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The refined Gribov-Zwanziger (RGZ) action in the Landau gauge accounts for the existence of
infinitesimal Gribov copies as well as the dynamical formation of condensates in the infrared of Euclidean
Yang-Mills theories. We couple scalar fields to the RGZ action and compute the one-loop scalar propagator
in the adjoint representation of the gauge group. We compare our findings with existing lattice data. The
fate of Becchi-Rouet-Stora-Tyutin symmetry in this model is discussed, and we provide a comparison to a
previous proposal for a nonminimal coupling between matter and the RGZ action. We find good agreement
with the lattice data of the scalar propagator for the values of the mass parameters that fit the RGZ gluon
propagator to the lattice. This suggests that the nonperturbative information carried by the gluon propagator
in the RGZ framework provides a suitable mechanism to reproduce the behavior of correlation functions of
colored matter fields in the infrared.
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I. INTRODUCTION

Understanding the mechanism that drives color confine-
ment in Yang-Mills (YM) theories is one of the most
challenging open problems in quantum field theory. As
opposed to its asymptotic freedom in the ultraviolet [1,2],
YM theories become strongly coupled in the infrared, and
perturbation theory breaks down. Different aspects of the
confining nature of YM theories can be understood by
different nonperturbative or effective descriptions, and,
hopefully, the synergy between such approaches will
provide a complete and consistent understanding of the
mechanism behind confinement. For a collection of such
different perspectives, see, e.g., [3,4].
Treating YM theories within the framework of con-

tinuum quantum field theory typically requires the intro-
duction of a gauge-fixing condition. From a path-integral

perspective, this is usually achieved by the so-called
Faddeev-Popov (FP) procedure [5]. Although very suc-
cessful in the perturbative regime, the usual assumptions in
the FP procedure do not hold beyond that. This was
identified in the Landau gauge by Gribov in Ref. [6].
There were shown to exist field configurations that satisfy
the Landau gauge condition and that are connected by
gauge transformations. Such configurations are known as
Gribov or gauge copies, and their existence is what is
known in the literature as the Gribov problem. In Ref. [7],
Singer showed that this is not a particular shortcoming of
the Landau gauge but rather a generic feature of global
gauge fixings in field space. The existence of Gribov copies
violates one of the assumptions of the FP procedure, since
the gauge-fixing condition does not select a unique
representative per gauge orbit. This suggests a modification
of the gauge-fixing procedure in order to remove the
Gribov copies. Up to date, such an improvement was
successfully implemented only for infinitesimal Gribov
copies, i.e., those generated by infinitesimal gauge trans-
formations in the Landau gauge. The central idea behind
the upgrade of the gauge-fixing procedure corresponds to,
on top of the standard FP method, implementing a
restriction of the path integral to a region Ω which is free
of infinitesimal Gribov copies. Such a regionΩ is known as
the Gribov region. It is bounded in all directions in field
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space and convex, and all gauge orbits cross it at least
once [8]. Such nontrivial properties ensure that the regionΩ
is a suitable candidate to restrict the path integral to. The
boundary ∂Ω of the Gribov region is known as the Gribov
horizon. The restriction of the functional measure to Ω was
worked out at leading order in Ref. [6] and generalized to
all orders in Ref. [9] by means of a different method.
Extending the procedure of Ref. [6] up to all orders in a
perturbative expansion leads to the same result as in
Ref. [9], as demonstrated in Ref. [10]. Afterward, as
explained in Ref. [9], the restriction to Ω can be achieved
by the introduction of an effective term into the Boltzmann
weight of the partition function of the gauge-fixed
Euclidean YM theories in the Landau gauge. Such a term
is known as the horizon function and is nonlocal. Together
with the horizon function, a mass parameter known as the
Gribov parameter is introduced. It is not a free parameter
but fixed in a self-consistent way by a gap equation. See
Ref. [11] for a detailed discussion about the derivation of
the horizon function and Ref. [12] for a pedagogical
introduction to the Gribov problem. The resulting nonlocal
action is known as the Gribov-Zwanziger (GZ) action in the
Landau gauge. Remarkably, the nonlocality can be tamed
by the introduction of suitable auxiliary fields, rendering an
action that is local and renormalizable at all orders in
perturbation theory [9,11]. In either nonlocal or local
forms, we will refer to this action simply as the GZ action.
Thus, the GZ action in the Landau gauge implements the
restriction of the path integral to the Gribov region in a
local and renormalizable way. The gluon propagator arising
from the GZ action vanishes at vanishing momentum and
violates reflection positivity. At tree level, the gluon
propagator features complex conjugate poles. This hampers
the interpretation of the gluon as a physical excitation in the
spectrum, hinting toward confinement. The ghost propa-
gator is enhanced in the infrared, characterizing what is
known as scaling behavior.
In Refs. [13,14], it was pointed out that the GZ action

suffers from infrared instabilities leading to the formation
of dimension-two condensates. In particular, the auxiliary
fields introduced to localize the GZ action acquire their
own dynamics and give rise to a condensate. The inclusion
of the gluon and auxiliary fields condensates leads to a new
action known as the refined Gribov-Zwanziger (RGZ)
action. The accompanying masses of the condensates are
fixed by their own gap equations and, thus, are not free. The
gluon propagator arising from the RGZ action attains a
nonvanishing value at vanishing momentum, and the FP
ghost propagator is not enhanced in the infrared. Such a
behavior is known as the massive or decoupling solution.
The tree-level propagator fits very well the lattice data in
the infrared; see, e.g., [15–26]. Lattice simulations display
a nonvanishing value for the gluon propagator in the deep
infrared. Therefore, the RGZ action provides a local and
renormalizable framework which accounts for the existence

of infinitesimal Gribov copies as well as the dynamical
formation of condensates in the infrared. Moreover, it
provides propagators for the gluon and FP ghosts that
are in agreement with lattice data. It has been used
for the computation of glueball masses [27,28] which
compare well with lattice data and provides the correct
sign for the Casimir energy in the MIT bag model [29].
Thermodynamic properties were investigated in, e.g.,
Refs. [30,31].
A remarkable feature of the (R)GZ action in the Landau

gauge proposed in Ref. [14] is that it breaks Becchi-Rouet-
Stora-Tyutin (BRST) symmetry in an explicit but soft way.
The consequences of such a breaking were deeply investi-
gated over the past decades [32–48]. Recently, a BRST-
invariant formulation of the (R)GZ action [49] was proposed
thanks to the introduction of a dressed, gauge-invariant field
Ah
μ; see, e.g., [50,51]. The new BRST-symmetric formu-

lation enabled the extension of the RGZ action to linear
covariant and Curci-Ferrari gauges in harmony with gauge-
parameter dependence control [52–57].
Since the Gribov problem affects directly the pure gauge

sector and taking into account the existence of infinitesimal
Gribov copies gives rise to a picture that seems to be
compatible with the infrared behavior of at least the two-
point functions of gluon and FP ghosts, a natural question is
to understand how colored matter is coupled to it. An
important issue to be addressed is whether the removal of
Gribov copies in the gluon sector can have a dynamical
repercussion leading to a consistent picture of quark
confinement. In particular, one can ask if the coupling
with matter requires or not a nonminimal modification or if
the standard minimal coupling between gauge fields and
matter leads to a consistent picture. It is clear that if matter
fields are minimally coupled to the RGZ action, then the
tree-level matter propagators are just the standard ones.
Hence, in this approach, any influence of the elimination of
Gribov copies requires loop corrections. In this work, we
give a step forward on that and investigate the one-loop
propagator of scalar fields in the adjoint representation of
the gauge group. Alternatively, a nonminimal coupling
between matter and the RGZ action was proposed in
Ref. [58] and further explored in Ref. [59]. It provides
tree-level propagators for scalars and quarks which are in
qualitative agreement with lattice data. The drawback is
that this requires the introduction of a new set of mass
parameters by hand and a multitude of extra fields. It is not
clear whether such a nonminimal coupling can be seen as
an effective way of taking into account loop effects or if it is
genuinely required in the formalism. This work aims at
providing first directions on this question.
This paper is organized as follows: In Sec. II, we provide

a short review of the refined Gribov-Zwanziger framework
to fix notation and point out the relevant aspects of this
theory for the purposes of this work. In Sec. III, we discuss
two different prescriptions to couple scalar fields to the
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refined Gribov-Zwanziger action. The status of the BRST
symmetry in the RGZ framework without and with the
coupling of scalar fields is discussed in Secs. IV and V,
respectively. The special role played by the Landau gauge
in practical computations is outlined in Sec. V. The
computation of the one-loop scalar propagator in the
RGZ minimally coupled to scalar fields is reported in
Sec. VI, and our findings are compared with the lattice data
reported in Ref. [60] in Sec. VII. Sections VIII and IX
contain discussions on the fate of reflection positivity and
the nonminimal matter coupling, respectively. After that,
we present our conclusions in Sec. X and collect relevant
conventions in an Appendix.

