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We study self-gravitating multipion systems (pion stars) in a state of Bose condensate. To ensure stability
of such stars, it is assumed that they are immersed in the lepton background. Two different
phenomenological equations of state (EoS) for the pion matter are used, some of them having the
first-order phase transition. The model parameters are chosen to reproduce the recent lattice QCD data at
zero temperature, but nonzero isospin chemical potential. It is shown that the mass-radius diagrams of pion
stars obtained with phenomenological EoS are close to ones calculated in the ideal gas model. We analyze
properties of neutrino clouds which are necessary for stabilizing the pion stars.
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I. INTRODUCTION

The cores of astrophysical objects can have sufficiently
high densities, at which the nuclear EoS or even the hadron-
quark phase transition [1–3] may have observable signa-
tures. Multimessenger astronomy provides important
constraints on the properties of strongly interacting matter.
In particular, recent observations of gravitational waves from
neutron star mergers are used for constraining theoretical
models for EoS of stellar matter [4–12]. New data from
LIGO-VIRGO-KAGRA detectors are expected to observe
new neutron-star mergers [13–15]. New capabilities are
associated with the future launch of the LISA mission
[16] to provide additional constraints on the nuclear EoS
from data of neutron star masses in binary systems. The
DUNEandHyper-Kamiokande neutrino observatories under
construction will be able to provide data on the physics of
supernova explosions and the physics of neutrinos [17–19].
The prospects of observational technology stimulate interest
in exotic astrophysical configurations that can be considered
as possible alternatives to the black holes.
Considerable attention is paid to boson star models

[20–22], where the Bose-Einstein condensation (BEC) in
astrophysical objects is discussed. Systems with BEC were
considered in [23–26] as candidates for the dark matter.

Unlike these articles, there were attempts to consider BEC
within the Standard Model and study models of astro-
physical objects made of pions [27–29]. Following [27,30],
these objects will be called below as pion stars (PS). At
small temperatures these stars contain the Bose condensate
of charged pions. The pion condensates have been widely
discussed for decades in astrophysics in connection with
neutron stars (see, e.g., [31,32] and references therein), they
could also be formed in the early Universe [33] and can
appear in heavy ion collisions [34,35].
The EoS of the baryon-free strongly interacting matter at

low temperature and nonzero isospin chemical potential
was recently studied by using lattice quantum chromody-
namics (lQCD) simulations [27,33,36,37]. Pions are
expected to be the dominant degrees of freedom at such
conditions. In particular, the possibility of BEC at isospin
chemical potentials close to the pion mass has been
demonstrated. The results of these first-principles simu-
lations were used to estimate properties of PS in Ref. [27].
However, characteristics of the external neutrino cloud,
necessary for the PS stability, were not considered there.
Different effective models were used to calculate thermo-

dynamic properties of the isospin-asymmetric pion matter,
see, e.g., Refs. [38–43]. Recently, the pion matter EoS was
considered using two phenomenological models, the effec-
tive mass model [44–46] and the mean-field model
[47–49]. These models are used in the present paper.
Their parameters are chosen to reproduce the lQCD data
from Ref. [37]. Both versions, with and without a first-
order phase transition (FOPT), are considered. One of our
goals is to check whether a presence of the FOPT will
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change the PS properties, in particular, its mass-radius
diagram. Also, we pay special attention to stability of PS
with respect to weak decays of pions taking into account
that this can be achieved only if the star is embedded in the
neutrino cloud of galactic size (cf. [27]).
The paper is organized as follows. In Sec. II the

phenomenological models for the pion matter EoS and
stability conditions in PS are considered. In Sec. III B the
contributions of the pion and lepton components of the PS
are discussed. Section IV presents calculations of mass-
radius diagram for the PS. In Sec. V we consider properties
of the neutrino cloud surrounding the inner core of PS, and
a short summary in Sec. VI closes the paper.

II. EoS OF ISOSPIN-ASYMMETRIC
PION–LEPTON MATTER

Below, we consider isospin-asymmetric pion systems at
zero temperature and nonzero isospin chemical potential μ.
If interactions are neglected, all pions are at rest and form
the pion Bose condensate with μ ¼ mπ where mπ ≃
140 MeV is the pion mass. Within the ideal gas model
the pion pressure vanishes, but the energy density is
ε ¼ mπjnj, where n ¼ nπþ − nπ− is the pion isospin density.

