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We investigate the nontrivial 3-momentum effects on the masses of heavy quarkonium states that are
moving in a hot medium using QCD sum rules. For all charmonium states, we observe a negative mass shift
near Tc that is less than 3% at a momentum of 1 GeV. Specifically, we first investigate the difference
between the longitudinal and transverse modes of both J=ψ and χc1. We find that the transverse mode of the
J=ψ experiences larger modification than the longitudinal mode, while the χc1 has the opposite behavior.
By comparing the ηc and χc0, and also the unpolarized J=ψ and χc1, we recognize that the P-wave particles
have stronger momentum dependencies on their masses than the S-wave ones. We also find ϒð1SÞ has
negligible 3-momentum dependence compared to the charmonium states, e.g., less than 0.01% even at
1.4Tc and at a momentum of 4 GeV.
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I. INTRODUCTION

The study of quarkonium in a thermal medium is of great
importance in our understanding of the physics of strongly
interacting matter that existed in the early universe. In
particular, heavy quarkonium in a hot medium has long
been of interest ever since the seminal work by Matsui and
Satz [1] that suppression of quarkonium yields in heavy-ion
collisions could be a signal for the formation of a
deconfined quark-gluon plasma. As temperature increases,
quarkonium states undergo spectral modification, such as
mass shift and broadening, and eventually will melt and
merge with the continuum. Over the past decade, many
theoretical approaches, such as lattice simulations, effective
field theories, and spectral reconstruction, are developed
and employed to understand the properties of quarkonium
in a hot medium. Moreover, the recent recognition that
the in-medium interquark potential is complex-valued [2]
stressed the necessity of dynamical description for quar-
konium melting and led to a new framework of the open
quantum system. See Refs. [3,4] for comprehensive
reviews.

Meanwhile, most theoretical studies assume quarkonium
is at rest when computing its in-medium properties.
Because Lorentz symmetry is broken in the presence of
the medium, finite 3-momentum makes any computation
more complicated and thus often omitted. However, most
particles produced in real experiments propagate in a
medium with nonzero momentum. For a more realistic
analysis, therefore, it is necessary to take into account
nontrivial effects coming from finite 3-momentum.
In general, it is expected that two types of effects appear
for a particle moving in a medium. First, a particle will not
follow the standard energy-momentum dispersion relation,
i.e., E2 − q⃗2 ¼ m2, where E, q⃗, and m denote the energy,
3-momentum and invariant mass of a particle, respectively.
Instead, it will follow a modified version, i.e., E2 − q⃗2 ¼
mðq⃗Þ2, which indicates that the mass of a particle moving
in a medium is not a invariant quantity any more but
possibly depends on the 3-momentum. Second, if a particle
has spin, its different polarization states that have the same
dispersion relation in a vacuum may behave differently.
For example, the transverse and longitudinal modes of
massive spin-1 particles will follow separate modified
dispersion relations in a medium. In other words, by
tracking the 3-momentum dependence on the mass spec-
trum we might be able to distinguish the polarization states
of particles [5]. Consequently, the overall mass shift can
vary depending on the polarization states as well as the
size of 3-momentum. Therefore, when we read off the
mass shift from the spectral change of quarkonium in a
medium, the finite momentum effect should be identified as
distinct from the pure mass shift typically defined at zero
momentum.

*hugokm0322@gmail.com
†ysw351117@gmail.com
‡sungtae.cho@kangwon.ac.kr
§suhoung@yonsei.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 114004 (2023)

2470-0010=2023=107(11)=114004(7) 114004-1 Published by the American Physical Society

https://orcid.org/0000-0003-1148-6897
https://orcid.org/0009-0005-5174-1444
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.114004&domain=pdf&date_stamp=2023-06-02
https://doi.org/10.1103/PhysRevD.107.114004
https://doi.org/10.1103/PhysRevD.107.114004
https://doi.org/10.1103/PhysRevD.107.114004
https://doi.org/10.1103/PhysRevD.107.114004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


