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The nucleon energy-energy correlator (NEEC) was proposed recently [X. Liu and H. X. Zhu, Phys. Rev.
Lett. 130, 091901 (2023)] as a new way of studying nucleon intrinsic dynamics. In this work, we present a
detailed derivation of the factorization theorem that enables the measurement of the unpolarized NEEC in
lepton-nucleon collisions. As a first step toward a precise measurement of this quantity, we obtained the
next-to-leading-logarithmic [NLL, ~O(aL"!)] resummation in a concise analytic form, and predicted
the analytic @-angle distribution at O(a?). Extending our analytic resummation formula to higher
logarithmic accuracy and the factorization theorem to hadron-hadron collisions is straightforward.
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I. INTRODUCTION

Understanding the intricate internal structures of nucle-
ons is at the central focus of nuclear physics for decades,
and will continue to be the scientific frontier within the
Standard Model at the next generation QCD facilities such
as the upcoming electron-ion collider (EIC) [1-3]. In recent
years, our approaches to nucleon/nucleus tomography have
been substantially enriched, thanks to the introduction of
innovative ideas into the field, such as the jet-based studies
of the transverse momentum dependent (TMD) structure
functions [4-20]. However the intricate jet clustering
process usually presents challenges in achieving accurate
predictions. Recent advances in this direction can be found
in [7,21]. Alternative methods to jets, such as the energy-
energy correlator (EEC) [22-30] have also been shown to
be effective in uncovering the intrinsic transverse dynamics
[31-33] or the scales of the quark-gluon plasma [34].

Recently, a novel quantity named the nucleon energy-
energy correlator (NEEC) has been proposed as a new look
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into the nucleon partonic structures [35]. The NEEC probes
the initial-final state correlation and takes the form in the
momentum fraction z space as [35,36]

fqrEc(z,0)

-/ D i Pl () L 2O, 0)1P). (1)

for the quark NEEC. The gluon NEEC will be given later.
Here y, represents the gauge invariant quark field in the
soft collinear effective theory (SCET) [37-41]. The defi-
nition is equivalent to that of QCD by noting that
(Y )2a(0) = W (y™)L]y. Oy (0), where L[y~ 0] denotes
the gauge link between 0 and y~. £(6) is the asymptotic
energy flow operator that measures the energies from the
initial nucleon flowing into the calorimeters sitting far away
at angles less than 6. It is the cumulant version of the
seminal energy flow operator defined in [42-45] and is
straightforwardly obtained by integrating the energy flow
operator in [42-45] over the solid angles less than a
given value 6. The differential NEEC can be obtained
by taking the derivative of Eq. (1) with respect to the 6.
The energy flow at nonzero angles is induced by the
intrinsic transverse dynamics. In this sense, studying the
0 distribution of the NEEC allows us to extract informa-
tion on the intrinsic transverse dynamics of the nucleon/
nucleus. The Mellin moment of the NEEC is given by
J dzz""! fgpe(z, 0). Extension of the NEEC to multiple
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FIG. 1. The measurement proposed in Ref. [35] as a probe of
the NEEC, where the energy E;(0) in the forward detector is
recorded. Bjorken-x; and Q? are also measured.

A

angular correlators by inserting more & operators at
different angles is also attainable.

In Ref. [35], the deep-inelastic scattering (DIS) process
illustrated in Fig. 1 is suggested to extract the NEEC,
in which the energy-weighted cumulant cross section is
measured such that

Z/daxB,Q ,Di)

Here N > 1 is a positive power and do is the differential
cross section. xj is the Bjorken variable and Q the photon
virtuality. The polar angle 8; of the calorimetry is measured
with respect to the nucleon beam. p; denotes the momen-
tum flow into the calorimetry and Ep the energy of the
incoming nucleon. In this work, we follow Ref. [35] to stick
the measurement to the Breit frame. We note that exper-
imentally X itself is hard to measure, but it is easy to get
the measurable € distribution by taking the derivative with
respect to 8, dXy/do.

The authors of Ref. [35] argued without proof that when
0 < 1, Zy(xp, Q) can be factorized into the partonic DIS
cross section 6 and the NEEC to be probed

20(0%.0) = [ duy /1 = <x3>f,EEc(z 0. ()

1

g, 00-0). ()

Similar measurement without the x}~' weight has also
been suggested as a possible access to the gluon saturation
phenomena [36] through the € distribution of the NEEC.

However, to reliably extract the NEEC and apply it to
the nucleon/nucleus structure studies, the factorization
theorem for the X (Q?, 0) needs to be reliably established.
Meanwhile, sufficient theoretical precision is also required.
These serve as the major goals of the current work. In this
work, using the SCET framework, we derive the factori-
zation for Xy (Q?, 0). As a first step toward its precision, we
carry out the analytic next-to-leading-logarithmic (NLL)
resummation for the Xy(Q?% 6) when @ is small and

matched onto the O(«,
6 becomes large.

The manuscript is organized as follows. In Sec. II, we
show sufficient details on deriving the factorization theorem
using SCET. The section will also present the operator
definition of the NEEC fggc. In Sec. III, we showed that
when 00 > Agcp, the fggc can be further matched onto the
collinear parton distribution functions (PDFs) with a per-
turbatively calculable matching coefficient. We discuss its
evolution in Sec. IV. We calculate all ingredients required for
the NLL resummation in Sec. V and predict the small 6
distribution at O(a?). The numerical consequence of the
resummation and the fixed order a? @ distribution are studied
in Sec. VI. We summarize in Sec. VIL

2) fixed order @ distribution when

II. THE FACTORIZATION THEOREM

In this section, we derive the factorization theorem
for Zy(0% 60) when 60 < Q using SCET [37-41].
Throughout the work, we stick to the Breit frame in which
the virtual photon only acquires the momentum in its z
component with ¢ = (0,0,0,—Q) and the proton carries
the momentum P = Q (1 0,0, 1). However, the factori-

zation theorem to be derlved is applicable to arbitrary
frames.

The cumulant cross section Xy(Q?,0)
calculated by

can be

o>
ZN(QZ’ 0) = Q4/dexB IZ queg,ﬁ,w

A=T,L

x/d4xei‘1'x<P|j”T(x)é’(@)j”(oﬂP), (4)

where e, is the electric charge fraction of the quark
initiating the DIS process. Here, we have written the lepton

G d)lyo =5 Sd)chQ2 and up to

vanishing contribution due to the gauge symmetry, we have

phase space integral as

4x?
Z 6;",;467".1/ = _g;w =+ _fpypw
T=1,2 Q
4x?
€L ;4€LJ/ Q—QBPﬂPlH (5)

with €} and ¢ the transverse and longitudinal polarized

vector of the virtual photon, respectively. The correspond-
ing flux is given by

2

fr=1-y+2,

S fu=2-20 0 (9)

where y = The inserted normalized asymptotic energy

flow operator & (0) measures the energy deposited in the
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detector less than a given angle @ [42-45] normalized to the
energy Ep of the incoming proton,

Bo)x) =" re0-0)x). 7)

iex P

The normalized asymptotic energy flow operator & ()
defined here is related to the energy flow operator defined
in [42-45]. The latter can be obtained by taking the
derivative with respect to the polar angle # and without
integrating over the azimuthal angle ¢. We note that if we
replace £(0) by the identity operator 1 =3, |X)(X|,
Eq. (4) reduces to the definition of the standard DIS
cross section.