II. BRIEF OVERVIEW ON THE REFINED
GRIBOV-ZWANZIGER ACTION

Consider YM theories in d Euclidean dimensions
with gauge group SUðNÞ quantized in the Landau gauge;
i.e., ∂μAa

μ ¼ 0 is the gauge-fixing condition and a ¼ 1;…;
N2 − 1. Employing the FP procedure, the gauge-fixed
partition function is written as

Z FP ¼
Z

½Dμ�FPe−SYM−SFP ; ð1Þ

with ½Dμ�FP ¼ ½DA�½Db�½D c̄�½Dc� and1

SYM ¼ 1

4

Z
xd
Fa
μνFa

μν; ð2Þ

and

SFP ¼
Z
xd
ðiba∂μAa

μ − c̄aM abðAÞcbÞ; ð3Þ

with Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν being the field

strength. The operator M abðAÞ ¼ −∂μDab
μ is the FP oper-

ator, and Dab
μ ¼ δab∂μ − gfabcAc

μ is the covariant derivative
in the adjoint representation of the gauge group.
According to Gribov (and Singer) [6,7], the partition

function (1) still sums over spurious configurations, i.e.,
over field configurations that satisfy the Landau gauge
condition and are connected by gauge transformations.
Those configurations, the so-called Gribov(-Singer) copies,
must be eliminated from Eq. (1) by a suitable improvement
of the FP procedure. The elimination can be achieved
by means of the restriction of the path integral to a region
free of copies, the so-called fundamental modular region
(FMR). Nevertheless, such a restriction is very difficult to
implement and unknown to this date. A more modest
attempt but already very nontrivial was proposed by Gribov

in Ref. [6] and improved by Zwanziger in Ref. [9].
Essentially, it was proposed to eliminate those copies that
are generated by infinitesimal gauge transformations, i.e.,
the infinitesimal Gribov copies. In the Landau gauge, this is
achieved by defining the Gribov region Ω by

Ω ¼ fAa
μ; ∂μAa

μ ¼ 0jM ab > 0g ð4Þ

and imposing the restriction of Eq. (1) to Ω. The Gribov
region is defined by the positivity of the FP operator which
is Hermitian in the Landau gauge. Moreover, it features
important geometrical features: It is bounded in every
direction; it is convex; and all gauge orbits cross Ω at
least once [8]. This ensures that restricting the path integral
to Ω does not leave out any physical configuration. The
boundary ∂Ω of such a region is known as the Gribov
horizon. Yet the Gribov region is not free of Gribov copies
but just the infinitesimal ones [61]. Copies generated by
finite gauge transformations are eliminated just by a further
restriction to the FMR. Effectively, the path integral is
restricted to the Gribov region by a modification of the
Boltzmann weight as

Z GZ ¼
Z
Ω
½Dμ�FPe−SYM−SFP

¼
Z

½Dμ�FPe−SYM−SFP−γ4HðAÞþdγ4ðN2−1ÞV: ð5Þ

In Eq. (5), V represents the spacetime volume and d its
dimensionality. The function HðAÞ is the so-called horizon
function, and it is expressed as

HðAÞ ¼ g2
Z
xd;yd

fabcAb
μðxÞ½M−1�adðx; yÞfdecAe

μðyÞ: ð6Þ

The parameter γ is a massive parameter known as the
Gribov parameter. It is not free but fixed by a gap equation
given by

hHðAÞi ¼ dVðN2 − 1Þ; ð7Þ

with h� � �i being computed with the measure defined
by Eq. (5).
The effective restriction to the Gribov region Ω amounts

to introducing the horizon function which is nonlocal due
to the presence of the inverse of the FP operator M .
Remarkably, it can be cast in local form by the introduction
of suitable auxiliary fields, namely, a pair of commuting
fields ðφ̄;φÞabμ and a pair of Grassmannian ones ðω̄;ωÞabμ .
In terms of the localizing fields, the action which effectively
implements the restriction of the path integral to Ω is

SGZ ¼ SYM þ SFP þ SH; ð8Þ

with

1The shorthand notation
R
ddx ¼ R

xd is employed. For d ¼ 4,
we simply write

R
d4x ¼ R

x.
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SH ¼
Z
xd
ðφ̄ab

μ M acðAÞφcb
μ − ω̄ab

μ M acðAÞωcb
μ Þ

þ igγ2
Z
xd
fabcAa

μðφbc
μ þ φ̄bc

μ Þ: ð9Þ

The action (8) is known as the Gribov-Zwanziger (GZ)
action. It is local and renormalizable at all orders in
perturbation theory and effectively implements the restric-
tion of the path integral to the Gribov region [9]. In the
presence of the new auxiliary localizing fields, the partition
function Z GZ is expressed as

Z GZ ¼
Z

½Dμ�GZe−SGZþdγ4ðN2−1ÞV; ð10Þ

with ½Dμ�GZ ¼ ½DA�½Db�½D c̄�½Dc�½Dφ̄�½Dφ�½Dω̄�½Dω�. In
this local formulation, the gap equation that fixes the
Gribov parameter is expressed as

∂E v

∂γ2

����
γ2≠0

¼ 0; ð11Þ

where E v is the vacuum energy defined by e−VE v ¼ Z GZ.
The GZ action leads to two striking features: The gluon

propagator vanishes exactly at vanishing momentum, while
the FP ghost propagator is enhanced in the deep infrared;
i.e., it behaves as ∼1=p4, with p denoting the Euclidean
momentum. Such properties are in qualitative agreement
with the so-called scaling solutions for the nonperturbative
propagators of pure YM theories; see, e.g., [62,63]. Lattice
simulations performed with bigger lattices revealed two
distinct features: The gluon propagator did not attain
vanishing value at vanishing momentum, and the ghost
propagator was not enhanced in the deep infrared in d ¼ 3,
4 while the scaling-type solution persisted in d ¼ 2. Such a
new behavior was reported in, e.g., Ref. [16] and is dubbed
as the massive or decoupling solution.
The coexistence of the GZ scenario with the massive or

decoupling solution came in Ref. [14], where it was
identified that suitable infrared instabilities must be taken
into account in the theory. In particular, the auxiliary fields
introduced to localize the horizon function develop their
own dynamics and give rise to condensates in d > 2;
see [64–66]. The inclusion of such lower-dimensional
operators (both of auxiliary fields and gluons) in the GZ
action gave birth to the so-called RGZ scenario [14].
Hence, the action is written as

SRGZ ¼ SGZ þ Scond ð12Þ

with

Scond ¼
Z
xd

�
m2

2
Aa
μAa

μ þM2ðφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ Þ
�
: ð13Þ

The RGZ action leads to a tree-level gluon propagator
that attains a nonvanishing value at zero momentum
and a ghost propagator that is not enhanced in the deep
infrared; i.e., it goes as ∼1=p2. In the next section, we will
discuss two different ways of coupling scalar fields to this
theory.

III. COUPLING SCALAR FIELDS TO THE RGZ
ACTION

The RGZ action is a promising candidate to describe the
infrared dynamics of pure YM theories. Yet it remains to be
understood how matter should be coupled to this theory.
The introduction of matter fields in the standard way, i.e., as
one would introduce to the standard YM action (we shall
refer to this as minimal scheme), immediately leads to the
fact that the tree-level propagator of matter fields will be
completely blind to the nonperturbative effects introduced
by the Gribov horizon and the condensates. This picture
is consistent with the fact that the Gribov copies will
engender a modification in the pure gauge sector and the
effects on the matter dynamics will come in by taking into
account quantum fluctuations. It is logical to expect that the
nonperturbative behavior of matter fields will then require
the application of nonperturbative techniques such as the
functional renormalization group or Dyson-Schwinger
equations to the RGZ action coupled to matter. Although
this is a completely legitimate path, it is technically
challenging due to the complicated structure of the RGZ
action. Instead, another possibility to be explored is to
compute quantum corrections to matter-field propagators
within perturbation theory on top of the RGZ framework.
Since the gluon propagator carries nonperturbative infor-
mation already at tree level, this is an attempt worth
exploring. As a further motivation to this, this type of
strategy was employed in effective models such as the
massive (Curci-Ferrari) model for the quark sector [67,68],
leading to promising results.
Alternatively, one can propose a nonminimal coupling

between matter and gauge fields in the RGZ scenario as
done in Refs. [58,59]. The central idea is that, within the
Gribov horizon, the quantity M−1 is well defined, and it
would naturally couple to colored fields (we will refer to
this as the nonminimal scheme). In this case, as we shall
review below, the tree-level propagator of the matter field
displays nonperturbative properties which fit well lattice
data; see [58]. The drawback of this approach, however, is
that it introduces new massive parameters that do not have a
clear geometrical picture as in the pure-gauge sector. The
line of research set out in this paper aims at providing a
clearer direction to which scheme of matter coupling to the
RGZ action must be employed. In the following subsec-
tions, we make a brief technical overview of both schemes
using scalar fields in the adjoint representation as our
prototype.
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A. Minimal scheme

The RGZ-scalar system in the minimal scheme is defined
by the action

Sms
ϕRGZ ¼ SRGZ þ Sϕ; ð14Þ

with

Sϕ ¼
Z
xd

�
1

2
ðDab

μ ϕbÞðDac
μ ϕcÞ þm2

ϕ

2
ϕaϕa þ λ

4!
ðϕaϕaÞ2

�
:

ð15Þ

In this case, the tree-level scalar-field propagator is just the
standard one, i.e.,

hϕaðpÞϕbð−pÞi0 ¼
δab

p2 þm2
ϕ

: ð16Þ

Clearly, the tree-level propagator does not feel the presence
of the Gribov horizon, which would enter only in the loop
contributions. Before discussing more about that, we intro-
duce the nonminimal scheme in the following subsection.

