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We study incoherent diffractive dijet production in electron-nucleus deep inelastic scattering at small xBj
within the color glass condensate. We follow the general approach of [1] but we focus on the correlation
limit, that is, when the momentum transfer Δ⊥ and the gluon saturation momentum Qs of the nucleus are
much smaller than the individual jet momentum P⊥. We arrive at analytic expressions for the dijet cross
section, which can be written as a sum of four terms which exhibit factorization: each such term is a product
between a hard factor, which includes the decay of the virtual photon to the qq̄ pair, and a semihard one
which involves the dipole-nucleus scattering amplitude. We further calculate the azimuthal anisotropies
hcos 2ϕi and hcos 4ϕi. They are of the same order in the hard momentum P⊥, but the hcos 4ϕi is
logarithmically suppressed due to its dependence on the semihard factor. Finally, in order to extend the
validity of our result towards the perturbative domain, we calculate the first higher kinematic twist, i.e., the
correction of relative order Δ2⊥=P2⊥.
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I. INTRODUCTION

It has been known for quite some time that the pertur-
bative part of the light-cone wave function (LCWF) of a
hadron or a nucleus contains gluon modes whose occupa-
tion numbers rise rapidly when x becomes very small [2–5],
with x being the longitudinal momentum fraction carried by
the gluon under consideration. Such an increase can
eventually lead to violation of unitarity limits: for example,
at fixed impact parameter, the magnitude of the amplitude
for a small projectile color dipole to scatter off the hadron
or nucleus should never exceed unity. The problem finds its
solution within perturbative QCD, since nonlinear dynam-
ics start to develop for the highly occupied modes, they
tame their growth and lead to the phenomenon of gluon
saturation [6–8]. A dynamical semihard scale, the satu-
ration momentum Qs, is generated and serves as the
boundary between a dilute regime, in which gluons have

transverse momenta k⊥ > Qs, and a dense regime, where
gluons have transverse momenta k⊥ < Qs. To a good
accuracy, this scale grows according to Q2

sðA; xÞ ∝
Λ2A1=3ð1=xÞλ, where Λ is the QCD scale, A is the atomic
number of the nucleus and λ ≃ 0.25, thus justifying the use
ofweak couplingmethods for sufficiently large nuclei and/or
at small-x. The color glass condensate [9–11] has emerged as
a modern QCD effective theory which incorporates gluon
saturation. By calculating the emission of soft gluons in the
presence of a strong background color field, there have been
derived nonlinear small-x evolution equations [12–20] for
gluon correlators pertinent to the determination of cross
sections or other physical observables.
The typical way to probe such a system is by collisions at

high energy with a smaller projectile. Proton-nucleus (pA)
collisions, deep inelastic scattering (DIS) of electrons off
hadrons or nuclei (ep and eA), or even ultraperipheral
nucleus-nucleus collisions (UPCs) in which a quasi real
photon emitted by the one nucleus scatters off the other
nucleus, provide the main laboratories for exploring gluon
saturation. Over the last few years there has been great
interest in correlations among the particles produced in the
final state of these collisions. In this context, one of the
simplest and most studied processes is the inclusive
production of two jets in the forward projectile direction
[1,21–38]. In ep and eA collisions the two jets are initiated
by the qq̄ pair to which the virtual photon fluctuates, while
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in pA collisions they are mostly due to a quark-gluon pair
emerging from the splitting of a collinear quark within the
proton. Here one is mostly interested in the so-called
“correlation limit” [22]: this refers to the regime in which
the transverse momenta of the two jets are much harder than
both the saturation momentum and the imbalance between
them,with the second conditionmeaning that they propagate
almost back-to-back in the transverse plane. To leading order
in perturbation theory, the dijet imbalance is the same as the
momentum transferred from the target to the projectile and
therefore in the kinematics of interest it can be controlled by
the physics of saturation. Similar arguments apply to the case
of dihadron production [39–47], since the perturbative part of
the process remains the same.
Of equal value is the diffractive production of jets (or

hadrons) in the same types of collisions [1,48–57]. In
diffraction there is no net color exchange between the
projectile partons and the hadronic/nuclear target and as a
consequence one observes a rapidity gap, i.e. an angular
region between the two colliding objects which is void of
particles. Focusing on ep and eA collisions, on the
projectile side one must require the partonic fluctuation
of the virtual photon to remain in a color singlet state after
the scattering with the target. Regarding the target side, the
hadron or nucleus may remain intact or not after the
collision and we respectively refer to the process as
coherent or incoherent diffraction. In order to calculate
the total diffraction, we must average the cross section over
all target configurations. If one averages at the amplitude
level and then takes the square, one obtains only the
coherent component. Subtracting the latter from the total
diffractive cross section, we get the incoherent component
and thus it becomes clear that incoherent diffraction
is directly related to fluctuations in the target wave
function [58]. For instance, in an appealing picture,
exclusive vector-meson production in ep DIS has been
used to constrain geometrical fluctuations in the shape of
the proton [59,60]. But with a more homogeneous target,
like a large nucleus, the momentum transfer to the
projectile is of the order of the inverse nucleus diameter,
which is a very small nonperturbative scale and thus
completely uninteresting to our purposes. Still, a different
mechanism has been studied in [1] (see also the earlier and
closely related work in [61]): the subleading in Nc piece
(with Nc the number of colors) of the gluon correlator
which corresponds to diffraction, leads to incoherent
scattering with a momentum transfer that can reach large
perturbative values. As we shall discuss in Sec. III, this
piece originates from the color exchange between different
substructures inside the nucleus and as such it may be
regarded as a color fluctuation. Notice that the relevant
gluon correlator is to be calculated within the CGC
framework and thus it involves minimal model dependence.
The transverse momenta of the jets considered in [1]

were rather generic and therefore the approach was

necessarily numerical. Our scope here is to give an
analytical insight in the correlation limit and the outline
of this work is as follows. In Sec. II we present a short
review of the derivation of the general formula which gives
the qq̄ contribution to dijet production. Then we isolate the
part of the scattering which leads to incoherent diffraction.
In Sec. III we evaluate the corresponding diffractive
correlator in the correlation limit assuming the Gaussian
approximation. In Sec. IV we give the cross sections for
both transversely and longitudinally polarized photons in a
form that separates the hard from the semihard dynamics.
In Sec. V we analyze the momentum dependence of the
semihard factor. Having all the elements at our disposal, in
Sec. VI we present our results for the average (over the
azimuthal angle) cross section and for the elliptic and
quadrangular anisotropies. In the correlation limit, the latter
quantify the distribution in the orientation of the imbalance
with respect to the axis defined by the almost back-to-back
jets. In Sec. VII we evaluate the first higher kinematic twist
and point out the changes that it brings to the elliptic
anisotropy. Finally we conclude and discuss potential
future developments in Sec. VIII. Some technical parts
are presented in the four appendices at the end of the paper.

II. INCOHERENT DIFFRACTIVE DIJET
PRODUCTION AND KINEMATICS

First, we briefly review the derivation of the cross section
for incoherent diffractive dijet production in high energy
deep inelastic scattering of a virtual photon γ� off a generic
nucleus with atomic number A. Let us define the kinematics
of the incoming particles. We shall work in a frame where
they are both ultrarelativistic and carry zero transverse
momentum. More precisely, in light-cone notation, the
photon with virtuality qμqμ ¼ −Q2 is a right mover that
carries the 4-momentum qμ ¼ ðqþ;−Q2=2qþ; 0Þ, while the
nucleus is a left mover with 4-momentum Pμ

N ¼ ð0; P−
N; 0Þ

per nucleon, i.e., the nucleon mass is set to zero.
At high energy it is convenient to adopt the dipole

picture, in which the virtual photon first decays into a qq̄
pair. The lifetime τd of such a color dipole is of the order of
2qþ=Q2 and it is much larger than the longitudinal extent
L ¼ RA=γ of the boosted nucleus, where RA is its radius
and γ its Lorentz factor. Indeed, with RA ≃ A1=3RN and
γ ≃ P−

NRN , where RN is the nucleon radius, the aforemen-
tioned condition τd ≫ L is equivalent to xBjA1=3 ≪ 1. This
inequality is satisfied by assumption, since xBj ≡Q2=2q ·
PN ¼ Q2=2qþP−

N is typically of the order of 10−2 or
smaller.
In this viewpoint, all the QCD dynamics is contained in

the scattering of the color dipole off the nucleus. The latter
can be at saturation, thus generating a strong color field and
it becomes necessary to take into account multiple scatter-
ing. In the kinematics of interest the pair scatters eikonally
and gives rise to a dijet system in the forward direction
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(of the virtual photon). We consider diffractive production
in which the qq̄ pair remains in its initial color state but
acquires a transverse momentumΔ from the nucleus. In the
case of a homogeneous nucleus, this can occur only with
the exchange of color between different nucleons. In turn,
this means that the scattering is incoherent from the
perspective of the nucleus and that the overall process is
suppressed by 1=N2

c in the multicolor limit. This process
was numerically studied in [1] in the regime where all
momenta are semihard, i.e., when k1⊥ ∼ k2⊥ ∼ Δ⊥ ∼Qs,
with k1 and k2 the final transverse momenta of the quark
and the antiquark, respectively, and where k1⊥ ≡ jk1j, etc.
In the current work we will give an analytical calculation in
the correlation limit k1⊥ ∼ k2⊥ ≫ Qs;Δ⊥, where we point
out that there is no need to make any assumption regarding
the relation between the scalesΔ⊥ andQs. Clearly the most

interesting case is when Δ⊥ is of the order of (or smaller
than) the semihard scale Qs, so that unitarity corrections
and gluon saturation are important, despite the fact that two
hard jets are being produced.
In the framework of light-cone perturbation theory

(LCPT), the general expressions for dijet cross sections
have been derived more than a decade ago [22,24]. In what
follows, we shall follow the notation and conventions
adopted in Refs. [32,34,62], properly adjusted to the case
of diffractive production. Let us start by considering the qq̄
component in the LCWF of a virtual photon. In order to
avoid a proliferation of equations, we shall deal explicitly
only with the case of a transverse virtual photon, while for
the case of longitudinal polarization we will just present the
final result. In momentum space the direct amplitude
(DA) reads

jγiTðqÞiqq̄ ¼
X

λ1;2¼�1=2

XNc

α;β¼1

δαβ

Z
1

0

dϑ1dϑ2δð1 − ϑ1 − ϑ2Þ
Z

d2k01d
2k02δ

ð2Þðk01 þ k02Þψ i
λ1λ2

ðϑ1; k01Þjqαλ1ðϑ1; k01Þq̄
β
λ2
ðϑ2; k02Þi;

