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We investigate the in-medium properties of pseudoscalar and vector mesons with the light-light and
heavy-light quarks in a light-front quark model, using the in-medium quark properties computed by the
quark-meson coupling model. Both models are constructed on an equal footing with the constituent quark
degree of freedom. Here, we particularly focus on the weak decay constants and distribution amplitudes
(DAs) of the mesons in symmetric nuclear matter. We find that the weak decay constants decrease as
nuclear density increases for π,K,D, and B pseudoscalar as well as ρ,K�,D�, and B� vector mesons, where
their properties in free space have good agreement with the available experimental and lattice QCD data.
A larger reduction is found for the light-light quark pseudoscalar mesons, while a smaller reduction is
found for the heavy-light quark vector mesons, in particular, with the bottom quark. We discuss the effect
of the vector potential on the weak decay constants, and present our predictions for the in-medium
modifications of DAs. Also, a comparison with the free space lattice QCD data is made.
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I. INTRODUCTION

One of the most challenging problems in hadronic
and nuclear physics is how the properties and structure
of hadron are modified in a nuclear medium, and how such
modifications would be reflected on the observables, such
as cross sections and extracted form factors [1–3]. It was
indicated experimentally that the nucleon structure function
is modified in nuclei, which is known as the European
Muon Collaboration (EMC) effect [1]. Thus, the properties
of hadrons are also expected to be modified in the
nuclear medium, that may be associated with the partial
restoration of chiral symmetry. Experimental evidence
for this partial restoration of chiral symmetry has been
confirmed through the deeply bound pionic atoms [2],
the low-energy pion-nucleus scattering [4], and dipion

production in hadron-nucleus and photon-nucleus reactions
[5,6]. In the deeply bound pionic atom experiment [2] and
pion-nucleus scattering [4], the analysis concluded that the
pion decay constant (associated with the temporal part) is
reduced in the nuclear medium.
From quantum chromodynamics (QCD) in the Standard

Model (SM), we know that hadrons are composed of quarks
and gluons. One can naturally expect that the quark and
gluon dynamics is modified when hadrons are immersed in a
nuclear medium. But, how are the internal structure of
hadrons and the dynamics of the quarks and gluons modified
in the nuclear medium? These questions, however, are still
far remote to answer in terms of the first principle, QCD.
Therefore, more studies are strongly required to understand
the medium modifications of hadron structure and proper-
ties. Motivated by this, many studies on the in-medium
modifications of hadron properties and structure have
been made both in theoretically [3] and experimentally
[1,2] (references therein). Until now, many theoretical
studies have been made on the light and heavy mesons in
the nuclear medium using various models and approaches,
such as the quark-meson coupling (QMC) model [7–10], the
Dyson-Schwinger equation (DSE) based approach [11], the
holographic model [12], the QCD sum rules (QSR) [13,14],
the Linear-sigma model (LσM) [15], the Bethe-Salpeter
equation-Nambu–Jona-Lasinio (BSE-NJL) model [16–19],
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the instanton liquidmodel (ILM) [20,21], and the hybrid light
front-quark-meson coupling (LF-QMC) models [22–24].
Among the models mentioned above, authors of

Refs. [22–24] studied the weak-decay constants, distribu-
tion amplitudes (DAs), and electromagnetic elastic form
factors (EFFs) using the combined approach with the light-
front quark model (LFQM) and the QMC models in the
nuclear medium. However, their studies focused only on
the π and ρ mesons with the light-light quark constituents.
In this work, we extend the studies in a more systematic
manner for the light and heavy-light pseudoscalar as well as
vector mesons. It is worth noting that, in the nuclear
medium, the mesons with the heavy-light quark pair
are subject to feel not only the scalar potential but also
the vector potential in the QMC model. In this study, we
employ a similar hybrid approach to that practiced in
Refs. [22–24], namely, the meson properties are computed
in the LFQM, using the in-medium quark properties
simulated in the QMC model. Note that, in the present
study, we employ the Gaussian wave function in the
LFQM, which is different from Refs. [22–24], where they
used the Bethe-Salpeter amplitude (BSA) with the mass
regulator to tame the divergence in the loop integral by the
quark propagators. Instead, here we introduce the quark
potential in the Hamiltonian that describes the quark-
antiquark interaction inside the meson.
The highlight of the present study is to study the dynamics

of the light-light and heavy-light quark systems in the spin-
0 pseudoscalar and spin-1 vector mesons, where the quarks
in both mesons compose different symmetries and quantum
numbers. The present study may also provide useful
information on the properties of quarkonium in the nuclear
medium [8–10]. Such studies should be important for
understanding the more complicated quark dynamic systems
like heavy baryons with bottom and/or charm quarks, as well
as exotic states in free space and in the nuclear medium.
These kinds of studies are relevant for the ongoing or
planned experiments in the modern, international facilities,
such as PANDA and CBM collaborations at FAIR [25–29],
PHENIX collaboration at RHIC [30], BELLE and
BELLE II collaboration at KEK [31], LHCb collaboration
at CERN [32], and J-PARC [33].
This article is organized as follows. In Sec. II, we first

briefly introduce the effective Hamiltonian and light-front
wave functions (LFWFs) used in the present LFQM
approach. Then, we describe how the model parameters
are fixed via the variational approach. Additionally, we give
the expressions for various properties of mesons, such as
weak-decay constants, and DAs in free space in the LFQM
formalism. In Sec. III, we describe briefly the QMC model,
so that we can input the medium effect in the LFQM
calculation. In Sec. IV, we present the formulas for the
vector potentials, weak decay constants, and DAs for the
light and heavy-light mesons in the nuclear medium.
Section V presents the results for the light and heavy-light

meson properties in the nuclear medium. Section VI is
devoted to the summary and conclusion.

II. PROPERTIES AND STRUCTURE
OF MESONS IN FREE SPACE

In this section, we briefly describe the free space
properties of the light and heavy-light mesons by employ-
ing the LFQM that is based on the constituent quark picture
with light-front dynamics (LFD). Here, we first explain the
key ideas of the LFQM, starting from the Hamiltonian and
LFWF. We then show the expressions for the weak-decay
constant and the DA in free space. We emphasize again that
the present approach differs from the BSA approach of
Refs. [22–24], namely the present approach uses the vertex
function that is regulated by the Gaussian functional form,
and the meson states are built through the Bakamjian-
Thomas (BT) construction [34,35], which is a Poincaré
invariant and guarantees that it is independent of any
specific kinematics of any chosen frames [36].

A. LFWF and effective Hamiltonian

In the LFQM, a meson state is described as a bound state
of the constituent quark and antiquark pair in the non-
interacting representation following the BT construction,
where the interaction is included in the meson mass
operator to satisfy the Poincaré group structure [34,35].
Thus, the interaction is encoded in the mass eigenfunction.
In the present approach, we apply a variational principle
to deal with the mass eigenvalue problem, introducing a
trial wave function in the Gaussian basis including the
QCD-motivated effective Hamiltonian with linear confine-
ment potential [37]. The LFQM has been successfully
applied to various studies of free space meson properties in
Refs. [37–41] and references therein.
The meson state jMðP; J; JzÞi, as a bound state of the

constituent quark q and antiquark q̄with meson momentum
P and total angular momentum ðJ; JzÞ, can be written as

jMðP; J; JzÞi ¼
Z

½d3pq�½d3pq̄�2ð2πÞ3δ3ðP − pq − pq̄Þ

×
X
λq;λq̄

ΨJJz
λqλq̄

ðx;k⊥ÞjqλqðpqÞq̄λq̄ðpq̄Þi; ð1Þ

where pi ¼ ðpþ
i ;pi⊥Þ and ½d3pi�≡ dpþ

i d
2pi⊥=½2ð2πÞ3�.