B. Nonminimal scheme

In this scheme, a horizonlike function is introduced for
the scalar fields; i.e., one introduces the function HðϕÞ
defined by

HðϕÞ ¼ g2
Z
xd;yd

fabcϕbðxÞ½M−1�adðx; yÞfdecϕeðyÞ: ð17Þ

Hence, the modified scalar action accounting for the
nonminimal coupling is replaced by

Sϕ → Sϕ þ σ4HðϕÞ; ð18Þ

with σ4 being a masslike parameter playing the analog role
of the Gribov parameter γ. One of the drawbacks of the
nonminimal scheme is that, unlike the Gribov parameter,
the parameter σ does not have a geometrical interpretation
unless the d-dimensional theory arises from a dynamical
reduction from the pure RGZ action in dþ 1 dimensions;
see [69]. The horizonlike function HðϕÞ is nonlocal and
can be cast in local form in analogy to the localization
procedure in the GZ action. Thus,

σ4HðϕÞ →
Z
xd
ðζ̄abM acðAÞζcb − θ̄abM acðAÞθcbÞ

þ igσ2
Z
xd
fabcϕaðζ̄ þ ζÞbc; ð19Þ

where ðζ̄; ζÞab are commuting fields and ðθ̄; θÞab anticom-
muting ones. Similarly to the refinement of the GZ action,

the auxiliary fields just introduced acquire their own
dynamics and generate condensates, at least in d > 2;
see [59]. We introduce to Eq. (19) the term

Scondϕ ¼ M2
ϕ

Z
xd
ðζ̄abζab − θ̄abθabÞ: ð20Þ

Finally, the scalar-field action in the nonminimal scheme is
written as

Snmϕ ¼ Sϕ þ
Z
xd
ðζ̄abM acðAÞζcb − θ̄abM acðAÞθcbÞ

þ igσ2
Z
xd
fabcϕaðζ̄ þ ζÞbc þ Scondϕ : ð21Þ

Therefore, the RGZ-scalar system in the nonminimal
scheme is defined by

SnmϕRGZ ¼ SRGZ þ Snmϕ : ð22Þ

The tree-level propagator of the scalar field in the non-
minimal scheme is given by

hϕaðpÞϕbð−pÞi0 ¼ δab
p2 þM2

ϕ

ðp2 þm2
ϕÞðp2 þM2

ϕÞ þ 2Ng2σ4
;

ð23Þ

which fits well the lattice data, as discussed in Ref. [58].
In the following, we will discuss formal aspects of the

RGZ-scalar system with a focus toward the minimal
scheme. In particular, we will compute the one-loop
correction to the two-point function of scalar fields in
the minimal scheme. When possible, we provide a com-
parison between both frameworks. An important issue to be
addressed is the fate of the BRST symmetry in the RGZ-
scalar system. This is the topic of the next section.

IV. BRST SYMMETRY IN THERGZ FRAMEWORK

A. Soft breaking of BRST symmetry

An important outcome of the FP procedure is the so-
called BRST symmetry [70–72]. In particular, the gauge-
fixed action given by Eqs. (2) and (3) is invariant under the
transformations

sAa
μ ¼ −Dab

μ cb;

sca ¼ g
2
fabccbcc;

sc̄a ¼ iba;

sba ¼ 0: ð24Þ

The BRST operator s has ghost number one and is
nilpotent; i.e., s2 ¼ 0. The RGZ action can be expressed as
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SRGZ ¼ SYM þ SFP þ s
Z
xd
ω̄ab
μ M acðAÞφcb

μ

þigγ2
Z
xd
fabcAa

μðφbc
μ þ φ̄bc

μ Þ þ Scond; ð25Þ

with

sω̄ab
μ ¼ φab

μ ; sφab
μ ¼ 0;

sφ̄ab
μ ¼ ωab

μ ; sωab
μ ¼ 0: ð26Þ

Two comments are in order: The auxiliary fields are
introduced as BRST doublets and, therefore, do not affect
the nontrivial part of the cohomology of the BRSToperator
s. Part of the localized horizon function can be written as a
BRST-exact term, and, by expanding such a term, one gets
an extra term with respect to Eq. (9). However, such an
extra term can be eliminated by a harmless field redefinition
on the ðω̄;ωÞ sector. From Eq. (25), it is easy to check that
sSRGZ ≠ 0; i.e., the RGZ action breaks BRST invariance.
There are two sorts of breaking: one coming from the gluon
condensate and the other coming from the γ-dependent
contribution. The former is less dangerous, because it is
BRST invariant on shell in the Landau gauge, while the
latter consists to a genuine breaking. Besides being an
explicit breaking of the BRST symmetry, it is soft; i.e., it is
proportional to the mass parameter γ2. In the deep ultra-
violet, γ2 → 0 and BRST invariance is recovered as it
should. Such a breaking was explored in great detail over
the past years; see, e.g., [32–48]. In particular,

∂SRGZ
∂γ2

≠ sΔ; ð27Þ

for an insertion Δ with ghost number −1. Equation (27)
shows that the Gribov parameter is not akin to a gauge
parameter and can enter gauge-invariant correlation
functions.
In the minimal scheme of the matter coupling, the

situation is the same as the one just described; i.e., the
RGZ action displays a soft breaking, while the matter
action is invariant under BRST symmetry, with

sϕa ¼ −gfabcϕbcc: ð28Þ

As for the nonminimal scheme, due to the introduction of
the horizonlike function, a new source of BRST breaking is
generated, i.e.,

sSnpϕ ¼ igσ2
Z
xd
fabcð−gfadeϕdceðζ̄þ ζÞbc þϕaθbcÞ; ð29Þ

with

sθ̄ab ¼ ζab; sζab ¼ 0;

sζ̄ab ¼ θab; sθab ¼ 0: ð30Þ

Moreover,

∂SnpϕRGZ
∂σ2

≠ sΔ̃; ð31Þ

for an insertion Δ̃ with ghost number −1. Therefore, the
mass parameter σ2 is not like a gauge parameter and can
enter correlation functions of gauge-invariant operators
as well.
As long as we restrict ourselves to the Landau gauge, the

BRST soft breaking does not preclude a consistent treat-
ment of the RGZ-scalar action. Yet the very fact that one
would like to be able to move to different gauges leads to a
potential problem when BRST invariance is broken.
It is precisely the BRST symmetry that controls gauge-
parameter dependence of gauge-invariant correlators. Over
the past years, a proposal to restore BRST invariance in the
RGZ action was made. In the next subsection, we provide a
short discussion on that and establish how correlators in the
RGZ-scalar system in the BRST-broken formulation are
related to those in the BRST-invariant formalism.

B. Restoring the BRST symmetry

The key ingredient for the construction of the BRST-
invariant formulation of the RGZ action is the gauge-
invariant dressed gauge field Ah;a

μ ; see, e.g., [49–51]. It is
constructed by the minimization of the functional A2

min:

A2
min ¼ min

U
Tr

Z
xd
AU
μ AU

μ ; ð32Þ

along the gauge orbit. By definition,

AU
μ ¼ U†AμU þ i

g
U†

∂μU; ð33Þ

where U ¼ expðigωaTaÞ and Aμ ¼ Aa
μTa. The parameters

ωa are the parameters of the gauge transformation, and
fTag are the generators of the SUðNÞ gauge group. As
discussed in Ref. [49], for a given gauge orbit characterized
by a field configuration Aa

μ, a local minimum Ah
μ ¼ Ah;a

μ Ta

of Eq. (32) is given by

Ah
μ ¼

�
δμν −

∂μ∂ν

∂
2

�
χν; ð34Þ

where
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χν ¼ Aν − ig

�
1

∂
2
∂A; Aν

�
þ ig

2

�
1

∂
2
∂A; ∂ν

1

∂
2
∂A

�
þOðA3Þ:

ð35Þ

It is clear that the field Ah
μ is transverse; i.e., ∂μAh

μ ¼ 0.
Moreover, it is gauge-invariant order by order in the
coupling g. Finally, Eqs. (34) and (35) show that it is
possible to write the field Ah

μ as the gauge field Aμ plus
terms that always have, at least, a divergence of the gauge
field, namely, ∂αAα. By construction, the dressed gauge-
invariant field Ah

μ is BRST invariant, i.e.,

sAh
μ ¼ 0: ð36Þ

As discussed in Ref. [49], the horizon functionHðAÞ can be
reexpressed in terms of the gauge-invariant field Ah

μ, i.e.,

HðAhÞ ¼ g2
Z
xd;yd

fabcAh;b
μ ½M−1ðAhÞ�adfdecAh;e

μ ; ð37Þ

where the spacetime dependence of fields and the dressed-
FP operator is suppressed. The dressed horizon function
(37) effectively implements the restriction of the path
integral to Ωh, which is defined as

Ωh ¼ fAa
μ; ∂μAh

μ ¼ 0jM ðAhÞ > 0g; ð38Þ

which, in the Landau gauge, is equivalent to Ω. See
Ref. [49]. Therefore, the Gribov-Zwanziger action in the
Landau gauge can be rewritten in terms of the dressed
horizon functionHðAhÞ leading to a BRST-invariant action.
Yet the horizon function HðAhÞ has two sources of non-
localities: One stems from the inverse of the operator
M ð∘Þ, and the other one arises from Ah

μ itself. In
Refs. [54,56], the localization of such an action was worked
out, leading to a local and renormalizable framework that
effectively implements the restriction of the path integral to
Ω that is compatible with BRST symmetry. The localiza-
tion procedure requires the introduction of a Stueckelberg-
like field ξa which renders a nonpolynomial action.
Remarkably, this field completely decouples in the
Landau gauge, a property that gives a special technical
advantage to this gauge choice; see, e.g., the discussion
raised in Ref. [57]. The local and BRST-invariant GZ action
is written as

ShGZ ¼ SYM þ SFP þ ShH þ Saux; ð39Þ

with

ShH ¼
Z
xd
ðφ̄ab

μ M acðAhÞφcb
μ − ω̄ab

μ M acðAhÞωcb
μ Þ

þ igγ2
Z
xd
fabcðAhÞaμðφbc

μ þ φ̄bc
μ Þ ð40Þ

and

Saux ¼
Z
xd
ðτa∂μðAhÞaμ − η̄aM abðAhÞηbÞ: ð41Þ

The composite operator ðAhÞμ ¼ ðAhÞaμTa is defined as

ðAhÞμ ¼ h†Aμhþ i
g
h†∂μh; ð42Þ

where

h ¼ eigξ
aTa

: ð43Þ

The field ξa is a Stueckelberg-like field. The field τa plays
the role of a Lagrange multiplier introduced to impose the
transversality of the field ðAhÞμ. The fields ðη̄; ηÞa are
ghosts introduced very much like the FP ghosts to
compensate the transversality condition on ðAhÞμ. The
auxiliary fields ðφ̄;φÞabμ and ðω̄;ωÞabμ are completely ana-
logous to those introduced in the standard GZ framework.
Yet an important feature stands out in Eqs. (42) and (43):
All the auxiliary fields but ξa are BRST singlets, i.e.,

sΦI ¼ 0; ð44Þ

with ΦI ¼ fφ̄;φ; ω̄;ω; τ; η̄; ηg. As for the field ξa, one has

sξa ¼ gabðξÞξb; ð45Þ

with

gabðξÞ ¼ −δab þ g
2
fabcξc −

g2

12
famrfmbqξqξr þOðg3Þ:

ð46Þ

This follows from the BRST invariance of the dressed field
Ah
μ which, in turn, entails the following transformations for

h and h†:

sh ¼ −igch and sh† ¼ igh†c; ð47Þ

where the matrix notation was employed.
As for the standard GZ action, lower-dimensional con-

densates are formed in the BRST-invariant setting leading
to a BRST-invariant refined GZ action. It reads

ShRGZ ¼ ShGZ þ Shcond; ð48Þ
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where

Shcond ¼
Z
xd

�
m2

2
ðAhÞaμðAhÞaμ þM2ðφ̄ab

μ φab
μ − ω̄ab

μ ωab
μ Þ

�
:

ð49Þ

The action in Eq. (49) is invariant under Eqs. (24), (36),
(44), and (45). The path integral associated with Eq. (48) is
defined by

Z h
GZ ¼

Z
½Dμ�hGZe−S

h
RGZþdγ4ðN2−1ÞV; ð50Þ

with

½Dμ�hGZ ¼ ½Dμ�GZ½Dξ�½Dτ�½D η̄�½Dη�: ð51Þ

As discussed in Ref. [57], the partition function (50) is
equivalent to Z GZ defined with the soft-BRST broken
action (12). This is a consequence of the special nature of
the Landau gauge and the transversality of the dressed field
Ah
μ. Consequently, correlation functions of gauge-invariant

operators OnðxÞ are equivalently calculable in both set-
tings, i.e.,

hO1ðx1Þ…OnðxnÞihRGZ ¼ hO1ðx1Þ…OnðxnÞiRGZ: ð52Þ

The expectation value h� � �ihRGZ is taken with the measure
defined in Eq. (50) and with the action (48) as the weight.
As for h� � �iRGZ, the measure is taken as in Eq. (10) with
weight (12). In practice, it is way more economical to
employ the standard RGZ action (or BRST-softly broken)
due to its polynomial nature as well as your reduced field
content with respect to the BRST-invariant one. Moreover,
the mass parameters ρi ¼ fγ2; m2;M2g are not like gauge
parameters, i.e.,

∂ShRGZ
∂ρi

≠ sΔi; ð53Þ

for any insertions Δi with ghost number −1 but now with
the BRST transformations defining a symmetry of the
theory.
Having established a BRST-invariant reformulation of

the RGZ framework and the relation with the standard
setup, we tackle the issue of introducing scalar matter in
harmony with BRST symmetry in the next section. In
particular, we provide a gauge-invariant meaning to the
scalar two-point function in the Landau gauge which will
turn out to be the main object of interest in this work.

V. RGZ-SCALAR SYSTEM: BRST SYMMETRY
AND THE SPECIAL ROLE OF THE LANDAU

GAUGE

A. Minimal scheme

As discussed in Sec. III A, the coupling of scalar fields to
the RGZ framework in the minimal scheme does not add
any new source of BRST breaking. Then the action

Sh;ms
ϕRGZ ¼ ShϕRGZ þ Sϕ ð54Þ

is BRST invariant. An important issue to be addressed is if
correlation functions computed in such a framework would
differ from those computed in the standard setting, i.e.,
defined by the action (14). We will address such a question
as a particular case of the BRST-invariant nonminimal
coupling between scalars and the RGZ action to be
presented in the next subsection. It turns out that the
correlation functions of gauge-invariant operators com-
puted in the minimal scheme are the same in the BRST-
broken and BRST-invariant scenarios. This could be
guessed by the fact that, in the minimal scheme, the scalar
fields do not couple directly to the localizing Stueckelberg
field and, therefore, should not hamper its decoupling in the
Landau gauge.

B. Nonminimal scheme

In such a scheme, a horizonlike function (17) is
introduced for the matter field ϕa. This is a new source
of BRST-breaking terms, and, since the RGZ action can be
cast as BRST invariant on its own, such a new term must be
dressed in a BRST-symmetric fashion. This construction
was introduced in, e.g., Ref. [59]. It starts by the
introduction of the gauge-invariant dressed scalar field
ϕh ¼ ϕh;aTa defined by

ϕh ¼ h†ϕh; ð55Þ

leading to

ϕh;a ¼ ϕa þ gfabcξbϕc þOðξ2Þ: ð56Þ

The combination of Eq. (28) with Eq. (47) yields

sϕh ¼ 0: ð57Þ

Thus, the dressed horizonlike function for the scalar field
becomes

HðϕhÞ ¼ g2
Z
xd;yd

fabcϕh;b½M−1ðAhÞ�adfdecϕh;e: ð58Þ

The dressed field ϕh is local albeit nonpolynomial, and, by
construction, the dressed horizonlike function (58) is BRST
invariant. Yet the expression (58) is nonlocal due to the
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presence of the inverse of M ðAhÞ. Such a nonlocality can
be easily dealt with by the introduction of auxiliary local
fields ðζ̄; ζ; θ̄; θÞab as pointed out in Sec. III B. Therefore, in
local form, the scalar action to be added to the RGZ one in
the nonminimal scheme is given by

Sh;nmϕ ¼ Sϕ þ
Z
xd
ðζ̄abM acðAhÞζcb − θ̄abM acðAhÞθcbÞ

þ igσ2
Z
xd
fabcϕh;aðζ̄ þ ζÞbc þ Sh;condϕ ; ð59Þ

with

Sh;condϕ ¼ M2
ϕ

Z
xd
ðζ̄abζab − θ̄abθabÞ ð60Þ

being the action introduced to account for the condensation
of the auxiliary localizing fields. Unlike the undressed
formulation, the auxiliary fields introduced to localize the
dressed horizonlike function are BRST singlets, i.e.,

sΦ̃I ¼ 0; ð61Þ

with Φ̃I ¼ ðζ̄; ζ; θ̄; θÞab. Finally, the local and BRST-
invariant RGZ-scalar action within the nonminimal scheme
is defined by

Sh;nmϕRGZ ¼ ShRGZ þ Sh;nmϕ : ð62Þ

Two comments are in order. First, by setting the mass
parameter σ2 to zero, it is straightforward to check that,
upon integration of the auxiliary fields Φ̃I , one recovers the
RGZ-scalar system in the minimal scheme. This can be
formally translated into

Sh;ms
ϕRGZ ¼ Sh;nmϕRGZjσ2¼0: ð63Þ

Second, the mass parameters σ2 and M2
ϕ are not like gauge

parameters, since they are coupled to BRST-closed terms.
Hence, they can be present in correlation functions of
gauge-invariant operators. Finally, the path integral of the
RGZ-scalar theory in the nonminimal scheme is written as

Zh
ϕRGZ ¼

Z
½Dμ�hϕGZe−S

h;nm
ϕRGZþdγ4ðN2−1ÞV; ð64Þ

with ½Dμ�hϕGZ ¼ ½Dμ�hGZ½Dϕ�. An important question to be
addressed is: Are the correlation functions of gauge-
invariant operators computed with Eq. (64) equivalent to
those computed with the BRST-broken framework intro-
duced in Sec. III B? The answer is positive, and the proof
goes as follows: Consider the correlation function

hO1ðx1Þ…OnðxnÞihϕRGZ

¼
R ½Dμ�hϕGZO1ðx1Þ…OnðxnÞe−S

h;nm
ϕRGZþdγ4ðN2−1ÞV

R ½Dμ�hϕGZe−S
h;nm
ϕRGZþdγ4ðN2−1ÞV : ð65Þ

Next to that, let us integrate out the fields ba, τa, and ðη̄; ηÞa.
This will produce the following term in the integrand:

δð∂μAa
μÞδð∂μðAhÞaμÞ detð−∂μDab

μ ðAhÞÞ: ð66Þ

Using the functional generalization of the relation

δðfðxÞÞ ¼ δðx − x0Þ
jf0ðx0Þj

; ð67Þ

with x0 being the single root of the differentiable function
fðxÞ, yields

δð∂μðAhÞaμÞ ¼
δðξ − ξ0Þ

detð−∂μDab
μ ðAhÞÞ ; ð68Þ

where ξ0 ¼ ξa0T
a denotes the solution for ξ of ∂μðAhÞμ ¼ 0.