ð2:1Þ

where i ¼ 1; 2 stands for the polarization index of the
transverse photon, while α and β are color indices in the
fundamental representation. λ1, k01 and ϑ1 are the helicity
state, the transverse momentum and the longitudinal
momentum fraction (with respect to the virtual photon)
of the quark and similarly for the antiquark. Notice that we
have used a prime to denote the transverse momenta
before the scattering, since they are different from the final
ones k1 and k2. The qq̄ amplitude is given by

ψ i
λ1λ2

ðϑ; kÞ ¼
ffiffiffiffiffiffi
qþ

2

r
eef
ð2πÞ3

φil
λ1λ2

ðϑÞkl
k2 þ ϑð1 − ϑÞQ2

; ð2:2Þ

with ef the fractional electric charge of the quark flavor
under consideration. The function

φil
λ1λ2

ðϑÞ ¼ δλ1λ2 ½ð2ϑ − 1Þδil þ 2iεilλ1� ð2:3Þ
appearing in the numerator in Eq. (2.2) represents the
helicity structure of the photon splitting vertex, while the

combination in the respective denominator arises, accord-
ing to the LCPT rules, from the energy denominator

Eqq̄ − Eγ ¼
1

2qþ

�
k021
ϑ1

þ k022
ϑ2

þQ2

�

¼ 1

2qþϑ1ϑ2
ðk021 þ ϑ1ϑ2Q2Þ: ð2:4Þ

Next, we make a Fourier transform according to

jqαλ1ðϑ1; k01Þq̄
β
λ2
ðϑ2; k02Þi

¼
Z

d2xd2ye−ik
0
1
·x−ik0

2
·yjqαλ1ðϑ1; xÞq̄

β
λ2
ðϑ2; yÞi; ð2:5Þ

where clearly x and y are the corresponding transverse
coordinates of the quark and the antiquark. A straightfor-
ward integration over the momenta k01 and k02 leads to

jγiTðqÞiqq̄ ¼
X

λ1;2¼�1=2

XNc

α;β¼1

δαβ

Z
1

0

dϑ1dϑ2δð1 − ϑ1 − ϑ2Þ
Z

d2xd2yψ̃ i
λ1λ2

ðϑ1; rÞjqαλ1ðϑ1; xÞq̄
β
λ2
ðϑ2; yÞi; ð2:6Þ

with r ¼ x − y and where the coordinate space qq̄ amplitude reads

ψ̃ i
λ1λ2

ðϑ; rÞ ¼ −

ffiffiffiffiffiffi
qþ

2

r
ieef
ð2πÞ2 φ

il
λ1λ2

ðϑÞ Q̄rl

r
K1ðQ̄rÞ: ð2:7Þ
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In the above, we have defined Q̄2 ¼ ϑð1 − ϑÞQ2 and the
dipole transverse size r ¼ jrj, while K1 is the usual
modified Bessel function of the second kind which sup-
presses exponentially the decay of the virtual photon to
dipoles with size much larger than 1=Q̄.
The advantage of the above representation is that we can

easily take into account the multiple scattering of the dipole
off the target color field, since the transverse coordinate of a
parton interacting with a soft gluon is a good quantum
number. In the kinematics we are interested in, the nucleus
can be viewed as a Lorentz contracted shockwave and the
scattering of each parton in the virtual photon LCWF is
given by a Wilson line: VðxÞ for the quark and V†ðyÞ for the
antiquark, where

VðxÞ ¼ T exp

�
ig
Z

dxþtaA−
a ðxþ; xÞ

�
: ð2:8Þ

Here T stands for time ordering in the light-cone time xþ, g is
the QCD coupling, ta is a SUðNcÞ color matrix in the
fundamental representation and A−

a , with a ¼ 1;…; N2
c − 1,

is the only nonvanishing component of the target color field

in the Lorentz gauge ∂μA
μ
a ¼ 0. The inclusion of themultiple

scattering simply amounts to the replacement

δαβ → ½VðxÞV†ðyÞ − 1�αβ ð2:9Þ

in Eq. (2.6). Still, the above corresponds to the inclusive
production of a dijet, which is not exactly what we want. In
order to have a diffractive process to the order of accuracy, the
projectile color dipole must scatter elastically and emerge as
a color singlet in the final state. Such a projection is simply
achieved by making the further replacement

½VðxÞV†ðyÞ − 1�αβ →
�

1

Nc
tr½VðxÞV†ðyÞ� − 1

�
δαβ

≡ ½Sðx; yÞ − 1�δαβ; ð2:10Þ

where Sðx; yÞ is the S matrix for the elastic scattering of the
color dipole ðx; yÞ. All in all, for evaluating the complete qq̄
component jγiTðqÞiDqq̄ of the virtual photon LCWF which
determines the diffractive dijet production one must imple-
ment the above modification in Eq. (2.6), which is

jγiTðqÞiDqq̄ ¼
X

λ1;2¼�1=2

XNc

α;β¼1

δαβ

Z
1

0

dϑ1dϑ2δð1 − ϑ1 − ϑ2Þ
Z

d2xd2yψ̃ i
λ1λ2

ðϑ1; rÞ½Sðx; yÞ − 1�jqαλ1ðϑ1; xÞq̄
β
λ2
ðϑ2; yÞi: ð2:11Þ

Finally, we come to calculate the corresponding cross section and we do so by calculating the number of quarks and
antiquarks in the final state, namely,

dσ
γ�TA→qq̄X
D

dkþ1 dk
þ
2 d

2k1d2k2
ð2πÞδðqþ − kþ1 − kþ2 Þ ¼

1

2
D
qq̄hγiTðqÞjN̂qðk1ÞN̂q̄ðk2ÞjγiTðqÞiDqq̄; ð2:12Þ

with N̂qðk1Þ, N̂q̄ðk2Þ the respective quark and antiquark number operators and where we have averaged over the
polarization of the transverse photon. From this point on, using the appropriate normalization of these number operators
(cf. Appendix C in [32]), straightforward algebra leads to (taking into account all relevant flavors and with αem ¼ e2=4π)

dσ
γ�TA→qq̄X
D

dϑ1dϑ2d2k1d2k2
¼ αemNc

2π2

�X
e2f

�
δð1 − ϑ1 − ϑ2Þðϑ21 þ ϑ22Þ

Z
d2x
2π

d2y
2π

d2x̄
2π

d2ȳ
2π

× e−ik1·ðx−x̄Þ−ik2·ðy−ȳÞ
r · r̄
rr̄

Q̄2K1ðQ̄rÞK1ðQ̄ r̄Þh½Sðx; yÞ − 1�½Sðȳ; x̄Þ − 1�i; ð2:13Þ

where the bar denotes coordinates in the complex conjugate
amplitude (CCA). The average in the last factor is to be
taken over all possible target field configurations, with a
weight function suitable to the longitudinal scale, or
equivalently the rapidity, of interest. We shall work in
the framework of the color glass condensate (CGC): at
moderate rapidities we can resort to the McLerran-
Venugopalan (MV) model [63,64], whereas at higher

rapidities we should better rely on the solution to the
BK equation [12,13] or the JIMWLK equation [14–20].
The precise rapidity is determined by the kinematics and
we shall return to this matter at the end of the current
section.
At this point we make a change of variables. In the DA

and in coordinate space we go from x and y to the
separation r and the center of energy b according to
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x ¼ bþ ϑ2r and y ¼ b − ϑ1r, while in momentum space
we replace k1 and k2 by the dijet imbalance Δ and the
relative momentum P according to k1 ¼ Pþ ϑ1Δ and
k2 ¼ −Pþ ϑ2Δ. It is rather important to point out that,
for our process, this imbalance is equal to the momentum
transferred from the target, since in the final state there are
no other particles between the dijet and the nucleus. With
the analogous change of variables in the CCAwe immedi-
ately find that the phase in the Fourier transform in
Eq. (2.13) becomes

k1 · ðx − x̄Þ þ k2 · ðy − ȳÞ ¼ P · ðr − r̄Þ þ Δ · ðb − b̄Þ:
ð2:14Þ

When the nucleus is homogeneous, CGC correlators
depend only on the differences between any two transverse
coordinates. In particular, the one appearing in Eq. (2.13)

can depend only on three vectors, which we choose to be r,
r̄ and the difference between the impact parameters in the
DA and the CCA, i.e., B≡ b − b̄. First, in view of
Eq. (2.14), this means that one of the two center of energy
vector integrations can be trivially performed to give the
total area S⊥ of the nucleus. Second, if we keep only the
factorized piece hTðrÞihT�ðr̄Þi, with T ¼ 1 − S the T
matrix, we find that the integration over B leads to a δ
function in Δ (more precisely this is smeared to momenta
up to a small nonperturbative scale, but to our purposes
such a scale can be taken equal to zero). Thus, in order to
have a nonzero momentum transfer Δ, we must consider
the “connected” part of the correlator in Eq. (2.13). The
resulting cross section will be suppressed by a color factor
1=N2

c and the corresponding process is incoherent as we
discuss in Sec. III. Putting everything together we arrive at
the differential cross section in the transverse sector [1]

dσ
γ�TA→qq̄X
D

dϑ1dϑ2d2Pd2Δ
¼ S⊥αemNc

4π3

�X
e2f

�
δð1 − ϑ1 − ϑ2Þðϑ21 þ ϑ22Þ

Z
d2B
2π

d2r
2π

d2r̄
2π

× e−iΔ·B−iP·ðr−r̄Þ
r · r̄
rr̄

Q̄2K1ðQ̄rÞK1ðQ̄ r̄ÞWDðr; r̄;BÞ; ð2:15Þ

where the “diffractive” correlatorWD contains all the QCD
dynamics in the CGC framework and is defined as

WDðr; r̄; BÞ ¼ hSðx; yÞSðȳ; x̄Þi − hSðx; yÞihSðȳ; x̄Þi:
ð2:16Þ

The corresponding expression for a longitudinally polar-
ized virtual photon can be obtained from Eq. (2.15) via the
replacements ϑ21 þ ϑ22 → 4ϑ1ϑ2 and ðr=rÞK1ðQ̄rÞ →
K0ðQ̄rÞ and similarly for the respective factor in the
CCA. We would also like to mention that Eq. (2.15) gives
the cross section per unit longitudinal momentum fractions
of the “jets.” It is more standard to rewrite it in terms of
rapidities, and for this to happen it is enough to multiply
with a factor ϑ1ϑ2. In this work we are interested in the
scenario that the two jets share almost equally the longi-
tudinal momentum of the virtual photon, i.e., the two
fractions are considered to be of the order of one-half.
Then, such a multiplicative factor does not bring any
significant parametric dependence and if needed it can
be trivially restored at the end of the calculation.
The correlators in Eq. (2.16) must be evaluated at the

rapidity gap Ygap ¼ ln 1=xgap of the diffractive process.
Here xgap is defined as the fraction of the target nucleon
longitudinal momentum P−