Here, we define ðpq; λqÞ and ðpq̄; λq̄Þ as the momentum
and the helicity of quark (i ¼ q) and antiquark ði ¼ q̄Þ,
respectively. The LF internal variables ðx;k⊥Þ are then
denoted as x ¼ pþ

q =Pþ and k⊥ ¼ pq⊥ − xP⊥.
The LFWF of the ground state meson in momentum

space is defined by

ΨJJz
λqλq̄

ðx;k⊥Þ ¼ Φðx;k⊥ÞRJJz
λqλq̄

ðx;k⊥Þ; ð2Þ
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where Φðx;k⊥Þ and RJJz
λqλq̄

ðx;k⊥Þ are respectively the

radial and spin-orbit wave functions, where the latter
distinguishes the vector (V) and pseudoscalar (P) mesons.
The RJJz

λqλq̄
is obtained from the Melosh transformation [42]

and has the covariant forms as

RJJz
λqλq̄

¼ 1ffiffiffi
2

p
M̃0

ūλqðpqÞΓMvλq̄ðpq̄Þ; ð3Þ

with M ¼ P or V meson and M̃0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − ðmq −mq̄Þ2
q

,

and the invariant meson mass M2
0 is defined as

M2
0 ¼

k2⊥ þm2
q

x
þ k2⊥ þm2

q̄

1 − x
: ð4Þ

In the above, the vertices for the pseudoscalar ΓP and vector
ΓV are given by

ΓP ¼ γ5; ð5Þ

ΓV ¼ −ϵðJzÞ þ
ϵ · ðpq − pq̄Þ

M0 þmq þmq̄
; ð6Þ

where the polarization vectors ϵμðJzÞ ¼ ðϵþ; ϵ−; ϵ⊥Þ are
defined by

ϵμð�1Þ ¼
�
0;
2ϵ⊥ð�Þ · P⊥

Pþ ; ϵ⊥ð�Þ
�
;

ϵμð0Þ ¼ 1

M0

�
Pþ;

−M2
0 þ P2⊥
Pþ ;P⊥

�
; ð7Þ

with ϵ⊥ð�1Þ ¼∓ 1ffiffi
2

p ð1;�iÞ. We note that the spin-orbit

wave function is normalized to unity.
In the meson ground state, the trial radial wave function

in Gaussian basis is given by

Φ1Sðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffi
∂kz
∂x

r
e−k

2=2β2 ; ð8Þ

with β as the variational parameter that is related to the size
of the wave function, and the Jacobian factor in Eq. (8) is
expressed by

∂kz
∂x

¼ M0

4xð1 − xÞ
�
1 −

ðm2
q −m2

q̄Þ2
M4

0

�
; ð9Þ

which takes account of the variable transformation, ðkz;k⊥Þ
to ðx;k⊥Þ, where kz ¼ ðx − 1=2ÞM0 þ ðm2

q̄ −m2
qÞ=2M0.

The LFWF is normalized by

Z
dxd2k⊥
2ð2πÞ3 jΨðx;k⊥Þj2 ¼ 1: ð10Þ

Following the BT construction, the quark and antiquark
interactions are included in the meson mass operator to
compute the mass eigenvalue Mqq̄, namely,

ðH0 þ Vqq̄ÞjΨqq̄i ¼ Mqq̄jΨqq̄i; ð11Þ

where Ψqq̄ is the eigenfunction for the meson. In the
calculation, we use the relativistic kinetic energy of the

quark and antiquark given by H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ p2
q

q
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
q̄ þ p2

q̄

q
, and the quark-antiquark potential is defined

by Vqq̄ ¼ VConf þ VCoul þ VHyp, that consists of the con-
fining, Coulomb-like, and hyperfine potentials, given by

VConf ¼ aþ br; ð12Þ

VCoul ¼ −
4αs
3r

; ð13Þ

VHyp ¼
32παshSq · Sq̄i

9mqmq̄
δ3ðrÞ; ð14Þ

where a and b are parameters for the linear confining
potential, and αs is the strong running coupling, which is
taken as a constant parameter in the free space. (Its in-
medium modification will be explained later.) The hSq · Sq̄i
yields the values of 1=4 and −3=4 for the vector and
pseudoscalar mesons, respectively.
To obtain the mass and wave function of the meson

ground state, we perform the variational analysis. The
mass eigenvalue of the meson can be computed by
Mqq̄ ¼ hΨqq̄jHqq̄jΨqq̄i ¼ hϕ1SjHqq̄jϕ1Si, where the unity
of the spin-orbit wave function has to be employed. We
then have an analytic mass formula [39],

Mqq̄ ¼
βffiffiffi
π

p
X
i¼q;q̄

ziezi=2K1

�
zi
2

�
þ aþ 2b

β
ffiffiffi
π

p

−
8αsβ

3
ffiffiffi
π

p þ 32αsβ
3hSq · Sq̄i

9
ffiffiffi
π

p
mqmq̄

; ð15Þ

where zi ¼ m2
i =β

2, Kn the modified Bessel function of the
second kind of order-n. The model parameters including
the variational parameters β are obtained by performing
the variational principle and by imposing αs to be the same
for all mesons. The detailed procedures can be found in
Ref. [37]. Since our main purpose of the present work is to
investigate the in-medium modifications of the meson
properties and structure, we use the same parameters
as those in free space, which are adapted from Ref. [37].
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The explicit values of the parameters used in the present
LFQM will be presented in Sec. V.

B. Weak-decay constant and distribution amplitude

Here, we review the properties and structure of the
mesons in free space in the LFQM, such as the weak-decay
constants and the DAs for the pseudoscalar and vector
mesons [40]. The weak-decay constants are related to
the normalization of the leading twist quark DAs of the
corresponding mesons that dictate the probability of
the valence-quark distributions, and they can be extracted
through the hard exclusive reaction processes [43,44].
The weak-decay constants of the pseudoscalar meson fP

and vector meson fV are defined by

h0jq̄γμγ5qjPðPÞi ¼ ifPPμ;

h0jq̄γμqjVðP; JzÞi ¼ fVMVϵ
μðJzÞ; ð16Þ

where ϵμðJzÞ and MV are the polarization vector and the
mass of the vector meson, respectively. The explicit form of
the decay constants in the LFQM is given by

fM ¼ 2
ffiffiffi
6

p Z
1

0

dx
Z

d2k⊥
2ð2πÞ3

Φðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p OM; ð17Þ

where the operators OM are defined by

OP ¼ A; ð18Þ

OV ¼ Aþ 2k2⊥
D0

; ð19Þ

with A ¼ ð1 − xÞmq þ xmq̄ and D0 ¼ M0 þmq þmq̄.
The DAs of mesons are defined from the lightlike

separated gauge invariant free space-to-meson matrix ele-
ments, which can be interpreted as the probability ampli-
tudes to find the hadron in a state with a minimum number
of the Fock constituents and small transverse momentum
separation [40]. The leading twist DAs for the pseudoscalar
and vector mesons are obtained from the plus component of
the currents, which are respectively given by

Aþ
P ¼ h0jq̄ðzÞγþγ5qð−zÞjPðPÞi;

¼ ifPPþ
Z

1

0

dxeiζP·zϕPðxÞjzþ¼z⊥¼0; ð20Þ

Aþ
V ¼ h0jq̄ðzÞγþqð−zÞjVðP; 0Þi;

¼ fVMVϵ
þð0Þ

Z
1

0

dxeiζP·zϕVðxÞjzþ¼z⊥¼0; ð21Þ

where ζ ¼ 2x − 1. In the LFQM, the ϕMðxÞ can be obtained
by the transverse momentum integration of the LFWF:

ϕMðxÞ ¼
2
ffiffiffi
6

p

fM

Z
d2k⊥
2ð2πÞ3

Φðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p OM: ð22Þ

We note that the DAs are normalized asZ
1

0

ϕMðxÞdx ¼ 1: ð23Þ

III. QUARK PROPERTIES IN NUCLEAR MATTER

Before proceeding to study the in-medium effect on the
meson properties, we briefly explain the QMC model,
where the parameters are fixed to reproduce the saturation
properties of nuclear matter. The QMC model is a
quark-based model of nuclear matter and nuclei with
the relativistic mean field approximation [45–48]. In this
model, the Lorentz-scalar-isoscalar σ, Lorentz-vector-
isoscalar ω, and Lorentz-vector-isovector ρ mean fields
generated from the surrounding nuclear medium are
directly coupled to the confined light u and d valence
quarks. In this regard, the mean fields modify the light
quark masses and energies, and thus modify the internal
structure of nucleons in the nuclear medium. We note that
the QMCmodel is different from the usual relativistic mean-
field (RMF) approach, where the latter mean-field couples
to the pointlike nucleons [49,50]. Thus, in the QMC model,
the coupling constants between the light quarks and mean
fields are fixed to be the same for all the light quarks in
any hadrons, once constrained by the nuclear matter satu-
ration properties.

