of
the final-state quarks, so the application of our result is mainly for charmed hadrons. Our result can be
applied also to bottomedhadrons as they constitute themain effect to this order up to corrections ofOðmc=mbÞ
and contributions due to penguin operators. We discuss the impact of our result for the lifetimes of heavy
hadrons.
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I. INTRODUCTION

With the development of the heavy-quark expansion
(HQE) [1–4], the theoretical description of inclusive decay
rates of heavy hadrons (i.e. of hadrons containing a single
heavy-quark Q) has been advanced significantly. The HQE
allows us to describe their decay rates Γ and spectra as a
systematic expansion of the form [5–9]

Γ ¼
X∞
n¼0

Γn

�
1

mQ

�
n
; ð1Þ

where the Γn ∝ Λn
QCD involve nonperturbative parameters,

the so-called HQE parameters, with coefficients that can be
computed perturbatively as a power series in αsðmQÞ.
Over the last decades, this method has been continuously

improved and refined, in particular by computing higher-
order corrections in ΛQCD=mQ as well as higher orders in
αsðmQÞ. For inclusive semileptonic decays and motivated
by the possibility to determine Vcb with high precision, the
HQE has been investigated very intensively, while for
inclusive nonleptonic rates the HQE has been pushed to a
similar level.
The most inclusive quantities are the lifetimes of heavy

hadrons, which can be computed in the HQE. Its main
prediction is that the leading contribution to the heavy-
hadron lifetime is described by the decay rate of the
corresponding free heavy-quark. To this end, the HQE

thus predicts that all heavy-hadron lifetimes are equal up to
corrections of order ðΛQCD=mQÞ2, since the term linear in
the expansion parameter is absent due to heavy-quark
symmetries. In fact this was an embarrassment in the early
days of the HQE, since at that time only measurements of
lifetimes of charmed hadrons were available. The current
numbers are [10]

τðD�Þ
τðD0Þ

����
exp

¼ 2.563� 0.017;

τðDsÞ
τðD0Þ

����
exp

¼ 1.219� 0.017;

τðD�Þ
τðΛcÞ

����
exp

¼ 5.123� 0.014; ð2Þ

which are in contrast to the expectation of a few percent.
This clearly shows that this simple picture is too naive in
the case of the charm, leaving us with some doubt on the
applicability of the HQE for the charm quark [11]. Within
the HQE, the large lifetime differences are tracked by
matrix elements of four-quark operators which have Wilson
coefficients that are enhanced by a 16π2 phase-space factor
and scale as 16π2ðΛQCD=mcÞ3 relative to the leading
term [12]. In the case of the charm, these terms can
become comparable to the leading term. The successful
applications of the HQE to the charm are all related to
observables where the matrix elements of these four-quark
operators are suppressed for some physical reason. The
HQE for charmed hadrons have been extensively used to
explore its applicability, e.g. in [13–17].
In contrast, for the bottom quark this picture seems to be

more realistic, since one finds for the bottom hadrons [10]
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τðBsÞ
τðBdÞ

���exp ¼ 0.998� 0.004;

τðBþÞ
τðBdÞ

���exp ¼ 1.076� 0.004

τðΛbÞ
τðBþÞ

���exp ¼ 0.969� 0.006 ð3Þ

which is a clear motivation for considering also higher-
order corrections to the HQE of lifetimes, whose current
status has been presented in [18–22].
As for the current knowledge of the perturbative QCD

corrections to the coefficients of the HQE of the rate, the
situation is the following:

(i) Semileptonic decays: The leading power coefficient
is known at next-to-next-to-next-to-leading or-
der [23,24]. The coefficients of the first power
correction are known at next-to-leading order
(NLO) [25–27]. From the second power correction
onward four-quark operators start to appear. For
the second power correction the coefficients of the
two-quark and four-quark operators are known at
NLO [28–31]. Finally, the coefficients of the third
and fourth power corrections are known at LO
[32,33] for the two-quark operators.

(ii) Nonleptonic decays: The leading power coefficient is
known at NLO [34–37] and at NNLO in the massless
case for the color-singlet ΔB ¼ 1 operator [38]. The
coefficients of the first power correction are known at
LO [6,39,40]. The coefficients of the second power
correction are known at LO for the two-quark
operators [41–43] and at NLO for the four-quark
operators [44,45]. Finally, the coefficients of the third
power correction are known at LO for the four-quark
operators [46].