There are some lattice simulations that have studied
nontrivial momentum effects on the dispersion relation of
heavy quarkonium at finite temperature [6–10]. All of them
are based on the maximum entropy method (MEM) to
reconstruct the spectral function from lattice simulation for
the Euclidean correlator. The ηc and J=ψ were studied in
Refs. [6,7,9]. The ϒð1SÞ and ηb are studied in Ref. [8]
using lattice NRQCD. In Ref. [10], S-wave states for both
charmonium and bottomonium are studied. In spite of these
many efforts, however, none of them made any definite
conclusion on the nontrivial effects because of the signifi-
cant size of uncertainties.
In this work, we investigated the nontrivial 3-momentum

effects on the masses of heavy quarkonium states that are
moving in a hot medium using QCD sum rules. This
method has already been applied to study light vector
mesons, such as ρ, ω, and ϕ, that are moving in a dense
medium [11–13], so we basically follow the same strategy
discussed there. Specifically, we included the Wilson
coefficients which are responsible for the nontrivial
3-momentum dependence to the typical QCD sum rules
for the quarkonium at rest. We first studied the difference
between the longitudinal and transverse modes of J=ψ and
χc1. To contrast the difference between S-wave and P-wave
particles, we then compared the ηc and χc0, and also the
unpolarized J=ψ and χc1. We also studied ϒð1SÞ as a
representative of bottomonium states while distinguishing
the longitudinal and transverse modes. We hope that our
work will provide a guideline on how much uncertainty
must be reduced in future lattice simulations to reveal the
genuine nontrivial effects on the dispersion relation of
heavy quarkonium at finite temperature.
This paper is organized as follows. In Sec. II, we give a

brief description of the formalism of QCD sum rules for
a particle moving in a medium. Section III is devoted to
the detailed results obtained in this study. The paper is
summarized and concluded in Sec. IV. In the Appendix, we
display the explicit forms of Wilson coefficients which are
responsible for the nontrivial 3-momentum dependence.

II. QCD SUM RULES WITH FINITE MOMENTUM

To study heavy quarkonium states in the pseudoscalar
(P), scalar (S), vector (V), and axial-vector (A) channels,
we consider a two-point correlator,

ΠJðω; q⃗Þ ¼ i
Z

d4xeiq·xhTfjJðxÞjJð0Þgi; ð1Þ

where the superscript J indicates each channel that
has the following current structure: jP ¼ ih̄γ5h, jS ¼ h̄h,
jVμ ¼ h̄γμh, and jAμ ¼ ðqμqν=q2 − gμνÞh̄γ5γνh. Here, h rep-
resents the heavy quark field that can be either a c or b
quark. For convenience, we define the following dimen-
sionless functions,

Π̃P;Sðω2; q⃗2Þ ¼ 1

q2
ΠP;S; ð2Þ

Π̃V;A
L ðω2; q⃗2Þ ¼ 1

q⃗2
ΠV;A

00 ; ð3Þ

Π̃V;A
T ðω2; q⃗2Þ ¼ −

1

2

�
1

q⃗2
Πμ;V;A

μ þ Π̃V;A
L

�
; ð4Þ

where the V and A channels are decomposed into the
longitudinal (L) and transverse (T) modes.
In the deep Euclidean region where ω2 ≪ ∞ with finite

jq⃗j, one can compute these functions using the operator
product expansion (OPE). As stressed in Ref. [13], it is
more convenient to express the OPE results by changing
variables from ðω2; q⃗2Þ to ðQ2; q⃗2Þ where Q2 ≡ −ω2 þ q⃗2.
After this substitution, it becomes transparent that q⃗2

absorbed in Q2 does not violate Lorentz symmetry while
the remaining q⃗2, which only appears in the Wilson
coefficients of nonscalar operators, is responsible for the
nontrivial 3-momentum effects on the dispersion relation.
In this work, OPE is considered up to dimension 4 gluon
operators, i.e., scalar(G0) and twist-2ðG2Þ gluon conden-
sates, which are defined as