A. Quark-based relativistic mean-field model:
QMC model

The effective Lagrangian density for the symmetric
nuclear matter (SNM) at the hadronic level reads [7,45–48]

LQMC ¼ Lnucleon þ Lmeson þ Lint; ð24Þ

and they are given by

Lnucleon ¼ ψ̄ ½i=∂ −mN �ψ ; ð25Þ

Lmeson ¼
1

2
ð∂μσ̂∂μσ̂ −m2

σσ̂
2Þ

−
1

2
½∂μω̂νð∂μω̂ν − ∂

νω̂μÞ −m2
ωω̂

μω̂μ�; ð26Þ

where ψ , σ̂, and ω̂ represent the nucleon, σ, and ω field
operators, respectively. In the present work, we do not
include the ρ meson field, since we consider the isospin-
symmetric nuclear matter in which the contribution from
the ρ mean-field is vanishing in the Hartree mean-field
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approximation. The corresponding interaction Lagrangian
density is given by

Lint ¼ g̃Nσ ðσ̂Þψ̄ψσ̂ − gNωω̂μψ̄γμψ ; ð27Þ

with the σ-field dependent Nσ coupling constant g̃Nσ ðσ̂Þ
and the Nω coupling constant gNω . We may also write the
Lagrangian density as

L ¼ ψ̄ ½i=∂ −m�
Nðσ̂Þ − gNωω̂μγμ�ψ þ Lmeson; ð28Þ

where the nucleon effective mass at a given density is
defined by

m�
Nðσ̂Þ ¼ mN − g̃Nσ ðσ̂Þσ̂: ð29Þ

The g̃Nσ ðσ̂Þ coupling appears in the nucleon effective mass
and it modifies the nucleon mass in a nonlinear manner in σ
field, while the gNω coupling modifies the nucleon four-
momentum. It is important to emphasize that in the QMC
model, the couplings of the meson fields are applied
directly to the light quarks and we solve the Dirac equation
of the light quarks in the presence of the meson fields
generated by the surrounded nuclear medium self-
consistently. The quark-meson coupling constant with
the σ field is encoded in g̃Nσ ðσ̂Þ at the hadron level.
In the mean-field approximation, we replace the meson

field operators with their constant mean field expectation
values as σ̂ → σ ¼ hσ̂i and ω̂μ → δμ;0ω ¼ hω̂μi, where we
consider the nuclear matter at rest so that only the time
component of ωμ survives.
At the nucleon level, the equations of motion of the

meson fields can be obtained as

ð□þm2
σÞσ ¼

�
−
∂m�

NðσÞ
∂σ

�
ðψ̄ψÞ ¼ g̃Nσ ðσÞρs; ð30Þ

ð□þm2
ωÞω ¼ gNωðψ̄γ0ψÞ ¼ gNωðψ†ψÞ ¼ gNωρ; ð31Þ

where in nuclear matter, the d’Alembert operator □ → 0
is made, and ρs and ρ are the nucleon scalar and vector
(baryon) densities, respectively. The Dirac equation for the
nucleon is given by

ði=∂ − gNωωγ0 −m�
NðσÞÞψ ¼ 0: ð32Þ

Note that the effective nucleon mass enters in this equation
and Eq. (30) via,

−
∂m�

NðσÞ
∂σ

¼ g̃Nσ ðσÞ ¼ gNσ CNðσÞ; ð33Þ

where

CNðσÞ ¼
SNðσÞ

SNðσ ¼ 0Þ : ð34Þ

The CNðσÞ is the so-called scalar polarizability that
describes the nucleon response to the external scalar
field [7]. If the nucleon is assumed as a pointlike particle,
CNðσÞ ¼ 1. In the QMC model, the meson-nucleon cou-
pling ðgNσ ; gNωÞ are defined by the quark-meson coupling
ðgqσ; gqωÞ as

gNσ ¼ g̃Nσ ðσ ¼ 0Þ ¼ 3gqσSNðσ ¼ 0Þ; ð35Þ

gNω ¼ 3gqω; ð36Þ

where SNðσÞ is computed in the MIT bag model. In the
above, factor three reflects the fact that the nucleon is made
of three light valence quarks.
From Eqs. (30) and (31), the vector and scalar meson

fields are respectively calculated as

ω ¼ gNωρ
m2

ω
; ð37Þ

σ ¼ gNσ ρs
m2

σ
CNðσÞ; ð38Þ

where the nuclear density ρ and scalar density ρs are
given by

ρ ¼ 4

ð2πÞ3
Z

d3kΘðkF − kÞ ¼ 2k3F
3π2

; ð39Þ

ρs ¼
4

ð2πÞ3
Z

d3kΘðkF − kÞ m�
NðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
N ðσÞ þ k2

p ; ð40Þ

with k ¼ jkj and ΘðkF − kÞ being the step function that
guarantees the integral is performed up to the nucleon
Fermi momentum kF that can be written in terms of the
nuclear density ρ. The factor of four represents spin and
isospin degeneracy. As seen in Eq. (38), we solve the self-
consistent equation for the σ mean-field to determine its
value at each nuclear density.
Once we obtain the σ and ω mean fields, it is straightfor-

ward to compute the total energy per nucleon, which is
given by

Etot

A
¼ 1

ρ

�
4

ð2πÞ3
Z

d3kΘðkF − kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

N ðσÞ þ k2
q

þ 1

2
gNσ CNðσÞσρs þ

1

2
gNωωρ

�
: ð41Þ

Later, we determine the model parameters by the fit to
the extracted nuclear matter saturation properties at the
saturation density ρ0 ¼ 0.15 fm−3 (kF ¼ 1.305 fm−1),
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such as the negative of binding energy (Etot=A −mN),
−15.7 MeV.

B. MIT bag model

As discussed earlier, the nucleon-meson couplings are
defined based on the quark-meson couplings. In the standard
QMC model [45–48], this is done by using the MIT bag
model for the nucleon (hadrons) and solving the Dirac
equations for the quarks and antiquarks with the presence of
the meson mean fields in the nuclear medium,

Vq
σ ¼ gqσσ; ð42Þ

Vq
ω ¼ gqωω; ð43Þ

where σ and ω are the same constant mean fields as
discussed in Eqs. (37) and (38). Here we consider q ¼ u
or d and Q ¼ s, c, or b quark confined inside the bag of a
hadron in symmetric nuclear matter at the position z ¼ ðt; rÞ
with r ¼ jrj ≤ bag radius.
The Dirac equations for the quark and antiquark in the

presence of the mean-field potentials are given by

½i=∂ − ðmq − Vq
σÞ ∓ γ0Vq

ω�
 
ψqðzÞ
ψ q̄ðzÞ

!
¼ 0; ð44Þ

½i=∂ −mQ�
 
ψQðzÞ
ψ Q̄ðzÞ

!
¼ 0; ð45Þ

where we assume the SU(2) symmetry for the light quarks,
mq ¼ mu ¼ md. While the vector potential shifts the quark
energy in the nuclear medium, the scalar potential modifies
the quark mass as

m�
q ¼ mq − Vq

σ ; ð46Þ
so that the quark effective mass is reduced by the scalar σ
potential in the nuclear medium, and thus m�

q can be
negative when a small free space mass valuemq is used, but
it is nothing but the reflection of the attractive potential, and
thus a naive interpretation of “mass” should not be applied.
It should be noted again that the mean fields are coupled
only to the light quarks and antiquarks. In the QMC model,
the masses of the quark Q ¼ s, c, b are assumed to be the
same in the nuclear medium as in free space (m�

Q ¼ mQ)
[but energies may be modified by the modifications of the
hadron bag radius when a light quark is contained in the
hadron], since the σ mean-field is not coupled to the heavier
quarks in the model, based on the fact that the heavy quark
chiral condensates are expected to be modified only slightly
in the cold nuclear medium, or, their masses are mostly due
to the Higgs mechanism. (See the introduction part of
Ref. [51] for detailed discussions and some evidence, as
well as references on this issue.)