In the present paper we extend the existing calculations
for nonleptonic widths by computing αs corrections to
power suppressed terms at next-to-leading power. We
present an analytical result for the nonleptonic width at
order αsðmQÞðΛQCD=mQÞ2 for the case of vanishing final-
state quark masses.
The main application of our result is D hadron decays

as it corresponds to the Cabibbo-Kobayashi-Maskawa
(CKM) favored decay channel c → sd̄u. To some extent,
our results can be applied to B hadron decays. To order
αsðmQÞðΛQCD=mQÞ2 they constitute the main effect in the
CKM favored decay channel b → cūd up to corrections of
Oðmc=mbÞ. The same is true for the CKM favored decay
channel b → cc̄s up to corrections of Oðmc=mbÞ and up to
the effect of penguin operators, which is not considered in
this paper.
The paper is organized as follows. In Sec. II we discuss

the effective electroweak Lagrangian and the choice of the
renormalization scheme. In Sec. III we set the definitions

for the HQE. In Sec. IV we describe our method for the
computation. Finally, we collect the results and discuss
their impact in Sec. V.

II. THE EFFECTIVE ELECTROWEAK
LAGRANGIAN

In this section we discuss the effective Lagrangian
describing nonleptonic transitions and provide the main
definitions needed for this paper. At low momentum
transfer compared to the W-boson mass MW , the non-
leptonic heavy-quark decay Q → q1q̄2q3 can be described
by an effective Fermi Lagrangian

Leff ¼ −2
ffiffiffi
2

p
GFVq2q3V

�
q1Q

ðC1O1 þ C2O2Þ þ H:c:; ð4Þ

where GF is the Fermi constant, Vqq0 are the corresponding
matrix elements of the CKM matrix and C1;2 are matching
coefficients. We start from the standard operator basis O1;2

with color singlet and color rearranged operators [47]

O1 ¼ ðQ̄iΓμq
j
1Þðq̄j2Γμqi3Þ; ð5Þ

O2 ¼ðQ̄iΓμqi1Þðq̄j2Γμqj3Þ; ð6Þ

where Γμ ¼ γμð1 − γ5Þ=2 ¼ γμPL, ði; jÞ are color indices,
and q1;2;3 are the final-state quarks which we take to be
massless in the following. We assume for simplicity that the
three final-state quarks have different flavors, so we do not
need to consider QCD penguin operators.
However, for the calculation we address in this paper, it

is convenient to choose a different operator basis for our
effective Lagrangian in Eq. (4)

Leff ¼ −2
ffiffiffi
2

p
GFVq2q3V

�
q1Q

ðCþOþ þ C−O−Þ þ H:c:; ð7Þ

with O� ¼ ðO2 �O1Þ=2 and C� ¼ C2 � C1. The advan-
tage is that this basis is diagonal under renormalization. In
the MS renormalization scheme

C�;B ¼ Z�C�; Z� ¼ 1þ 1

2
γ�

αsðμÞ
4π

1

ϵ
;

γ� ¼ −6
�

1

Nc
∓ 1

�
; ð8Þ

where the subindex B stands for bare quantities and those
without subscript stand for renormalized ones, Nc ¼ 3 is
the number of colors and γ� is the LO anomalous
dimension of the operators O�.
An important technical issue here is to retain the same

scheme for the calculation of correlators and for the
calculation of the short-distance Wilson coefficients C�
appearing in the effective Lagrangian. The point is that the
renormalization of the operators O� is additionally com-
plicated by the fact that they involve left-handed fields
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and require the special treatment of γ5 in dimensional
regularization. There are several possibilities like dimen-
sional reduction [34], the ’t Hooft–Veltman scheme [35], or
naive dimensional regularization (NDR) with anticommut-
ing γ5 [36].
We decide to closely follow the approach used by [36]

and chose to work in NDR within the scheme of evanescent
operators that preserves Fierz symmetry [47–53]. Such
evanescent operators are defined in Ref. [47], where the
two-loop anomalous dimension required for the running of
C� at NLO is also computed. This definition respects the
Fierz transformation which in general is valid only in four-
dimensional space-time. This choice is very handy as it
allows us, by using an appropriate Fierz transformation, to
avoid closed fermionic loops, which are known to lead to
algebraic inconsistencies when using anticommuting γ5 in
D dimensions.
The freedom in the choice of evanescent operators is

connected with the freedom in the choice of the renorm-
alization scheme. Such a freedom is represented by the shift

Aγ� ¼ A

�
�1þ 1

Nc

�
; ð9Þ

proportional to the LO anomalous dimensions γ� of the
operators O�.
In the following we give the definition for the coef-

ficients C� in NDR within the scheme of evanescent
operators that preserves Fierz symmetry. The Wilson
coefficients C� with NLO precision (including also the
renormalization group improvement at NLO) are given
by [34,36,47]