It reads

ξ0 ¼
∂A
∂
2
þ ig
∂
2

�
∂A;

∂A
∂
2

�
þ ig
∂
2

�
Aμ; ∂μ

∂A
∂
2

�

þ ig
2

1

∂
2

�
∂A
∂
2
; ∂A

�
þ OðA3Þ; ð69Þ

with ∂A≡ ∂μAμ. Every term of Eq. (69) contains a
divergence of the gauge field. Because of the presence
of the delta functional imposing the Landau gauge con-
dition in Eq. (66), one ends up with ξ0 ¼ 0. Hence,
plugging Eqs. (68) and (69) into (66) leads to

δð∂μAμÞδðξÞ: ð70Þ

Integrating over ξ, the delta functional δðξÞ decouples the
Stueckelberg-like field, and the dressed fields reduce to

ðAhÞμ → Aμ and ϕh → ϕ: ð71Þ

Integrating out the localizing auxiliary fields, one gets
HðAhÞ → HðAÞ and HðϕhÞ → HðϕÞ. As a result,

hO1ðx1Þ…OnðxnÞihϕRGZ ¼ hO1ðx1Þ…OnðxnÞiϕRGZ: ð72Þ

Thus, correlation functions of gauge-invariant operators are
equivalent in the BRST-invariant and in the standard BRST-
broken formulations of the RGZ-scalar action. In fact, the
previous argument is more general and is applicable for
correlation functions of the fields Aa

μ and ϕa. As is evident
from Eq. (70), such an equivalence between correlation
functions in different formulations of the RGZ-scalar

REFINED GRIBOV-ZWANZIGER THEORY COUPLED TO SCALAR … PHYS. REV. D 107, 114006 (2023)

114006-9



partition function is a direct consequence of the trans-
versality of the dressed field ðAhÞμ together with the
Landau gauge condition. This gives a special role to the
Landau gauge, since one can safely work with the simpler
BRST-broken formulation in the computation of correla-
tion functions of gluons and scalars. It is clear that by
setting σ2 ¼ 0 the previous discussion remains untouched,
and, therefore, the equivalence remains valid in the minimal
scheme.

C. Gauge-invariant meaning of correlation functions
in the Landau gauge

The building blocks of observables in gauge theories are
correlation functions of the elementary fields which, in
turn, are not gauge invariant. Yet the nonperturbative
evaluation of such correlation functions became a meeting
point of different approaches to nonperturbative YM and
QCD over the past few decades.
Nevertheless, the special role of the Landau gauge

together with the dressing discussed in Sec. IV B allows
for a gauge-invariant meaning of correlation functions
of elementary fields. This follows from Eqs. (71) and
(72), i.e.,

hAh;a1
μ1 ðx1Þ…Ah;an

μn ðxnÞϕh;b1ðy1Þ…ϕh;bnðynÞihϕRGZ
¼ hAa1

μ1ðx1Þ…Aan
μnðxnÞϕb1ðy1Þ…ϕbnðynÞiϕRGZ: ð73Þ

The left-hand side of Eq. (73) is manifestly gauge invariant,
and, thanks to the decoupling of the Stueckelberg-like field
in the Landau gauge, it equates to the correlation function
of the elementary fields in such a gauge. In this work, we
are concerned with the scalar field propagator in the Landau
gauge. From Eq. (73), it follows that

hϕh;aðxÞϕh;bðyÞihϕRGZ ¼ hϕaðxÞϕbðyÞiϕRGZ: ð74Þ

As such, the computations here presented have a gauge-
invariant meaning. Clearly, if computed in different gauges,
the scalar-field propagator will differ, but, in every gauge,
one can dress the scalar field and compute the correlation
function in Eq. (74) provided that the RGZ framework is
consistently extended to such gauges. This result is valid in
both the nonminimal and minimal schemes. From now on,
we will narrow our focus to the minimal scheme. Our aim is
to compute the one-loop correction to the scalar-field
propagator in order to compare it with the available lattice
data [60] and to make a few comments on the tree-level,
standard one-loop corrected YM and the nonminimal tree-
level scheme results.

VI. SCALAR FIELD PROPAGATOR
IN THE MINIMAL SCHEME

In this section, we provide a detailed account for the
one-loop corrections to the scalar-field propagator in the

RGZ-scalar theory in the minimal scheme, i.e., given by
Eq. (14). Such a connected two-point function can be
written as

hϕaðpÞϕbð−pÞi ¼ δabDϕðpÞ: ð75Þ

It can be extracted from the one-particle irreducible (1PI)
functional Γ through the relation2

X
Φk

Γð2Þ
ΦiΦk

GΦkΦj
¼ δΦiΦj

: ð76Þ

The notation Φi is employed to represent a generic field of
RGZ-scalar theory. Choosing Φi ¼ ϕa and Φj ¼ ϕb and
taking the fields and sources to zero leads to

Γð2Þ
ϕaϕcGϕcϕb þ Γð2Þ

ϕaAc
μ
GAc

μϕ
b þ Γð2Þ

ϕabcGbcϕb

þ Γð2Þ
ϕaφcd

μ
Gφcd

μ ϕb þ Γð2Þ
ϕaφ̄cd

μ
Gφ̄cd

μ ϕb ¼ δab: ð77Þ

From the Lautrup-Nakanishi field equation of motion

δΓ
δba

¼ i∂μAa
μ; ð78Þ

it follows that Γϕabc ¼ 0. Acting with the test operator
δ=δJbðϕÞðyÞ on Eq. (78) and taking sources and fields to zero
leads to

∂
x
μ

δ2W
δJaðAÞμðxÞδJbðϕÞðyÞ

¼ ∂
x
μhAa

μðxÞϕbðyÞi ¼ 0: ð79Þ

In Fourier space, it translates into

pμhAa
μðpÞϕbð−pÞi≡ pμGAa

μϕ
bðpÞ ¼ 0: ð80Þ

Next to that, we use color and Lorentz covariance to
implement the following factorization of the tensor struc-
tures in Eq. (77):

Γð2Þ
ϕaϕc ¼ δacΓð2Þ

ϕϕ and Gϕaϕc ¼ δacDϕðpÞ;
Γð2Þ
ϕaAc

μ
¼ δacpμΓ

ð2Þ
ϕA and GϕaAc

μ
¼ δacpμGϕA;

Γð2Þ
ϕaφcd

μ
¼ facdpμΓ

ð2Þ
ϕφ and Gϕaφcd

μ
¼ facdpμGϕφ;

Γð2Þ
ϕaφ̄cd

μ
¼ facdpμΓ

ð2Þ
ϕφ̄ and Gϕaφ̄cd

μ
¼ facdpμGϕφ̄: ð81Þ

Plugging Eq. (81) into Eq. (80) leads to GAϕ ¼ 0. Finally,
Eq. (77) is reduced to

Γð2Þ
ϕϕDϕðpÞ þ NΓð2Þ

ϕφGϕφ þ NΓð2Þ
ϕφ̄Gϕφ̄ ¼ 1: ð82Þ

2See Eq. (A7) in Appendix A 1 for conventions.
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At one-loop order, the last two terms in the left-hand side of
Eq. (82) do not contribute. Thus, we can write

DϕðpÞ ¼ ðΓð2Þ
ϕϕÞ−1: ð83Þ

Hence, our computation reduces to the evaluation of Γϕϕ at
one loop.
In the RGZ framework, thanks to the restriction of the

functional integral to the Gribov region, the tree-level gluon
propagator is modified. It reads

hAa
μðpÞAb

νð−pÞi0 ¼ δab
�
δμν −

pμpν

p2

�
DAðpÞ; ð84Þ

where we define the form factor DAðpÞ as

DAðpÞ ¼
p2 þM2

ðp2 þM2Þðp2 þm2Þ þ 2γ4g2N
ð85Þ

and the parameters ðγ; m2;M2Þ were defined in Sec. II. In
order to rewrite the gluon propagator (85) closer to standard
tree-level propagators, it is convenient to perform a partial
fraction decomposition as follows:

DAðpÞ ¼
Rþ

p2 þ μ2þ
þ R−

p2 þ μ2−
; ð86Þ

where

R� ¼ 1

2

�
1�m2 −M2

Ω

�
; μ2� ¼ 1

2
ðm2 þM2 � ΩÞ;

ð87Þ

with Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 8γ4g2N

p
.

The RGZ gluon propagator Eq. (85) is suppressed in the
infrared and is compatible with a nonvanishing value at
zero momentum, in accordance with lattice results. In fact,
using this tree-level RGZ gluon propagator, one can fit the
parameters M, m, and γ by comparing it with lattice data.
Notably, the fitting based on SUð2Þ and SUð3Þ lattice data
shows that the RGZ tree-level gluon propagator is sufficient
to reproduce the lattice data in the infrared [22,23]. We
emphasize that, although being determined by a fitting
procedure with lattice data, the parameters M, m, and γ are
not free parameters and can, in principle, be determined
self-consistently by solving their corresponding gap equa-
tions [73].
As previously discussed, at one loop, in order to compute

the scalar-field propagator, it is just necessary to evaluate
the inverse of the 1PI scalar two-point function. There are
three diagrams that contribute to Γð2Þ

ϕϕ at one loop
(cf. Fig. 1): a scalar tadpole (Σtad

ϕ ), a gluon tadpole
(Σtad

A ), and a mixed sunset (Σsun
ϕA ). To compute the diagrams

in Fig. 1, we used the Mathematica packages xAct [74,75],
Form-Tracer [76], and FeynCalc [77–79].