A. Ideal gas model for leptons

In a stable macroscopic PS, the Coulomb interactions
and weak pion decays should be suppressed. This can be
achieved by including charged leptons e and μ as well as
neutrinos νe and νμ [27]. The number densities of charged
leptons nl, pressure pl, and energy densities εl are the
functions of the corresponding chemical potentials μl. They
are determined by well-known formulas of the ideal
relativistic Fermi gas (ℏ ¼ c ¼ 1):

nidl ðμlÞ ¼
gl
6π2

ðμ2l −m2
l Þ3=2θðμl −mlÞ; ð1Þ

pid
l ¼

Z
μl

0

nidl ðμÞdμ; ð2Þ

εidl ¼ μlnidl − pid
l ; ð3Þ

where l ¼ ðe; μÞ, gl ¼ 2, and θðxÞ is a theta function. We
take the mass values: mμ ¼ 105.6 MeV and me ¼
0.511 MeV. The same expressions (1)–(3) are valid for
massless left-handed neutrinos after replacing l → νl,
gl → 1, and ml → 0.

B. Phenomenological models for interacting pions

Now we introduce the interaction effects, regarding pions
as the only interacting component of the PS. These effects are
introduced with two phenomenological models.

1. Effective mass model

First we consider the effective mass (EM) model. It was
formulated in Ref. [44] for the pion system at zero chemical
potential and later applied for interacting alpha particles in
Ref. [50]. Within the EM model pions are represented by a
triplet of the interacting scalar fields ϕ ¼ ðϕ1;ϕ2;ϕ3Þ with
the effective Lagrangian density

L ¼ 1

2
ð∂μϕ∂μϕ −m2

πϕ
2Þ þ Lintðϕ2Þ; ð4Þ

where Lint is the interaction part of the Lagrangian. Below
we consider the case of vanishing temperature when all
pions are in the Bose condensate. In this case only s-wave
ππ interactions play a role and, therefore, the derivative
terms in Lint can be neglected.
In the mean-field approximation one can represent Lint

as a series over the powers of δσ ¼ ϕ2 − σ, where σ ¼ hϕ2i
is the average scalar density of pions in the grand canonical
ensemble. Taking into account only the lowest-order terms,
one arrives at the mean-field Lagrangian (see for details
Ref. [44])

L ≈
1

2
½∂μϕ∂μϕ −M2ðσÞϕ2� þ pexðσÞ; ð5Þ

whereMðσÞ is the effective pion mass and pexðσÞ is the so-
called excess pressure,

M2ðσÞ ¼ m2
π − 2

dLint

dσ
; pexðσÞ ¼ LintðσÞ − σ

dLint

dσ
:

ð6Þ

Following Ref. [44], we use a Skyrme-like parametrization
of Lint:

LintðσÞ ¼
a
4
σ2 −

b
6
σ3; ð7Þ

where a and b are the model parameters which describe,
respectively, attractive (at a > 0) and repulsive (b > 0)
interactions between (quasi)particles. At a ¼ 0 and b ¼ 0
one gets a limiting case of the ideal pion gas. After
substituting (7) into (6) one obtains the following expres-
sions for M and pex:

MðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − aσ þ bσ2
q

; pexðσÞ ¼ −
a
4
σ2 þ b

3
σ3:

ð8Þ

Within the considered model, FOPT may occur in the
pionic matter in the case of nonzero positive a. At T ¼ 0
this transition takes place between the vacuum and the
condensed (liquid) phase. These two phases correspond to
zeros of pex, namely, to scalar densities σ ¼ σg ¼ 0 and
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σ ¼ σl ¼ 3a=4b. The binding energy per pion in the
condensed phase is nonzero and equals W ¼ Ml −mπ ,
whereMl is the pion effective mass in the condensed phase.
Using Eq. (8), one obtains

Ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π −
3a2

16b

r
: ð9Þ

The BEC of cold equilibrium pionic matter occurs at
the isospin pion chemical potential μ ¼ Ml. To calculate
the pion density n as the function of μ one should solve the
system of equations n ¼ μσ, μ ¼ MðσÞ. The parameters a
and b are fitted to the lQCD data [37]. The best fit is
denoted by EM II. The corresponding parameters are
shown in Table I. The quality of the fit is demonstrated
in Fig. 1. To investigate the sensitivity to the FOPT, we
present also the results for the purely repulsive pion
interaction with a ¼ 0 (set EM I). As expected, both
FOPT and the bound state of pion matter do not appear
in this case (see last two columns of Table I).
Note that in the EM II model the BEC threshold is shifted

from the point μ ¼ mπ byW < 0. However, this shift is very
small, less than 1%, and does not exceed the current
accuracy of the lQCD data. Nevertheless, this model
predicts the possibility of multipion bound states (pion
droplets) which may exist in contact with vacuum [51].

2. Mean field model

The second phenomenological model used in this paper
is the mean field (MF) model. This model introduces a

density-dependent mean-field potential UðnÞ which shifts
the pion chemical potential μ with respect to its ideal gas
value. The pion mass is fixed to its vacuum value. At zero
temperature all pions are in the Bose condensate with
density n ¼ nðμÞ determined from the equation [48,49]

μ ¼ mπ þ UðnÞ: ð10Þ

The pion pressure pðμÞ is found by integrating nðμÞ over μ.
Following Ref. [52], we assume the Skyrme-like para-

metrization of the mean-field potential,

UðnÞ ¼ −Anþ Bnγþ1: ð11Þ

The parameters A, B, and γ are again found from the best fit
of the lQCD data [37]. We consider the cases of a soft
(γ ¼ 1=3) and hard (γ ¼ 1) repulsion. In the first case the
lattice data are better reproduced with positive A (attrac-
tion). However, for γ ¼ 1 a purely repulsive potential is
preferable (see Table II). FOPT exists for A > 0. The
parameters of this transition are found by finding nontrivial
solutions of the equation pðμÞ ¼ 0. The coefficients of the
Skyrme interaction are listed in Table II. Comparison of the
EM I, EM II, MF I, and MF II models with the lattice data is
presented in Fig. 1(a). As will be seen later, the most
important region of the pion EoS for the PS structure is
μ ≈mπ . This region is shown separately in Fig. 1(b) for the
EM I and EM II models.
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FIG. 1. A comparison of the model results for the pion isospin density nI as a function of the isospin chemical potential μI at T ¼ 0
with the lattice data of Ref. [37]. Right panel shows enlarged part of the left lower corner. Star shows position of the BEC threshold state
in the EM II model.

TABLE I. The values of interaction parameters in the EMmodel.

a b ½MeV−2� FOPT W [MeV]

EM I 0 6.2 × 10−4 absent 0
EM II 1.22 7.8 × 10−4 exists −1.28

TABLE II. Thevalues of interaction parameters in theMFmodel.

A ½MeV · fm3� B ½MeV · fm3ðγþ1Þ� γ FOPT W [keV]

MF I −246.81 536.4 1 absent 0
MF II 224.03 772.36 1=3 exists −6.1
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III. FULL EoS FOR THE PION STAR MATTER

A. Equilibrium conditions

Stable PS cannot consist of pions only. Indeed, the
electric charge of (positively) charged pions must be
compensated by (negatively) charged leptons (μ and/or e).
The charged pions in the vacuum undergo weak decays.
In particular, πþ → μþ þ νμ proceeds with the lifetime of
about 2.6 × 10−8 s. Two other decay modes are πþ →
eþ þ νe and πþ → π0 þ eþ þ νe. Muons also decay in the
vacuum, e.g., via μ− → e− þ ν̄e þ νμ. In stable PS the
above decays should be suppressed. This suppression can
be provided by the Pauli blocking of neutrinos. Thus, in
addition to μ− and e− which neutralize electric charge, one
needs also both νμ and νe. Therefore, a minimal set of
particles in the PS is ðπþ; μ−; e−; νμ; νeÞ or, equivalently,
ðπ−; μþ; eþ; ν̄μ; ν̄eÞ. We denote this set as πlν.
In our calculations we impose the following constraints:

the local charge neutrality,

Q ¼ nI þ nμ þ ne ¼ 0; ð12Þ

and the chemical equilibrium between all constituents:

μI ¼ μμþ þ μνμ ¼ μeþ þ μνe

¼ −μμ− þ μνμ ¼ −μe− þ μνe : ð13Þ

At given nI and μI , the lepton chemical potentials and
corresponding number densities are found from the con-
ditions (12) and (13), and the ideal gas equation (1). Similar
to Ref. [27], we assume the equality μνe ¼ μνμ, which is
motivated by neutrino oscillations. Note that the truncated
sets of particle species, like π, πl, or πν, do not satisfy the
stability conditions in the PS.
In the case of the FOPT, the transition between the

vacuum and the pion Bose condensate takes place at some
value of the chemical potential μ ¼ μBC in the interval of

pion densities n < nBC. To implement FOPT into calcu-
lations, we apply the mixed phase construction similar to
the Maxwell construction for the liquid-gas phase transi-
tion. At T ¼ 0 both liquid and gas phases of the phase
transition have vanishing pressure and this makes the
pionic EoS with the FOPT softer.

B. Components of the pion star

As mentioned above, we treat leptonic components of the
PS as mixture of ideal Fermi gases. Their thermodynamic
functions are given by Eqs. (1)–(3) with the conditions of
electro-neutrality (12) and chemical equilibrium (13).
The complete EoS for the PS matter is then defined by

the following set of equations:

nI ¼ nμ þ ne; P ¼ pπ þ pμ þ pe þ pνμ þ pνe ; ð14Þ

ε ¼ επ þ εμ þ εe þ ενμ þ ενe : ð15Þ

Figure 2 show the partial contributions pi of different
system components to the total pressure P as functions of
the total energy density ε for the ideal gas (a), EM I (b), and
EM II (c) models of the pion EoS. For all three EoS one has
the relations pμ < pe < pν ≈ P. Note that within the ideal
gas model the pion pressure vanishes. However, the pion
pressure p becomes nonzero in the system of interacting
pions, and it changes differently with ε in the EM I and EM
II models. Nevertheless, the relation p ≪ pν ≈ P holds in
these models. As a consequence, the sensitivity of P ¼
PðεÞ to the pion matter EoS is very weak. Therefore, it is no
wonder that EM and MF models are only slightly deviate
from the ideal gas of pions where p ¼ 0. In all considered
cases the neutrino pressure provides the main contribution
compared to other constituents. By this reason, the results
for the PS radial profiles are rather robust (see the next
section). On the other hand, our calculations show that the
size of the pion core for the πlν star exhibits some
sensitivity to the presence of the FOPT.
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FIG. 2. Partial pressures pi of different particles species and the total pressure P as functions of the total energy density ε for the ideal
gas (a), EM I (b) and EM II (c) models of the pion EoS.

O. S. STASHKO et al. PHYS. REV. D 107, 114025 (2023)

114025-4



IV. TOV EQUATIONS AND MASS-RADIUS
DIAGRAMS

The structure of a static spherical star composed of an
ideal isotropic fluid is described by the well-known
Tolman-Oppenheimer-Volkoff (TOV) equations which
can be written in the form [53,54]

dM
dr

¼ 4πr2εðrÞ;
dP
dr

¼ −G
½εðrÞ þ PðrÞ�½MðrÞ þ 4πr3PðrÞ�

r½r − 2GMðrÞ� ; ð16Þ

where G is the gravitation constant, and MðrÞ, εðrÞ, and
PðrÞ are, respectively, the integrated mass, energy density
and pressure of the fluid at the distance r from the star
center.

We solve these equations numerically at given EoS P ¼
PðεÞ defined by Eqs. (14) and (15). The boundary con-
dition assumes Mð0Þ ¼ 0 and a certain value of the central
pressure Pð0Þ. By integrating the Eq. (16) with the
conditions at r → 0:

M ¼ 4

3
πr3εð0Þ þOðr4Þ; P ¼ Pðεð0ÞÞ þOðrÞ; ð17Þ

one obtains the radial profiles εðrÞ. The integration is done
outward, up to the surface r ¼ R�, where the densities of
pions and charged leptons vanish and neutrinos remain the
only matter components. The external neutrino cloud may
extend to infinity (see the next section). This is a general
feature for the EoS of massless particles.
We define the mass of the PS as MðR�Þ ¼ M�. Physical

properties of the stars, e.g., the radial profiles of pressure, can
be found through their dependence on εðrÞ. By considering