C�ðμÞ¼L�ðμÞ
�
1þαsðMWÞ−αsðμÞ

4π
R�þ

αsðμÞ
4π

B�

�
; ð10Þ

which have been calculated at the scale μ ¼ MW and then
evolved down to scales μ ≪ MW by solving the corre-
sponding renormalization group equations. The equation
above splits the coefficients into a scheme-independent part
proportional to R� and a scheme-dependent part propor-
tional to B�, with [34–36,47]

Rþ ¼ 10863 − 1278nf þ 80n2f
6ð33 − 2nfÞ2

;

R− ¼ −
15021 − 1530nf þ 80n2f

3ð33 − 2nfÞ2
;

B� ¼ 1

12
Bγ�; ð11Þ

where nf is the number of light flavors and B ¼ 11 in NDR
with anticommuting γ5 [47]. The last equation is implied by
Fierz symmetry. The matching coefficients B� ensure that,
up to terms of order α2sðMWÞ, matrix elements of the

effective Lagrangian calculated at the scale μ ¼ MW are
equal to the corresponding matrix elements calculated with
the full standard model Lagrangian. Eventually, the scheme
dependence absorbed in B� has to cancel against the
scheme dependence of matrix elements of the correspond-
ing operators.
Finally,

L�ðμÞ ¼
�
αsðMWÞ
αsðμÞ

� γ�
2β0 ð12Þ

is the solution of the renormalization group equation
(RGE) for C� to leading logarithmic accuracy, with β0 ¼
11
3
Nc − 2

3
nf.

III. HQE FOR NONLEPTONIC DECAYS
OF HEAVY FLAVORS

This section briefly describes the theoretical framework
used for the calculation of inclusive nonleptonic decays of
heavy hadrons within the HQE and provides the main
definitions.We follow the approach introduced in [26,27,30].
By using the optical theorem one obtains the inclusive

decay rate Γ from taking an absorptive part of the forward
matrix element of the leading-order transition operator T ,

T ¼ i
Z

d4xTfLeffðxÞLeffð0Þg;

ΓðHQ → XÞ ¼ 1

MHQ

ImhHQjT jHQi; ð13Þ

whereMHQ
is the heavy-hadron mass and jHQi its quantum

state. Since the heavy-quark mass mQ is a large scale
compared to the QCD hadronization scale ΛQCD

(mQ ≫ ΛQCD), the forward matrix element contains pertur-
batively calculable contributions. These can be separated
from the nonperturbative pieces using themethod of effective
field theory. For a heavy hadron with momentum pHQ

and
mass MHQ

, a large part of the heavy-quark momentum pQ

originates from a pure kinematical contribution due to its
large mass. We split the heavy-quark momentum according
topQ ¼ mQvþ Δwith v ¼ pHQ

=MHQ
being the velocity of

the heavy hadron. The residual momentum Δ ∼OðΛQCDÞ
describes the soft-scale fluctuations of the heavy-quark field
near its mass shell.
This decomposition of the quark momentum is imple-

mented by redefining the heavy-quark field according to

QðxÞ ¼ e−imQv·xQvðxÞ; ð14Þ

so that i∂QvðxÞ ∼ Δ.
We set up the HQE as an expansion in ΛQCD=mQ by

matching the transition operator T in QCD to an expansion
in inverse powers of the heavy-quark mass, using operators
defined in heavy-quark effective theory (HQET) [54–57].
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Generally, the HQE for heavy-hadron weak decays takes
the form

ΓðHQ→XÞ¼Γ0jVq2q3 j2jVq1Qj2

×

�
C0−Cμπ

μ2π
2m2

Q
þCμG

μ2G
2m2

Q
þ���

�
; ð15Þ

where Γ0 ¼ G2
Fm

5
Q=ð192π3Þ and the ellipsis denotes terms

of order 1=mn
Q, n ≥ 3. The coefficients C0, Cμπ , and CμG

can be computed as a power series in αsðμÞ and depend, in
case of neglecting the final-state quark masses, on loga-
rithms of μ=mQ, where μ is the matching scale. Therefore,
for μ ¼ mQ the coefficients are pure numbers. The param-
eters μ2π , μ2G are forward matrix elements of local HQET
operators called HQE parameters.
The previous expression emerges from the direct match-

ing of the QCD expression for the transition operator to
HQET

ImT ¼ Γ0jVq2q3 j2jVq1Qj2
�
C0O0 þ Cv

Ov

mQ
þ Cπ

Oπ

2m2
Q

þ CG
OG

2m2
Q
þ � � �

�
; ð16Þ

where again the coefficients C0, Cv, Cπ and CG can be
computed as a power series in αsðμÞ. The local operatorsOi
in the equation above are ordered by their mass dimen-
sionality and are given by1