N which is transferred to the
diffractive qq̄ system. This is determined by the conserva-
tion law

xgapP−
N ¼ 1

2qþ

�
k21⊥
ϑ1

þ k22⊥
ϑ2

þQ2

�
⇒ xgap

¼ xBj

�
1þ P2⊥

Q̄2
þ Δ2⊥

Q2

�
: ð2:17Þ

We will be interested in the kinematic regime
P⊥ ∼ Q̄ ≫ Δ⊥. As a consequence the term Δ2⊥=Q2 can
be safely dropped, while the term P2⊥=Q̄2 is of the order of
one, so that

Ygap ≃ ln
1

xBj
− ln

�
1þ P2⊥

Q̄2

�
: ð2:18Þ

This means that the production of the dijet “consumes”
roughly one unit of the available longitudinal phase space,
but since xBj ≪ 1 such a reduction of the gap is subdomi-
nant at the leading logarithmic level. Hence, although it is
not hard to keep the second term in Eq. (2.18) when
calculating the correlators, we shall neglect such a term and
therefore assume that the gap is P⊥ independent. As
typically done, one can start with the MV model initial
condition at Y0 ¼ ln 1=x0 with x0 ≃ 10−2 and then evolve
with the BK or the JIMWLK equation for a rapidity
interval ΔY ¼ Ygap − Y0 ≃ ln x0=xBj.
Equation (2.18) also explains why we prefer to study

only the symmetric case in which ϑ1 and ϑ2 are roughly
equal to each other. Still assuming thatQ is a hard scale, let
us see what happens in the unbalanced situation where ϑ1
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(or ϑ2) gets small enough so that Q̄ becomes much smaller
than the hard momentum P⊥. Then, although our calcu-
lation and results that follow in the next sections remain
generally valid (since the correlation limit is not sensitive to
the value of Q̄), one of the two jets becomes very soft in its
longitudinal momentum. As a consequence, it “eats up” a
significant part of the rapidity space between the other jet
and the target and therefore, as evident in Eq. (2.18), the
diffractive gap gets smaller leading to a less interesting
situation.

III. AVERAGING IN THE CGC

The incoherent diffractive cross section involves the
correlator WDðr; r̄;BÞ defined in Eq. (2.16), which we will
calculate analytically in the correlation limit. For a warmup,
and in order to get an insight to the dynamics, we shall first
work at lowest order in the number of gluon exchanges.
Within each projectile dipole, one in the DA and one in the
CCA, there are two gluon hookings and therefore we can
make use of the expansion

Sðx; yÞ ≃ 1 −
g2

4Nc
ðαax − αay Þ2 with

αax ≡
Z

∞

−∞
dxþA−

a ðxþ; xÞ; ð3:1Þ

and similarly for Sðȳ; x̄Þ. Obviously this expansion is valid
only in the absence of unitarity corrections, that is when
r; r̄; B ≪ 1=Qs or, equivalently, when P⊥;Δ⊥ ≫ Qs. We
will assume that the CGC wave function is Gaussian: this is
valid by definition in the MV model, while it is very
accurate even after JIMWLK evolution is included [65–68].
When taking the expectation values in Eq. (2.16), only the
connected part survives, that is, only terms which involve
the contraction of one field in the DA with a field in the
CCA are relevant. For example, one such term is (cf. Fig. 1)

g4

4N2
c

X
a;b

hαaxαbȳ ihαayαbx̄i ¼
g4

4N2
c

X
a

hαaxαaȳ ihαayαax̄i

¼
X
a;b

g4

4N2
cðN2

c − 1Þ hα
a
xα

a
ȳ ihαbyαbx̄i;

ð3:2Þ
where we have explicitly shown the summations over color
indices (which refer to gluons) to avoid any confusion. For
the first equality, we have just used the fact that the
correlator of two fields is diagonal in color. In turn this
means that only one gluon color flows in the lhs as implied
by the single summation over a. On the contrary, in the last
expressions two independent gluon colors are summed and
therefore we have divided by the number of colors for the
equation to be valid (assuming that the Gaussian approxi-
mation gives equal weight to all the color components of
the gauge field). Thus, the connected piece which we are
calculating is suppressed at large Nc as anticipated. Putting
together all the possible terms, one can write WD as

WDðr; r̄;BÞ ≃
g4

8N2
cðN2

c − 1Þ
× ½hαaxαax̄i þ hαayαaȳ i − hαaxαaȳ i − hαayαax̄i�2:

ð3:3Þ
We are free to add and subtract “equal point correlators”
like hαaxαaxi, so that eventually we can reconstruct average
values of the scattering amplitudes (at the level of two-
gluon exchange), i.e.,

WDðr; r̄;BÞ

≃
1

2ðN2
c−1Þ ½hTðx; ȳÞiþhTðy; x̄Þi− hTðx; x̄Þi− hTðy; ȳÞi�2:

ð3:4Þ

FIG. 1. Left panel: A diagram for incoherent diffractive dijet production at the level of four-gluon exchange. It corresponds to Eq. (3.2)
which is part of the product hTðx; ȳÞihTðy; x̄Þi. Each of the two lower double lines, which correspond to colorless substructures
(nucleons) in the nucleus, exchanges only one gluon with the projectile qq̄ pair in the DA (and one in the CCA), and thus it undergoes
inelastic scattering. Right panel: The same in the large-Nc limit, in which the gluons are represented by double lines. The substructures
are not colorless in the final state, thus indicating that the nucleus does not remain intact. Two independent colors (in the fundamental
representation), α and β, flow in the diagram which is of the order of g8N2

c.
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In Fig. 1 we give a typical diagram corresponding to
incoherent diffraction at the level of four-gluon exchange and
we illustrate the color flow in the large-Nc limit. Comparing
to the respective coherent diffraction diagrams in Fig. 2, we
observe that the color exchange (necessary for incoherent
scattering) between the colorless substructures (nucleons) of
the target nucleus leads to a 1=N2

c suppression.
The separations r and r̄ are small, since they are con-

strained by their conjugate momentum P which is hard.
Then in Eq. (3.4) we can expand all amplitudes around B,
given that they all involve one leg in the DA and the other
leg in the CCA. It is a straightforward exercise to show that
the lowest order term in the linear combination in the
square bracket is of quadratic order, which is due to the fact
that we are still calculating an elastic process for the
projectile dipole. More precisely we find

T ðx; ȳÞ þ T ðy; x̄Þ − T ðx; x̄Þ − T ðy; ȳÞ ≃ rir̄j∂i∂jT ðBÞ;
ð3:5Þ

where, for the purposes of a more compact notation, a
calligraphic symbol is used for the average value of a
quantity, for example here T ≡ hTi. Thus, substitution of
Eq. (3.5) into Eq. (3.4) leads to

WDðr; r̄;BÞ ≃
1

2ðN2
c − 1Þ r

ir̄jrkr̄l∂i∂jT ðBÞ∂k∂lT ðBÞ;

ð3:6Þ

which is valid at the level of four-gluon exchange and in the
Gaussian approximation.
Now we would like to generalize the above to the case of

larger values of B, since it is the coordinate space variable
conjugate to the momentum Δ⊥ which we would like to be
of the order of Qs. The typical configuration, as illustrated
in Fig. 3, is when x and y in the DA remain close together,
the same for x̄ and ȳ in the CCA, but the pair in the DA is far
away from the pair in the CCA. Such an extension (always
in the Gaussian approximation) for WDðr; r̄;BÞ which
includes unitarity corrections for the scattering amplitude

T ðBÞ is not that complicated and is given in Appendix A.
We find

WDðr; r̄;BÞ ≃
CF

2N3
c
rir̄jrkr̄lΦðBÞ

× ½∂i∂j lnSgðBÞ�½∂k∂l lnSgðBÞ�; ð3:7Þ

with CF ¼ ðN2
c − 1Þ=2Nc and where, in order to have more

compact expressions in the following sections, we have
conveniently defined the dimensionless scalar quantity

ΦðBÞ ¼ SgðBÞ − 1 − lnSgðBÞ
ln2SgðBÞ

: ð3:8Þ

In the above equations

SgðBÞ ¼ ½SðBÞ�Nc=CF ; ð3:9Þ

valid in the Gaussian approximation, is the average dipole S
matrix for the scattering of a gluon-gluon (or adjoint)
dipole, which is further assumed to depend only on the
magnitude of B. Still, one notices that there is angular
correlation between r and B, and thus there will also be one
between P and Δ. Clearly, Eq. (3.7) reduces to Eq. (3.6) as
it should when B ≪ 1=Qs and the two equations share a
similar form. Notice that Eq. (3.7) exhibits a “tensorial”
factorization: the power-law dependence on the small
fundamental dipoles r and r̄ has been factored out from
the (more complicated) dependence on the large adjoint
dipole B. We shall shortly see that such a property remains
valid for the respective conjugate momenta P and Δ.
Finally, we would like to point out that, although the
appearance of the adjoint dipole should not come as a
surprise (cf. Fig. 3), the particular dependence on SgðBÞ is
nontrivial.

