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Final states in collider experiments are characterized by correlation functions, hEðn⃗1Þ � � � Eðn⃗kÞi, of the
energy flow operator Eðn⃗iÞ. We show that the top quark imprints itself as a peak in the three-point correlator
at an angle ζ ∼m2

t =p2
T , with mt the top quark mass and pT its transverse momentum, providing access to

one of the most important parameters of the Standard Model in one of the simplest field theoretical
observables. Our analysis provides the first step toward a new paradigm for a precise top-mass
determination that is, for the first time, highly insensitive to soft physics and underlying event
contamination whilst remaining directly calculable from the Standard Model Lagrangian.

DOI: 10.1103/PhysRevD.107.114002

I. INTRODUCTION

The Higgs and top quark masses play a central role both in
determining the structure of the electroweak vacuum [1–3],
and in the consistency of precision StandardModel fits [4,5].
Indeed, the near criticality of the electroweak vacuummay be
one of the most important clues from the Large Hadron
Collider (LHC) for the nature of beyond the Standard Model
physics [2,6–10]. This provides strongmotivation for improv-
ing the precision of Higgs and top mass measurements.
While the measurement of the Higgs mass is concep-

tually straightforward both theoretically and experimen-
tally [11], this could not be further from the case for the top
mass (mt). Due to its strongly interacting nature, a field
theoretic definition of mt, and its relation to experimental
measurements, is subtle. In eþe− colliders, precision mt
measurements can be made from the threshold line shape
[12–19]. However, this approach is not possible at hadron
colliders, where, despite the fact that direct extractions have
measured mt to a remarkable accuracy [20–23], there is a
debate on the theoretical interpretation of the measured
“Monte Carlo (MC) top mass parameter” [24]. This has
been argued to induce an additional Oð1 GeVÞ theory
uncertainty on mt. For recent discussions, see [25,26]. It is
therefore crucial to explore kinematic top-mass sensitive
observables at the LHC where a direct comparison of the

experimental data with first principle theory predictions can
be carried out.
Significant progress has been made in this regard from

multiple directions. A unique feature of the LHC is that large
numbers of top quarks are produced with sufficient boosts
that they decay into single collimated jets onwhich jet shapes
can bemeasured. In [27,28] itwas shownusing effective field
theories (SCET and bHQET) [29–38] that factorization
theorems can be derived for event shapes measured on
boosted top quarks, enabling these observables to be
expressed in terms of mt in a field theoretically a well-
defined field theoretic mass scheme [39–46]. Additionally,
there has been substantial progress in parton shower algo-
rithms capable of accurately simulating QCD radiation in
fully exclusive top quark decays [47–66]. In Ref. [67], the
groomed [68,69] jet mass was proposed as a mt sensitive
observable, realizing the factorization based approach of
[27,28]. For measurements, see [70,71]. While jet grooming
significantly improves the robustness of the observable, the
complicated residual nonperturbative corrections [72] con-
tinue to be limiting factors in achieving a precision com-
petitive with direct measurements, thereby motivating the
exploration of observables not reliant on grooming.
In recent years, there has been a program to rethink [73]

jet substructure directly in terms of correlation functions,
hEðn⃗1Þ � � � Eðn⃗kÞi, of the energy flow in a direction n⃗
[74–81], Eðn⃗Þ, motivated by the original work in QCD
[82–91] and recent revival in conformal field theories
(CFTs) [78–81,92–99]. These correlators have a number
of unique and remarkable properties. Most importantly for
phenomenological applications, correlators are insensitive
to soft radiation without the application of grooming.
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Additionally they can also be computed on tracks
[73,100,101], using the formalism of track functions
[102,103], allowing for higher angular resolution and sup-
pressing pileup. However, so far their application has been
restricted to massless quark or gluon jets [73,104–113].
In this paper, we present the first steps toward a new

paradigm for precision mt measurements based on the
simple idea of exploiting the mass dependence of the
characteristic opening angle of the decay products of
the boosted top, ζ ∼m2

t =p2
T (see Fig. 1). The motivation

for rephrasing the question in this manner is twofold. First,
this angle can be accessed via low point correlators, which
from a field theoretic point of view, is drastically more
simple than a groomed substructure observable sensitive to
ζ. Second, while the jet mass is sensitive to soft contami-
nation and underlying event (UE), the angle ζ is not, since it
is primarily determined by the hard dynamics of the top
decay. In the following, we will present a numerical proof-
of-principles analysis illustrating that the three-point cor-
relator in the vicinity of ζ ∼m2

t =p2
T provides a simple, but

highly sensitive probe of mt, free of the typical challenges
of jet-shape based approaches. Our goal is to provide the
motivation for future precision studies and the motivation
to find solutions to outstanding theoretical problems in the
study of low point correlators.