Here, we obtain the static solution for the ground state
quark or antiquark, where the Hamiltonian is time-
independent, and the wave function can be written as

ψðzÞ ¼ ψðrÞ expf−iε�t=R�g; ð47Þ

with the in-medium bag radius R�. The eigenenergies in
units of 1=R� are given by

�
ε�q
ε�̄q

�
¼ Ω�

q � R�Vq
ω; ð48Þ

with

Ω�
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2q þ ðm�

qR�Þ2
q

; ð49Þ

where x�q is the lowest mode bag eigenvalue. The normal-
ized ground state quark eigenfunction can be written as

ψðzÞ ¼ Ne−iε
�t=R�ffiffiffiffiffiffi
4π

p
�

j0ðx�qr=R�Þ
iβ�qj1ðx�qr=R�Þσ · r̂

�
χm; ð50Þ

where χm is the spin function, the spherical Basel functions
are given by

j0ðrÞ ¼
sin r
r

; ð51Þ

j1ðrÞ ¼
sin r
r2

−
cos r
r

: ð52Þ

The normalization N is obtained from

Z
R�

0

d3rψ†ðrÞψðrÞ ¼ 1; ð53Þ

where the integration is up to the radius R� meaning that
the quarks only exist (confined) in the spherical cavity.
We then obtain

N−2 ¼ 2R�3j20ðx�qÞ
½Ω�

qðΩ�
q − 1Þ þm�

qR�=2�
x�2q

: ð54Þ

The eigenfrequency of the quark is obtained by imposing
the continuity of the quark eigenfunction at the bag
boundary r ¼ R� which yields the relation,

j0ðx�qÞ ¼ β�qj1ðx�qÞ; ð55Þ

with

β�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω�

q −m�
qR�

Ω�
q þm�

qR�

s
: ð56Þ
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By solving the above equation, we obtain the lowest
positive eigenvalue of x�q. The effective nucleon mass in
the MIT bag model is computed as

m�
NðσÞ ¼

3Ω�
q − ZN

R� þ 4πR�3

3
B; ð57Þ

where ZN is the corrections from the gluon fluctuation
and center-of-mass motion [46] and B is the density-
independent bag pressure. It is worth noting that the bag
volume energy provides an inward pressure while the
kinetic energy gives an outward pressure. As a conse-
quence, there is an equilibrium where the nucleon mass is
minimized and stabilized by

dm�
NðR�Þ
dR�

����
R�¼R�

N

¼ 0; ð58Þ

which determines the R�
N and mass of the nucleon, self-

consistently with x�q. We also clarify that the bag radius
(R�

N) is not observable, which is different from the nucleon
radius. So, to estimate the nucleon radius (in the nuclear
medium as well as in free space), one needs to compute it
from the quark wave function. Lastly, the quantity asso-
ciated with the scalar polarizability CNðσÞ, SNðσÞ ¼
SNðσ ¼ 0ÞCNðσÞ in the σ-dependent Nσ coupling constant
g̃Nσ ðσÞ, is computed as

SNðσÞ ¼
Z

R�

0

d3rψ̄ðrÞψðrÞ;

¼ Ω�
q=2þm�

qR�ðΩ�
q − 1Þ

Ω�
qðΩ�

q − 1Þ þm�
qR�=2

: ð59Þ

This provides one of the origins for the novel saturation
properties of nuclear matter starting from the quark
degrees of freedom, basing on the quark structure of
the nucleon. With this ingredient, we do not have to
introduce the nonlinear couplings of the meson fields in
the effective Lagrangian density at the hadronic level to
obtain a reasonable incompressibility value in the range
K ≃ 200–300 MeV, which is usually adopted in many
sophisticated relativistic mean field models at the hadron
level [49] for obtaining a reasonable value K.

IV. PROPERTIES AND STRUCTURE OF MESON
IN NUCLEAR MEDIUM

In this section, we explore the mechanism of how the
in-medium modified quark properties simulated in the
QMC model affect the meson properties in nuclear
medium, such as weak-decay constants and DAs described
in the LFQM. Two important inputs obtained from the
QMC model applied are: (i) the in-medium light quark
effective mass modified by the scalar σ mean-field, and
(ii) the in-medium light quark energy modified by the

vector potential. Since we work on the light and heavy-light
mesons, the medium effects vary for each type of meson
depending on the quark constituents of mesons. We will
explain this in the following. In this work, the Gaussian
parameter β is not assumed to be modified in the medium.
This may be justified by the fact that it is associated with a
short-range scale in the meson wave function [23]. One
may also expect that β decreases in the medium as the
meson radius increases. In that case, the decay constant will
decrease much faster in the medium as studied by one of us
in the previous work [24].1 A quick decrease in the decay
constant is due to the fact that it is more sensitive to the
origin of the wave function. However, such a density
dependence is not well understood either and will add
only model ambiguities. Therefore, we assume the density-
independent β in this exploratory study.
The light quark or light antiquark mass is modified by

the scalar potential as

m�
q ¼ mq − Vq

σ ; ð60Þ

while the light quark and light antiquark energies p�0
i are

modified by the vector potential:

p�0
i ¼

(
E�
q þ Vq

ω; for light quark;

E�̄
q − Vq

ω; for light antiquark;
ð61Þ

with i ¼ q; q̄ and E�
q ¼ E�̄

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

q þ p2
q

q
. Then, the total

energy of meson P�0 is given by

P�0 ¼

8>><
>>:

E�
M; for ðqq̄Þ;

E�
M þ Vq

ω; for ðqQ̄Þ;
E�
M − Vq

ω; for ðQq̄Þ;
ð62Þ

where E�
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�2 þ P2

p
with M� being the in-medium

meson mass, and the vector potential cancels in the case
of ðqq̄Þ mesons, and no vector potentials are acted for Q.
The variable x, defined by the plus-component ratio of the
quark to meson momenta in free space,

x ¼ pþ
q

Pþ ¼ p0
q þ p3

q

P0 þ P3
¼ Eq þ p3

q

EM þ P3
; ð63Þ

will be modified in the medium by the scalar and vector
potentials.
For the qq̄ mesons, we define

p�þ
q ¼ p�þ

q̄ ≡ E�
q þ p�3

q ; ð64Þ

1The parameter β is related to the regulator mass mR
in Ref. [24].
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P�þ ≡ E�
M þ P�3; ð65Þ

x� ≡ p�þ
q

P�þ ; ð66Þ

and the longitudinal light quark (q) momentum is
modified by

x → x̃� ¼ p�þ
q þ Vq

ω

P�þ ¼ x� þ Vq
ω

P�þ ; ð67Þ

where the vector potentials for the q and q̄ cancel for the qq̄
mesons. With this new definition, we have to shift the
longitudinal quark momentum newly denoted by x → x̃�
because ðpþ

q ; PþÞ ≠ ðp�þ
q ; P�þÞ in computing the weak

decay constant in the medium,

x̃� ¼ x� þ Vq
ω

P�þ ; ð68Þ

and then, the weak-decay constant is calculated as

f�M¼2
ffiffiffi
6

p Z
1− Vqω

P�þ

− Vqω
P�þ

dx�
Z

d2k⊥
2ð2πÞ3

Φðx̃�;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx̃�Þ2þk2⊥

p OMðx̃�;k⊥Þ:

ð69Þ

As seen in Eq. (69), the integration limits of x� are shifted
by Vq

ω=P�þ. We then evaluate the equation by integration
over x�, which will give the same result as the decay
constant expression in Eq. (17). This can be understood
because the upper limit of the integration will cancel with
the lower limit of integration when integrating over x�. So,
the final expression for the decay constant in the medium,
using the variable x̃�, is given by2

f�M ¼ 2
ffiffiffi
6

p Z
1

0

dx̃�
Z

d2k⊥
2ð2πÞ3

Φðx̃�;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx̃�Þ2 þ k2⊥

p OMðx̃�;k⊥Þ:

ð70Þ

This equation shows that the scalar potential modifies the
weak decay constant in the medium through the effective
quark massm�

q [22], while the vector potential modifies the
energies but they cancel each other between the quark and
antiquark as in Eq. (70). Note that, since f�M is computed
with the plus current Jþ ¼ J0 þ J3 in the LFQM, we
cannot separate the time and space components, as dis-
cussed in Refs. [20,52].
For the qQ̄ and Qq̄ mesons, both the scalar and vector

potentials contribute explicitly to the meson four-momenta
and weak-decay constants. The longitudinal momenta for
the q and q̄ in medium are given by

x →

8<
:

x̃� ¼ p�þ
q þVq

ω

P�þþVq
ω
¼ x�þVq

ω=P�þ
ð1þVq

ω=P�þÞ ; for ðqQ̄Þ;
x̃� ¼ p�þ

q −Vq
ω

P�þ−Vq
ω
¼ x�−Vq

ω=P�þ
ð1−Vq

ω=P�þÞ ; for ðQq̄Þ:
ð71Þ

In such cases, we can define the variable of the
integration by

dx� ¼ ð1� Vq
ω=P�þÞdx̃�; ð72Þ

and the meson weak decay constants for the qQ̄ and Qq̄
mesons in the medium can be written as

f�M ¼ 2
ffiffiffi
6

p Z
1

0

dx̃�
Z

d2k⊥
2ð2πÞ3

�
1� Vq

ω

P�þ

�

×
Φðx̃�;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx̃�Þ2 þ k2⊥

p OMðx̃�;k⊥Þ: ð73Þ

Our final expressions for the weak-decay constants for the
heavy-light mesons with vector potential in the medium
are similar to those of the quark distribution in the
medium with vector potential obtained in Ref. [53].3

In the meson rest frame, we have P�þ ¼ E�
M þ P�3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�2 þ P2
p

þ P�3 ¼ M�. In our LFQM, the meson mass
should be replaced by the interaction-independent invariant
mass M�

0. However, in the case of the weak decay constant
for the qQ̄ and Qq̄ mesons, we obtain that the decay
constants are frame-dependent because of the Vq

ω=P�þ

appearance in Eq. (73). In fact, since Vq
ω is the time

component of the vector mean field obtained in the nuclear
matter rest frame, this should also be Lorentz transformed
for the general frame with nonzero relative velocity case
between the frames.
In Section V, we will present the results by dropping the

factor of ð1� Vq
ω=P�þÞ in the weak decay constants. This

can be understood as the average of the decay constant for
the meson multiplet as f� ¼ ðf�qQ̄ þ f�Qq̄Þ=2. Analogously,
this “average” will also be practiced for the calculation of
the in-medium modifications of DAs.

V. NUMERICAL RESULT

In this section, we present our numerical results for the
in-medium modifications of the weak-decay constants and
DAs for the light and heavy-light pseudoscalar and vector
mesons in symmetric nuclear matter. The results are shown
in Figs. 4–11. Before discussing the obtained results, we
first explain the model parameters of the LFQM and the
QMC model.

2x̃� is a dummy variable to emphasize the difference with x.

3The quark distribution with and without vector potential
differs by the factor of ðP̃�þ=P�þÞ [53], which is equivalent to the
ð1� Vω

q =P�þ → 1Þ in this work.
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A. Meson mass and weak-decay constant in free space

The model parameters of the LFQM (in free space) are
determined by fitting the mass spectra of the π and ρ
mesons, as practiced in Ref. [37]. The parameters deter-
mined are shown in Table I. With these parameters, the
predicted masses and weak-decay constants for the light
and heavy-light pseudoscalar and vector mesons are in
reasonable agreement with the data, as shown in Table II.
We note that a further improvement of the model can be
done by modifying the trial wave function and effective
Hamiltonian [38] and reference therein. Using the same
parameters given in Table I, we study the meson properties
in symmetric nuclear matter with the help of the QMC
model inputs for the in-medium light quark properties.

B. Nuclear matter

In this section, we explain the QMCmodel parameters as
well as those of the MIT bag model. The quark-meson
coupling constants are determined by the fit to the equation
of state (EoS) extracted by the empirical data.

1. Bag parameter

In the QMC model, the bag model parameters (ZN
and B) are fitted to the nucleon mass and the bag radius in
free space,

mN ¼ 939 MeV; ð74Þ

RN ¼ 0.8 fm; ð75Þ

together with the mass stability/minimization condition
which yield the bag pressure B and ZN values in free space.
Here, we show the results for two different values of the
quark masses with mq ¼ 5 MeV and 220 MeV. The values
of the obtained bag parameters are summarized in Table III.
The results for the RN dependence of nucleon mass in free
space for two different quark masses are also shown in
Fig. 1. It clearly shows that the nucleon mass is minimized
at a radius of 0.8 fm, as it should be by the stability/
minimization for the both quark mass values. It is worth
noting that the mq ¼ 5 MeV is the standard input value
in the QMC model [7]. In addition, when we use the
constituent quark mass, the values of the bag parameters are
insignificantly changing.

2. Equation of state

Here, we show the EoS of nuclear matter formq ¼ 5 and
220 MeV, where the bag parameters are determined in free

TABLE I. The quark masses and β parameters used in the
present work in units of GeV. The LFQM parameters are given by
a ¼ −0.724 GeV, b ¼ 0.18 GeV2, and αs ¼ 0.313 (this will be
modified in medium, to be discussed later), which are adapted
from Ref. [37].

mq ms mc mb βqq̄ βqs̄ βqc̄ βqb̄

0.22 0.45 1.8 5.2 0.3659 0.3886 0.4679 0.5266

TABLE II. The predicted masses and weak-decay constants of
the light and heavy-light pseudoscalar and vector mesons in
comparison with experimental data, adapted from Ref. [37]. The
bold-italic-font experimental data represents the model’s input.

Mexpt [MeV] Mtheo [MeV] fexpt [MeV] ftheo [MeV]

π 135 135 130 130
ρ 770 770 216 247
K 498 478 156 162
K� 892 850 217 256
D 1865 1836 206 197
D� 2007 1998 � � � 239
B 5279 5235 188 171
B� 5325 5315 � � � 186

TABLE III. The bag parameters are determined by reproducing
the nucleon mass (mN ¼ 939 MeV) and radius (RN ¼ 0.8 fm) in
free space for two different values of the quark masses. The
lowest positive eigenvalue xq and a constant SNðσ ¼ 0Þ, asso-
ciated with the scalar polarizability and used to define the gNσ
coupling constant, are also quoted. [See also Eq. (36).].

mq [MeV] B1=4 [MeV] ZN xq SNðσ ¼ 0Þ
5 170 3.295 2.052 0.483
220 148 4.327 2.368 0.609

FIG. 1. Dependence of the nucleon mass mN on the nucleon
bag radius RN for different values of the free space quark
masses, mq ¼ 5 and 220 MeV. The physical nucleon mass mN ¼
939 MeV (input) is achieved by the minimization condition,
dmN
dR jR¼RN