�
αs
π
Ga

μαG
a;α
ν

�
¼ 1

4
gμνG0 þ

�
uμuν −

1

4
gμν

�
G2; ð5Þ

where the medium four-velocity, denoted as uμ, is taken to
be at rest. Because Wilson coefficients of these operators
are already given in a covariant form for all relevant
channels [14–17], we can simply extract 3-momentum
dependent terms after the change of variables.
In the conventional analysis, we typically apply the

Borel transform to the correlator with respect to Q2,

MJðM2; q⃗2Þ ¼ lim
n;Q2→∞;
Q2=n¼M2

ðQ2Þnþ1

n!
ð−∂Q2ÞnΠ̃JðQ2; q⃗2Þ; ð6Þ

where MJðM2; q⃗2Þ indicates the Borel transformed corre-
lator with M being the Borel mass parameter. After
this transform, the final expression of OPE result can be
written as

MJ
OPEðM2; q⃗2Þ ¼ e−νAJðνÞ

�
1þ αsaJðνÞ þ bJðνÞϕb

þ
�
cJðνÞ þ q⃗2

m2
h

dJðνÞ
�
ϕc

	
; ð7Þ

where ν ¼ 4m2
h=M

2, ϕb ¼ 4π2

9ð4m2
hÞ2

G0, and ϕc ¼ 4π2

3ð4m2
hÞ2

G2.

For input parameters, we use mcðp2 ¼ −m2
cÞ ¼

1.262 GeV, αsð8m2
cÞ ¼ 0.21 for charmonium states and

mbðp2 ¼ −m2
bÞ ¼ 4.12 GeV, αsð8m2

bÞ ¼ 0.158 for
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bottomonium states [18]. The values of G0 and G2 at
finite temperature are taken from pure SU(3) lattice gauge
theory [18,19]. The Wilson coefficients, AJðνÞ, aJðνÞ,
bJðνÞ, and cJðνÞ, have no distinction depending on the
polarization states and their explicit forms can be found in
Refs. [18,20]. In this work, we derive dJðνÞ for the first
time and display their explicit forms in the Appendix. The
difference in the functional form between dV;AL ðνÞ and
dV;AT ðνÞ explicitly show why the longitudinal and transverse
modes of spin-1 quarkonium should have different behav-
iors in a medium.
By using analyticity of the correlator, one can connect

Eq. (7) to the integral of the spectral function,

MJ
OPEðM2; q⃗2Þ ¼

Z
∞

−q⃗2
dse−s=M

2

ρJðs; q⃗2Þ: ð8Þ

The spectral function, ρJðs; q⃗2Þ, is often modeled to have a
single ground state pole and perturbative continuum,

ρJðs; q⃗2Þ ≈ fðq⃗2Þδðs −m2
gðq⃗2ÞÞ

þ 1

π
ImΠ̃J;pertðsÞθðs − s0ðq⃗2ÞÞ; ð9Þ

where all nontrivial 3-momentum dependence is assumed
to be involved in the three spectral parameters, fðq⃗2Þ,
mgðq⃗2Þ, and s0ðq⃗2Þ, which denote the residue, ground state
mass, and threshold, respectively [13]. The explicit forms
of ImΠ̃J;pertðsÞ can be found in Refs. [14,18].
From Eq. (8) and the simple model of spectral function,

the ground state mass for a given temperature and
3-momentum can be expressed as,

mgðM2; s0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

∂

∂ð1=M2ÞM̄
JðM2; s0Þ

M̄JðM2; s0Þ

vuut ; ð10Þ

where M̄J ðM2; s0Þ ¼ MJ
OPE ðM2; q⃗2Þ − R

∞
s0

ds e−s=M
2

ρJðs; q⃗2Þ. This equation is reliable only inside a so-called
Borel window, ðMmin;MmaxÞ, which is determined by
competition between convergence of the OPE series and
dominance of the pole contribution. Specifically, we
assume the following two conditions:

Mmin∶
����αsaJðνÞ þ bJðνÞϕb

þ
�
cJðνÞ þ q⃗2

m2
h

dJðνÞ
�
ϕc

���� ≤ 0.3 ð11Þ

Mmax∶

R
∞
s0

dse−s=M
2

ρJðs; q⃗2Þ
MJ

OPEðM2; q⃗2Þ ≤ 0.4 ð12Þ

Furthermore, we define the average value of the mass(m̄g)
and its uncertainty(χ2) within the given Borel window as,

m̄gðs0Þ ¼
Z

Mmax

Mmin

dM
mgðM2; s0Þ
Mmax −Mmin

; ð13Þ

χ2ðs0Þ ¼
Z

Mmax

Mmin

dM
ðmgðM2; s0Þ − m̄gðs0ÞÞ2

Mmax −Mmin
: ð14Þ

Finally, we find a threshold parameter that minimizes the
uncertainty by scanning some range of threshold values.
We then take the average mass at this threshold value as the
final result for the ground state mass. This process is
repeated while varying temperature, 3-momentum, chan-
nels, polarization states, and quark flavors.

III. RESULTS

The ground state mass extracted from the above analysis
depends on both the temperature (T) and 3-momentum (q⃗).
In the nonrelativistic limit (jq⃗j=mg ≪ 1), the energy-
momentum dispersion relation can be expressed as,

E2 − q⃗2 ¼ m2
gðT; q⃗2Þ

≈m2
gðT; 0Þ − αðTÞq⃗2 þ � � � ; ð15Þ

where mgðT; 0Þ denotes the rest mass at finite temperature
and αðTÞ indicates the temperature dependent deviation
parameter corresponding to the first-order coefficient of the
nontrivial 3-momentum dependence on the ground state
mass. Therefore, we are mainly interested in the signs and
magnitudes of the deviation parameters for various quar-
konium states that are moving at finite temperature. To
more intuitively illustrate how much the dispersion relation
is modified in a medium, we also presented the energy ratio
which is defined as

EðvÞ
Eð0Þ ≈ 1þ 1

2
ð1 − αðTÞÞv2 þOðv4Þ; ð16Þ

where EðvÞ denotes the energy of a particle moving with
finite velocity, v ¼ jq⃗j=Eð0Þ, with Eð0Þ being equal to the
rest mass mgðT; 0Þ. In this work, we studied the J=ψ , ηc,
χc0, and χc1 of charmonium states, while only the ϒð1SÞ is
studied as a representative of bottomonium states. For
charmonium states, the 3-momentum is considered up to
around 1 GeV, corresponding to v2 ≈ 0.1. The maximum
temperature of J=ψ is 1.05Tc, while the others are
considered up to 1.03Tc. In the case of ϒð1SÞ, the
temperature is considered up to 1.4Tc and the maximum
3-momentum is 4 GeV, corresponding to v2 ≈ 0.18.

A. J=ψ and χ c1: Longitudinal vs transverse

First, we examined the difference between the longi-
tudinal and transverse modes of J=ψ . Their energy ratios
are shown as a function of v2 in Fig. 1. As the black points
ð0.9TcÞ indicate the vacuum result, it is confirmed that both
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modes follow the trivial line, i.e., 1þ v2=2, in the non-
relativistic limit. But, they start to deviate from this line as
the temperature increases. We found that the energies of
both modes decrease with increasing momentum while the
transverse mode deviates more than the longitudinal one.
Similarly, it is also observed that the longitudinal mode of
J=ψ experiences smaller medium modification in Ref. [6],
but the authors could not see a definite signal for deviation
due to large uncertainties. Furthermore, we can also extract
the deviation parameter from fitting the energy ratio results
with Eq. (16). In Fig. 2 we plot deviation parameters of
both modes together as a function of temperature. It can be

seen that the difference between the two polarization modes
increases with increasing temperature. In addition, the
deviation parameter of χc1 was extracted in a similar
manner as shown in Fig. 3. Unlike the J=ψ , however,
we observed the opposite behavior for the χc1, i.e., the
transverse mode has the smaller deviation parameter than
the longitudinal one.