FIG. 2. Left panel: A diagram for coherent diffractive dijet production, in general proportional to hTðx; yÞihTðȳ; x̄Þi, at the level of
four-gluon exchange. A colorless substructure (nucleon) of the nucleus exchanges two gluons with the projectile qq̄ pair in the DA (and
the same, for a potentially different nucleon, in the CCA) and thus it undergoes elastic scattering. Right panel: The same in the large-Nc
limit, in which the gluons are represented by double lines. The nucleon remains intact. Two independent colors flow in the DA and
another two in the CCA, thus leading to a total diagram which is of the order of g8N4

c.
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IV. THE CROSS SECTION FOR INCOHERENT
DIFFRACTIVE DIJET PRODUCTION

Due to the form of the correlator WD in Eq. (3.7), the
integrals over r and r̄ in Eq. (2.15) factorize from the one
over B. Thus, we are allowed to write

dσ
γ�TA→qq̄X
D

dϑ1dϑ2d2Pd2Δ
¼ S⊥αemNc

4π3

�X
e2f

�
δð1 − ϑ1 − ϑ2Þ

× ðϑ21 þ ϑ22Þ
CF

2N3
c
jAT

Dj2; ð4:1Þ

where, in order to get rid of simple multiplicative factors,
we have defined the “reduced” cross section jAT

Dj2 as

jAT
Dj2 ¼ Hiks

T ðP; Q̄ÞHjls�
T ðP; Q̄ÞGij;kl

D ðΔÞ: ð4:2Þ

This is one of the central results of the current work: at
leading twist the incoherent diffractive dijet cross section
can be decomposed into the calculation of a factor that
depends only on the hard momentum P (and Q̄) and a factor
which depends only on the momentum transfer Δ, similarly
to what happens in the inclusive dijet cross section [22,24].
Notice that such a factorization does not hold at the level of
the amplitude.1

The hard factor Hiks
T Hjls�

T in Eq. (4.2) involves

Hiks
T ðP; Q̄Þ ¼

Z
d2r
2π

e−iP·r
rirkrs

r
Q̄K1ðQ̄rÞ; ð4:3Þ

which is symmetric in all indices and therefore the result
can be expressed in terms of PiPkPs, δikPs and the

permutations of the latter with equal weight. It can be
calculated in terms of two independent scalar integrals and
eventually we obtain

Hiks
T ðP; Q̄Þ ¼ −

2i
ðP2⊥ þ Q̄2Þ2 ðδ

ikPs þ δisPk þ δksPiÞ

þ 8iPiPkPs

ðP2⊥ þ Q̄2Þ3 : ð4:4Þ

The semihard factor Gij;kl
D in Eq. (4.2) which incorporates

the QCD dynamics via the nonlinear scattering of the
adjoint dipole off the nuclear target reads

Gij;kl
D ðΔÞ¼

Z
d2B
2π

e−iΔ·BΦðBÞ½∂i∂j lnSgðBÞ�½∂k∂l lnSgðBÞ�;

ð4:5Þ

where we recall that ΦðBÞ has been defined in Eq. (3.8).
Given that Sg depends only on the magnitude of B, one
can write the decomposition into a diagonal and a traceless
part

∂
i
∂
j lnSgðBÞ ¼

δij

2
FþðBÞ þ

�
BiBj

B2
−
δij

2

�
F−ðBÞ; ð4:6Þ

where two more scalar functions FþðBÞ and F−ðBÞ have
been introduced according to

F�ðBÞ ¼
∂
2 lnSg

∂B2
� 1

B

∂ lnSg

∂B
: ð4:7Þ

It is rather useful to notice and remember that these two
functions have dimension of mass squared. The structure in
Eq. (4.6) appears also in the Weizsäcker-Williams gluon
transverse momentum distribution (TMD), cf. Eq. (B2) in
Appendix B. The difference here is that it is already present
at the amplitude level, hence it has to be squared when
evaluating the diffractive cross section as evident in
Eq. (4.5). It is clear that the 4-rank tensor Gij;kl

D ðΔÞ can
be decomposed into a few terms, each of which is propor-
tional to δijδkl or δijΔkΔl or ΔiΔjΔkΔl or the permutations
of the first two structures. The coefficients in this decom-
position, whose precise form is given in Appendix C, are
given by five different scalar quantities which depend on
the momentum transfer Δ⊥. Eventually the process under
consideration probes only four of them [cf. Eqs. (4.13) and
(4.16) below], which are expressed in terms of the Fourier
transforms

GðþÞ
D ðΔ⊥Þ ¼

Z
d2B
2π

e−iΔ·BΦðBÞ½FþðBÞ�2; ð4:8Þ

FIG. 3. The typical dipole configuration that determines the
incoherent diffractive dijet cross section in Eq. (2.15) in the most
interesting kinematic regime P⊥ ≫ Δ⊥ ∼Qs known as the “cor-
relation” limit. The qq̄ dipole in theDA is separated from the one in
the CCA by a large distanceB ∼ 1=Δ⊥ ∼ 1=Qs when compared to
the dipole sizes themselves that satisfy r; r̄ ∼ 1=P⊥ ≪ 1=Qs.

1On the contrary, factorization at the amplitude level occurs at
the case of coherent diffractive dijet production [54,55,57], where
no momentum is transferred from the target to the projectile, but
the imbalance in the dijet transverse momentum is generated by
the emission (from the quark or the antiquark) of a gluon.

BENJAMIN RODRIGUEZ-AGUILAR et al. PHYS. REV. D 107, 114007 (2023)

114007-8



Gð−Þ
D ðΔ⊥Þ ¼

Z
d2B
2π

e−iΔ·BΦðBÞ½F−ðBÞ�2; ð4:9Þ

Gð1Þ
D ðΔ⊥Þ ¼

Z
d2B
2π

e−iΔ·BΦðBÞFþðBÞF−ðBÞ cos 2ϕΔB;

ð4:10Þ

and

Gð2Þ
D ðΔ⊥Þ ¼

Z
d2B
2π

e−iΔ·BΦðBÞ½F−ðBÞ�2 cos 4ϕΔB; ð4:11Þ

with ϕΔB the angle between the vectors Δ and B. Following
our discussion below Eq. (4.7), we see that in coordinate
space (B space) these functions are bilinears in the
corresponding unpolarized and linearly polarized gluon
distributions [22–24] (which determine the inclusive dijet
production), given in Eqs. (B4) and (B5) for our conven-
ience. Although we shall not attempt to provide for a
precise identification in terms of number operators in the
nucleus, we shall (perhaps abusively) refer to them as
distributions for the ease of presentation. Notice that it is
straightforward to further integrate over the angle between
B and Δ by making use of

Z
d2B
2π

e−iΔ·BF ðBÞ cos 2nϕΔB ¼ ð−1Þn
Z

∞

0

dBBJnðΔ⊥BÞF ðBÞ; ð4:12Þ

with F ðBÞ an arbitrary function of B, and thus express all the distributions in terms of one-dimensional integrals involving
the first three even Bessel functions of the first kind, i.e., JnðΔ⊥BÞ with n ¼ 0; 2; 4.
Having both the hard and semihard tensors at our disposal, we can perform the contractions of the indices in Eq. (4.2) (as

detailed in Appendix C), to arrive at the transverse reduced cross section

jAT
Dj2 ¼

4P2⊥ð3Q̄4 þ P4⊥Þ
ðP2⊥ þ Q̄2Þ6 GðþÞ

D ðΔ⊥Þ þ
8Q̄4P2⊥

ðP2⊥ þ Q̄2Þ6 G
ð−Þ
D ðΔ⊥Þ þ

16Q̄2P2⊥ðQ̄2 − P2⊥Þ cos 2ϕ
ðP2⊥ þ Q̄2Þ6 Gð1Þ

D ðΔ⊥Þ

−
8Q̄2P4⊥ cos 4ϕ
ðP2⊥ þ Q̄2Þ6 Gð2Þ

D ðΔ⊥Þ; ð4:13Þ

where now ϕ is the angle between the hard jet momentum P and the momentum transfer Δ.
Concerning the longitudinal cross section, as we already mentioned one merely makes the replacements ϑ21 þ ϑ22 →

4ϑ1ϑ2 and ðr=rÞK1ðQ̄rÞ → K0ðQ̄rÞ and similarly for the respective factor in the CCA in Eq. (2.15). This leads just to a
modification of the hard tensorial factor, while the semihard one remains the same as it should, more precisely we have

jAL
Dj2 ¼ Hik

L ðP; Q̄ÞHjl
LðP; Q̄ÞGij;kl

D ðΔÞ; ð4:14Þ

with

Hik
L ðP; Q̄Þ ¼

Z
d2r
2π

e−iP·rrirkQ̄K0ðQ̄rÞ ¼ 4Q̄ðQ̄2 − P2⊥Þ
ðP2⊥ þ Q̄2Þ3

δik

2
−

8Q̄P2⊥
ðP2⊥ þ Q̄2Þ3

�
PiPk

P2⊥
−
δik

2

�
: ð4:15Þ

Performing the contractions (again cf. Appendix C) we get

jAL
Dj2 ¼

2Q̄2ðQ̄4 − 2Q̄2P2⊥ þ 5P4⊥Þ
ðP2⊥ þ Q̄2Þ6 GðþÞ

D ðΔ⊥Þ þ
2Q̄2ðQ̄2 − P2⊥Þ2
ðP2⊥ þ Q̄2Þ6 Gð−Þ

D ðΔ⊥Þ −
16Q̄2P2⊥ðQ̄2 − P2⊥Þ cos 2ϕ

ðP2⊥ þ Q̄2Þ6 Gð1Þ
D ðΔ⊥Þ

þ 8Q̄2P4⊥ cos 4ϕ
ðP2⊥ þ Q̄2Þ6 Gð2Þ

D ðΔ⊥Þ: ð4:16Þ

Thus, we have been able to express both the transverse
and longitudinal components of the incoherent diffractive
dijet production as a linear combination of four distribu-
tions GðnÞ

D ðΔ⊥Þ. All the corresponding coefficients are
determined analytically and depend on the two hard

momenta P⊥ and Q̄, but also on the angle between P
and Δ. If we assume that P⊥ ∼ Q̄, which is indeed the
typical value of the magnitude of the jet momenta as
dictated by the photon decay vertex, we immediately see
that the all hard coefficients fall like 1=P6⊥. This was to be
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expected since Hiks
T ðP; Q̄Þ in Eq. (4.4) and Hik

L ðP; Q̄Þ in
Eq. (4.15) fall like 1=P3⊥.
Regarding the angular dependence, there is a one-to-one

correspondence between the angle ϕΔB and the angle ϕ: for

example, Gð1Þ
D ðΔ⊥Þ which involves cos 2ϕΔB leads to the

cos 2ϕ dependence in the cross section. Finally, we notice
that the coefficients of cos 2ϕ in the transverse and longi-
tudinal sectors differ only in their sign. We recall that this is
also a property of the inclusive dijet cross section [24].
The same feature holds for the cos 4ϕ coefficients.