When 60 <« Q, a possible leading contribution to the
2y (0%, 0) comes from the hard degrees of freedom (H)
whose momentum scales as' py = (pi. Py Pus) ~
Q(1,1,1), the collinear contributions (C) with momentum
pc~0Q(1,6%,60), and the soft modes (S) with pg~
Q(6“,0%,6%) with a > 1. However, we note that the energy
flow operator £ (0) acts only on the collinear sector. To see
this, we first decompose the final state as |X) = |XyXX5),

and apply the £(0) to find

BO)X) = 13" (En 80~ 04,) + Ec,0(0 - 0c.)

Piex
+ Es;0(0 — 05,))| Xt X\ Xs). (8)

Now for the hard radiations, by power counting, 6y ; ~
% ~ 1> 0 and the ©(0 — 0y ;) will hardly be satisfied and

therefore the first term in Eq. (8) vanishes in the small 6

limit. On the other hand, in the last term, Eg; ~ 60 is
also power suppressed as 8 — 0 when compared with
Ec; ~ Q. In this way, up to power-suppressed corrections,
we find

E(0)1X) = > Ec.0(0 = 0c,)|Xn)|Xc)|Xs)

i€Xe

= (E(0)1Xc)|Xu) Xs). ©)

and we conclude that in the small-0 limit, the

measurement & (@) is an operator living solely in the
collinear sector and acts inclusively on the hard and
the soft radiations.

To proceed, we follow [41] to match j#T£(6);* to the
SCET operators O, and O, with

'Throughout this work, we use the Sudakov decomposition, in
which p* =p°+p*=n-p and p~ =p°—p*=n-p. Here
n=(1,0,0,1) and 7 = (1,0,0,—1) while p,-n=p, -1 =0.

(PIj*(x)€(0)*(0)|P) = C§'(P|O,|P) + C (P|O,|P).
(10)

where C) ~are the hard matching coefficients to be

determined and C}” starts at O(a;). The SCET operators
are defined as

0,(x.0) = 2,(Y (1) £(0)¥(0)2,0).
0,(x.0) = B (Y (EOYO)BL0). (11

which contains only the gauge invariant collinear quark and
gluon fields y and B, respectively [46], which are

B =L Wit w, (). (12)

s

() = Wh(x)&, (),

We note that both y and B, scale as 6 by power
counting [37]. Here the collinear Wilson lines are

W= Yoo (zLonaw). (3

perms

to make y and B, gauge invariant. We also have the soft
Wilson lines Y and ) in the fundamental and the adjoint
representation, respectively. The soft Wilson lines decouple
the interaction between the collinear and the soft sectors.
Here we note that

.Y =Y =0, (14)

since £() and Y () act on different sectors. Furthermore,
the collinear fields have support in the region where x* ~
Q7!(1,072,67"), while the soft field within the region
X~ Q7N 07, 079,07%).

The hadronic matrix element in Eq. (4) is then matched
onto the SCET matrix as

/ e (P (x)E(6)* (0) P)
- / d4xefq~x(c’;”m<P|;zn<x>w<x>§é<e>¥<o> L(0)[P)

+CZ”(X)<P|BL(X)LVT(x)g(H)y(O)l’ﬁ(O)|P>), (15)

where ¢ ~ Q(1, 1, 1), and hence the x in the hadronic tensor
scales as x ~ é (1,1,1), determined by the Fourier trans-

formation [ d*xe'?* which receives its dominant support
when x ~ é (1,1,1). Physically this means a large
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momentum transfer Q to the nucleon probes the position
region x ~ 1/Q inside the nucleon.

We perform a multiple expansion in the collinear fields
and the soft Wilson lines to find

[ deriplinwi@r o)
= [ atse (cx Pl r 0 0001
O WPIBL Y OFOYOBOIF)). (19

To understand the expansion, we note that since the
momentum for the collinear fields, ¢, = y or B, scales
as p* ~ Q(1,60%,0), it follows that #¢, ~ Q(1,6°,6) with
respect to ¢.. While since x ~ é (1,1, 1), it is immediately
realized that ¢.(x)~ ¢.(x~,0) +x -0, ¢, + %a_q’)c =
do(x7) +O(0) + O(6?). A similar analysis applies to
the soft Wilson line Y, which leads to Y'(x)~
YT(0) +x - oY" = Y(0) + O(6).

Now we use the commutation relation between Y ()) and
£ in Eq. (14) and the identity Y'Y = )’} = 1 to reach

/ dxeis* (P|j(x)£(6)* (0) P)
= [ atse (x5 Eo 01
+ c';”<x><P|Bl<x->é<9>sl<o>|1>>). (17)

From the derivation, we see clearly that in the small-8 limit,
the measurement is fully inclusive of the soft radiations,
and therefore the soft modes do not lead to any logarithmi-
cally enhanced contributions. This is different from the
conventional TMD measurement, where the soft radiations
contribute to the leading region which eventually gives rise
to the perturbative Sudakov factor that suppresses the small
transverse momentum region exponentially.

Now we plug the hadronic tensor into Eq. (4) to find the
weighted cross section Xy takes the form

2
(Q2 ) Q4/dexB IZ eqfﬂe/lﬂeﬂy

A=T.L

« [ atsees(crpim o L EomO)P)
L WPBOZOBOIR). (9

We further manipulate the Zy(Q?,6) by inserting the
complete set 1 = |X)(X¢| of the collinear sector into the
hadronic tensor, and then perform the translation operation

in x7, ie. (Plg,(x7)[Xc) = (PIT'T,(x")T'T|Xc) =
(PleP"*77,(0)e™PcT|X ), where T is the translational
operator in x~ and P{ is the large component of the
momentum for the collinear radiations, to find

ZN(QQ, 6)

a?
_ N-1 24 ok
= Q4/dexB E eqf,lel’”ei,,,

A=T.L

x P+ / dzs((1 —z)PT — P’CL)/d4xeiq'Xei(P+‘PZ)%

 (CFOPI0) 5 2O Kl 0)P)
+ O PIBL 0RO KB O ). (19

where we have inserted the identity P [dz5((1—z)P' —
P{) to define the variable z. Here Pl is the large
component of the momentum for the collinear radiations.
Now we replace (P — P{) % in the exponent by zP" 5 =

zP - x, where we have used P~P"% up to O(AQCD)

corrections. With further noticing that 5((1 )Pt - P+)

[ eil1-2)Pr=p ¢Ir, and by applying the translation oper-

ation on <P|...|Xc>, we find the Xy (Q?, 6) possesses the
factorized form

ZN(QZ,Q)I/CZXBX%"/dz(Hq(z,xB,Qz)fq,EEC(Z,ere)
+H9(Z’x3’QZ)fg.EEC(ZvP+9))’ (20)

where the hard coefficients H q and H g are defined as

Z e f i€} u€in / d*xe! PO (x) P,

/1TL

Z qfﬁejﬂeﬂy/d4xei(q+ZP).xCZl/<X)- (21)
l T.L

And the collinear functions are
fq.EEC(Z» P+9)
= [ Lo, (S ) e OO @2
4z "\ 2 2 "
for the quarks, and
fg,EEC(Zﬂ P0)

= /Cge_"ZPHZPWHBL <y2_n”)é(9)6l(0)|13>
(23)
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for the gluon. These furnish the operator definition for the
quark and gluon nucleon energy-energy correlator in the
momentum space, respectively.