O0 ¼ h̄vhv ðmass dimension threeÞ; ð17Þ

Ov ¼ h̄vv · πhv ðmass dimension fourÞ; ð18Þ

Oπ ¼ h̄vπ2⊥hv ðmass dimension fiveÞ; ð19Þ

OG¼ 1

2
h̄v½γμ;γν�π⊥μπ⊥νhv ðmass dimension fiveÞ; ð20Þ

where πμ ¼ iDμ ¼ i∂μ þ gsAa
μTa is the covariant derivative

of QCD and πμ ¼ vμðvπÞ þ πμ⊥.
Note that the field hv denotes the static quark field

moving with the velocity v as defined in HQET.
Furthermore, it is convenient to trade the leading term
operator O0 in Eq. (16) by the local QCD operator Q̄=vQ,
since its forward hadronic matrix element is normalized to
unity. Expanding Q̄=vQ up to the desired order in 1=mQ

we get

Q̄=vQ ¼ O0 þ C̃v
Ov

mQ
þ C̃π

Oπ

2m2
Q
þ C̃G

OG

2m2
Q
þ � � � ; ð21Þ

where C̃i are the matching coefficients of the full QCD
current to HQET.
Finally, we use the equation of motion (EOM) of the hv

field to remove the operator Ov in Eq. (16)

Ov ¼ −
1

2mQ
ðOπ þ cFðμÞOGÞ þ…; ð22Þ

where cFðμÞ is the chromomagnetic operator coefficient of
the HQET Lagrangian

cFðμÞ ¼ 1þ αsðμÞ
2π

�
N2

c − 1

2Nc
þ Nc

�
1þ ln

�
μ

mQ

���
: ð23Þ

In order to obtain the total rate, we have to take the
forward matrix element of Eq. (16). For this we use the full
QCD states jHQðpHQ

Þi, where HQ is the 0− ground state
meson with a single heavy-quark Q. This introduces a
dependence of the HQE parameters on the quark mass mQ

through the states which is nevertheless irrelevant to the
order we are working on. The HQE parameters are defined
as [58]

hHQðpHQ
ÞjQ̄=vQjHQðpHQ

Þi ¼ 2MHQ
; ð24Þ

−hHQðpHQ
ÞjOπjHQðpHQ

Þi ¼ 2MHQ
μ2π; ð25Þ

cFðμÞhHQðpHQ
ÞjOGjHQðpHQ

Þi ¼ 2MHQ
μ2G; ð26Þ

where we have included cFðμÞ in the definition of the
matrix element μ2G in order to make the HQE parameters
independent of the renormalization scale μ. Note that one
may relate μ2G to the mass splitting between the ground state
mesons H and H�,

μ2G ¼ 3

4
ΔM2

H ¼ 3

4
ðM2

H� −M2
HÞ: ð27Þ

IV. OUTLINE OF THE CALCULATION

The first step is to insert the effective Lagrangian Eq. (7)
into the optical theorem Eq. (13) to perform the operator
product expansion and obtain the total rate in the form of
Eq. (15). In terms of the coefficients obtained from the
matching calculation Eqs. (16) and (21), in combination
with the EOM Eq. (22), we get

1In general, there is an additional operator OI ¼ h̄vðv · πÞ2hv
in the complete basis at dimension five. However it will be of
higher order in the HQE after using the equations of motion
of HQET.

MANNEL, MORENO, and PIVOVAROV PHYS. REV. D 107, 114026 (2023)

114026-4



ΓðHQ → XÞ ¼ Γ0jVq2q3 j2jVq1Qj2
�
C0

�
1 −

C̄π − C̄v

C0

μ2π
2m2

Q

�

þ
�

C̄G

cFðμÞ
− C̄v

�
μ2G
2m2

Q
þ � � �

�
; ð28Þ

where we have defined C̄i ≡ Ci − C0C̃i as the difference
between the coefficients of the HQE of the transition
operator and the current multiplied by C0.
The computation of the coefficients follows our previous

work [30,31] where we take the corresponding Feynman
amplitude, expand to the necessary order in the small
momentum k, and project to the corresponding HQET
operators Eqs. (17), (18) and (20).