V. MOMENTUM DEPENDENCE OF THE
DIFFRACTIVE DISTRIBUTIONS

In this section we will try to get an insight to the four
diffractive distributions GðnÞ

D ðΔ⊥Þ. First, we shall do simple
analytic calculations and considerations in the regime
where the momentum transfer Δ⊥ is either much larger
than or, more interestingly, of the order of the saturation
momentum Qs. Then we will proceed to a direct numerical
evaluation for any value of Δ⊥.
For definiteness we shall first assume that the dipole-

nucleus scattering is described by the MV model [63,64],
i.e.,

SgðBÞ ¼ 1 − T gðBÞ ¼ exp

�
−
B2Q2

A

4
ln

4

B2Λ2

�
; ð5:1Þ

where the scale Q2
A is expressed in terms of the saturation

momentum via the relation

Q2
A ln

Q2
s

Λ2
¼ Q2

s : ð5:2Þ

Notice that the above refers to the gluon saturation
momentum which is enhanced by a factor of Nc=CF
with respect to the quark one. Then for the dimensionful
B-dependent factors in Eq. (4.7) one finds

FþðBÞ¼−Q2
A lnð4=B2Λ2Þþ2Q2

A; F−ðBÞ¼Q2
A; ð5:3Þ

while for the dimensionless ΦðBÞ defined in Eq. (3.8) we
find in the two regimes of interest

ΦðBÞ ≃
�
1=2 for B ≪ 1=Qs;

Oð1Þ for B ∼ 1=Qs:
ð5:4Þ

Even thoughΦðBÞ is of the same order in the whole regime
covered in the above, we have distinguished between the
two cases in order to point out that the normalization is
under control when B ≪ 1=Qs. When Δ⊥ ≫ Qs, small
dipoles such that B ≪ 1=Qs naturally give the dominant

contribution to all the distributions GðnÞ
D ðΔ⊥Þ. After rather

simple integrations we obtain to logarithmic accuracy

GðþÞ
D ≃

2Q4
A

Δ2⊥
ln
Δ2⊥
Λ2

; Gð−Þ
D ≃

Q6
A

3Δ4⊥
;

Gð1Þ
D ≃

Q4
A

Δ2⊥
ln
Δ2⊥
Λ2

; Gð2Þ
D ≃

2Q4
A

Δ2⊥
for Δ⊥ ≫ Qs: ð5:5Þ

Notice that GðþÞ
D ≃ 2Gð1Þ

D are the dominant distributions,

while Gð−Þ
D is power suppressed.2

In the regime that we are mostly interested in, that is
when Δ⊥ ∼Qs, dipoles of size B ∼ 1=Qs determine the
bulk of the four distributions and we easily find that

GðþÞ
D ∼Q2

s ; Gð−Þ
D ∼

Q2
s

ρ2A
; Gð1Þ

D ∼
Q2

s

ρA
;

Gð2Þ
D ∼

Q2
s

ρ2A
for Δ⊥ ∼Qs; ð5:6Þ

where recall that one can rewrite Eq. (5.2) as Q2
A ¼ Q2

s=ρA,
where ρA ≡ lnQ2

s=Λ2 is a sizable number for typical
numbers of the gluon saturation momentum. As a conse-

quence, GðþÞ
D ðQsÞ is still the largest of the four distributions

to logarithmically accuracy, at least parametrically. One can
further verify that such a property remains valid also for

small momenta such that Λ ≪ Δ⊥ ≪ Qs, therefore G
ðþÞ
D is

eventually the largest in the whole kinematic regime.
Mostly for the completeness of presentation, we would

like to comment on whether BK evolution [12,13] brings
any kind of modifications to these estimates and in
particular to the hierarchy among the distributions. This
evolution leads to a softening in the perturbative tail of the
amplitude and at asymptotically high energy the solution to
the BK equation exhibits scaling, i.e., the amplitude
becomes a function of the single variable BQsðYÞ, in a
wide kinematic regime which extends to momenta well
above Qs [69–71]. When B ≪ 1=Qs such a solution (up to
logarithmic factors) reads T gðBÞ ∝ ðB2Q2

sÞγ, where at
leading order γ ≃ 0.63. With NLO corrections [72–74]
and the necessary collinear resummations [75–77]
included, the above remains a good solution with γ a
number satisfying 1=2 < γ < 1. It is possible to give
analytic estimates of the distributions in the presence of
BK evolution at very high energy. We will avoid doing so
for the economy of the presentation, since the rapidity
scale, at which the dipole-nucleus scattering amplitude
should be evaluated, is not very large for phenomenological

purposes, and thus we expect the GðnÞ
D to obey the hierarchy

of the MV model expressions in Eqs. (5.5) and (5.6).
In Fig. 4 we show the numerical evaluation of the four

distributions as functions of Δ⊥. When T gðBÞ is

2One must keep the first subleading term −T g=6 in the
expansion of Φ, where the amplitude T g contains exchanges
of only two gluons.
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determined by the MV model, we do see in the left panel
that the two hierarchies for Δ⊥ ≫ Qs and Δ⊥ ∼Qs in
Eqs. (5.5) and (5.6) are confirmed. We further notice that

Gð1Þ
D ðΔ⊥Þ and Gð2Þ

D ðΔ⊥Þ bend down at small Δ⊥. This is due
to the particular dependence on the angle between Δ and B
which upon integration leads to a J2ðΔ⊥BÞ and J4ðΔ⊥BÞ
for the corresponding distributions [cf. Eqs. (4.10), (4.11),
and (4.12)]. The two Bessel functions vanish quadratically
and quartically, respectively, at small argument and lead to
the suppression of the distributions in the region where Δ is
smaller than Qs. Regarding the other two distributions,

GðþÞ
D ðΔ⊥Þ keeps growing logarithmically (more precisely as

the square of the logarithm of Δ2⊥), while G
ð−Þ
D ðΔ⊥Þ grows

more slowly. As expected, BK evolution3 in a short interval

does not bring strong changes, except in Gð−Þ
D for Δ⊥ ≫ Qs,

since it is not any more power suppressed as in the MV

model. However, it is worthwhile to mention that Gð−Þ
D can

be neglected for all practical purposes. Indeed, it is always

much smaller than GðþÞ
D , while they both give the same type

of contribution: the one that is independent of the angle ϕ
(for both transverse and longitudinal sectors).

VI. ANALYTICAL ESTIMATES AND NUMERICAL
RESULTS FOR THE CROSS SECTIONS AND THE

AZIMUTHAL ANISOTROPIES

Using the general expressions in Sec. IV and the
behavior of the distributions in Sec. V we shall now study
the incoherent diffractive dijet cross section. To this end, let
us be more specific about the quantities to be calculated.
First, we shall consider the cross section obtained after

averaging over the relative angle ϕ between the momentaΔ
and P, namely,

dσ
γ�λA→qq̄X
D

dΠ
¼

Z
2π

0

dϕ
2π

dσ
γ�λA→qq̄X
D

dϑ1dϑ2d2Pd2Δ
; ð6:1Þ

with dΠ ¼ ð2πÞ2P⊥dP⊥Δ⊥dΔ⊥dϑ1dϑ2. It is clear from

Eqs. (4.13) and (4.16), that the coefficients of Gð1Þ
D ðΔ⊥Þ and

Gð2Þ
D ðΔ⊥Þ vanish due to the angle averaging and therefore

the above quantity probes a combination of GðþÞ
D ðΔ⊥Þ and

Gð−Þ
D ðΔ⊥Þ. As already pointed out at the end of Sec. V, in

practice only GðþÞ
D ðΔ⊥Þ contributes to the cross section.

Thus, for simplicity, Gð−Þ
D ðΔ⊥Þ will not be shown in the

following analytical expressions, although it will be kept in
all numerical calculations. In order to facilitate our nota-
tion, let us note that the dependence of the reduced cross
sections in Eqs. (4.13) and (4.16) on the momenta P and Δ
may be written as

jAλ
Dj2 ¼ N λ

0ðP⊥;Δ⊥Þ þ 2
X∞
n¼1

N λ
nðP⊥;Δ⊥Þ cos nϕ; ð6:2Þ

where it is clear that the only nonvanishing terms
at the leading twist level in which we have been
working so far, are N λ

n with n ¼ 0; 2; 4. Then the depend-
ence on P⊥ and Δ⊥ (and Q̄) of the average cross section is
encoded in

N T
0 ≃

4P2⊥ð3Q̄4 þ P4⊥Þ
ðP2⊥ þ Q̄2Þ6 GðþÞ

D ðΔ⊥Þ;

N L
0 ≃

2Q̄2ðQ̄4 − 2Q̄2P2⊥ þ 5P4⊥Þ
ðP2⊥ þ Q̄2Þ6 GðþÞ

D ðΔ⊥Þ; ð6:3Þ

FIG. 4. The four diffractive distributions as functions of the transverse momentum Δ⊥. Left panel: the input amplitude T gðBÞ is given
by the MVmodel withQ2

s ¼ 2 GeV2. Right panel: the input amplitude T gðBÞ is obtained by evolving the MVmodel initial condition to
ΔY ¼ 3 with the collinearly improved BK equation [77].

3Here we solve the collinearly improved BK evolution with
running coupling as developed in [77]. The precise details and
conventions are given in Appendix D of [78].
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while all the remaining prefactors can be readily restored
making use of Eq. (4.1). In order to get a better feeling for
the magnitude of the incoherent diffractive cross section, let
us make a direct comparison with the respective inclusive
cross section defined analogously to Eq. (6.1). The latter is
analytically known in the correlation limit [22,24] and is
reviewed in Appendix B. It is a trivial exercise to obtain the
ratio

dσ
γ�TA→qq̄X
D =dΠ

dσ
γ�TA→qq̄X
inc =dΠ

¼ 1

2N2
c

4P2⊥ð3Q̄4 þ P4⊥Þ
ðP4⊥ þ Q̄4ÞðP2⊥ þ Q̄2Þ2

×
GðþÞ
D ðΔ⊥Þ

ð4π3αs=CFÞxGðΔ⊥Þ
ð6:4Þ

for the transverse polarizations and the ratio

dσ
γ�LA→qq̄X
D =dΠ

dσ
γ�LA→qq̄X
inc =dΠ

¼ 1

2N2
c

Q̄4 − 2Q̄2P2⊥ þ 5P4⊥
P2⊥ðP2⊥ þ Q̄2Þ2

×
GðþÞ
D ðΔ⊥Þ

ð4π3αs=CFÞxGðΔ⊥Þ
ð6:5Þ

for the longitudinal one. Here xGðΔ⊥Þ is the unpolarized
unintegrated gluon distribution in the target, cf. Eq. (B4),
and it is dimensionless. The last fraction, which encodes the

semihard dynamics, is of the order of Q2
s when Δ⊥ ∼Qs,

and generally it is a slowly varying function of Δ⊥. Hence,
when P⊥ ∼ Q̄, one sees that both ratios scale as

dσ
γ�λA→qq̄X
D =dΠ

dσ
γ�λA→qq̄X
inc =dΠ

∼
1

N2
c

Q2
s

P2⊥
; ð6:6Þ

and exhibit a double suppression: in addition to the 1=N2
c

factor discussed earlier in Sec. III, the 1=P6⊥ fall-off in the
diffractive case is much stronger than the 1=P4⊥ one in the
inclusive case. Still, the preciseP⊥ dependence of the ratio is
quite different for the two polarizations and it has to do with
the value of P⊥ with respect to Q̄. In the transverse case the
ratio vanishes quadratically at small P⊥ while it falls like
1=P2⊥ at large P⊥, thus showing a clear maximum at a value
P�⊥ which is proportional to Q̄ (the numerical solution to a
simple algebraic equation gives P�⊥ ≃ 0.75Q̄). On the con-
trary, in the longitudinal case the ratio scales like 1=P2⊥ at
both small and large P⊥ (but with a different coefficient in
each regime). Such detailed features have already been
observed in the numerical solution in [1] (cf. the right panel
in Fig. 3 there) and what we point out here is that they can be
analytically understood in the correlation limit.
Next, we define the azimuthal anisotropies, which are