FIG. 3. Mass-radius diagrams of the PS within the MF (left) and EM (right) models. Dashed parts of diagrams correspond to unstable
configurations. Inserts represent the results near the states of the maximal mass (shown by diamonds). The black circles represent the
points of the phase transition.
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FIG. 4. The particle densities n of different particles species as functions of normalized star radius R=R� for the ideal gas (a), EM I (b)
and EM II (c) models of the pion EoS for the maximal mass configurations. Particle density of muons is equal to zero in all cases.
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an ensemble of initial εc ¼ εð0Þ we obtain the line on the
M� − R� plane. This can be done for differentEoS of the pion
matter. The mass-radius (MR) diagrams for the PS are
presented in Fig. 3. We have compared these diagrams with
those calculated in Ref. [27] by using the lQCD data. As
expected, the results of [27] forπlνl stars nearly coincidewith
the equilibrium part of the ideal gas diagram in Fig. 3.
As seen from Fig. 3 the ideal pion gas and interacting

pion models lead to very similar MR diagrams with
maximal masses M� ≈ 19M⊙ and corresponding radii
R� ¼ ð120� 1Þ km. The EM II model exhibits some
sensitivity to the phase transition. As compared to EM I,
in this case one gets smaller pion and neutrino pressure, and
obtains larger radius (R� ≈ 121 km). Thus, there is some
sensitivity of the MR diagram to the FOPT in the pion
matter. The neutrino cloud exists beyond the pionic core of
the PS at r > R� (see the next section). We checked that
implementing non-zero masses of neutrinos leads to finite
sizes of neutrino cloud. However, properties of the PS at
distances r < R� are not much influenced by this modifi-
cation at small enough neutrino masses.
In Fig. 4 we compare the number density profiles of πþ

mesons and neutrinos in PS with maximal masses, using
the same EoSs for pions as in Fig. 2. Note that the density
profiles of e− and πþ coincide due to the charge neutrality.
One can see that relative concentrations of pions do not
exceed 10% at any radius.

V. PROPERTIES OF STELLAR
NEUTRINOSPHERE

In this section we discuss properties of the neutrino cloud
surrounding the PS inner core with radius R�.

1 We do not
discuss dynamical processes leading to formation of PS
and assume that the radial structure of the final static star
(the coreþ cloud) is given by the solution of the TOV
equations (16).
As mentioned above, we define the boundary of the inner

core as the radius where densities of pions and charged
leptons vanish. Similar to [27], our calculations show that
muons do not appear [μðrÞ < mπ þmμ]

2 in the PS even for
states with maximal core mass M�. In accordance with the
chemical equilibrium condition, the boundary chemical
potential of neutrino equals μ� ¼ mπ þme ≃ 140.5 MeV.
Corresponding number- and energy densities of neutrino
(both flavors) at zero temperature can be calculated as

n� ¼
μ3�
3π2

≃0.0122 fm−3; ε� ¼
μ4�
4π2

≃1.29MeV· fm−3:

ð18Þ

Note that these densities can be regarded as the threshold
values, above which the pion condensate can be formed
inside the cold neutrino matter (see, e.g., Ref. [55]).
Below we consider the state with maximal mass of inner

core, M� ≡MðR�Þ and disregard pion interactions. In this
case, the numerical solution of the TOV equations gives
R� ≃ 120 km, M� ≃ 19M⊙. The calculation shows that the
values μ� and n� are, respectively, about 64% and 26% of
the corresponding central values.
Using the TOV equations, we have checked that at

r > R� the energy density decreases (approximately)
inversely proportional to r2:

ε ¼ μ4

4π2
≃ ε�

�
R�
r

�
2

: ð19Þ

Formally, this corresponds to the linear increase of the
neutrino cloud mass with values M −M� ∝ ðr − R�Þ.
However, these relations should be modified at large r
due to nonzero neutrino rest mass m. Deviations from
ultrarelativistic approximation μ ≫ m occur above some
maximal radius, r≳ rmax. The latter can be estimated by
substituting μ ¼ m into Eq. (19). Then one obtains