¼ 0 with the input RN ¼ 0.8 fm, by varying unknown
values to determine B1=4; ZN and xq. Once B1=4 and ZN are
determined by the minimization condition, RN dependence ofmN

is calculated with the fixed values of B1=4 and ZN , and with xq
obtained by solving j0ðxqÞ ¼ βqj1ðxqÞ (RN dependent), and all
the relevant values into the MIT bag mass formula Eq. (57) but
for the free space (σ ¼ 0).
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space. As shown in Table IV, the obtained coupling
constants gNσ and gNω for mq ¼ 220 MeV are slightly larger
than those for mq ¼ 5 MeV, where both cases are deter-
mined by fitting the negative of binding energy −15.7 MeV
at saturation density ρ0 ¼ 0.15 fm−3 (kF ¼ 1.305 fm−1).
Figures 2(a) and 2(b) display the total energy per nucleon

and effective nucleon mass versus nuclear density ratio
ρ=ρ0 for two different quark mass values, respectively. For
the larger quark mass value, the larger incompressibility K
is obtained. In comparison with empirical values of K, we
find that the obtained values of K for both cases are
consistent with the empirical range K ¼ 200–300 MeV
[54], although the K for mq ¼ 220 MeV is slightly larger
about 7%. The density dependence of the energy per
nucleon [ðEtot=AÞ −mN] for both quark mass cases have
very similar values up to ρ ≃ ρ0, and then they begin to

show the difference as nuclear density increases in the
range ρ≳ ρ0. Figure 2(b) shows that the effective nucleon
mass for mq ¼ 220 MeV decreases faster as nuclear
density increases than that for 5 MeV. The values of
incompressibility and the effective nucleon mass at satu-
ration density ρ0 for two mq values are given in Table IV.
Besides the energy per nucleon and effective nucleon

mass, we also show the mean-field potentials for the light
quarks, which should also apply to the light quarks in the
mesons. The mean-field potentials, Vq

ω and −Vq
σ are

depicted in Fig. 2(c). One can notice that the −Vq
σ potentials

have similar density dependence for both quark mass
values. This indicates that the slope of the effective quark
mass m�

q is rather similar, although the mq values in free
space are different as shown in Fig. 2(d). In addition, the Vq

ω

is slightly larger for mq ¼ 220 MeV than that for
mq ¼ 5 MeV, indicating that the light quark with a larger
mq value would experience more repulsion. (For a larger
value of e.g., mq ¼ 430 MeV, the differences for m�

N

and the light quark mean field potentials from those of
the mq ¼ 5 MeV become more evident [24].) Using the
obtained mean-field potentials for the light (anti)quarks and
the effective (anti)quark masses, we study the meson
properties in symmetric nuclear matter.
Recall that the effective quark mass in the nuclear

medium is nothing but the reflection of the attractive scalar
potential, and thus one should not regard that it should be

TABLE IV. Coupling constants and the incompressibility K
calculated by the QMC model. The bag model parameters
for each quark mass value are determined in free space. The
coupling constants are determined by the negative of binding
energy −15.7 MeV at the saturation density ρ0 ¼ 0.15 fm−3

(kF ¼ 1.305 fm−1). [See also Eq. (36).]

mq [MeV] ðgNσ Þ2=4π ðgNωÞ2=4π m�
N [MeV] K [MeV]

5 5.39 5.30 755 279
220 6.40 7.57 699 321

(a) (b)

(c) (d)

FIG. 2. (a) The total energy per nucleon [Etot=A −mN], minimized at the saturation density ρ0 ¼ 0.15 fm−3 with the negative of
binding energy −15.7 MeV, (b) the effective nucleon mass m�

N , (c) the mean-field potentials of Vq
ω and −Vq

σ , and (d) the light-quark
effective mass with mq ¼ 5 and 220 MeV.
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positive which applies to the usual physical mass of the
particle (mq and m�

q are not observables).

C. Modifications of αs in nuclear medium

Before addressing the weak-decay constant and distri-
bution amplitude in the nuclear medium, we comment on
the modifications of αs in Eqs. (13)–(15) in the medium.
As reported in Refs. [55,56] (and references therein), it is

important to satisfy the constraint on the in-medium Kþ
total potential that was extracted by heavy-ion simulation
and experimental data, which implies to be 20–30 MeV
repulsive at ρ0, or equivalently, the excitation energy
ωKþ ≡M�

Kþ þ Vq
ω (M�

K� ¼ M�
K;K̄) at ρ0 to be ωKþ ¼

MKþ þ ð20 − 30Þ MeV with MKþ being the free mass.
This constraint should also be satisfied in the present
approach. In the QMC model, ωKþ can be calculated
directly [55], but the naive result gives a small negative
value for the Kþ total potential at ρ0. To satisfy the
constraint, one may consider a density dependence of
the bag constant B [57], and/or the scaling of the kaon
vector potential. However, in the present study, we consider
the medium modifications of αs, which may also play an
important role to reproduce the small positive value of
the Kþ total potential at ρ0. To see the behavior of αs in the
nuclear medium, we choose two naive functional forms of
the in-medium α�s for this exploratory study,

α�s ≡
(
α�sð1ÞðρÞ ¼ αsð1 − b1ρ̂Þ;
α�sð2ÞðρÞ ¼ αs

1þb2 lnðρ̂þ1Þ ;
ð76Þ

where ρ̂ ¼ ρ=ρ0 and dimensionless parameters b1 ¼ 0.534
and b2 ¼ 1.650 are obtained to satisfy the constraint
on ωKþ . The results for the α�s and ωKþ ¼ M�

Kþ þ Vq
ω

are shown in Fig. 3. To date, it is not well known how large
the reduction of α�s is in the medium, although it is expected
that α�s should decrease as the nuclear density increases,
since the Fermi motion makes the (light) quarks more
energetic, and by the QCD’s asymptotic freedom. Using the
two α�s functional forms, we have determined the param-
eters ðb1; b2Þwithout scaling the vector potential for theKþ

meson (automatically forK and K̄ mesons). If the empirical
data are available for the K− meson, i.e., ωK− ¼ M�

K− − Vq
ω

(M�
K− ¼ M�

Kþ), we can deduce whether a scaling for V
q
ω for

K� mesons are necessary or not. Using the two different
density dependencies, we simulate the modifications of α�s in
the nuclear medium as shown in Fig. 3. The results clearly
show that more reduction of α�s results in more repulsion for
the total Kþ potential (ωKþ). Recall that the αs in free space
dictates the strength of the attractive Coulomb-like potential
coming from the one-gluon exchange.We note that αs is also
modified at finite temperature [58].
Moreover, in this study, instead of considering the meson

loop mechanism applied for the studies of mass shifts of
quarkonia (with no light quarks) in medium [9,10], we

apply the in-medium modifications of α�s “effectively” for
all the quarks treated in this study, according to the quark
flavor blindness of QCD. A more rigorous analysis of the
meson mass shift in the medium with more elaborated
density-dependent αs and β is left for future studies.

D. Weak-decay constant in nuclear medium

Next, we discuss the medium modifications of the
averaged weak-decay constants of the light and heavy-
light pseudoscalar and vector mesons, namely, without
the influence of the vector potentials for the ratio of
RM ¼ f�M=fM with M ¼ P, V mesons. The results are
shown in Fig. 4. On the effects of the vector potentials
for the unequal quark mass mesons (qQ̄ and Qq̄) such as
Kð�Þ; Dð�Þ, and Bð�Þ, the results are shown in Fig. 5.
For the lightest pseudoscalar meson, the pion, the ratio

of Rπ without vector potential is around 0.5 at ρ ¼ ρ0,
showing that the pion weak decay constant in the medium
becomes appreciably reduced relative to that in free space,
which is consistent with that computed in the BSA
calculation with the mass regulator [22,23]. In comparison
with the deeply bound pionic atom experiment, our result is
smaller than the empirical value R2

π ≈ 0.64 [2]. We also
notice that the reduction is sensitive to the quark mass value
used. We separately check for the larger mq value and the
less reduction is obtained, which is consistent with the

(a)

(b)

FIG. 3. (a) Modifications of α�s in the nuclear medium with two
different forms, and (b) Kþ excitation energy Kþ at rest, ωKþ ≡
M�

Kþ þ Vq
ω (M�

K� ¼ M�
K;K̄) in the nuclear medium. We have

determined the parameters to reproduce the repulsive Kþ total
potential, ωKþ ¼ M�

Kþ þ Vq
ω ¼ MKþ þ ð20 − 30Þ MeV at ρ0.
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BSE-NJL model results in larger quark mass [16,18].
However, overall, our predicted results are consistent with
other theoretical calculations, namely, the weak-decay
constant decreases as the nuclear density increases.
While results for the RK , RD, and RB without vector

potential are found to have smaller reductions, which
are approximately about 0.8–0.9 at ρ ¼ ρ0, as shown in
Fig. 4(a). Also, it shows a large reduction of Rπ , compared
to the other pseudoscalar mesons. This can be understood
by the fact that the pion contains purely light quarks and
antiquark, and the two light quarks are subject to feel
stronger medium effects since the light quark chiral
condensates reduce faster as the nuclear density increases
than those of the heavier quarks. In contrast, the quark
condensates for the s, c, and b quarks change very slowly
and a small amounts in the nuclear medium. (See again
the discussions made in the introduction part of Ref. [51].)
The in-medium weak decay constant ratios at ρ0 follow the
order as

1 >
f�B
fB

>
f�D
fD

>
f�K
fK

>
f�π
fπ

: ð77Þ

For the heavy-light mesons, again it is clearly shown that
the reductions of the weak-decay constants are less pro-
nounced. This is because the medium effect becomes

smaller relative to the masses of the heavy quarks and
they weakly couple in the medium. (In the present
approach, mean fields do not couple directly to the heavy
quarks at the lowest order.)
Now, we discuss the crucial role of the vector potential

(�Vq
ω for q and q̄) on the in-medium weak-decay constants

for the positively and negatively charged states for K�; D∓
and B�. Figure 5 demonstrates that the effect of Vq

ω on the
ratios of the in-medium weak-decay constants obviously
depends on the light quark contents that are controlled by
the term of ð1� Vq

ω=M�
0Þ. It shows that the differences in

the weak-decay constant ratios for the heavy-light mesons
with opposite charge states are getting suppressed as the
mesons become heavier, since the invariant meson massM�

0

appearing in the denominator becomes larger, and thus the
effect of the vector potential is relatively suppressed byM�

0.
Therefore, the effect of Vq

ω is more pronounced for the
lighter mesons, and suppressed for the heavier mesons.
For the light and heavy-light vector mesons, the ratios of

the in-medium weak decay constants are RV ≃ 0.95 at ρ0
without the vector potential. The order of the ratios for the
in-medium vector meson decay constants have opposite
order to those for the pseudoscalar mesons:

f�B�

fB�
<

f�D�

fD�
<

f�K�

fK�
<

f�ρ
fρ

< 1: ð78Þ

(a)

(b)

FIG. 4. The ratios of weak-decay constants in-medium to free
space, f�M=fM, versus ρ=ρ0 for (a) pseudoscalar and (b) vector
mesons. For the unequal mass mesons (qQ̄ and Qq̄), the
averaged decay constants without the vector potential Vq

ω are
presented. (See Sec. IV.) The effects of the vector potential are
shown in Fig. 5.

FIG. 5. Weak-decay constants in symmetric nuclear matter with
the vector potentialVq

ω versus ρ=ρ0 for unequal quarkmass mesons
(qQ̄ andQq̄),K,D, andBmesons. The impact ofVq

ω is in a similar
order for the pseudoscalar and vector mesons corresponding to the
quark flavors s, c and b (and their respective antiquarks). The effect
is more suppressed for heavier flavor mesons.
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Also, it is found that the differences among the ratios of the
different vector mesons are rather small as can be seen in
Fig. 4(b). Moreover, the effect of the �Vq

ω for the in-
medium vector meson decay constants have a similar
tendency to that for the pseudoscalar mesons, as shown
in Fig. 5. However, the magnitude of the ratios is different
from that for pseudoscalar mesons, in particular for K��.
The different behavior of RM between the pseudoscalar

and vector mesons can be qualitatively explained by the
weak-decay constant formula. For instance, the operators
in Eqs. (18) and (19) for π and ρ mesons, which are
respectively given by

O�
P ¼ m�

q; ð79Þ

O�
V ¼ m�

q þ
2k2⊥

M�
0 þ 2m�

q
: ð80Þ

If we assume SU(6) symmetry, the difference between the
in-medium decay constant of π and ρ mesons comes from
the second term of O�

V. Since m
�
q decreases in the medium

as density increases, the first term ofO�ð1Þ
V decreases, while

the second term O�ð2Þ
V increases as density increases. For

this reason, the decay constant for the π meson is
significantly reduced in the medium.
The results for the weak-decay constants of ρ meson as

well as the other vector mesons are found to be almost
constant and nearly without the influence of medium effect,
due to the competing contributions between the two terms
for the total vector-meson decay constants as shown in

Fig. 6. One can see that the second term O�ð2Þ
V in Eq. (80)

dominates at ρ0, while the first and second terms contribute
rather similarly to the decay constant in free space. For

heavy-light vector mesons, the contribution from O�ð2Þ
V is

rather suppressed even in free space due to heavy-flavor

quark mass. As a result, the medium modifications of
f�P=fP and f

�
V=fV for the heavy mesons are rather similar as

shown in Figs. 4(a) and 4(b).
In the following, we study the effect of the different

quark mass values mq on the weak-decay constant f�ρ. To
do so, we usemq ¼ 0.430 GeV so that we can compare our
result with that obtained in Ref. [24], although they
calculated in the light-front constituent quark model
based on the BSA approach with a regulator mass, while,
in the present work, we employ the Gaussian parameter
with βqq̄ ¼ 0.330 GeV to reproduce the empirical value
fexptρ ¼ 269 MeV. Results with the two values ofmq, 0.220
and 0.430 GeVare shown in Fig. 7. The results of the f�ρ=fρ
ratio with mq ¼ 0.220 GeV smoothly decrease as density
increases, while the result with mq ¼ 0.430 GeV slightly
increases as the density increases.
Similar behavior of the weak-decay constants can be

found for the other vector mesons in our approach. The
increase of f�ρ in medium with mq ¼ 0.430 GeV is also
observed in Ref. [24], however, it shows an oscillating
behavior as nuclear density increases. Note that, the
increasing rate is smooth in the present approach, as seen
in Fig. 7. The differences in the f�ρ increasing behavior with
that of Ref. [24] may be attributed to the use of the invariant
mass M0 in the present approach. Overall, our result for
the in-medium ρ meson decay constant f�ρ with mq ¼
0.430 GeV is consistent with Ref. [24]. We argue that the
moderate increase of f�ρ in the present approach can be
attributed to the use of the invariant massM0 in calculating
the weak-decay constant, which is a special aspect of the
present LFQM, where it was shown in Ref. [36] that the use
of the invariant mass M0 enables to calculate the ρ-meson
weak-decay constant from various light-front current com-
ponents and polarizations, and it can produce the weak-
decay constant self-consistently.

FIG. 6. Contributions of the first term O�ð1Þ
V ¼ m�

q and the

second term O�ð2Þ
V ¼ 2k2⊥=ðM�

0 þ 2m�
qÞ of the operator O�

V for
the weak-decay constant of ρ meson in medium versus ρ=ρ0.