The Feynman diagrams contributing to the leading
power coefficient C0 at LO QCD and NLO QCD are
two-loop and three-loop quark to quark self-energy-like
diagrams. The ones contributing to the coefficients of
power corrections C̄v and C̄G at LO QCD and NLO
QCD are two-loop and three-loop quark to quark-gluon
scattering diagrams.
The Feynman diagrams contributing to the coefficients

C0, C̄v and C̄G of the HQE of the nonleptonic decay rate up
to NLO are shown in Fig. 1. For the computation of the
leading power coefficient C0 only Figs. 1(a)–1(p) without
gluon insertions have to be considered. For the computation
of the next-to-leading-power coefficient C̄G and the aux-
iliary coefficient C̄v all diagrams [Figs. 1(a)–1(t)] containing

FIG. 1. Feynman diagrams (a)–(t) contributing to the coefficients C0, C̄v, and C̄G of the HQE of the nonleptonic decay rate up to NLO.
The incoming heavy quark carries momentum p, with p2 ¼ m2

Q. Grey dots stands for possible gluon insertions with incoming
momentum k ∼ ΛQCD. The black box vertex stands for =v insertions. All diagrams contributing to power corrections are obtained after
taking into account all possible one-gluon insertions. Four-fermion vertices correspond to O� insertions of Leff .
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one-gluon insertions have to be considered. Overall there are
14 diagrams contributing toC0 up toNLO, one to LO and 13
to NLO. There are 128 diagrams contributing to C̄v and C̄G
up to NLO, seven to LO and 121 to NLO.
By using LiteRed [59,60] the corresponding amplitudes are

reduced to a combination of the master integrals given in
AppendixA. The LO diagram Fig. 1(a) can be reduced to the
two-loop master integral Fig. 4(a). Figures 1(a), 1(e), and
1(j)–1(n) can be reduced to a combination of the massless
three-loop master integrals Figs. 4(b) and 4(c). Finally,
Figs. 1(b)–1(d) and1(f)–1(i) can be reduced to a combination
of themassive three-loopmaster integrals Figs. 4(d) and 4(e).
We use standard dimensional regularization inD¼4−2ϵ

space-time dimensions with γ5 treated in NDR. This forces
us to choose a renormalization scheme with evanescent
operators preserving Fierz symmetry to the necessary order.
In this way, we can use Fierz symmetry towrite all Feynman
diagrams as a single open fermionic line without the γ5
problem. Nevertheless, the explicit expressions for the
coefficient functions of the HQE in terms of C� are scheme
dependent. This scheme dependence cancels with the cor-
responding scheme dependence of the coefficients C�.
For the algebraic manipulations including Lorentz and

Dirac algebra we use TRACER [61]. For the color algebra
we use COLORMATH [62]. Expansion of hypergeometric
functions is done with the help of HypExp [63,64]. The
computation is performed in the Feynman gauge and we
use the background field method to compute the scattering
in the external gluonic field.
For renormalization we adopt the MS renormalization

scheme for the strong coupling constant αsðμÞ and the
renormalization of the HQET Lagrangian. The heavy-quark
is renormalized on shell

QB ¼ ðZON
2 Þ1=2Q;

ZON
2 ¼ 1 −

N2
c − 1

2Nc

αs
4π

�
3

ϵ
þ 6 ln

�
μ

mQ

�
þ 4

�
: ð29Þ

Therefore, we will quote our results in the on-shell (pole
mass) scheme for the heavy-quark mass mQ. For the most
precise predictions one usually chooses for the bottom
quark a low-scale short-distance mass such as the kinetic or
the 1S mass, and thus one needs to convert the on-shell
mass into such a mass scheme for which the known one-
loop expression will be sufficient.

V. RESULTS AND DISCUSSION

In this section we provide the results for the coefficients
of the HQE of the nonleptonic decay rate in Eq. (15) up to
NLO QCD. Note that the reparametrization invariance
of the HQE ensures that to all orders in αsðμÞ we have
C0 ¼ Cμπ , so Eq. (15) takes the form