B. Charmonium: S-wave vs P-wave

For the next analysis, we compared the magnitude of
deviation parameters of ηcð1S0Þ and χc0ð3P0Þ, and also
unpolarized J=ψð3S1Þ and χc1ð3P1Þ. The comparison results
are shown together in Fig. 4. Overall, under the same total

FIG. 1. Energy ratio of the transverse and longitudinal modes of
J=ψ at various temperatures and velocities. The dashed line
shows 1þ v2=2.

FIG. 2. Deviation parameter αðTÞ of the J=ψ .

FIG. 3. Deviation parameter αðTÞ of the χc1.

FIG. 4. Deviation parameters compared between the ηc and χc0
(above), and between the unpolarized J=ψ and χc1 (below).
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spin, it is apparent that the deviation parameters of P-wave
particles ðχc0; χc1Þ are greater than those of S-wave
particles ðηc; J=ψÞ. This feature might be originated from
the property that the P-wave particles experience stronger
modification than the S-wave particles near Tc. The similar
property can also be observed in the typical QCDSR
analysis for the ground state masses at zero momentum
as illustrated in Fig. 5. When comparing rest masses of the
four charmonium states near Tc, we also observed that the
P-wave particles exhibit larger mass shifts than the S-wave
ones. Therefore, these results suggest that as the rest mass is
more susceptible to temperature changes, the dependence
on 3-momentum will also increase.

C. Bottomonium: ϒð1SÞ
To estimate an order of magnitude of the deviation

parameter for bottomonium states, we investigated the
ϒð1SÞ as a representative. The energy ratio of the unpo-
larized case is shown in Fig. 6, but the deviation is hardly
observed even at temperatures much higher than Tc. This
behavior can be understood from OPE structure. Because
dJðνÞ terms in Eq. (7) are highly suppressed by the heavy
quark mass squared, we can expect that bottomonium states
have very small nontrivial 3-momentum dependence com-
pared to the charmonium states. In Ref. [8] the energy ratios

of ϒð1SÞ and ηb were studied in a range of v2 ≲ 0.04 using
lattice NRQCD, but the authors found no clear evidence for
the nontrivial 3-momentum dependence up to 2.09Tc
within uncertainties. In order to extract the deviation
parameter of ϒð1SÞ, it requires much effort than charmo-
nium case throughout the numerical analysis because of
tiny variation in masses. The deviation parameters for
transverse and longitudinal modes are shown in Fig. 7.
As in the J=ψ case, the transverse mode has larger
deviation parameter than the longitudinal one. But the
magnitude of extracted deviation parameter is very small.
For example, even at 1.4Tc and a momentum of
4 GeVðv2 ≈ 0.2Þ, it is expected that the mass shift caused
by the 3-momentum is less than 0.01%. Therefore, future
lattice simulation may need much higher precision in order
to detect meaningful 3-momentum effects on bottomonium
states.

IV. SUMMARY AND CONCLUSIONS

We investigated the nontrivial 3-momentum effects on
the masses of ηc, J=ψ , χc0, χc1, and ϒð1SÞ that are moving
in a hot medium using QCD sum rule approach. This study
is achieved by including the Wilson coefficients listed in
the Appendix to the typical QCD sum rule analyses for the
quarkonium states at rest. The newly considered Wilson
coefficients are responsible for the nontrivial 3-momentum
dependence on the ground state mass and explicitly show
why the longitudinal and transverse modes in the vector or
axial-vector channel behave differently in a medium. The
nontrivial 3-momentum effects are characterized by the
deviation parameter αðTÞ and our analyses revealed that all
quarkonium states experience negative mass shifts as the 3-
momentum increases. Specifically, we found that the
transverse polarization mode in the vector channel has a
slightly larger deviation parameter than the longitudinal
one, while the axial-vector channel has the opposite
behavior. We also found that the P-wave charmonium
states (χc0 and χc1) experience stronger nontrivial effects
than the S-wave ones(ηc and J=ψ). From the OPE structure,
we recognized the nontrivial 3-momentum dependence is

FIG. 5. Temperature dependencies of rest masses mgðT; 0Þ of
the four charmonium states.