sensitive to the relative angle between Δ and P, as the
dimensionless ratios

hcos nϕiλ ¼
Z

2π

0

dϕ
2π

cos nϕ
dσ

γ�λA→qq̄X
D

dϑ1dϑ2d2Pd2Δ

	Z
2π

0

dϕ
2π

dσ
γ�λA→qq̄X
D

dϑ1dϑ2d2Pd2Δ
¼ N λ

n

N λ
0

; ð6:7Þ

with n an (even) integer. By straightforward inspection of
Eqs. (4.13) and (4.16) we immediately see that for both
transverse and longitudinal virtual photons, the nonvanish-
ing anisotropies are the elliptic hcos 2ϕiλ and the quad-
rangular hcos 4ϕiλ ones, for which we obtain

hcos 2ϕiT ≃
2Q̄2ðQ̄2 − P2⊥Þ
3Q̄4 þ P4⊥

Gð1Þ
D ðΔ⊥Þ

GðþÞ
D ðΔ⊥Þ

;

hcos 2ϕiL ≃
4P2⊥ðP2⊥ − Q̄2Þ

Q̄4 − 2Q̄2P2⊥ þ 5P4⊥
Gð1Þ
D ðΔ⊥Þ

GðþÞ
D ðΔ⊥Þ

ð6:8Þ
and

hcos 4ϕiT ≃ −
Q̄2P2⊥

3Q̄4 þ P4⊥
Gð2Þ
D ðΔ⊥Þ

GðþÞ
D ðΔ⊥Þ

;

hcos 4ϕiL ≃
2P4⊥

Q̄4 − 2Q̄2P2⊥ þ 5P4⊥
Gð2Þ
D ðΔ⊥Þ

GðþÞ
D ðΔ⊥Þ

: ð6:9Þ

A few useful observations are in order:

(i) As already implied in the discussion at the end of
Sec. IV, hcos 2ϕiλ is proportional to Gð1Þ

D ðΔ⊥Þ while
hcos 4ϕiλ is proportional to Gð2Þ

D ðΔ⊥Þ.
(ii) The sign of hcos 2ϕiT is opposite to the one of

hcos 2ϕiL and similarly for the hcos 4ϕiλ anisotro-
pies, that is

hcos 2ϕiThcos 2ϕiL ≤ 0 and

hcos 4ϕiThcos 4ϕiL < 0: ð6:10Þ

(iii) As we have indicated above, hcos 2ϕiλ can vanish.
Indeed, as readily observed in Eqs. (6.8) and (6.9),
we have

hcos 2ϕiT ¼ hcos 2ϕiL ¼ 0 when

P⊥ ¼ Q̄ for anyΔ⊥: ð6:11Þ

Similar zeros have been observed in coherent
diffractive dijet production [53]. We shall elaborate
on this in Sec. VII: we will see that such a property is
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still valid when we include the first higher twist
correction in the longitudinal sector, but it is violated
in the transverse one.

(iv) The hcos 4ϕiλ anisotropies seem to be parametri-
cally of the same order of the hcos 2ϕiλ ones, since
all the hard coefficients are of the same order in P⊥
(they fall like 1=P6⊥ assuming that P⊥ and Q̄ are of
the same order). This is in sharp contrast to the case
of inclusive dijet production, where in the correla-
tion limit only hcos 2ϕiλ are nonzero at leading
twist. In that process, hcos 4ϕiλ anisotropies can be
generated when higher twists are taken into account
[79], but naturally they are suppressed by powers of
either Q2

s=P2⊥ or Δ2⊥=P2⊥.
In Fig. 5 we show the results for the averaged over angle

reduced cross sections. As expected, both the transverse
and longitudinal cross sections exhibit a much harder tail in

P⊥ than in Δ⊥ at high momenta. With decreasing Δ⊥ the
cross section shows a logarithmic increase, as it inherits the

properties of the dominant distribution GðþÞ
D .

The hcos 2ϕiλ azimuthal anisotropies are illustrated in
Fig. 6. One sees that the onset of saturation, i.e., a
decreasing momentum transfer Δ, brings about a smaller
anisotropy. As a function of the relative momentum P⊥ the
two anisotropies trivially vanish at P⊥ ¼ Q̄ due to the form
of the hard factor, while the transverse one displays a
maximum in its absolute value and then vanishes for very
large P⊥. These features, except the zero at P⊥ ¼ Q̄, are
also shared by the hcos 4ϕiλ anisotropies shown in Fig. 7.
In the MV model, and to some extent in the BK solution,

the semihard factors satisfy Gð2Þ
D ≪ Gð1Þ

D for all the momenta
of interest due to the presence of large logarithmic factors,
cf. Eqs. (5.5) and (5.6). Thus, we eventually see that
hcos 4ϕiλ is small (although it is far from being zero) when

FIG. 5. The averaged over angle reduced incoherent diffractive dijet cross section at leading twist. Left panel: as a function of the
momentum transfer Δ⊥ for fixed relative momentum P⊥. Right panel: as a function of P⊥ for fixed Δ⊥.

FIG. 6. Diffractive hcos 2ϕiλ azimuthal anisotropies at leading twist. Left panel: as a function of the momentum transfer Δ⊥ for fixed
relative momentum P⊥. Right panel: as a function of P⊥ for fixed Δ⊥.
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compared to hcos 2ϕiλ, even though they are both of the
same twist.

VII. HIGHER TWIST KINEMATIC CORRECTIONS

The problem we are dealing with involves three scales,
therefore we can form the two dimensionless ratios Qs=P⊥
and Δ⊥=P⊥ which in our approach are taken to be small.
Indeed, what we have developed so far is valid only in the
limit where the jet momentum P⊥ is much larger than both
the saturation scale Qs and the momentum transfer Δ. One
way to improve the description is to calculate higher twists,
either of the form ðQ2

s=P2⊥Þn, with n a positive integer,
which are “genuine saturation” effects, or of the form
ðΔ2⊥=P2⊥Þn which are “kinematic corrections” [80–82] (see
also [83]). In order to fully address the saturation twists one
must resort to a numerical approach [1], but since we are
interested in hard jets, we shall not be concerned with them
in what follows. Regarding the kinematic twists, one can
rely on the improved TMD framework and in principle
one could resum them to all orders by following the
procedure developed in [81]. For example, such a task
has already been performed for the case of inclusive dijet
production [36]. The implementation of this resummation
to the diffractive problem under consideration is not
straightforward, thus our goal will be more modest. We
will calculate only the first higher order kinematic twist, but
we will see that this is enough to capture the main features
of the anisotropies in the relevant kinematic regime.4

Our starting point is again the general expression in
Eq. (2.15) for the transverse cross section and similarly for
the longitudinal one. At next to leading twist one discovers
that there is explicit dependence of the reduced cross
section on the fractions ϑ1 and ϑ2, and for simplicity we
shall take ϑ1 ¼ ϑ2 ¼ 1=2 in what follows.5 Now one
expands the correlator WDðr; r̄;BÞ defined in Eq. (2.16)
to the 6th order in the sizes r and/or r̄ and this is to be
compared with the 4th order expansion in Eq. (3.7). These
two extra powers in the small dipoles lead to an additional
1=P2⊥ factor after taking the Fourier transform. At the same
time, it is clear that there will be two more derivatives
which eventually lead to a factor proportional to either Δ2⊥
or Q2

s, and only the former classifies as kinematic correc-
tion. Since lnSgðBÞ scales like Q2

s , we want to keep only
the terms which have the smallest number of such factors,
that is two, like in the leading twist term in Eq. (3.7). In fact
straightforward algebra shows there is only one such term
at next to leading twist, more precisely one finds that the
first order kinematic corrections to be added to the reduced
cross sections in Eqs. (4.2) and (4.14) read

δjAT
Dj2 ¼

1

6
Hikmns

T ðP; Q̄ÞHjls�
T ðP; Q̄ÞGij;klmn

D ðΔÞ; ð7:1Þ

δjAL
Dj2 ¼

1

6
Hikmn

L ðP; Q̄ÞHjl�
L ðP; Q̄ÞGij;klmn

D ðΔÞ; ð7:2Þ

for the transverse and longitudinal sectors, respectively.
The hard factors Hikmns

T ðP; Q̄Þ and Hikmn
L ðP; Q̄Þ are the

obvious extensions of Eqs. (4.3) and (4.15) to tensors with

FIG. 7. Diffractive hcos 4ϕiλ azimuthal anisotropies at leading twist. Left panel: as a function of the momentum transfer Δ⊥ for fixed
relative momentum P⊥. Right panel: as a function of P⊥ for fixed Δ⊥.

4We would like to comment that we have used this approach to
calculate the cross section for inclusive dijets as a test. It turns out
that the first kinematic correction describes correctly the main
features also for this process in the relevant kinematic regime, like
capturing in the hcos 2ϕiT anisotropy a global minimum with a
value ∼ − 0.2 around P⊥ ∼ Δ⊥ ∼ 2 GeV [1].

5At leading twist the only dependence turned out to be
implicit, i.e., it came only via Q̄. In general, a simple inspection
of Eq. (2.15) shows that any explicit dependence may arise only
due to the changes of variables from (x, y) and (k1, k2) to (b, r)
and (Δ, P) which involve the two fractions.

BENJAMIN RODRIGUEZ-AGUILAR et al. PHYS. REV. D 107, 114007 (2023)

114007-14



five and four indices and they can be calculated analyti-
cally, while the semihard tensor reads

Gij;klmn
D ðΔÞ ¼

Z
d2B
2π

e−iΔ·BΦðBÞ½∂i∂j lnSgðBÞ�

× ½∂k∂l∂m∂n lnSgðBÞ�: ð7:3Þ

One can perform the tensor decomposition of the above and
subsequently the contraction with the hard factors. We shall
not present any more details on this, rather we will only
give the final expressions for the MV model in
Appendix D. Here it suffices to observe that the tensor
in Eq. (7.3) has mass dimensions four, contrary to Gij;kl

D ðΔÞ
defined in Eq. (4.5) which has mass dimension two. The
two extra powers come from the two extra derivatives with
respect to the large dipole B in the last square bracket. This
leads to an additional factor ∼1=B2 in the integrand and
eventually to a factor Δ2⊥ after the Fourier transform is
taken. For example, in the MV model and up to logarithms,
the integrand scales likesQ4

A=B
2 and hence the integral like

Q4
A, to be compared with the Q4

A and Q4
A=Δ2⊥ scaling of the

respective leading twist quantities. Thus, as anticipated, we
confirm that the corrections Eqs. (7.1) and (7.2) are
suppressed by a Δ2⊥=P2⊥ when compared to the leading
twist result.
In Fig. 8 we show hcos 2ϕiλ in the MV model when the

first higher kinematic twist is included.
(i) Regarding the longitudinal elliptic anisotropy, the

higher twist induces a reduction whenΔ⊥ gets larger
than Qs, but there are no significant qualitative
changes. It still exhibits a sign change as a function
of P⊥ at the point P⊥ ¼ Q̄ [cf. Eqs. (6.8) and (D4)],
which is independent of Δ⊥.