Therefore, we have for the 1PI scalar two-point function

Γð2Þ
ϕϕ ¼ ðp2 þm2

ϕÞ þ ðΣtad
ϕ þ Σtad

A þ Σsun
ϕA Þ þ Γð2Þ

ct ; ð88Þ

where Γð2Þ
ct denotes the counterterms that should be chosen

to cancel the divergences and to ensure the renormalization
conditions. In the present case, the ultraviolet divergences
are either momentum independent or proportional to p2;

thus, Γð2Þ
ct ¼ δϕp2 þ δmϕ

.
Computing the diagrams in Fig. 1 within dimensional

regularization yields

Σtad
ϕ ¼ −

λm2
ϕðN2 þ 1Þ
96π2

1

ε
þ Σtad

ϕ;fin; ð89Þ

Σtad
A ¼ −

3Ng2ðμ2þRþ þ μ2−R−Þ
16π2

1

ε
þ Σtad

A;fin; ð90Þ

Σsun
ϕA ¼ −

3p2Ng2ðRþ þ R−Þ
16π2

1

ε
þ Σsun

ϕA;fin: ð91Þ

The finite parts are given by

Σtad
ϕ;fin ¼

λm2
ϕðN2 þ 1Þ
96π2

�
log

�
m2

ϕ

4πμ2

�
þ γ − 1

�
ð92Þ

for the scalar tadpole,

Σtad
A;fin ¼

3Ng2

16π2

�
μ2þRþ log

�
μ2þ
4πμ2

�
þ μ2−R− log

�
μ2−
4πμ2

�

þ
�
γ −

1

3

�
ðμ2þRþ þ μ2−R−Þ

�
ð93Þ

for the gluon tadpole, and

Σsun
ϕA;fin ¼

Ng2p2

4π2

�
3

4
ðRþ þ R−Þðγ − log 4πÞ

þ
Z

1

0

dx

�
Rþ log

Δþ
μ2

þ R− log
Δ−

μ2

�

þ
Z

1

0

dx
Z

1−x

0

dyp2x2
�
Rþ
Δ̃þ

þ R−

Δ̃−

�

−
1

2

Z
1

0

dx
Z

1−x

0

dy

�
Rþ log

Δ̃þ
μ2

þ R− log
Δ̃−

μ2

��

ð94Þ

FIG. 1. Diagrams contributing to the one-loop 1PI scalar two-
point function Γð2Þ

ϕϕ. From left to right, they correspond to Σtad
ϕ ,

Σtad
A , and Σsun

ϕA .
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for the mixed sunset. In the last expression, we used the
shorthand notation Δi ¼ p2xð1 − xÞ þ ðm2

ϕ − μ2i Þxþ μ2i
and Δ̃i ¼ p2xð1 − xÞ þm2

ϕxþ μ2i y. We point out that
the only momentum-dependent contribution arises in the
mixed sunset Σsun

ϕA diagram.

The simplest scheme to renormalize Γð2Þ
ϕϕ is the minimal-

subtraction-bar scheme (MS). In this case, the renormalized
two-point function reads

Γð2Þ
ϕϕ;MS

¼ p2 þm2
ϕ þ

λm2
ϕðN2 þ 1Þ
96π2

�
log

�
m2

ϕ

μ2

�
− 1

�
þ 3Ng2

16π2

�
μ2þRþ log

�
μ2þ
μ2

�
þ μ2−R− log

�
μ2−
μ2

�

−
1

3
ðμ2þRþ þ μ2−R−Þ

�
þ Ng2p2

4π2

�Z
1

0

dx

�
Rþ log

Δþ
μ2

þ R− log
Δ−

μ2

�

−
1

2

Z
1

0

dx
Z

1−x

0

dy

�
Rþ log

Δ̃þ
μ2

þ R− log
Δ̃−

μ2

�
þ
Z

1

0

dx
Z

1−x

0

dyp2x2
�
Rþ
Δ̃þ

þ R−

Δ̃−

��
: ð95Þ

However, as we are interested in comparing our results with
lattice data, it is more appropriate to work with a renorm-
alization scheme similar to what is usually employed in
lattice calculations. Thus, we impose the following re-
normalization conditions:

d
dp2

Γð2Þ
ϕϕjp¼μ ¼ 1; ð96Þ

Γð2Þ
ϕϕðp ¼ μÞ ¼ μ2 þm2

ϕ; ð97Þ

defining the momentum subtraction scheme. In this case,
the resulting renormalized expression is too lengthy to be
reported here. The full expression is available in a Supple-
mental Mathematica notebook [80].

VII. COMPARING THE PROPAGATOR IN THE
MINIMAL SCHEME WITH LATTICE DATA

In this section, we compare our results for the one-loop
scalar propagator DϕðpÞ with lattice data reported in
Ref. [60]. For a consistent comparison, we need to renorm-
alize the 1PI two-point function for the scalar field at one-
loop order reported in the last section in a way compatible
with schemes employed in the lattice. Here, we use the
lattice data from Ref. [60], and for this reason we adopt the
momentum subtraction scheme defined in Eqs. (96)
and (97).
The lattice data that we use for the purposes of the

present comparison were taken considering lattice volumes
V ¼ ð32Þ4. Analyzing different lattice cutoffs, we observed
a similar qualitative behavior in the renormalized scalar
propagators. Thus, we decided to present the results for
only one choice of lattice cutoff, a−1 ¼ 2.03 GeV.
Associated with these data, we have β ¼ 4=g2 ¼ 2.467,
corresponding to g2 ¼ 1.621. In what follows, we consider
the renormalized scalar propagators in the adjoint repre-
sentation of SUð2Þ gauge group, with four different values

of the renormalized scalar mass: mϕ ¼ 0 GeV,
mϕ ¼ 0.1 GeV, mϕ ¼ 1.0 GeV, and mϕ ¼ 10 GeV. We
work with renormalization scale μ ¼ 1.5 GeV.
Concerning the mass parameters present in the RGZ

scenario, i.e., ðγ; m2;M2Þ, we use the values obtained by
fitting the tree-level RGZ gluon propagator [cf. Eq. (85)]
with lattice data [22]:

m2
fit ¼ 0.7682 GeV2;

M2
fit ¼ 2.508 GeV2;

γ4fit ¼ ð0.360=gÞ2 GeV4: ð98Þ

Let us stress that, as will be shown later on, a considerable
variation of the mass parameters arising from the gluon
propagator in the RGZ setup will not affect significantly the
scalar-field propagator. Yet, due to the well-known suc-
cessful fitting of the tree-level gluon propagator with
available lattice data, this would entail a drastic change
in the gluonic sector. Hence, we take the values of the mass
parameters obtained from a particular fitting of the tree-
level gluon propagator with the lattice data just as a
benchmark.
In Fig. 2, we exhibit the renormalized scalar propagator

at one-loop order in the minimal scheme, for four different
choices of the scalar mass parameter mϕ. We show the
lattice data, the tree-level scalar propagator, the one-loop
scalar propagator in the minimal scheme, and the one-loop
result for the scalar propagator in the standard YM setting.
For each value of the scalar mass mϕ, the lattice data points
and the three other curves are collected in a single plot for
the sake of comparison. In the regime of high momentum
(p≳ 1 GeV), we can see that all three curves depicted in
Fig. 2 converge to the lattice data.
In the infrared region (p≲ 1 GeV), we observe

differences between the curves shown in Fig. 2. First,
we note that the infrared behavior of the tree-level
propagator exhibits a significant difference in comparison
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with the lattice results. Second, the one-loop correction in
the minimal scheme improves the infrared behavior of
DϕðpÞ. However, it is not sufficient to reproduce the lattice
data in the deep infrared. Third, and perhaps more
surprising, the one-loop result in the standard YM frame-
work reproduces the lattice data in the infrared regime
satisfactorily. We note that the difference between the
results is suppressed by the scalar mass mϕ, such that
for mϕ ¼ 10 GeV all the curves (including the tree-level
result) reproduce the lattice data quite well.
Two comments are in order: The one-loop scalar

propagator computed in the standard YM setting provides
very satisfactory results in the infrared. The result is indeed
a prediction, since no fittings were necessary in this case.
However, the theory must be self-consistent, and different
correlation functions should also be well described by a
particular choice of setup. In this case, YM theories
coupled to scalars do not have a gluon propagator that
reproduces well lattice data in this perturbative scheme,
and, therefore, just being able to properly describe the
scalar sector does not seem to be a consistent choice. It

could be that a nonperturbative treatment for the compu-
tation of the gluon propagator is compatible with the lattice
data and that the relevant features of the scalar sector are
properly captured in perturbation theory. We are not able to
make a statement in this regard in the present work. We
refer the reader to works on scalar-YM systems within the
formalism of Dyson-Schwinger equations [81,82]. Second,
the one-loop scalar propagator in the minimal scheme
involves the use of fittings for the mass parameters which,
in turn, were extracted from different lattice data. The
systematic error carried over different simulations could
very well entail a modification on those values which
would affect the shape of the form factor. It is beyond our
capabilities to perform a systematic investigation in this
regard and conclude whether the results could be improved.
Instead, we employ a cheaper strategy which is a para-
metric analysis of the impact of the values of those mass
parameters to the gluon and scalar propagators.
In the following, we study the impact of variations of the

mass parameters ðγ; m2;M2Þ on the results of the scalar
propagator DϕðpÞ. To estimate the impact of each one of

FIG. 2. Renormalized scalar propagators in the adjoint representation at one loop (red line) in units of GeV−2, for massesmϕ ¼ 0, 0.1,
1, and 10 GeV. We compare the RGZ results at one loop (red line) with lattice data (white dots), the tree-level result (blue line), and the
standard YM result at one loop (green line).
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the mass parameters, we perform three independent analy-
ses; in each case, we treat one of the parameters as free
while fixing the other two parameters by their fitted values
[cf. Eq. (98)]. In Fig. 3, we show the main results
concerning the variation of the mass parameters and their
impact on the scalar propagator. To complement the
analysis, in Fig. 3 (lower panel), we also show how the
tree-level RGZ gluon propagator is affected by variations of
the mass parameters. In the first column, we study
variations of the mass parameter m2 (while setting M2 ¼
M2

fit and γ4 ¼ γ4fit). In this case, we observe that reducing
the value of m2 seems to improve the infrared behavior of
DϕðpÞ, while larger values of m2 push DϕðpÞ further away
from the lattice data. In the second column, we study
variations of the mass parameter M2 (while setting m2 ¼
m2

fit and γ4 ¼ γ4fit). In this case, we observe that larger
values of M2 push DϕðpÞ slightly closer to the lattice data,
while smaller values of M2 push DϕðpÞ further away from
the lattice data. Notably,DϕðpÞ seems to be less sensitive to
variations of M2 in comparison with the other mass

parameters. In the third column, we study variation of
the Gribov parameter γ (while setting m2 ¼ m2

fit and
M2 ¼ M2

fit). In this case, we note that reducing γ has
almost no effect on DϕðpÞ, while enlarging of γ pushes
DϕðpÞ further away from the lattice data.
It is important to emphasize that, in all cases, the tree-

level RGZ gluon propagator seems to be very sensitive to
variations of the mass parameters (cf. Fig. 3, lower panel).
Thus, our analysis suggests that there is little room for the
improvement of infrared regime of DϕðpÞ based only on
variations of the parameters ðγ; m2;M2Þ. As we can see in
Fig. 3, small changes in the scalar propagator DϕðpÞ
translate into significant changes in the gluon propagator
DAðpÞ. Of course, this conclusion comes with the caveats
that the gluon propagator is the tree-level one and that we
are probing variations of the mass parameters independ-
ently, but, as stated before, they are not free and should
satisfy gap equations.
So far, we have focused on results obtained with gauge

coupling fixed by g2 ¼ 1.621, which is the same value
adopted in the lattice simulations that generated the data