ΓðHQ→XÞ¼Γ0jVq2q3 j2jVq1Qj2

×

�
C0

�
1−

μ2π
2m2

Q

�
þCμG

μ2G
2m2

Q
þ���

�
; ð30Þ

with

CμG ¼ C̄G

cFðμÞ
− C̄v: ð31Þ

We show our results for the coefficients defined in
Eq. (30) in the form

Ci ¼ CLO
i þ αsðμÞ

π
CNLO
i ; i ¼ 0; μG: ð32Þ

The leading power coefficient reads

CLO
0 ¼ 1

2
NcðC2þ þ C2

−Þ þ
1

2
ðC2þ − C2

−Þ

¼ 3

2
ðC2þ þ C2

−Þ þ
1

2
ðC2þ − C2

−Þ; ð33Þ

CNLO
0 ¼ −ðN2

c − 1Þ
�
π2

8
−
31

32

�
ðC2þ þ C2

−Þ

−
N2

c − 1

2Nc

�
3

2
ln

�
μ2

m2
Q

�
þ π2

4
þ 51

16

�
ðC2þ − C2

−Þ

¼ −
�
π2 −

31

4

�
ðC2þ þ C2

−Þ

−
�
2 ln

�
μ2

m2
Q

�
þ π2

3
þ 17

4

�
ðC2þ − C2

−Þ; ð34Þ

while at subleading power we obtain

CLO
μG ¼ −

3

2
NcðC2þ þ C2

−Þ −
19

2
ðC2þ − C2

−Þ

¼ −
9

2
ðC2þ þ C2

−Þ −
19

2
ðC2þ − C2

−Þ; ð35Þ

CNLO
μG ¼

�
12 ln

�
μ2

m2
Q

�
−
�

5

288
þ π2

8

�
N2

c þ
31π2

24
þ 6533

288

�
ðC2þ þ C2

−Þ

þ 1

Nc

�
3

4
ð3N2

c − 19Þ ln
�
μ2

m2
Q

�
þ 13

24

�
π2 −

91

12

�
N2

c −
179π2

72
−
3361

288

�
ðC2þ − C2

−Þ

¼
�
12 ln

�
μ2

m2
Q

�
þ π2

6
þ 811

36

�
ðC2þ þ C2

−Þ þ
�
2 ln

�
μ2

m2
Q

�
þ 43π2

54
−
1751

108

�
ðC2þ − C2

−Þ; ð36Þ
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where in the second equalities we have replaced
Nc ¼ 3.
Note that the coefficient functions multiplying the C�

coefficients are in general dependent on the scheme used
for γ5 and the choice of evanescent operators. This scheme
dependence cancels with the scheme dependence of the
coefficients C�. Therefore, the results written above
together with the definitions given in Eqs. (10)–(12) are
scheme independent. In addition we note that only two
structures ðC2þ þ C2

−Þ and ðC2þ − C2
−Þ appear. In the basis

of Eq. (4) this is translated into the two structures ðC2
1 þ

C2
2Þ and C1C2. This is implied by Fierz symmetry.
The result obtained for theC0 coefficient agrees with [36]

which also was obtained in NDR and using Fierz sym-
metry. This result also agrees with [34,35], where this
coefficient has been computed in dimensional reduction
and the ’t Hooft–Veltman scheme, respectively.
For the power suppressed terms, we recalculated the

expression obtained for the CμG coefficient, and our result
agrees with the result known from [6,39,40]. The new result
of this calculation is the next-to-leading-order contribution
to the CμG coefficient.

We may also switch to a reparametrization invariant
basis as discussed in [58], where the HQE parameters are
defined using the operators of full QCD as in Eq. (14)

hHQðpHQ
ÞjQ̄vQvjHQðpHQ

Þi

¼ 2MHQ
μ3 ¼ 2MHQ

�
1 −

μ2π − μ2G
2m2

Q

�
: ð37Þ

To the order we are working on we can identify the static
field with the full QCD field, and find

ΓðHQ → XÞ ¼ Γ0jVq2q3 j2jVq1Qj2

×

�
C0μ3 þ ðCμG − C0Þ

μ2G
2m2

Q
þ � � �

�
: ð38Þ

The NLO contributions to the coefficients are expected
to reduce the dependence of the coefficients on the
renormalization scale μ, so we look at the μ dependence
of C0 and CμG . In Fig. 2 we show this dependence, varying
μ in the range mQ=2 < μ < 2mQ for both the bottom- and

FIG. 2. The plots (a)–(d) show the dependence of the coefficients of the HQE of the inclusive nonleptonic decay rate on the
renormalization scale μ in the range mQ=2 < μ < 2mQ. The blue continuous lines stand for coefficients with LO precision whereas the
black dashed lines stand for coefficients with NLO precision.
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the charm-quark cases. For illustration we take
mb¼4.7GeV, mc ¼ 1.6 GeV, MZ ¼ 91.18 GeV and
αsðMZÞ ¼ 0.118, from which we obtain αsðMWÞ ¼
0.120 at MW ¼ 80.4 GeV. For the running of the strong
coupling αsðμÞ we use RUNDEC [65] to run it down from
MW to mb with nf ¼ 5, and from mb to mc with nf ¼ 4.
The two-loop running coupling is used.
As one would expect, the coefficients at NLO show a

much weaker μ dependence than their LO counterparts.
This is important phenomenologically since it will allow us
to reduce the uncertainty due to the choice of the scale μ.
This is especially true for the CμG coefficient, where the
uncertainty due to the choice of μ is very large.
As a consequence of the strong μ dependence of CμG ,