We can further derive the hard coefficients H, and H, by

noting the following:

(i) The above derivation follows closely the SCET
derivation of the DIS cross section in [41], except
for the existence of the collinear operator £(0).

(i) Once replacing £(0) by the identity operator
1 =3y |X)(X| within the NEEC f; ggc, we recover
the operator definition for the collinear PDF f;(z).
Meanwhile, Egs. (4) and (20) reduce to the standard
inclusive DIS cross section.

(iii) The hard coefficients are independent of the details
of the collinear sector, and therefore unaffected
whether we place the £(6) or the identity operator
in the collinear function.

Immediately, we reach the conclusion that the hard func-
tions satisfy

lA Xp 1,\ XpB
quzgq<?,Q2>, Hg220g<?,Q2>, (24)

and are nothing but the DIS partonic cross sections. And
therefore

Zy(Q%.0)

— Z/dexB /—Ai(xf,

1=4.9

Q2>fi,EEC(Z’ Pro).
(25)

One can observe from the factorization theorem that the 6
dependence of Xy (Q2 6) is entirely through the fggc,
and thus measuring Xy (Q?, 6) directly probes the NEEC.
The derivation also holds for the measurement without the
xN=! weighting, as proposed in Ref. [36], and the factori-
zation is similar to what we have obtained by taking out
the integral over xp, which is nothing but the second line of
the above equation.

When 6P" >> Agcp, as shown in the following section,
the NEEC can be matched onto the collinear PDFs, with all
6 dependence occurring only in the perturbative matching
coefficients. In this way, since fEEc is dimensionless, the
P*0 will show up in the form of In ¢ m ¢ Therefore, Xy could

also be written as’

Due to the flux term f;(y) term from Eq. (6) in the partonic

cross section 6; with y = ,sz = TT’ Eq. (26) should be written as

a linear combination of different effective weights N — i, for
each y'. However, terms with one power higher in y will be

suppressed by % for Q% < s.

Z/dMMN 16; M 0 )szEC(N th/f)

1=4q.9

where u = "73 and we have used the fact that P™ = % =2

in the Breit frame. The x4 dependence in other forms
through the strong coupling and the collinear PDFs are

suppressed in the f;ggc, where f;ggc(N, In2Y) is the
NEEC in the Mellin space,

fiEEC (N IHQ—/:9> = AldzzN_lf;,EEc <Z,ln%)- (27)

To simplify the notation, we introduce the ® product,
defined as

up )

/Hdu ud =V hy (u

therefore, Eq. (26) is written as Zy(0%,0) =6, ® figec(1),
and we will always drop the “(1)” to write

V(N uugus...u,); (28)

Ey(0%.0) =6, O figrc- (29)

III. MATCHING ONTO THE COLLINEAR PDF
WHEN 0Q > AQCD

When 60 > Aqcp, the collinear modes can be further
split into the hard collinear fields (C;) with momentum
scaling pe, ~ O(1,6%,6) and the C, modes in SECTy; with

pc, ~0(1,2%,2) with A = QCD < 6. The SCET operators

in Eq. (11) can be further matched onto the SCETy
operators such that

= Cix

J=4.9

J H )’ (30)

where the operators on the left-hand side of the equation
are those that appeared in matrix elements of Egs. (22)
and (23), and the O, is the SCET]; operators which have
the exact same form as O; but without the energy operator

&£(6) and is made out of the C, fields.

We pause here to study first the effects when £(6) is
acting on |X) = [X¢ ., X¢,). From the definition, we have

8(9)|XC17XC2>

_ Z <2@(9 —0) +Z®(e - 9j)> X). (1)

jexe,

114008-5
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We note that since by definition, for particles from the C,
modes, the polar angle scales as 6; ~ 1 < 0, the second ©
function will be always satisfied and can be replaced by 1.
Therefore we find

g(‘g)GClaXC2>

— <_Z __@(9 —-0) + ?;) |Xc,. Xc,)  (32)

Ep

where Ey = ZieXCl Jjexe, Ei+ E; and we have used
OO -6,)=1-0(0,-0).

The Ey term in Eq. (32) acts on both C; and C, modes
simultaneously and contributes to the fggc in the way that

szECDZ

= (1= Z)Z<P|Oilx><X|Oi|P>5((l —2)PT = Py)

X

= fi(z) — zfi(2),

P|(9 IX)(X|0;|P)s((1 — z)PT — PY,)

with i=gq,g, (33)

where f;(z) is the collinear PDF. In the first line we have
inserted the complete set > | X) (X| into Egs. (22) and (23)
and applied Eq. (32) but only kept the Ey term. We
performed the translation operation in the »n* direction
before we integrate over y~. Here, we have also used the
definition of the collinear PDF

fi(z) =Y _(PlOJX)(X|O;|P)8((1 = 2)P* = Py)
X
- - u
- [ersmo (o, e
4z 2
The — E;0(6; — 0) term in Eq. (32) acts only on the C,;

modes. Therefore when matching onto SCETy;, together
with the coefficient C;(x~) in Eq. (30), it gives the
matching coefficient. The matching procedure is similar
to what we did in the previous section and we will not
repeat it here. The final contribution from the —E,0(0; — 0)
term then reads

frpe —j{jh/" (— In 553?)[5f;<:ﬂ (35)

where the additional ¢ in front of f(&) originates from
E;/Ep. Here I:»j is the matching coefficient that can be
calculated perturbatively and starts from O(a).

Gathering all pieces, the matching of the NEEC f prc to
the collinear PDFs when 0Q > Aqcp is given by

ﬁmeﬁﬁ f- [ Qhﬂm@

(36)
where 1;;(z) = 6(1 — z) + I};(z). It will be interesting to
note that the 6 dependence is solely within the £f;(£) term
where [;;, as we will show, is determined by the splitting
function P(z;,...), and involves the factor z;P(z;,...).
Here, the z; factor originated from the energy weight of
parton i. Therefore, from Eq. (36), we can interpret
dfggc/dO as the parton energy density at the angle 6 for
the given incoming parton energy density £f(&).

Written in the Mellin space, we have

fi,EEC(Nvln%> = fi(N) - (N an )f](N+ 1),
u up

(37)
where 1;;(N) is the Mellin moment of 7;;(z).
For later use, we define the *-product by
Ixf=IN)f(N+1). (38)
With this notation, Eq. (37) is written as
fi,EEC:fi—Zlij*fj- (39)
J
We note the difference between f; = f;(N) and
s fi=FiN+1).