FIG. 6. Energy ratio of the unpolarized ϒð1SÞ at various
temperatures and velocities. The dashed line shows 1þ v2=2.

FIG. 7. Deviation parameter αðTÞ of the ϒð1SÞ.
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suppressed by the heavy quark mass squared. Indeed, even
if we consider a much higher 3-momentum than used in
Ref. [8], the ϒð1SÞ has a very small deviation parameter
compared to charmonium states, e.g. less than a 0.01%
mass shift even at 1.4Tc and at a momentum of 4 GeV.
Meanwhile, we can easily extend our work to study finite

3-momentum effects at finite density. As indicated in
Ref. [21], the zero momentum mass shift is much more
appreciable due to finite density effect as compared to finite
temperature, hence the nontrivial 3-momentum effects
could be more easily observed when one accounts for
finite density effects. Furthermore, it should be noted that
our analyses relied on the assumption in which broadening
effects are not considered. In fact, since the sum rule gives a
constraint only on the integral of the spectral function, the
mass shift and width broadening have a complementary
relationship [22]. Therefore, the mass changes computed
in this work could be the maximum values that can be
expected from the QCD sum rule. But the present work
directly observed the nontrivial 3-momentum effects that
have not seen yet in the previous lattice simulations, so it
will provide a guideline to judge how much uncertainty
should be reduced in the future lattice simulations to reveal

the genuine 3-momentum effects on the dispersion relation
of heavy quarkonium states at finite temperature.
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APPENDIX

In this appendix, we provide explicit forms of the Wilson
coefficients, dJðνÞ, which are responsible for the nontrivial
3-momentum dependence for twist-2 gluon operator.
The results are represented by the Whittaker function,
Gðb; c; νÞ, which is defined by

Gðb; c; νÞ ¼ 1

ΓðcÞ
Z

∞

0

dte−ttc−1ðνþ tÞ−b: ðA1Þ

dS ¼ ν

18G
�
3
2
; 5
2
; ν


�
6G

�
1

2
;
7

2
; ν

�
þ 8G

�
1

2
;
5

2
; ν

�
− 9G

�
−
1

2
;
7

2
; ν

��
; ðA2Þ

dP ¼ ν

12G
�
1
2
; 3
2
; ν


�
2G

�
1

2
;
7

2
; ν

�
þ 8G

�
1

2
;
5

2
; ν

�
−G

�
−
1

2
;
7

2
; ν

�
− 2G

�
−
3

2
;
7

2
; ν

��
; ðA3Þ

dVL ¼ −
ν

6G
�
1
2
; 5
2
; ν


�
6G

�
1

2
;
7

2
; ν

�
− 6G

�
−
1

2
;
7

2
; ν

�
þG

�
−
3

2
;
7

2
; ν

��
; ðA4Þ

dVT ¼ ν

12G
�
1
2
; 5
2
; ν


�
−6G

�
1

2
;
7

2
; ν

�
þ 8G

�
1

2
;
5

2
; ν

�
þ 3G

�
−
1

2
;
7

2
; ν

�
− 2G

�
−
3

2
;
7

2
; ν

��
; ðA5Þ

dAL ¼ ν

3G
�
3
2
; 5
2
; ν


�
G

�
1

2
;
7

2
; ν

�
− 2G

�
−
1

2
;
7

2
; ν

��
; ðA6Þ

dAT ¼ ν

12G
�
3
2
; 5
2
; ν


�
−2G

�
1

2
;
7

2
; ν

�
þ 8G

�
1

2
;
5

2
; ν

�
− 5G

�
−
1

2
;
7

2
; ν

��
: ðA7Þ
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