NLO corrections to the CμG coefficient are expected to be
very large in general and should also strongly depend on
the value of μ. The sum of LO and NLO contributions is,
however, almost independent of μ. Therefore, NLO cor-
rections happen to be very important and they stabilize the
numerical value of the coefficient.
Note that for the bottom case, the leading-order chro-

momagnetic operator coefficient has a zero for a value of
μ ≈ 3.8 GeV, leading to a large uncertainty for this par-
ticular contribution. However, including the NLO contri-
bution improves the situation significantly, leaving us with
a negative contribution, lowering the total value of the
width (increase the size of the lifetimes).
Finally we illustrate the impact of the new contribution to

the nonleptonic width by looking at the quantity

δΓNL
μG;NLO

ðμÞ
ΓNLðμÞ ð39Þ

as a function of μ in the range mQ=2 < μ < 2mQ. In Fig. 3
we show its μ dependence, inserting μ2G ¼ 0.35 GeV2

and μ2π ¼ 0.5 GeV2.

Based on this, we estimate a correction due to the
new contribution to the nonleptonic width, and correspond-
ingly to the lifetimes. We find a decrease of the rate of
roughly ð−5� 5Þ% for the charm case, while the effect
for the bottom case seems to be much smaller, roughly
ð−0.5� 0.5Þ%. However, the bottom case has to be taken
with a grain of salt, since we did not take into account the
Oðmc=mbÞ effects.

VI. CONCLUSIONS

In this paper we have computed αs corrections to the
chromomagnetic operator coefficient in the HQE of the
nonleptonic decay rate. This calculation represents the first
attempt to include QCD corrections to power suppressed
terms in nonleptonic decays. We have presented an
analytical result for the nonleptonic width to order
αsðmQÞðΛQCD=mQÞ2 for the case of vanishing final-state
quark masses.
The main application of our result is for charm-hadron

decays since our considerations correspond to the CKM
favored decay channel c → sd̄u. To some extent, our
results can be applied to B hadron decays. They constitute
the main effect to order αsðmQÞðΛQCD=mQÞ2 in the CKM
favored decay channel b → cūd up to corrections of
Oðmc=mbÞ. The same is true for the CKM favored decay
channel b → cc̄s up to corrections of Oðmc=mbÞ and up to
the effect of penguin operators, which have not been
considered in this paper.
Our main result is that the inclusion of the NLO terms

significantly reduces the dependence on the renormaliza-
tion scale μ. While at leading order one finds a strong
dependence, including the NLO terms turns out to have
almost no μ dependence for the relevant range of μ. This
stabilizes the numerical predictions significantly.
While our result can be directly applied to the case of the

charm quark, where we can safely neglect the light quark
masses, the case of the bottom quark is more involved,

FIG. 3. Relative size between the new contribution to the nonleptonic width due to the NLO correction to the chromomagnetic
operator coefficient δΓNL

μG;NLO
ðμÞ and the nonleptonic width ΓNLðμÞ as a function of the renormalization scale μ in the range

mQ=2 < μ < 2mQ. Panel (a) is the bottom-quark case and panel (b) is the charm-quark case.

MANNEL, MORENO, and PIVOVAROV PHYS. REV. D 107, 114026 (2023)

114026-8



since the charm-quark mass cannot be neglected and the
coefficients will depend on mc=mb. It is known from the
semileptonic case that the effects of the charm mass can be
large. This will be subject of future investigations.
Finally we point out that the methods used here can be

extended to the next power in 1=mQ, i.e. to a calculation of
the NLO contribution to the Darwin operator coefficient, at
least for the charm case where the final-state quarks can be
treated as massless.
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APPENDIX A: MASTER INTEGRALS

For completeness we give here the necessary master
integrals for the computation of the coefficients of the
HQE [66]. These master integrals are two- and three-loop
1 → 1 topologies with on-shell external momentum
p2 ¼ m2

Q.