IV. EVOLUTION EQUATIONS

From the factorization theorem in Eqgs. (25), (26), and the
consistency relation

d
——3y(0%,6) =0, 40
dln’uz N(Q ) ( )
we deduce that the NEEC satisfies the modified
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equation

d Q0
7 In==
dln'uzfz,EEC (Z, nzu,u)

_ Ld¢ | (z ol
- Z/Z §Pij<§>fj,EEC<§aan> (41)

in the momentum space. The inclusion of z, as an argument
of the function f;gpc indicates that (41) cannot be
considered a conventional convolution beyond LL accu-
racy. The presence of this extra dependency arises from the
inherent angular nature of NEEC, which results in its
reliance on the frame of reference in which the observation
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is made. An analogous situation is observed in the case of
the final state EEC, as discussed in [29]. It is interesting to
note that the form of the evolution that governs the 6
distribution is similar to the modified leading logarithmic
approximation [47]. The mechanism behind this similarity
could be worth further investigation in the future. In the
Mellin space, the evolution of the NEEC follows

d 00
- f. N,In=—
dll’l//tz fz,EEC( n u/l)

] 00
- Z / dzEV Py (6)f mec <N, méw)
=P;; O fjprc(u), (42)

where P;;(£) is the vacuum splitting function and the ©
notation follows Eq. (28). Note that the additional £ within
the logarithm is due to the specific structure of the Mellin
transformation for fggc in Eq. (27).

In the momentum space, the solution to the evolution
equation (42) can be solved numerically using HOPPET [48]
or APFEL++ [49] with the initial condition at yy ~ Q8 to
be determined later in Sec. V B. The solution in the
Mellin space is slightly more involved and we solve it
in Appendix A. Its analytic form will be given in Sec. V C.

In practice, it is useful to introduce for the NEEC fggc
the flavor singlet and nonsinglet distributions, where the
singlet part is given by

Fy= Z(fq,uEEC + f3,EEC)>

i

Fg = fg,EECv (43)

and the nonsinglet part is defined as

FNS = Np(f g e + f3,88C) — Fi (44)

The definition follows directly those of the collinear
PDFs [50,51]. We note that

1
Sq.eEC T f3,EEC = N—F(Ff’s +F3). fypec = F5. (45)

Since the fgrc behaves exactly like the collinear PDF, by
the flavor and charge conjugation symmetry, the nonsinglet
distribution for the NEEC evolves as [50,51]

d Q0
— = _FVS(N,n=) =P}, 0FS 4
dln;ﬂ i <N’ nu,u) NSG i (u)’ ( 6)

with no mixing with the singlet distributions F% and F.
Here “®©” follows Eq. (28). The singlet distributions
evolve as

d |F; Py, Py Fy
d ln 3 FS — PS PS < (M) . (47)
K g g Lyg g
Here P}, = P,,, P5, =2NyP,, P5, =P, and
P}y = Prs+ Py (48)

are defined in Refs. [50,51]. The nonsinglet and the pure
singlet splitting kernels Py and P, can also be found
therein. At order a,, PYg = P,, and P,; = 0. The O(a?)
results are given in the Appendix B.

The evolution of the matching coefficient /;; can be
directly derived from Egs. (36) and (37) along with the
evolution of the fggc in Eq. (41) to Eq. (42). For practical
use, we note that by the charge conjugation and flavor
symmetry, the matching coefficient /;; for the quark can
always be written as

_ __ NS PS
Iq,-q,- - Imj - Iqq 51’1’ + Iqq’
_ __ NS PS
I‘]i‘?/ - Iéi‘]j - 1611? 6ij + Iqt?’ (49)

where IS is flavor independent. In this way, we find
FNS = NS — (IS 4 I35) « S = g5 — NS 5 g5, (50)
and the pure quark contribution to F' g is

Y= 13- 03 15N+ ) <
Efg—]gq*fs, (51)

where we follow Eq. (38) to use “x” as the shorthand
notation for the product in Eq. (37). Up to order «aj,
153 = I;;; = I%S = 0, and thus IYS = I3, = I} up to this
order. Here

Y =Ne(fg, + ) =Y (Fa+fa)  (52)

k

is the singlet PDF distribution and

fe=> fa+la fi=1 (53)

are the nonsinglet distributions. They satisfy the same
DGLAP evolution in Eqgs. (46) and (47) after replacing ©
by the product, for the singlet and the nonsinglet PDFs,
respectively.

It is immediately realized that

d
dlnp?

INS(N.u) = Pys © INS(u) = IS« P, (54)
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and

d
din I5(N,u) = P © I} (u) = I + P{,. (55)
Here i = ¢, g. Here summation over the repeat indices is
assumed.

V. MATCHING COEFFICIENTS AT NLO
AND THE NLL RESUMMATION

In this section, we calculate the cumulant cross section

In(0%,0) = Z 6, O fipc (56)

i=q.9

to NLO in a; in the small € limit. The ®-product follows
Eq. (28). The O(ay) calculation allows us to realize the
NLL resummation for Xy (Q?, #), which in turn will allow
us to predict the complete o distribution &3y (0%, 0)
when 6 is small.

A. NLO hard function

For the NLL resummation, we need the DIS partonic
cross section at NLO. The NLO partonic cross section
6(z, Q%) is well known [52-54] and we present the results
in the Appendix C. Here we supply the cross section in the
Mellin space, which can be written as

xa? e
5N, 00 = SN SN 2 peuN), (57)

Q4
i=—Np c=q.,9A=T.L

where
~ ag\" . n)
N) = — N), 58
) = X (52) e 58
in which at LO
~(0 ~(0 A(0 ~(0
0;} =1, U;,Z = 6;% = 0272 =0. (59)

To obtain compact results for a(cg (N) at NLO,
we introduce the S, and S, ,, . functions [50,51]
defined as

i=1

and

(£1)f .
Sz (V) = Y "= Sy (D), (61)
i=1

and we introduce N S;(N) = Sz (N =£ k) raise/lower the
argument by k. We abbreviate S;(N) = S;. Some useful
formulas are presented in the Appendix D.

We thus find the quark contribution to (1) reads

8\ = Cr(=)(1 =R )8, (62)

for the longitudinal part, where we have used 1 = (1 —
7) D%, 2" anywhere necessary to get the results, and

(1 3 . . 0?
6‘(1»; = CF{ <§— (N_ +N+)Sl> lnﬂ—z
~ ~ 2
+ (N_+ N )(S11 = $2) T3

3 . N 9 7’
= -3(N_-1)S1—-|=z+=] ¢
+2(N_)S1 3(N_=1)S, (2+ 3>} (63)
The gluon channel is given by

bl = Te(-2)(1 28, + No)si. (64)

2
6(7,12} = TR{(—N_ +3 —4N+ +2N+2)Sl lnfz

+(N_=3+4N,. - 2N_,)(S1, = S,)

+(=5+N_+8N, —4N,)S, } (65)

where a factor of 1/2 has been multiplied into the gluon
channel to match with the flavor summation in Eq. (57).