FIG. 3. We study the effect of variations of Gribov parameters on the scalar and tree-level gluon propagators. In the upper panel, we
show the scalar propagator. In the lower panel, we show the tree-level RGZ gluon propagator. In the first column, we study variations of
the mass parameter m2 (with M2 ¼ M2

fit and γ4 ¼ γ4fit). In the second column, we study variations of the mass parameter M2 (with
m2 ¼ m2

fit and γ
4 ¼ γ4fit). In the third column, we study variations of the mass parameter γ4 (with m2 ¼ m2

fit andM
2 ¼ M2

fit). In all plots,
we set the scalar mass mϕ ¼ 0.1 GeV. We point out that the horizontal axis starts at p ¼ 0.3 GeV.
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reported in Ref. [60]. Aiming at an improvement of our
results obtained in the minimal scheme, we also considered
an alternative approach, where we treat the gauge coupling
as a fitting parameter [while using Eq. (98)]. In this case,
we have found that the choice g2 ¼ 2.52 results in a
significant improvement of DϕðpÞ in the infrared regime,
allowing us to reproduce the lattice data for all values ofmϕ

under consideration. In Fig. 4, we show the results
corresponding to g2 ¼ 2.52.
It is important to remark that, even though our results do

not perfectly match the lattice data for the deep infrared
region, there is still room for improvement. First of all, we
adopted a constant gauge coupling for all momenta, fixed
in the lattice simulations at the renormalization scale
μ ¼ 1.5 GeV, but we know that there is a considerable
running of the gauge coupling in the infrared. Considering
that we were able to fit the lattice data by changing the
value of the gauge coupling, it is reasonable to expect
that we would be able to find a better agreement with lattice
data by considering the running of the gauge coupling.
However, performing a renormalization group improve-
ment in the RGZ scenario would require a more involved
computation that is beyond the scope of the present work.
Furthermore, we expect to find a better agreement with the
lattice data by fixing the Gribov parameters using a fitting
of the gluon propagator in the RGZ scenario at one loop,
instead of the tree-level fitting values that we have used
here. The one-loop computation of the gluon propagator in
the RGZ scenario and its comparison with the lattice data is
work in progress, and it will be reported in another paper.

VIII. REMARKS ON POSITIVITY VIOLATION

In this section, we search for signs of positivity violation
based on our results for the scalar propagator DϕðpÞ. In
particular, we test if the derivative of DϕðpÞ with respect to

p2 [i.e., ∂p2DϕðpÞ] has zeros. A zero of ∂p2DϕðpÞ translates
into an extremum for the propagator DϕðpÞ, hence,
indicating positivity violation. Being a colored matter field,
the scalars should be confined as the gluons. Positivity
violation of the propagator indicates that potentially one
cannot interpret the associated excitations as part of the
physical spectrum. This discussion, however, is rather
subtle. To our knowledge, there is no direct association
between confinement and positivity violation. Yet it is well
established from lattice simulations that the gluon propa-
gator violates reflection positivity, and this is interpreted as
a trace of confinement. Nevertheless, the propagators are
gauge-dependent quantities, and so is its spectral repre-
sentation. Hence, it becomes much less clear how to assign
a physical interpretation to such a violation. Tentatively, the
two-point function of the dressed scalar fields as defined in
Eq. (55) could provide a gauge-invariant object that
captures positivity violation. However, this deserves more
investigation. In any case, we find important to report our
analysis of this matter for the scalar sector.
The derivative test is a sufficient but not necessary

condition to verify positivity violation. The reasoning goes
as follows: Consider the Källén-Lehmann representation of
the propagator Dðp2Þ, i.e.,

Dðp2Þ ¼
Z

∞

0

dμ
ρðμÞ
p2 þ μ

; ð99Þ

with the spectral density being denoted by ρðμÞ. If the
spectral density is positive, then

∂Dðp2Þ
∂p2

¼ −
Z

∞

0

dμ
ρðμÞ

ðp2 þ μÞ2 ð100Þ

is a strictly negative function of p2. If ∂p2Dðp2Þ has a root,
this entails positivity violation of ρðμÞ. Hence, searching
for zeros of ∂p2Dðp2Þ is a sufficient condition for positivity
violation. However, it should be clear that it is not
necessary. Moreover, there is an extra assumption in this
test: We are assuming that the propagator Dðp2Þ has a
spectral representation. Clearly, one can keep taking
derivatives which will lead to alternating signs in front
of the integral. Thus, for a positive spectral function, the
derivatives of the form factor have well-defined signs, and
any zero will signal positivity violation.
In Fig. 5, we plot ∂p2DϕðpÞ as a function of p2 for two

different choices of gauge couplings (g2 ¼ 1.62 and
g2 ¼ 2.52) and setting the mass parameters to their fitted
values ðγ4fit; m2

fit;M
2
fitÞ [cf. Eq. (98)]. We focus on the

results obtained with scalar masses mϕ ¼ 0 GeV and
mϕ ¼ 0.1 GeV, but we have verified that the choicesmϕ ¼
1.0 GeV and mϕ ¼ 10 GeV lead to qualitatively similar
results. We restrict the analysis to the range p2 ≤ 1 GeV,
since we are looking for positivity violation in the infrared

FIG. 4. Scalar propagator at one loop with gauge coupling
g2 ¼ 2.52. We use Gribov parameters determined by the fitting of
the tree-level gluon propagator [cf. Eq. (98)]. We use the lattice
corresponding to gauge coupling g2 ¼ 1.621 [60].
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regime. As we see in Fig. 5, ∂p2DϕðpÞ does not have any
zeros, making it impossible to establish any conclusions
regarding positivity violation from this analysis.
To complement the analysis, we also studied the impact

of variations of the mass parameters on ∂p2DϕðpÞ. We show
the main results of such analysis in Fig. 6. As we see,
variations on the Gribov parameters do not change our
conclusions concerning the nonexistence of zeros of
∂p2DϕðpÞ. Hence, we cannot draw any conclusions regard-
ing positivity violation from this parametric analysis and
take the definite sign of ∂p2DϕðpÞ robust against changes
on the mass parameters.
As a final remark, we have also investigated positivity

violation from the perspective of the Schwinger function,
defined as

CϕðtÞ ¼
1

2π

Z
∞

−∞
dpDϕðpÞe−ipt: ð101Þ

A positive spectral function implies that CϕðtÞ should be
positive for all values of t. In this sense, negative values of
CϕðtÞ provide hints toward positivity violation. In our
analysis based on the Schwinger function, we found no
indications for positivity violation for small values of t. For
large values of t, the results are contaminated by numerical
instabilities due to rapid oscillations of the integrand in
Eq. (101). Thus, our searches for positivity violation based
on the Schwinger function were also inconclusive.
Therefore, the present analysis does not provide any
evidence for positivity violation in the scalar sector. Yet
the tests that we explored are all sufficient but not necessary
for positivity violation, and, hence, this topic deserves
further explorations that we leave for future work.

IX. COMMENTS ON THE NONMINIMAL SCHEME

The nonminimal scheme provides an interesting and
reasonable proposal for coupling matter fields to the RGZ

FIG. 5. We show ∂p2DϕðpÞ as a function of p2 for two choices of the gauge coupling: g2 ¼ 1.62 (left panel) and g2 ¼ 2.52 (right
panel). In both cases, we fixed the mass parameters as ðγ4fit; m2

fit;M
2
fitÞ [cf. Eq. (98)].

FIG. 6. We study the effect of variations of the mass parameters on ∂p2DϕðpÞ. In the first column, we study variations of the mass
parameter m2 (withM2 ¼ M2

fit and γ
4 ¼ γ4fit). In the second column, we study variations of the mass parameterM2 (with m2 ¼ m2

fit and
γ4 ¼ γ4fit). In the third column, we study variations of the mass parameter γ4 (with m2 ¼ m2

fit and M2 ¼ M2
fit). In all plots, we set scalar

mass mϕ ¼ 0.1 GeV.
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framework. In such a scheme, the matter fields feel the
restriction of the path integral measure to the Gribov
horizon already at the tree level. This is appealing at first
sight, because the RGZ-like form of the propagator for
matter fields seems to be sufficient to fit the available lattice
data as reported in Ref. [58]. However, the obvious draw-
back of this approach is that one has two new mass
parameters that can be adjusted to fit the data irrespective
of the data arising from the gluon sector. Hence, it becomes
clear that it would be desirable to derive the properties of
the matter correlation functions without the need of
introducing such an extra structure that does not share
the same geometrical justification as for the gauge-field
sector. It turns out that our results indicate that the non-
minimal scenario does not seem to be necessary to
reproduce the available lattice data in the scalar sector.
In fact, the one-loop computation performed in the minimal
scheme already gives a fairly good agreement with lattice
data, without the need of any extra assumption compared to
the RGZ scenario for pure YM theories.
Yet we must emphasize that this conclusion is taken just

analyzing the scalar propagator. A clear direction that is
under investigation is what happens in the more physically
relevant sector of quarks. Our tentative justification for the
sufficiency of the minimal scheme relies on the recent
analysis of the Curci-Ferrari model coupled to quarks; see,
e.g., [68]. In this model, the lattice data for the gluon
propagator are well described at one-loop order, while the
quark sector needs higher-order loop corrections to achieve
quantitative precision. The analogy in the present case is
that the tree-level RGZ gluon propagator describes well the
lattice data, while the matter sector requires loop correction
to allow for the nonperturbative information of the gluon
sector to manifest itself in the loops. Yet it is interesting to
explore the nonminimal scheme as a potential candidate to
effectively describe the outcome of the inclusion of higher
loops in the matter sector. This is an open problem that is
left for future investigation.
As a final remark regarding the tree-level scalar propa-

gator in the nonminimal scheme, since it has exactly the
same structure of the RGZ propagator for the gluon and this
is known to violate reflection positivity, one might wonder
about the status of positivity violation in the scalar sector in
such a scheme. Taking the derivative with respect to p2 in
Eq. (23) (and neglecting the color structure) leads to