1. Two-loop master integrals

We define the following completely massless two-loop
basis:

D1 ¼ ðp − q1Þ2; D2 ¼ ðp − q2Þ2; D3 ¼ q21;

D4 ¼ q22; D5 ¼ ðq2 − q1Þ2: ðA1Þ

To LO, the most general integral that can appear is

J ðn1; n2; n3; n4; n5Þ

¼ Imm4ϵ
Q

�
eγE

4π

�
2ϵ
Z

dDq1
ð2πÞD

Z
dDq2
ð2πÞD

Y5
i¼1

1

Dni
i
: ðA2Þ

After using integration by parts (IBP) reduction only one
master integral appears which is represented in Fig. 4(a). It
is a massless two-loop sunset topology. To the necessary
order in the ϵ expansion it reads

J ð0; 1; 1; 0; 1Þ ¼ m2
Q

512π3

�
1þ 13

2
ϵþOðϵ2Þ

�
: ðA3Þ

2. Three-loop master integrals

We define the following three-loop basis with one
massive denominator of mass mQ:

D1¼ðp−q1Þ2; D2¼ðp−q2Þ2; D3¼ðp−q3Þ2;
D4¼q21; D5¼q22; D6¼q23−m2

Q;

D7¼ðq2−q1Þ2; D8¼ðq3−q2Þ2; D9¼ðq3−q1Þ2: ðA4Þ

To NLO, the most general integral that can appear is

J ðn1;…; n9Þ ¼ Imm6ϵ
Q

�
eγE

4π

�
3ϵ 1

i

Z
dDq1
ð2πÞD

Z
dDq2
ð2πÞD

×
Z

dDq3
ð2πÞD

Y9
i¼1

1

Dni
i
: ðA5Þ

After using IBP reduction four master integrals appear.
Two of them are the completely massless master integrals
represented in Figs. 4(b) and 4(c) and the other two contain
one massive line of mass mQ and they are represented
in Figs. 4(d) and 4(e). Figures 4(b) and 4(e) are five
propagator topologies with zero and one massive lines,
respectively. Figure 4(c) is a massless three-loop sunset

FIG. 4. Master integrals (a)–(e) contributing the matching coefficients of the HQE of inclusive nonleptonic decays. The dashed lines
are massless whereas the continuous lines have mass mQ.
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topology and Fig. 4(d) is a two-loop sunset topology with
a massive tadpole of mass mQ. The explicit expressions
for the master integrals to the necessary order in the ϵ
expansion are

J ð0; 0; 1; 0; 1; 0; 1; 0; 1Þ

¼ −
m4

Q

49152π5

�
1þ 71

6
ϵþ

�
3115

36
−
7π2

4

�
ϵ2 þOðϵ3

��
;

ðA6Þ

J ð0; 0; 1; 1; 1; 0; 0; 1; 1Þ

¼ m2
Q

4096π5

�
1

ϵ
þ 10þ

�
64 −

7π2

4

�
ϵþOðϵ2Þ

�
; ðA7Þ

J ð0; 1; 0; 1; 0; 1; 1; 0; 0Þ

¼ m4
Q

8192π5

�
1

ϵ
þ 15

2
þ
�
145

4
−
3π2

4

�
ϵþOðϵ2Þ

�
; ðA8Þ

J ð0; 1; 0; 1; 0; 1; 1; 1; 0Þ

¼ m2
Q

8192π5

�
1

ϵ
þ
�
11 −

π2

3

�
þOðϵÞ

�
: ðA9Þ

APPENDIX B: THE EOM OPERATOR
COEFFICIENT

The coefficient C̄v appears in the matching calculation
of the transition operator. The corresponding operator is
redundant, and it can be removed by using the EOM.

However, its coefficient is required in the calculation as it
shifts the coefficients of higher-order operators. Therefore,
presenting its explicit NLO expression might be useful. We
split the result as follows:

C̄v ¼ C̄LO
v þ αsðμÞ

π
C̄NLO
v ; ðB1Þ

with

C̄LO
v ¼ 5

2
NcðC2þ þ C2

−Þ þ
5

2
ðC2þ − C2

−Þ

¼ 15

2
ðC2þ þ C2

−Þ þ
5

2
ðC2þ − C2

−Þ; ðB2Þ

C̄NLO
v ¼ −ðN2

c − 1Þ
�
π2

8
−
65

96

�
ðC2þ þ C2

−Þ

−
N2

c − 1

2Nc

�
15

2
ln

�
μ2

m2
Q

�
þ π2

4
þ 1157

48

�
ðC2þ − C2

−Þ

¼ −
�
π2 −

65

12

�
ðC2þ þ C2

−Þ

−
�
10 ln

�
μ2

m2
Q

�
þ π2

3
þ 1157

36

�
ðC2þ − C2

−Þ: ðB3Þ

Note that the color structure is the same that appears in the
leading power coefficient. The reason is that one can
compute C̄v by running a small momentum through the
diagrams that contribute to C0, instead of considering
diagrams with one-gluon insertions.
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