B. NLO matching coefficient for I;;

The matching coefficients /;; in Eq. (37) can be obtained
by calculating the difference between the NEEC defined
in Egs. (22), (23) and the collinear PDF in Eq. (34), using
the SCET Feynman rules. To perform the matching, the
external hadronic states |P) and |X) can be replaced by the
partonic degrees of freedom, using on-shell quarks and
gluons. In dimensional regularization, the higher-order
corrections to Eq. (34) are dimensionless and vanish
identically. Therefore, the [;; is determined by calculating
the matrix elements in Eqgs. (22) and (23). At NLO, this
results in evaluating the phase space integrals of the form

[ — / dzh! / dE5((E— 2)PF — g*)

1 — 2
<P (g , e) (9, (66)

1

X (8ma)u*
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where ¢* is the momentum of the detected parton, and g, is
its transverse component. £ is the momentum fraction

carried by the incoming parton. Here Pl(;)) are the O(ay)
splitting kernels, which are

1+ 22
Pt = (TS et -9)),

14+ (1-2)?
Pg(;)(z,e) =Cp (% - 61),
Pl (z.€) = Tp(2® + (1 = 2)> = 2ez(1 - 2)),

ng)(z,e) =2C, (1

fz+1%+z(1—z)). (67)

To evaluate the integral, we parametrize the phase
space as

d’g 1 (4n)° dg* (g"\*7% o
(2n)d—15(92):16n2r(1—e) g \2) 0, (68)

where we have used g, = 6, % We thus find the NLO result
of Eq. (37) is

aS
frame = Fi(4) = (8 + S21700 ) 7,00+ 1) (69
where the unrenormalized NLO matching coefficient is

ol (A
U er(1-e) \(2)?

X /dzzN_1 (ﬁ) 2€(1 —Z)PE?)(Z,e). (70)

Plugging the splitting functions in Eq. (67), we find the
NLO unrenormalized matching coefficients

1 1 s 0 0
4u?

92

(1) (1)
+d;;’(N) —d;;/ (N + 1), (71)

where the angular factor S, = r%”_);). Pl(»;)) (N) are the O(ay)

splitting functions in Mellin space, which are

3 N “
P = (3 + 85, ).

PS)(N) = Cp(=2N_, +4N_ + N, =3)s,,
PEIOQ)(N) = TR(_N— _4N+ +2N+2 + 3)51,

Po

PONY =2C,[-N_ +2(N_+ N,) = N, = 3]S, + >

where g = 4 C4 —§ NpT. The splitting functions in the z
space are well known and can be found in the Appendix B.

The NLO 6 independent constant terms are calculated to
find the general form

dV(z) =2p"(2)In g P9 (2) (72)

ij ij 1— z ij
and
(a7 — N-1 (1)
dpw) = [ d) ) (73)
where p!?"*(z) are the coefficients of the ¢* with k = 0, 1

in the splitting kernels P,(»;))(z,e) of Eq. (67). Here All
divergences for z — 1 are understood in the sense
of +-distributions.

Evaluating the Mellin integral, we find

dD(N) = 265 [(M RS =8 -

dy) (N) = 2Cp [<2fv_z —4N_ +3 = N_)(Sy—S1y)

.S
1-N,)—|,
IEEAE]
dyy (N) = 2TR[(N_ =3+ 48, =28 ,)(S, - §1)

+(1-2N, +Np)S)l,

dl (V) = 4C, [<3 (W, + )
77,'2
+ (Nia+N2p))(S2— 1) —g} (74)

The NLO renormalized matching coefficient in Eq. (37)
is then

_ ay 00 (50 (0)
Ij =8 +5° { o <2Pij (N) — 2P0 (N + 1))
+d)(N)—d) (N + 1)} . (75)

The NLO calculation explicitly verified the evolution
equation derived via the consistency condition in Sec. I'V.
From the calculation, we can also read the singlet and the
nonsinglet terms introduced in Sec. IV, which are

NS _ S _—_
1 71616171KM’

S
IS, = 2Nyl

S
15’9 - 15’9’

9> Igg =14 (76)
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C. NLL resummation for Xy

When a,In#? ~ 1, the logarithmic terms are large and
should be resummed to all orders; the NLO calculations in
the previous section allow us to realize the NLL resum-
mation for the NEEC, namely the resummation of af In* §?
and af In*~! 6? series.

One way to perform the resummation is to evaluate the
partonic cross section 6. ; and the PDFs f; at scale u ~ Q,
and evolve the matching coefficient I from py ~ Q6 to
u~ Q following the resummation equation in Eqgs. (54)
and (55) in Sec. IV.

Equivalently, we can also set the scales for both the
collinear PDFs f7S, JS , and the matching coefficients IS,
1 fj at uo ~ 00, to evaluate the NEEC and evolve the NEEC
from p to p to realize the resummation. In the z space, the
evolution is identical to the collinear PDFs and can be
achieved numerically by HOPPET [48] or APFEL++ [49]. In
the Mellin space, the resummation follows the evolution
equations in Eqs. (46) and (47) for both F)S and F?. We
solve the equations iteratively in Appendix A, and find that
the NLL NEEC receives the compact analytic form

fi eec(#)
= fi(N.pu) — D} (u. o)l j(upo) fj(N + 1, )

- 9580) 7 [P () ~ 2PN + )L (N 1, )
The resummed form holds for both the singlet FS and
nonsinglet distributions FVS. Here I;;(upo) is the NLO
matching coefficient in Eq. (75) evaluated at scale p, and
the evolution factor D}j(u, uo) is nothing but the DGLAP
evolution in the Mellin space,

D) =exp | [*ammepv) ()

Ho

To realize the NLL resummation, we need P;;(N) at LO
and NLO within the evolution factor Df]’ The LO results
have been presented in Eq. (72), and the NLO moments
can be found in Refs. [50,51] and are also given in the
(1),

Appendix B. Note that we need to divide the y;;

by a factor (—4) to get PEJI-)(N ) in our normalization.
The correction to the DGLAP evolution starts from
a!L"" order, in which

s therein

u ~
Nij = dlnﬂ%D?llc(/"’/‘I)Pkl(Nvﬂl)D%(/"l’ﬂO)v (78)

Ho

originated from the — §* P ® In u where the In u term comes
from the NLO matching coefficient /;;. We note that both D

and N can be integrated analytically using the formula in
Egs. (B5) and (B6). Here we have defined

Py(N) = / dz2V1P(2) Inz = ayPy(N).  (79)

Note that the derivative of the Mellin moment has also
appeared in the solution of small angle EEC [29]. For the
NLL resummation, we need

R(N_=3+4N, 2N ,)S,,

(80)

If we take the evolution of the f;(N+1,uy) =
Dj‘k' (N+1)f«(N + 1,u) into account, we can derive the
evolution for the matching coefficient /;; at NLL, which is

1;j(up)
D (s ﬂO)Ikl(”/'%)D?J,‘(/‘O’/‘)

as(ﬂ ) 0 0
+ B LN [2P (V) = 2P (V4 1) Dl o).

We note that the analytic form for NLL we derived can
be straightforwardly generalized to higher logarithmic
accuracy.