rmax ∼ R�

�
μ�
m

�
2

: ð20Þ

One can consider this radius as a size of the neutrino cloud.
Choosingm ¼ 1 eV (this does not contradict current obser-
vations) one obtains the estimate rmax ∼ 2.4 × 1018 km ≃
2.5 × 105 ly and mass M ∼ 1017M⊙. The size rmax is
comparable with the size of the dark matter halo of our
Galaxy [56], but the mass (cf. also [57]) is of the order of that
for the largest known matter concentrations in the Universe.
One should have in mind, that these estimates do not take

into account that the TOVequations (16) are not justified at
the dilute periphery of the neutrino cloud. Indeed, the local
thermodynamic equilibrium, used in derivation of these
equations, breaks down when the local Knudsen number,
KnðrÞ ¼ λðrÞ=r becomes larger than unity.3 Here λðrÞ is
the mean-free path of neutrino at the distance r from the PS
center:

λðrÞ ¼ 1.6
nhσi ; ð21Þ

1It is obvious that the “naked” PS (without an external neutrino
cloud) is unstable due to nonzero neutrino flux through the
surface r ¼ R�. This in turn leads to the decays of pions at
r < R�. In such a process the PS can partially or totally evaporate.

2In this section we omit index ν.

3In particular, at Kn ≳ 1, the pressure tensor of the neutrino
cloud becomes anisotropic with different transverse and radial
components. Calculating the energy density profiles at such
distances requires a dedicated kinetic approach. Presumably,
nonequilibrium (dissipation) effects will modify the asymptotic
behavior of εðrÞ as compared to (19). At larger radii the neutrino
cloud can be described only within a kinetic approach. Never-
theless, we expect that the TOV equations can still be used for
rough order-of-magnitude estimates.
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where n ¼ nνe þ nνμ is the total neutrino density, and hσi is
the cross section of the νeνe scatterings averaged over the
momentum distributions of neutrinos. Coefficient 1.6 takes
into account that the νeνμ cross section is by a factor of 4
smaller [58] than that for νeνe (at the same center of mass
energy squared s of the neutrino pair).
Using the explicit expression for σðsÞ, given in Ref. [58],

after averaging over the local momentum distribution of
neutrinos, one gets the relations

hσi ¼ 1

π
G2

Fhsi ¼
9

8π
ðGFμÞ2 ¼ σ�

�
n
n�

�
2=3

; ð22Þ

σ� ¼
9

8π
ðGFμ�Þ2 ≃ 3.71 × 10−40 cm2; ð23Þ

where GF ≃ 2.3 × 10−22 cm=MeV is the Fermi coupling
constant. Substituting (22) into (21) gives

λ ¼ λ�

�
n�
n

�
5=3

∼ λ�

�
r
R�

�
5=2

; ð24Þ

where λ� ¼ 1.6=ðn�σ�Þ ≃ 3.53 m. Note that a much smaller
neutrino mean free path, about 37 cm, is obtained at the PS
center. The resulting Knudsen number Kn ∼ Kn�ðr=R�Þ3=2,
where Kn� ≃ λ�=R� ∼ 3.0 × 10−5. This shows that profiles
of energy density, predicted by TOV equations, are reliable
only up to the radii r≲R�=Kn

2=3
� ∼103R�≃1.25×105 km.

VI. SUMMARY

In the present paper we have considered pion stars
defined as the self-gravitating configurations with the pion
Bose condensate. The local electric neutrality requires
additional constituents to be present along the charged
pion condensate. Therefore, electrons and muons are
added. However, this is not sufficient to have chemical
equilibrium, and both muon and electron neutrinos have to

be added as well. The mass-radius diagrams of the PS are
calculated by solving the TOV equations for different
phenomenological pion EoS. Our calculations show that
charged leptons and neutrinos contribute significantly to
the pressure and the energy density. This makes the results
for the interacting pions to be almost identical to those of
the ideal pion gas. This finding provides a robust prediction
of the PS mass-radius diagram. Some sensitivity to FOPT
still remains in size of the PS inner core.
Whether PS can be considered as realistic astrophysical

objects is still an open question. In fact, if we want to limit
ourselves to a model of a stationary configuration consisting
of pions, leptons and massive neutrinos, we can make ends
meet. However, unrealistically large mass within the galactic
dimensions makes the existence of such object doubtful. To
formulate an astrophysically relevant model, one must either
include additional components of nuclear matter (as inside
neutron stars), or consider a highly nonstationary configu-
ration, or work outside the Standard Model.
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