FIG. 7. Ratios of f�ρ=fρ for different quark mass values versus
ρ=ρ0. The Gaussian parameter βqq̄ is fixed to reproduce the decay
constant fexptρ , when we use mq ¼ 0.430 GeV.
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E. Distribution amplitude in nuclear medium

Here, we present our final results for the in-medium DAs
of the light and heavy-light pseudoscalar and vector
mesons. We set the longitudinal momentum x carried by
the light quark q in ðqQ̄Þmeson and by antiquark q̄ in ðQq̄Þ
meson. Furthermore, for simplicity, we present the average,
or equivalently, the results calculated without the vector
potential Vq

ω. The in-medium DAs for the pion and kaon are
presented in Fig. 8, while those for the ρ and K� are shown
in Fig. 9, and those for the heavy-light pseudoscalar and
vector mesons are depicted in Fig. 10.
In Fig. 8, the calculated DAs for the pion (upper panel)

and kaon (lower panel) are compared with the predicted
asymptotic ones (dotted line) as well as the recent lattice
QCD data (green shaded region) [59]. Very recently,
another lattice QCD result for pion DA is reported [60]
and they find that their result lies within the green shaded
region that obtained in Ref. [59]. We observe that the pion
DA in free space [40] is consistent with the recent lattice
QCD results. In the medium, the pion DA becomes flatter
with the value approaching unity at ρ ¼ ρ0, but the x

dependence of DA becomes broadened. This is expected
due to the reduction of the quark mass m�

q in the medium,
reflecting the effect of the partial restoration of the
chiral symmetry.
Results for the kaon DA in free space as well as in a

medium are shown in the lower panel of Fig. 8, where the
result in free space is calculated with the parameters of
Ref. [40], and has a reasonable agreement with the lattice
QCD data especially in the x < 0.5 region. However, the
kaon DA in free space overestimates the lattice data in the
0.5 < x < 0.8 region and underestimates the asymptotic
prediction in the small x region. Compared with the lattice
QCD data, the kaon DA is consistent with lattice data in the
near endpoint region at x → 0. However, at the near-end
point x → 1, the result is suppressed and shows different
behavior from the lattice QCD data. It is worth noting
that the fast suppression of the kaon DA near the endpoint
x → 1 may indicate that the kaon DA is sensitive to the
choice of the radial wave function. In Ref. [61], the authors
compared the twist-3 DA of pion and kaon with two
different trial wave functions, i.e., the Gaussian and power-
law radial wave function. One of the apparent differences
is that the DA near-end point with the power-law wave
function is more enhanced as compared with the Gaussian
one. Recall that the Gaussian radial wave function is

FIG. 8. In-medium DAs of the pion (upper panel) and kaon
(lower panel) with several densities versus longitudinal momen-
tum x. The lattice QCD data in free space is represented by a
green-shaded region, which is taken from Ref. [59]. The
predicted results for the DAs in the asymptotic region are
represented by the smallest dotted lines.

FIG. 9. In-medium DAs of the ρ (upper panel) and K� (lower
panel) vector mesons versus x for several densities. See also the
caption of Fig. 8.
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employed in the present work. Furthermore, the DA near
endpoints cannot be computed by the lattice QCD directly,
the values are obtained from a phenomenological extrapo-
lation that may give some ambiguity [59]. Another possible
source of discrepancy is the SU(3) flavor symmetry-break-
ing effect. In this work, the ðmq;msÞ ¼ ð220; 450Þ MeV is
taken which shows a considerable difference. A smaller
quark mass difference may be favored as far as the lattice
data are concerned. Further analysis of the kaon DA in free
space is needed by modifying the trial wave function to get
the best fit to the lattice QCD. As for the kaon DA in the
medium, it is found to have the largest reduction at around
x ¼ 0.2, whose peak slightly moves to the larger x region,
since the (effective) mass difference between the light
quark and the strange quark in the medium is enhanced.
Results for the ρ and K� DAs are shown in the upper and

lower panels of Fig. 9, respectively. The DA for the ρ is
consistent with that for the asymptotic result. The ρ DA is
moderately modified in the medium. However, the K� DA
shows different behavior from the asymptotic results. It is
shifted to the smaller x region, which is expected due to the
SU(3) flavor symmetry breaking in the quark masses.
Similar to the ρ DA, the K� DA is moderately modified
in the medium, as shown in the lower panel of Fig. 9. Note
that the small-medium modifications of the vector meson
DAs are in conformity with the small reduction of f�V in
medium, as shown in Fig. 4.
Our results for the heavy-light meson B;D;D�, and B�

DAs are shown in the left and right panels of Fig. 10. The
results indicate that the heavy-light meson DAs are nearly
unmodified in the medium. A similar reason for the kaon
with the strange quark content, can be understood by the
heavy quark contents of the heavy-light mesons, where the
heavy quarks are not modified directly in the medium.

Since the smaller in-medium DA modifications for the
light and heavy-light mesons cannot easily be seen from
the results shown in Figs. 9 and 10, respectively, we show
the difference between the DAs in the medium [ϕ�

MðxÞ] and
in free space [ϕMðxÞ], defined by

ΔϕMðxÞ ¼ ϕ�
MðxÞ − ϕMðxÞ: ð81Þ

The DA differences in free space and in the medium are
shown in Fig. 11. The effects of the in-medium modifica-
tions of DAs are more evident for each meson. The results
show that the effects of the in-medium modifications are
not negligibly small for the heavy-light mesons B;D;D�,
and B�, in particular, at small x. However, the medium
effect for the B and B� mesons is almost negligible at
around x > 0.5, and the medium effect for the D and D�
mesons is also negligible at around x > 0.8. Figure 11
clearly shows that the medium effect on the DAs for the
light pseudoscalar meson is more pronounced compared
with that for vector mesons. Also, the medium modifica-
tions of DAs for the light pseudoscalar mesons are similarly
larger than those for the weak-decay constants compared
with the other mesons.

VI. SUMMARY

To summarize, in the present work, we have investigated
the in-medium modifications of the weak-decay constants
and distribution amplitudes (DAs) of the light and heavy-
light pseudoscalar and vector mesons. For this purpose, we
have constructed a combined model based on a light-front
quark model (LFQM) that describes the meson properties
both in free space as well as in a nuclear medium based on
an equal footing, and the quark-meson coupling (QMC)
model to simulate the medium effects on the (light) quarks.

FIG. 10. Same as in Fig. 9, but for the DAs of Dð�Þ and Bð�Þ in medium.
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The in-medium quark properties are modified by the self-
consistent scalar and vector mean fields generated by the
surrounding nucleons. It is evident that the light quark mass
is reduced in the medium, reflecting that the chiral symmetry
is partially restored. We note that the present approach is
similar to that was practiced in Refs. [22–24], but we use a
different approach, a more QCD dynamics-motivated light-
front quark model with the Gaussian wave function.
We have found that the weak decay constants for the

pseudoscalar mesons with light-light quark contents
decrease relatively faster in the medium as nuclear density
increases compared with those for the vector mesons with
the light-light and heavy-light quark contents (as in Fig. 4).
For the less pronounced in-medium modifications of the
vector meson decay constants are, due to the competition
between the decreasing and increasing contributions of the

O�ð1Þ
V and O�ð2Þ

V operators in the medium. We should note
that the medium modifications of weak-decay constants are
sensitive to the choice of the free space quark mass value.
The use of the larger values of the quark mass value leads to
a less reduction of the weak-decay constant.
The role of the vector potential Vq

ω is also studied for the
mesons with heavy-light mesons (as in Fig. 5). We have
found that the vector potential modifies differently the
decay constants within the meson multiplet members,
namely for the different charges (isospin) cases, by a factor
ð1� Vq

ω=M�
0Þ. Also, we have found that the trend for the

effect of the vector potential is similar for the pseudoscalar
and vector mesons, but the effect is much more suppressed
for the heavy mesons due to the factor by the invariant
mass, 1=M�

0.
Interestingly, we have found that the pion and kaon DAs

are more modified in medium among all the mesons studied
in the present study. The medium modifications of DAs can

be clearly visualized by calculating the DA differences in
free space and in a medium, namely by calculating
ΔϕMðxÞ ¼ ϕ�

MðxÞ − ϕMðxÞ (as in Fig. 11). It is found that
the shape of DAs in medium has large enhancement in the
endpoint regions, while it is reduced in the moderate x for
the light mesons. The enhancement near the endpoint at
x → 1 is smeared and shifted to the lower x region.
We expect that the present results may provide useful

guidance for constructing more sophisticated models based
on the quark degrees of freedom to investigate the in-
medium properties of the light and heavy-light pseudoscalar
and vector mesons. Also, the present study will provide
useful information on the possible meson-nuclear bound
states, that are planned to measure in the modern experiment
facilities [62–64]. Furthermore, the experiment via the pionic
or kaonic Drell-Yan reaction process with the heavy nuclear
targets can be a way to probe the modifications of DAs in
nuclear medium and nuclei [65]. In principle, our present
approach can be applied to investigate various meson
properties in medium, for instance, in-medium meson
electromagnetic form factors. Such studies are underway.
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