In practice, to implement the resummation, we use the
fact that o, is identical to o7, to recast the cross section as

47:052 0
Z q,<o o— (FNS + FS) + 25, @FS)

1 4ra? L

F i=1

(81)

; ~AS _ 4na® 1 N~Nro 2 4
Here we introduced &, =7 5-> ;") €6,
dna® 1

o, SN 2 (2Npb,). Insertlng the resummed formula
Eq. (78) for FNS and F3, we realize the NLL resummation

of ZN(Qz,H).

AS _
and 6, =

D. dXy/d6* distribution at O(a?)

The NLL resummation for Xy allows us to predict the
complete dXy /d#* spectrum up to a order by expanding
the resummation results in terms of the coupling a,. Here
we list the results.
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The distribution can be written as

— = 2 N 1 82
6odIn6? (271 N ZZ +1) (82)
where 65 = ”Q4 .Here i = (iy, iy, I3, 14) satisfies i} + i +

i3+i4:2and lkZO.
At O(ay), the distribution is given by
1 0 0
=yh = PU(v) - PO (v +1). (83)

At O(a?), we have contributions coming from the a;
running, which are

2
0.0.1.1) 9 0? Po 0)
=0 s (qu (N) - PO (N+1)), (84)
and
0,1,0,1 ﬁ 1 1
=y O =2 (d) ) - d v+ ). (85)

In addition, we have

5(10.1.0) _

Y =) (PP - PPV + 1), (86)

which is essentially the product of the O(a,) hard function

in Sec. VA and the O(a,) NEEC in Sec. V B.
The one-loop DGLAP evolution contributes as

0,0,2,0 1
=" = (P )

1

— PO + 1)). (87)
Here, the moment of the NLO splitting function can
be found in Refs. [50,51] and is also provided in the
Appendix B.

The product of the LO DGLAP and the NLO matching
coefficient contributes to both the double and single logs.
The double logarithmic term reads

92Q2
0,1,1,0 0 0
P, W PR (P W)

- (Pl V) -

- PN+ 1))
PR+ 1) PN +1)].
(88)

while the single log contribution is
0.1,1,0 0 1 1
= ¥ = Pl () (d) () - i) (v + 1)

= (@) —dv )PPV D). (89)

There is one additional term that originated from the ©
structure, which is a single log term from P

=Y = 2B ) (P ) - PO+ 1)), (90)

where P,(-?) (N) is defined in Egs. (79) and (80).

VI. NUMERICAL RESULTS

In this section, we examine the numerical consequence
of the NLL resummation. We use the kinematics that
Ep =275 GeV for the incoming proton and E; =
18 GeV for the electron. We work in the Breit frame

and choose N =3, Q% =100 GeV? and fix y = Q and

Ho = Qa for implementing resummation.

FlI‘St we validate the factorization formalism by com-
paring the singular Iné contributions predicted by the
factorization theorem with the complete o, and a? calcu-
lations of the distribution dXy/dy, where y = In(tan9).
As 6 (y) becomes small, the In 8 terms will dominate the
dXy/dy distribution, and the singular contribution should
coincide with the full calculation.

We perform this comparison in Fig. 2. The full fixed
order calculations (in dots) are obtained numerically using
NLOJET++ [55] and the log terms have been calculated in
Sec. V D. From Fig. 2, we observed very good agreements
in the small y region between the complete calculation and
the singular terms predicted by factorization and resum-
mation, in both the magnitude and shape. The comparison
serves as a nontrivial validation of the factorization theorem
derived in this work.

Now we present the numerical results for the resumma-
tion in Fig. 3. The analytic formula Eq. (78) is checked
against the numerical resolution of Eq. (42) using Euler’s
method to find perfect agreement. We further matched the
resummation to the fixed order calculation by removing the

100¢ — T T
L a
L a2 (nlojet++)
— a5 Logs

> — a2 Logs
2 -
= 10 =
12 ]
hel

T T T vvw
"

1072 S o I SO I
-8. —6. —4. -2. 0. 2. 4.

y=In(tan[6/2])

FIG. 2. A comparison between the In @ singular contributions
with the full fixed order calculations. Very good agreements are
found for small values of 9 (y).
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10° T T [ [
[ NLL+a;
L NLL+a,?
L PYTHIAS.2
-1
g 107 =
§ r
1072~ —
AEETRTETE FETTETRTTI FYRRTRETTI FRTTRRTN SYNE PARTE FRTETTI rvve WY
y=In(tan[6/2])
FIG. 3. Comparison of the NLL + a,, NLL + a2 and the

PYTHIA simulation at partonic level. Reasonable agreement is
found in the small @ (y) region (near side) between the analytic
NLL resummation and the PYTHIA simulation. We stop the
resummation at y = —2, after which one probes the nonpertur-
bative region. Additional TMD resummation is required for
60 — 7 (large y, away side).

singular terms that have been resummed, from the
fixed order cross section in the small y region, and
replacing them with the NLL results. In Fig. 3, we show
the NLL + a, and NLL + @2 in the orange square and red
circular dots, respectively. Compared with the fixed order
results in Fig. 2, we see that the resummation effects are
significant in the small angle region, which enhances
the distribution by several times with respect to the a2
calculation for y around —2. It is also interesting to point
out that, as obvious in Fig. 3, the distribution in the small
angle is not suppressed due to the absence of the Sudakov
factor. This feature of the NEEC is very different from
the TMD PDFs in which the small transverse momentum
region is exponentially suppressed by the Sudakov factor.

When y < -2, for the kinematics we chose, % is
comparable with Agcp and we start to probe the non-
perturbative region. The perturbative calculation is no
longer valid in this regime and future experimental mea-
surements at HERA or EIC are required to understand the
nonperturbative behavior of the NEEC fggc(0) in this
range, which in turn can teach us about the nucleon intrinsic
transverse dynamics, as suggested by Ref. [35].

We further compare the NLL + fixed order distributions
with the PYTHIAS.2 simulation [56] which implements the
leading logarithmic resummation. For this comparison, we
have turned off hadronization in PYTHIA. In the small 8 (y)
region (near-side region), the analytic NLL resummation
agrees reasonably well with the partonic PYTHIA simula-
tion. For 0. <y < 1.0 (§ < 6 < 0.87), the NLL + a; agrees
better with PYTHIA and both are lower than the NLL + a2
prediction, due to the missing higher order corrections
in PYTHIA and the NLL + «,. For larger values of y where 6
is approaching = (away-side region), the fixed order

calculations differ substantially from the PYTHIA simula-
tion. In this region, the detected particles are almost back-
to-back against the incoming proton. Now, the distribution
becomes highly sensitive to the soft radiations (as well as
the initial state collinear radiations), and we are essentially
probing the small transverse momentum and therefore
the TMD PDF. Therefore, in this region, additional
TMD resummation is required for reliable predictions
which we leave for future studies.