(ii) However for the transverse sector the situation
is now somewhat different, since the kinematic

correction [cf. Eq. (D3)], contrary to the leading
twist piece, does not vanish when P⊥ ¼ Q̄. By
inspection of the analytical expressions in Appen-
dix D, one can show that the value of P⊥ at which
the sign change of hcos 2ϕiT happens, increases
with Δ⊥.

(iii) Furthermore, we observe that hcos 2ϕiT develops a
minimum as a function of Δ⊥ when P⊥ > Q̄.
Indeed, while under this condition the leading twist
contribution is negative [cf. Eq. (6.8)], one can verify
that the kinematic correction (cf. Appendix D) is
positive and increasing with Δ⊥.

We would like to emphasize that all these features, obtained
when P2⊥ is (much) larger than Q2

s , are in very good
qualitative and quantitative agreement with the all-twists
numerical solution and the related discussion presented in
[1] (cf. Fig. 3 there).

VIII. CONCLUSION AND PERSPECTIVES

In this work we have studied the process of incoherent
diffractive dijet production introduced in [1] in eA colli-
sions, for which we have provided an analytical insight in
the correlation limit, i.e., in the regime where the momenta
k1⊥ and k2⊥ of the two jets are much larger than both the
saturation scale Qs and the dijet imbalance Δ⊥, the latter
being equal to the transverse momentum transferred from
the nucleus. Although the cross section is suppressed by
1=N2

c (when, for example, compared to the one for
inclusive dijets [22] or for exclusive dijets with the nucleus
remaining intact [53]), as realized in [1] it provides for a
mechanism which leads to a significant dijet imbalance: it
can be much larger than the inverse inhomogeneity of the
nucleus, for example, of the order of Qs.
At leading twist, we have managed to separate the

hard dynamics, i.e., the dependence on the relative momen-
tum P⊥ and Q̄, from the semihard one, i.e., from the

FIG. 8. Diffractive hcos 2ϕiλ azimuthal anisotropies including the first higher kinematic twist. Left panel: as a function of the
momentum transfer Δ⊥ for fixed relative momentum P⊥. Right panel: as a function of P⊥ for fixed Δ⊥.
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dependence on the imbalanceΔ⊥. Then, we have computed
the first higher kinematic twist, that is the correction of
relative order Δ2⊥=P2⊥. This led to a rather good analytical
description of the azimuthal anisotropies in the extended
regime where Δ⊥ may start to be comparable to P⊥.
Needless to say, it would be desirable to perform a
complete resummation of all the ðΔ2⊥=P2⊥Þn terms by using
more elegant techniques, like the improved TMD
approach [81].
We have also seen that at the leading twist level the

differential diffractive dijet cross section follows a 1=P6⊥
power law (assuming that P⊥ ∼ Q̄). This falloff is much
faster than the 1=P4⊥ of the inclusive dijet cross section.
While here we have calculated only the qq̄ contribution,
when going to the next to leading order in the strong
coupling, we should consider an additional parton, more
precisely a gluon, in the wave function of the virtual
photon. When this gluon is emitted far from the qq̄ pair a
large gluon-gluon dipole emerges (with one leg being the
small qq̄ pair which remains in a color-octet state after the
gluon emission and the other leg being the emitted gluon
itself). Such gluon-gluon dipole scatters strongly with the
target nucleus and the resulting qq̄g contribution to the
cross section falls like 1=P4⊥. This has been thoroughly
studied and computed in coherent diffractive dijet produc-
tion [54,55,57] and the same idea should be applicable also
to the incoherent process we considered in the present
work.

Finally, we are aware of the fact that there aremechanisms,
other than those studied here (and in [1]), which have an
impact to the azimuthal anisotropies. For example, soft gluon
final state radiation induces a sizable elliptic anisotropy in
dijet events [35,84] and thus should be calculated and
combined with the one we have presented here.
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APPENDIX A: THE DOUBLE DIPOLE
CORRELATOR IN THE CORRELATION LIMIT

In this Appendix we will compute Eq. (2.16), i.e., the
“connected” part of the average of a product of two dipole S
matrices in the fundamental representation, to lowest order
in r and r̄ and for an arbitrary number of colors Nc. That is,
we assume that r; r̄ ≪ B; 1=Qs, or in momentum space
P⊥ ≫ Δ⊥; Qs. The momentum transfer Δ⊥ (or 1=B) is
generally considered to be of the order ofQs. We will work
in the Gaussian approximation, which is valid to excellent
accuracy even after including JIMWLK evolution [65–68],
and we shall further assume that the average dipole S
matrix depends only on the magnitude of the dipole
separation, that is, Sðx; yÞ ¼ Sðjx − yjÞ. Then, in a con-
venient to our purposes notation, we have [85]

hSðx; yÞSðȳ; x̄Þi ¼ Sðx; yÞSðȳ; x̄Þe−
F
2
þ f

N2
c

�� ffiffiffiffi
D

p þ F

2
ffiffiffiffi
D

p −
f

N2
c

ffiffiffiffi
D

p
�
e
ffiffi
D

p
2 þ

� ffiffiffiffi
D

p
− F

2
ffiffiffiffi
D

p þ f

N2
c

ffiffiffiffi
D

p
�
e−

ffiffi
D

p
2

�
; ðA1Þ

where we have defined

D ¼ F2 −
4

N2
c
fðF − fÞ; F ¼ Nc

2CF
ln
Sðx; yÞSðȳ; x̄Þ
Sðx; x̄ÞSðy; ȳÞ and f ¼ Nc

2CF
ln
Sðx; ȳÞSðy; x̄Þ
Sðx; x̄ÞSðy; ȳÞ : ðA2Þ

Let us start by studying the limit of the various above quantities to lowest order in r and r̄. First, recalling that
x − ȳ ¼ Bþ ϑ2rþ ϑ1r̄, we have

lnSðx; ȳÞ ≃ lnSðBÞ þ ðϑ2rþ ϑ1r̄Þi∂i lnSðBÞ þ
1

2
ðϑ2rþ ϑ1r̄Þiðϑ2rþ ϑ1r̄Þj∂i∂j lnSðBÞ; ðA3Þ

and similarly for the other three dipole correlators appearing in the argument of the logarithm in f. Since
they all involve one position in the DA and one in the CCA, it is obvious that the leading terms cancel.
One easily checks that the terms linear in the dipole size cancel too, and combining the second order terms
we get

f ≃
Nc

2CF
rir̄j∂i∂j lnSðBÞ ¼ 1

2
rir̄j∂i∂j lnSgðBÞ; ðA4Þ
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which can be viewed as the generalization of Eq. (3.5). We
have expressed the above in terms of the gluon-gluon
dipole correlator SgðBÞ already introduced in Eq. (3.9) in
the Gaussian approximation. On the contrary, in the same
regime F becomes independent of r and r̄, namely,

F ≃ −
Nc

2CF
lnS2ðBÞ ¼ − lnSgðBÞ; ðA5Þ

and we shall see in a moment that it is not necessary to take
into account the higher order terms that vanish when
r; r̄ → 0. Given the limiting behavior in Eqs. (A4) and
(A5), we expand

ffiffiffiffi
D

p
to second order in f to obtain

ffiffiffiffi
D

p
≃ F −

2f
N2

c
þ 4CFf2

N3
cF

: ðA6Þ

Then we return to Eq. (A1) and expand for small f to find
that the linear terms cancel, while the quadratic ones give

hSðx; yÞSðȳ; x̄Þi

≃ Sðx; yÞSðȳ; x̄Þ
�
1þ 2CF

N3
c

f2

F2
ðe−F − 1þ FÞ

�
: ðA7Þ

We see that the correction is already quartic in the small
dipole sizes r and r̄ as expected and therefore we can safely
let r ¼ r̄ ¼ 0 when calculating F, that is, we can use
Eq. (A5). We also notice that the expansion is safe for any
B; even when F is small (i.e., for B ≪ 1=Qs), the term in
the parenthesis upon expansion becomes of the order of F2,
thus cancelling the denominator in the prefactor there.
Furthermore, to the order of accuracy, Sðx; yÞSðȳ; x̄Þ can be
set equal to unity when multiplying the second term in the
square bracket. Using Eqs. (A4) and (A5) (in terms of Sg)
we arrive at the final expression for the correlator defined in
Eq. (2.16)

WDðr; r̄;BÞ ≃
CF

2N3
c

SgðBÞ − 1 − lnSgðBÞ
ln2SgðBÞ

rir̄jrkr̄l½∂i∂j lnSgðBÞ�½∂k∂l lnSgðBÞ�: ðA8Þ

We further point out that, after the trivial replacement 2CF=N3
c ≃ 1=N2

c, Eq. (A7) is the exact large-Nc limit of Eq. (A1), i.e.,
it is valid for generic dipoles sizes.