∂p2Dnm
ϕ ðp2Þ ¼ 2Ng2σ4 − ðp2 þM2

ϕÞ2
½ðp2 þm2

ϕÞðp2 þM2
ϕÞ þ 2Ng2σ4�2 : ð102Þ

The expression that gives the zeros of Eq. (102) is a
quadratic polynomial on p2, and it is clear that positive real
roots are viable but not necessary. Just with the fitted values
for the mass parameters, one could tell if positivity is
violated through the derivative test. Remarkably, if one
takes the derivative of Eq. (102) and searches for roots, the

polynomial is cubic on p2 and, therefore, it must have a real
root. What remains to be verified is whether such a real root
is positive or not. In the case of being positive, reflection
positivity is violated. Taking the fitted values from Ref. [58]
in the case of mϕ ¼ 0 GeV, we find no evidence for
positivity violation using the derivative tests, a fact that
qualitatively agrees with the minimal-scheme results.

X. CONCLUSIONS

The RGZ framework provides a local and renormalizable
setup to eliminate infinitesimal Gribov copies and also
accounting for the dynamical generation of condensates. It
provides an improvement with respect to the standard FP
action in the sense that it takes seriously the nonuniqueness
of the selection of gauge configurations along a gauge
orbit. The effects driven by the removal of such spurious
configurations become relevant in the infrared, where the
theory is strongly coupled.
At the same time, the inclusion of matter fields in this

improved gauge-fixing procedure brings up several impor-
tant questions: Should we modify the standard prescription
of coupling matter to gauge fields? How is the dynamics of
colored matter fields affected by the modified gluon
propagator in the RGZ environment? These questions
are far from having satisfactory answers at the moment
and constitute an important topic to be scrutinized in the
study of the nonperturbative behavior of correlation func-
tions of colored matter.
In this work, we investigated the impact of the elimi-

nation of infinitesimal Gribov copies to the scalar-field
propagator. The analysis was carried out by comparing the
minimal and nonminimal schemes. As a first step toward
the comprehension of the impact of RGZ propagators in
matter loops, we computed the scalar-field propagator at
one-loop order in the minimal scheme. In order to compare
our findings with the available lattice data for the scalar
two-point function, the following strategy was adopted:
The mass parameters that are present in the RGZ gluon
propagator were obtained from a fitting with lattice
simulations for the gluon propagator in pure YM theories.
Then, with the parameters fixed, we could predict the
scalar-field propagator for different scalar masses. This
result was compared with quenched lattice simulations for
the scalar-field propagator [60]. Our findings give a
qualitative indication that there is no necessity to introduce
a nonminimal coupling between scalars and gauge fields in
order to capture the correct infrared behavior of the scalar-
field propagator. Those findings seem to be encouraging for
further investigations of scalar-gluon vertices in the min-
imal scheme which, fortunately, also have lattice data
available [83]. However, let us stress that investigating
further the nonminimal scheme is certainly an important
task in order to elucidate better the nature of the coupling
between matter and gauge fields when Gribov copies are
eliminated. In particular, the dynamical evaluation of the

REFINED GRIBOV-ZWANZIGER THEORY COUPLED TO SCALAR … PHYS. REV. D 107, 114006 (2023)

114006-17



mass parameters present in the nonminimal scheme would
provide a self-consistent scenario with no extra fitting
parameter. Such issues will be investigated elsewhere.
In order to mitigate the use of the values of the mass

parameters of the RGZ propagator obtained from a fitting
with different lattice data, we performed a parametric
analysis of the impact of variations of those parameters
to the scalar propagator together with the gluon propagator.
It turns out that the necessary adjustments on the mass
parameters to match the lattice data for the scalar propa-
gator severely impact the behavior of the gluon two-point
function. Therefore, if one aims at quantitative precision
in the comparison of the scalar propagator in the deep
infrared, then further improvements are necessary. The
present analysis still faces several limitations that deserve
further investigations. From the point of view of the self-
consistency of the model, the mass parameters that were
obtained through a fitting with the lattice data could be
computed from first principles through the solution of their
corresponding gap equations. Moreover, in the presence of
scalars, one should keep track of their impact to the gluonic
dynamics which we just neglected in the present work.
Therefore, to some extent, our strategy to fix the mass
parameters of the RGZ propagator is very much like a
quenched approach. Next to that, we completely neglected
the running of those parameters encoded in the running of
the coupling g, which is crucial for the appropriate match
with the deep ultraviolet, where standard perturbative YM
(with matter) results should be reproduced. Moreover, such
running must be introduced in a compatible fashion with
our framework, i.e., not displaying Landau poles in the
infrared.
We did not find evidence for positivity violation in the

scalar sector. As emphasized in the main text, we just
investigated sufficient conditions for positivity violation,
and, therefore, we cannot draw any strong conclusions on
this matter. Yet the lack of evidence for positivity violation
was verified in the minimal and nonminimal schemes. This
issue certainly deserves further explorations. Moreover, the
results here presented suggest that the introduction of a
horizonlike function for the matter fields is not necessary in
order to reproduce the lattice data qualitatively. Besides
avoiding the introduction of extra structures without a clean
geometrical motivation as the standard horizon function,
this makes the RGZ-matter model much simpler for
computational purposes. However, although we provided
a tentative qualitative explanation for justifying such a
statement also for quarks, the present work focused on
scalars. It is, therefore, pressing to investigate the more
realistic RGZ-QCD model. This will be reported in a
future work.
As perspectives for the RGZ-scalar system, the compu-

tation of one-loop vertices is an important step toward the
understanding of the self-consistency of the model as well

as the evaluation of the propagator by accounting higher
loops as done, e.g., in Ref. [68].
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APPENDIX: CONVENTIONS AND FEYNMAN
RULES

In this appendix, we present a list of conventions used
throughout this paper as well as the Feynman rules of the
RGZ-scalar theory in the minimal scheme.

1. Conventions

The generating functional of Euclidean correlation
functions Z ½J� is defined as

Z ½J� ¼
Z

½Dϕ�e−S½ϕ�þ
R
xd

Jϕ; ðA1Þ

with ϕ representing a generic collection of fields and J a
generic set of external sources coupled to ϕ. The functional
S½ϕ� stems for the classical action of the underlying theory.
The generating functional of connected correlation func-
tions is defined as

W ½J� ¼ lnZ ½J�: ðA2Þ

The classical field or expectation value of ϕ at nonvanish-
ing source φ≡ hϕiJ is defined as

φðxÞ ¼ δW ½J�
δJðxÞ : ðA3Þ

The generating functional of 1PI correlation functions Γ½φ�
is defined through the Legendre transform:

Γ½φ� ¼ −W ½Jφ� þ
Z
xd
JφφðxÞ; ðA4Þ

with Jφ representing the source J written as a functional of
the classical field φ. It follows from Eq. (A4) that

δΓ½φ�
δφðxÞ ¼ JφðxÞ ðA5Þ
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and

δ2Γ½φ�
δφðxÞδφðyÞ ¼

δJφðxÞ
δφðyÞ : ðA6Þ

This leads to

Z
zd

δ2Γ½φ�
δφðxÞδφðzÞ

δ2W ½J�
δJðzÞδJðyÞ ¼ δðx − zÞ: ðA7Þ

Finally, we use the following convention for the Fourier
transform for all fields:

ΦðxÞ ¼
Z

ddp
ð2πÞd e

−ix·pΦ̃ðpÞ: ðA8Þ

2. Feynman rules

Tree-level n-point vertices SðnÞϕi1
…ϕin

are defined as

δnSRGZ
δϕi1ðp1Þ…δϕinðpnÞ

����
ϕ¼0

¼ ð2πÞdδðp1 þ � � � þ pnÞ½SðnÞϕ1…ϕn
�i1;…;in

; ðA9Þ

with i1;…; in denoting both Lorentz and SUðNÞ indices.
For the diagrams computed in this paper (cf. Fig. 1), we
have used the following vertices:

½SAϕϕ�abcμ ¼ igfabcðp2 − p3Þμ; ðA10Þ

½SAAϕϕ�abcdμν ¼ g2δμνðfacefbde þ fadefbceÞ; ðA11Þ

½Sϕϕϕϕ�abcd ¼
λ

3
ðδabδcd þ δacδbd þ δadδbcÞ: ðA12Þ

As for the tree-level scalar and gluon propagators, the
expressions are

hϕaðpÞϕbð−pÞi0 ¼
δab

p2 þm2
ϕ

ðA13Þ

and

hAa
μðpÞAb

νð−pÞi0 ¼ δab
�
δμν −

pμpν

p2

�
DAðpÞ; ðA14Þ

with the form factor DAðpÞ being

DAðpÞ ¼
p2 þM2

ðp2 þM2Þðp2 þm2Þ þ 2γ4g2N
: ðA15Þ
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