VII. SUMMARY

In this work, we demonstrate the factorization theorem
for the nucleon energy-energy correlator measurement
in lepton-nucleon collisions proposed in [35]. Our main
results are presented in Eq. (25), where the energy-
weighted cross-section Xy(Q?,6) is factorized into the
partonic DIS cross section and the NEEC fggc(z, ). The
operator definition of the NEEC is given by Egs. (22)
and (23). The factorized form in the Mellin space can be
found in Eq. (26). The factorization theorem has a similar
structure to the DIS cross section, except that the collinear
PDF is replaced by the NEEC. Moreover, the factorization
theorem can be easily generalized to the hadron-hadron
collisions at the Large Hadron Collider by appropriately
substituting the PDF with the NEEC when similar
measurements are performed. For instance, if the proton
NEEC is measured in the prompt photon production
in pA collisions pA — y + X, then the factorization is
the same as the inclusive photon production with the
replacement of the proton PDF f;,p(z) with its correspond-
ing NEEC fi,EEC (Z, 9)

When Q0 > Agcp, we showed in Eq. (36) that the fggc
can be further matched onto the collinear PDF, with
perturbatively calculable matching coefficients determined
by the QCD splitting functions. In this region, the factori-
zation formalism Eq. (36) suggests that the dfgpc/do
describes the @ correlation between the outgoing parton
energy density and the initial incoming parton energy
density. The factorization theorem is validated by the
excellent agreements between the O(a?) prediction of
the factorization and the complete NLO calculation of
dZy(Q?,60)/d9*. The next-to-leading logarithmic resum-
mation has also been carried out for the NEEC.

In the momentum space, the NEEC evolves in a similar
way as the collinear PDFs. More specifically, it is
interesting to note that the evolution equation is similar
to the modified leading logarithmic approximation
equation. In this work, we focused more on the Mellin
space evolution of the NEEC. We obtained a fully
analytic solution to the evolution equation in Eq. (78)
and supplied all of the necessary ingredients for the
NLL resummation. The analytic formula can be easily
extended to higher logarithmic accuracy. The numerical
evaluation of the NLL resummation is found to agree with
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the PYTHIA simulation reasonably well. Furthermore, the
NLL calculation also supports the recent idea of using the
NEEC to look for the gluon saturation in lepton-ion
collisions [36], where the € distribution predicted by the
collinear factorization is not suppressed in the small 6
region contrary to the expectation of the color glass
condensate effective framework. The NNLO calculation
of the fgrc in the perturbative region should be feasible
with current computational techniques, which would
enable us to perform NNLL resummation for the fggc.
We have not studied nonperturbative effects in this work

and we plan to do so in future work. We hope our current
work serves as a first step toward the precision meas-
urement of fggc and stimulates further theoretical and
experimental investigations.
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APPENDIX A: SOLVING THE RG EVOLUTION

In this section, we solve Eq. (42), which can be written as

4 / " dinp? / 426" P(&) fsc (N, In Qe).

SEEC <N7 ln%) = fEEC (N’ an—Q)
up

Upo

1
o (A1)

For simplicity, we have suppressed the subscripts. The product of the P’s should be treated as the matrix product.

We write the ansatz solution to Eq. (Al) as

[2] 2
JEEC (N, 1115—) = D(p, po) feec <N3 111Q_> + R(u, po),
p upto

where D and R are to be determined and satisfy D(ug, o) = 1 and R(pg, o) = 0.

We plug the ansatz back into Eq. (Al), to find

0
D(u. o) frEC (N, In MQ—> + R(u, o) = frrc (
Ho

To realize the NLL resummation, we use the NLO NEEC as the initial input at y(, and manipulate Eq. (A3) as

0
D(u. po) feEC <N7 12’ ) + R(u. po)
Uy

Uy o

~S0) [" POV DU o) 2P(N) = 2PN + DN + 1)

2

Ho

where we have used the property that at NLO, the initial condition satisfies

SEEC (N, In Q0 ) = frrc <N, In @) _ “sz(ﬂo)

Supg Ui

and we applied the definition

(A2)
00N . [r
N,lnu—ﬂo> +//40 diny?P(N, /" )R(i', uo)
Iz 00
diny? | dEEN-TP(E)D(W, N,In——). A3
[ [ dee @D feee (N2 ). (a3
0 0
~ fexc (N, an—> + / " din PN, ) [D(ﬂ’aﬂo)fEEc (N, lnu%o> +R(u’,uo>]
H

(A4)
In2P(N, po) = 2P(N + L o) f(N + 1. po). (A5)
(A6)

P = [ @z P e
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Now we repeat the above procedure, to replace the D(y/, ug) feec (N, In %) + R(u', 1o) using Eq. (A3) to find

0
D(u. o) ferc <N’ 111%) + R(u. o)
Ho

~ Jee (N’ . %> - /# dInp?P(N.4') feec (N’ tn %>

H W
+ / dinp?P(N, i) / dInp?P(N, u")R(u", o)
Uty Ho Ul

Ho Ho

! 0
+ [ amwpv) [ ding P8 DG i) e (N, In Q)
Ho Ho Upo

20D " (i) [ i PN DG ) RPN = 2PN+ 1IN + L)

2 Sy, Ho
- B0) [ o2V, DY ) PN) = 2PN+ DLFN+ 1), (A7)
Ho

which can be organized as
(0
D(u, o) feec (N, lnu—,uo + R(u, o)

H H 0
= [Famereey [* anperon) {D(ﬂcﬂo)fEEc(N,an—) +R<u”,uo>]
Ho Ho Uiy

+ [1 + / "din 2PN, ;/)} Ferc (N, 1nQ—9>

Ho Uty

-2 [ e {1 + ["awro, u">] BN, W)D( o) ZP(N) = 2P(N + DIF(N + 1) (AS)

where in the last line, we have switched the order of the integrations, using

[ awaw) [* s = ["awso [*avaoe) (49)

Ho Ho Ho H

Iterating the procedure, we will arrive at
Q0
D(u, po) feec <N, lnu—ﬂo + R(u, po)

. [n " 0o
— lim dlnM%P(N,Mn)---/ dInpsP(N, ) |:D(/"17/"0)fEEC <N, lnu—uo> +R(#1,Mo)}

= Sty ul

Q0 og(u H -
= D(u, o) frec (N, lnu—,uo - % dnp*D(u, p')P(N, /' )D (', 1) [2P(N, o) = 2P(N + 1, po) | f (N + 1, o).
Ko
(A10)
where D = exp [L’l‘o dIny?P(N, )] is defined in Eq. (77). We note that
in, P(N, n-1 0
n—oo n upy
: : 2 : 2 Qo0
< nlgglo dInp; P(N,p,)... | dInpsP(N, py) | D(uy. po) ferc N’lnu—ﬂo + R(u1. Ho)
Hn—1 H
P N’ n—1 4]
< lim (mx”—(”)) Ferc (N, In Q—) ~0. (A1)
n—oo n Upgy

Here we have assumed that the moment of the PDF is bounded and thus the limit vanishes as n — oo.