APPENDIX B: INCLUSIVE DIJET PRODUCTION

To assist the discussion in Sec. VI we wish to review here the cross section for inclusive dijet production [22,24]. Our
starting expression is Eq. (2.15), but we must replace WD with [cf. the discussion after Eq. (2.9)]

W incðr; r̄;BÞ ¼
1

Nc
htr½VðxÞV†ðyÞVðȳÞV†ðx̄Þ� − tr½VðxÞV†ðyÞ� − tr½VðȳÞV†ðx̄Þ� þ 1i: ðB1Þ

As usual we calculate the above using the Gaussian approximation. In the correlation limit we single out the semihard
dynamics into the gluon TMD which is defined as (using the notation of the present work)

xGijðΔÞ ¼ CF

4π3αs

Z
d2B
2π

e−iΔ·B
1 − SgðBÞ
lnSgðBÞ

∂
i
∂
j lnSgðBÞ ¼

δij

2
xGðΔ⊥Þ þ Δ̂ijxhðΔ⊥Þ: ðB2Þ

For our convenience we have defined the traceless tensor

Δ̂ij ≡ ΔiΔj

Δ2⊥
−
δij

2
; ðB3Þ

while the unpolarized and polarized unintegrated gluon distribution of the nucleus are given by [see also Eq. (4.6)]

xGðΔ⊥Þ ¼
CF

4π3αs

Z
∞

0

dBBJ0ðΔ⊥BÞ
1 − SgðBÞ
lnSgðBÞ

FþðBÞ ðB4Þ

and
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xhðΔ⊥Þ ¼ −
CF

4π3αs

Z
∞

0

dBBJ2ðΔ⊥BÞ
1 − SgðBÞ
lnSgðBÞ

F−ðBÞ: ðB5Þ

Contracting with the corresponding hard factors one arrives at

dσ
γ�TA→qq̄X
inc

dϑ1dϑ2d2Pd2Δ
¼ S⊥αem

�X
e2f

�
δð1−ϑ1−ϑ2Þðϑ21þϑ22Þ

�
P4⊥þ Q̄4

ðP2⊥þ Q̄2Þ4αsxGðΔ⊥Þ−
2Q̄2P2⊥

ðP2⊥þ Q̄2Þ4αsxhðΔ⊥Þcos2ϕ
�

ðB6Þ

and

dσ
γ�LA→qq̄X
inc

dϑ1dϑ2d2Pd2Δ
¼ S⊥αem

�X
e2f

�
δð1 − ϑ1 − ϑ2Þð4ϑ1ϑ2Þ

2Q̄2P2⊥
ðP2⊥ þ Q̄2Þ4 ½αsxGðΔ⊥Þ þ αsxhðΔ⊥Þ cos 2ϕ�: ðB7Þ

We would like to add that in the standard approach [86]
the gluon TMD is defined through gauge invariant field
correlators, which in general are nonperturbative quantities.
In the small-x limit they reduce to correlators of Wilson
lines as in here and the two approaches agree with each
other [22–24]. In the presence of gluon saturation, a
dynamical scale Qs ≫ Λ is generated and therefore the
problem can be addressed with weak coupling methods.
Thus the CGC approach adopted in this work provides for a
way to calculate such correlators from “first principles.”
This is what has been done in writing the above expressions

under the additional assumption of the Gaussian
approximation.

APPENDIX C: THE SEMIHARD
FACTOR AND CONTRACTIONS

Starting from Eq. (4.5) [together with Eq. (4.6)], we find
that the semihard factor admits a tensor decomposition, in
which the coefficients are given by five different scalar
quantities which depend only on the magnitude Δ⊥,
namely,

Gij;kl
D ðΔÞ ¼ δij

2

δkl

2

�
GðþÞ
D ðΔ⊥Þ −

1

2
Gð−Þ
D ðΔ⊥Þ

�
þ
�
δik

2

δjl

2
þ δil

2

δjk

2

�
1

2
Gð−Þ
D ðΔ⊥Þ

þ
�
δij

2
Δ̂kl þ δkl

2
Δ̂ij

��
Gð1Þ
D ðΔ⊥Þ −

2

3
Gð10Þ
D ðΔ⊥Þ

�
þ
�
δik

2
Δ̂jl þ δjl

2
Δ̂ik þ δil

2
Δ̂jk þ δjk

2
Δ̂il

�
1

3
Gð10Þ
D ðΔ⊥Þ

þ
�
Δ̂ijΔ̂kl −

1

2

δij

2

δkl

2
þ Δ̂ikΔ̂jl −

1

2

δik

2

δjl

2
þ Δ̂ilΔ̂jk −

1

2

δil

2

δjk

2

�
1

3
Gð2Þ
D ðΔ⊥Þ: ðC1Þ

The traceless tensor Δ̂ij has already been defined in Eq. (B3), while the four functions GðþÞ
D , Gð−Þ

D , Gð1Þ
D and Gð2Þ

D have been

written in the Sec. IV. For completeness we also give Gð10Þ
D (which cancels when computing the cross section) which reads

Gð10Þ
D ðΔ⊥Þ ¼

Z
d2B
2π

e−iΔ·BΦðBÞ½F−ðBÞ�2 cos 2ϕΔB; ðC2Þ

with ϕΔB the angle between the vectorsΔ andB. Now wewish to bring the hard factors in a similar form. Defining again the
traceless tensor

P̂ij ≡ PiPj

P2⊥
−
δij

2
; ðC3Þ

and “squaring” the transverse hard factor in Eq. (4.4) we arrive after some algebra at
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Hiks
T ðP; Q̄ÞHjls�

T ðP; Q̄Þ ¼ 16P2ð3Q̄4 þ 2Q̄2P2⊥ − P4⊥Þ
ðP2⊥ þ Q̄2Þ6

δik

2

δjl

2
þ 16P2ðQ̄4 − Q̄2P2⊥ þ P4⊥Þ

ðP2⊥ þ Q̄2Þ6
�
δij

2

δkl

2
þ δil

2

δkj

2

�

þ 16P2⊥ðQ̄4 − P4⊥Þ
ðP2⊥ þ Q̄2Þ6

�
δik

2
P̂jl þ δjl

2
P̂ik

�
þ 8P2⊥ðQ̄2 − P2⊥Þ2

ðP2⊥ þ Q̄2Þ6
�
δij

2
P̂kl þ δkl

2
P̂ij þ δil

2
P̂kj þ δkj

2
P̂il

�

−
32Q̄2P4⊥

ðP2⊥ þ Q̄2Þ6
�
P̂ijP̂kl −

1

2

δij

2

δkl

2
þ P̂ilP̂kj −

1

2

δil

2

δkj

2

�
: ðC4Þ

The longitudinal hard factor is much more straightforward to obtain since there is no index to contract. Starting from
Eq. (4.15) we find

Hik
L ðP; Q̄ÞHjl

LðP; Q̄Þ ¼ 16Q̄2ðQ̄4 − 2Q̄2P2⊥ þ 3P4⊥Þ
ðP2⊥ þ Q̄2Þ6

δik

2

δjl

2
−
32Q̄2P2⊥ðQ̄2 − P2⊥Þ

ðP2⊥ þ Q̄2Þ6
�
δik

2
P̂jl þ δjl

2
P̂ik

�

þ 64Q̄2P4⊥
ðP2⊥ þ Q̄2Þ6

�
P̂ikP̂jl −

1

2

δik

2

δjl

2

�
: ðC5Þ

Using the formulas

δijP̂ij ¼ 0; P̂ijP̂ij ¼ 1

2
and P̂ijP̂jk ¼ 1

4
δik ðC6Þ

(and similarly for Δ̂ij) and

2P̂ijΔ̂ji ¼ 2cos2ϕ − 1 ¼ cos 2ϕ; ðC7Þ

8P̂ijΔ̂jkP̂klΔ̂li ¼ 8cos4ϕ − 8cos2ϕþ 1 ¼ cos 4ϕ; ðC8Þ

where ϕ is the angle between P and Δ, we can contract
Gij;kl
D in Eq. (C1) with either Hiks

T Hjls�
T as expressed in

Eq. (C4) or Hik
LH

jl
L as expressed in Eq. (C5) to get

Eqs. (4.13) and (4.16).

APPENDIX D: NEXT TO LEADING TWIST

Here we would like to refer to a few technical details
regarding the calculation of the next to leading kinematic
twist. Taking ϑ1 ¼ ϑ2 for simplicity, we expand f, which is
defined in Eq. (A2), to 4th order in the small dipole size.
Inserting it into Eq. (A7) we arrive at Eqs. (7.1) and (7.2).

The hard tensors Hikmns
T ðP; Q̄Þ and Hikmn

L ðP; Q̄Þ are the
obvious extensions of Hiks

T ðP; Q̄Þ and Hik
L ðP; Q̄Þ respec-

tively: they just contain an additional rmrn factor in the
integrand. These rank-5 and rank-3 tensors are easily
calculated, for example, by simply taking the two partial
derivatives with respect to Pm and Pn (and multiplying with
i2) of the corresponding rank-3 and rank-2 tensors which
are already given in Eqs. (4.3) and (4.15). The tensor
decomposition of the semihard factor in Eq. (7.3) can also
be achieved, although it is cumbersome and requires careful
bookkeeping since the S matrix SgðBÞ appearing in the
integrand is generally not specified. Finally one performs
the contractions of all the indices in Eqs. (7.1) and (7.2).
In the following we shall give the results of the

calculation for the situation that the scattering is described
by the MV model. In such a case the integration in the
semihard sector reduces to elementary integrations over the
adjoint dipole size B. Having in mind the expression in
Eq. (6.2), we first present the corrections to the averaged
over angle reduced cross sections. For the transverse sector
we have

δN T
0 ≃ −

16P2⊥Q̄2ð7Q̄4 − 7Q̄2P2⊥ þ 2P4⊥Þ
ðP2⊥ þ Q̄2Þ8 Q4

A

Z
dB
B

J0ðΔ⊥BÞΦðBÞ ðD1Þ

while for the longitudinal one

δN L
0 ≃ −

16Q̄2ðQ̄6 − 5Q̄4P2⊥ þ 8Q̄2P4⊥ − 2P6⊥Þ
ðP2⊥ þ Q̄2Þ8 Q4

A

Z
dB
B

J0ðΔ⊥BÞΦðBÞ: ðD2Þ

We immediately see that the above integrations diverge logarithmically at small B. However, we recall that our expansion
scheme requires r ≪ B, and therefore a UV cutoff equal to c0=P⊥ is assumed in Eqs. (D1) and (D2). The constant c0 is of
the order of one and we have checked that our results are not sensitive to its precise choice.
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Regarding the corrections to the numerator of the hcos 2ϕiλ anisotropies we find for the transverse sector

δN T
2 ¼ 8P2⊥

ðP2⊥ þ Q̄2Þ8Q
4
A

�
ð12Q̄6 − 34Q̄4P2⊥ þ 6Q̄2P4⊥ − 4P6⊥Þ

Z
dB
B

J2ðΔ⊥BÞΦðBÞ

− ð7Q̄6 − 20Q̄4P2⊥ þ 3Q̄2P4⊥ − 2P6⊥Þ
Z

dB
B

J2ðΔ⊥BÞΦðBÞ ln 4

B2Λ2

�
ðD3Þ

and for the longitudinal one

δN L
2 ¼ 8P2⊥Q̄2ðQ̄2 − P2⊥Þ

ðP2⊥ þ Q̄2Þ8 Q4
A

�
ð15P2⊥ − 13Q̄2Þ

Z
dB
B

J2ðΔ⊥BÞΦðBÞ þ 8ðQ̄2 − P2⊥Þ
Z

dB
B

J2ðΔ⊥BÞΦðBÞ ln 4

B2Λ2

�
: ðD4Þ

The above integrations are UV finite since the Bessel function J2ðΔ⊥BÞ vanishes quadratically for small argument. We
notice that now only the longitudinal anisotropy vanishes when P⊥ ¼ Q̄. Similar expressions can be given for the remaining
non-vanishing quantities δN λ

4 and δN λ
6 which contribute to the corresponding hcos 4ϕiλ and hcos 6ϕiλ anisotropies.
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