114008-14



TOWARD PRECISION MEASUREMENTS OF NUCLEON ENERGY ... PHYS. REV. D 107, 114008 (2023)

Therefore, we conclude that

0 0
SEEC (N,lnf) = D(u, po) feEC <N,IUQ > + R(u. o)
H Upo

0
= D(u. po)feEc <N In g >

Uy
B asz(ZO) /ﬂdln,u'zD(ﬂ,,u')P(N,//)D(//vﬂO)[zP(N’/‘O) —=2P(N + 1, pu)If(N + 1, p9).  (A12)

Ho

Since fggc(N, ln ) and R are independent and the solution should hold for arbitrary constant in frgc (N, ln ) we then
can identify

Ho

/ﬂ dny*D(p, W' )P(N. f')D (', 1) 2P(N. po) = 2P(N + L, po)[f (N + 1, o). (A13)

Ho

2w

The derivation is applicable to higher logarithmic accuracy by suitably adjusting the relation in the initial condition of
Eq. (AS) at higher a, orders.

APPENDIX B: CONSTANT AND FUNCTION

In this appendix, we list the QCD color constants and splitting functions that are present in the main text.
In QCD, the running of the strong coupling constant «, follows

dog
dlnpy

= flay], (B1)

where the f function can be expanded in terms of @, as

pad =20 3m(5) (B2)

with
11 4 34 20
Here Cy =N =3, T =5 and Cr= NF is the number of quarks.
It is useful to note that [57]
as(/") as(/"O) 1 as /"0 as(/") ﬁO as( ) % 2 2/"0
- = In| ——= 1 2611 - B4
w2 2a2Polm, MG T2 2 2 +322 ﬁln ~ foln (B4)
and
v, a % 2 o (p) a; (1) = a(uo)
Py—+P,— |dlnp? = ——( Pjln— 2P| — 1 Py) ———— B5
[0 oo = < (o e o= SEZEL )
where r //;— Here the first term on the right-hand starts from the LL (~O(a,L)) and the second term contributes to the

NLL (~(9(a 2).
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Also, we have

2]

[ () H ey () i)p“ )™ - ()] s

The collinear splitting function P;;(z) that governs the PDF DGLAP evolution

d
dT/ﬂfi(Z’ﬂ) =P;;® fi(z,pn)

can be written as the power series in «@,, which reads

P =3 (5) " P

(B7)

(B8)

In practice, it is always useful to consider the singlet and the nonsinglet splitting functions P for i = g, g, and P}. Here

the singular splitting functions are defined as

PS,=Pis+P,.  P5,=P,
Py =2NgP,,, Py, =Py,
In the z-space, at the LO
+(0) (0) 142 0)
Pys (2) = Pgq (z) = Cr T : Py =0,
2/ +
. 14 (1 -2)? ,
P = PR = e U R S o ) = N T (- 2P,
$.(0 0 b4 ﬂo
P.t111< ) :Pz(m)(z) =2C, (m—FT—FZ(I—Z)) ( Z)-

In the Mellin space, we have

and

) 17
PV = cpc, <—2N+S3 +—

28 . [151 11
g T2t TS - (N4 R [ﬁsl +28) —FSZD

1 4 11, s 3
+CFNF< TRELRs (N +N+)[—Sl——2D+C2<453—2S1—2sz+§

—N_[Sy 4+ 285+ (N_ + N, [S; +4S; 5 +28,, +28,, + S3]>

20 . 56 8 .
PY(N) = CpNy <? (N_=N_,)S, + (N, = N,,) [ES, + gsz} + (N, —1)[8S, —45,]

+(N_ = N2+ 8, + 253]>,
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P50 = ONpPY) = AN TR(—N_ — 4N, + 28, +3)S,, (B15)

S.(1 20 . o N . . [218 44
qu< ) = —CANF(3<N—2—N—)51 —(N_=N_)[285, + 8, +28;5] = (N. = N,) [TSI +451, +?52

+(1=N,)[27S, +48,, =78, —253] —2(N_ + 4N, — 2N, = 3)[S; , + Sl,l,l])

n ~ N 43 7
— CpNp (2(N+ —N)[58 +2851; =25+ 8] - (1=N) [751 +451, —552]

- A 3 N N N 1
+(N_—=Ny) [751 —552} +2(N_+4N, -2N, -3) {51,1.1 = S12— 821 +§S3]>: (B16)
Pgii(o) :P(H(C)I) =Cp(-2N_, +4N_+ N, -3)S,, (B17)

Py = —c,Cp (2<2N_2 —4N_ = N, 4 3)[S100 = S1oa = S5 — Soy] + (1 = N )[28, — 138, — 78, — 253]

N N N 22 N N . o 44 8
+ (N, —2N_+N,) {Sl —?Sm] +4(N_-N,) {§S1 +35, + 53} + (N, —Np») [351 +§SZD

N N N 4 20 .
—CpNp <(N—2 —2N_+Ny) [351,1 —351] —(L=N,)[4S, - 251,1}>

. N . N 3
- Ct ((2N—2 —4N_ =N, +3)[381; =285 .- (1-N,) {51 —285 455 - 353}

A

- (N_=N.) le +2S2+ZS3D, (B18)

PO = Pl = 2C,(~=N_, + 2N_ + 2N, = N., - 3)S, +ﬂ2—°, (B19)
2 16 23 . N 14 . N 2 . N
Pyt = _CANF(3_3SI —g(N—z +N12)S +?(N— + NS Jrg(N— —N+)Sz>

8§ 14 N N N N
-G (25—3 —3—?51 +283 =4(N_, =2N_=2N, + N5 +3)[S; 2 + S12 + S

+

W] oo

“ ~ - N N 109 . A 61 . N
(V= RSy — 4R =38+ Ny + D38 = S5] 410 (V-4 R0, + 5 (V- N+>s2>

12 . N . . . o
— CpNy <§ +3 (Vo= BN = N, — 5K +18)S, + (3N_ ~ 5K, +2)S, - 2(F_ - N+)S3>. (B20)

APPENDIX C: PARTONIC CROSS SECTION IN THE z SPACE

Here we list the DIS partonic cross section in the z space, which can be written as

5200 =ZC N SN 2 £6.,00) (1)

4
Q i=—Np c=q.gA=T,L

where 6, ;(z) can be expanded in a power series of the strong coupling constant a,
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At LO

(0 (0 A0) A0
O'EI‘%- =6(1-2), 52,)L = 6(9} = é,i =0.

(C3)

The 6(1)’s have been known for a long time. The quark
cross section reads

') (2) = Crz, (C4)

for the longitudinal part, and

O 142 0’ l-z
6,7(2) = CF{ <1—_Z> (lnﬁ + lnT

where +-distributions to regulate all divergences for z — 1
are implied.
The gluon channel is given by

6y = Tp[2z(1 - 2)).

(Co)

and

2 1—
8(Tl’) =T (1—2z+2z2)1nQ—2+(1—2z+2z2)1n
g H -

—1+4z(1—z)}. (C7)
APPENDIX D: USEFUL FORMULAS

The following formulas are useful for deriving the Mellin
transformation:

I -1
dz7"Inz = —,
/0 (m+1)?

/] dzz" In(1 - z) :(7

0 m+1)

1 In(1 — o
/ dZZN_l <n( Z)> :N—Sl,l’

1 z 72
dzzN! Inz=S8,——
A &4 I_an 2=

Sl(m + 1),

| 1— . .
/ dz?¥ 'Sz = (N_, =2N_+1)S,
0 Z

1 A A
/ dzzZV'z"Inz = [Ny o1 = N ylSa,
0
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