II. THE THREE-POINT CORRELATOR

There has recently been significant progress in under-
standing the perturbative structure of correlation functions
of energy flow operators. This includes the landmark
calculation of the two-point correlator at next-to-leading
order (NLO) in QCD [114,115] and next-to-next-to-leading
order (NNLO) in N ¼ 4 super Yang-Mills [92,116], as
well as the first calculation of a three-point correlator [105]
at leading order (LO) (also further analyzed in
[52,106,107]). The idea of using the three-point correlator
to study the top quark is a natural one, and was considered
early on in the jet substructure literature [117]. However,
only due to this recent theoretical progress can we now
make concrete steps toward a comprehensive program of

using energy correlators as a precision tool for Standard
Model measurements [73,118].
The three-point correlator (EEEC) with generic energy

weights is defined, following the notation in [105], as

GðnÞðζ12; ζ23; ζ31Þ ¼
Z

dσcMðnÞðζ12; ζ23; ζ31Þ; ð1Þ

with the measurement operator given by

cMðnÞðζ12;ζ23;ζ31Þ

¼
X
i;j;k

En
i E

n
jE

n
k

Q3n δ
�
ζ12− ζ̂ij

�
δ
�
ζ23− ζ̂ik

�
δ
�
ζ31− ζ̂jk

�
:

ð2Þ
Here ζ̂ij ¼ ð1 − cosðθijÞÞ=2, with θij the angle between
particles i and j, the sum runs over all triplets of particles in
the jet, and Q denotes the hard scale in the measurement.
The EEEC is not an event-by-event observable, but rather is
defined as an ensemble average.
We are interested in the limit ζ12; ζ23; ζ31 ≪ 1, such that all

directions of energy flow liewithin a single jet. In the case of a
CFT (ormasslessQCDup to the running coupling), theEEEC
simplifies due to the rescaling symmetry along the lightlike
direction defining the jet. In this case, theEEECcanbewritten
in terms of a scaling variable, ζ31 and exhibits a featureless
power-law scaling governed by the twist-2 spin-4 anomalous
dimension, γð4Þ [78,96,104,105,107,119]. This behavior has
been measured [118] using publicly released data from the
CMS experiment data [120,121].
In contrast,mt explicitly breaks the rescaling symmetry of

the collinear limit. Thus mt appears as a characteristic scale
imprinted in the three-point correlator. While the top quark
has a three-body decay at leading order, higher-order
corrections give rise to additional radiation, which is pri-
marily collinear to the decay products leading to a growth in
the distribution at angles ζ̂ij ≪ m2

t =p2
T . To extract mt, we

therefore focus on the correlator in a specific energy flow
configuration sensitive to the hard decay kinematics. Here
we study the simplest configuration, that of an equilateral
triangle ζ̂ij ¼ ζ allowing for a small asymmetry (δζ). Thus
the key object of our analysis is thenth energyweighted cross
section defined as

dΣðδζÞ
dQdζ

¼
Z

dζ12dζ23dζ31

Z
dσcMðnÞ

△
ðζ12;ζ23;ζ31;ζ;δζÞ;

ð3Þ
where the measurement operator cMðnÞ

△
is

cMðnÞ
△
ðζ12; ζ23; ζ31; ζ; δζÞ

¼ cMðnÞðζ12; ζ23; ζ31Þδð3ζ − ζ12 − ζ23 − ζ31Þ
×

Y
l;m;n∈f1;2;3g

Θðδζ − jζlm − ζmnjÞ: ð4Þ

FIG. 1. A boosted top quark imprints its short lived existence
onto the three-point correlator with a characteristic angle,
ζ ∼ ð1 − cos θÞ=2 ∼m2

t =p2
T .
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For δζ ≪ ζ,

dΣ
dζ

≈ 4ðδζÞ2GðnÞðζ; ζ; ζ;mtÞ; ð5Þ

where we have made the dependence on mt explicit. Three-
body kinematics implies that the distribution is peaked at
ζpeak ≈ 3m2

t =Q2, exhibiting quadratic sensitivity to mt. At
the LHC the peak is resilient to collinear radiation since
ln ζpeak < 1=αs, makings its properties computable in fixed
order perturbation theory at the hard scale. In the region ζ <
2δζ the hard three-body kinematics is no longer identified,
leading to a bulge in the distribution. In Fig. 2 we show these
features in the simplest case of eþe− → tþ X simulated
using PYTHIA 8.3 parton shower, with the details of the
simulation described below. We explain in Appendix A
through a leading-order analysis how these features arise and
motivate the definition of our observable stated above.
Finally, we do not consider here the optimization of δζ
and leave it to future work.

III. MASS SENSITIVITY

To illustrate the mass sensitivity of our observable, we
consider the simplest case of eþe− collisions simulated in
PYTHIA 8.3 at a center of mass energy of Q ¼ 2000 GeV
using the PYTHIA 8.3 parton shower [122]. We reconstruct
anti-kT [123] jets with R ¼ 1.2 using FASTJET [124], and
analyze them using the jet analysis software JETLIB [125].
Although jet clustering is not required in eþe−, this analysis
strategy is chosen to achieve maximal similarity with the
case of hadron colliders. In Fig. 2 we show the distribution
of the three-point correlator in the peak region, both with
and without the effects of hadronization. Agreement of the
peak position with the leading-order expectation is found,
showing that the observed behavior is dictated by the hard
decay of the top. In Fig. 2, linear (n ¼ 1) and quadratic
(n ¼ 2) energy weightings are used; see eq. (2). The latter
is not collinear safe, but the collinear IR divergences can be

absorbed into moments of the fragmentation functions or
track functions [73,100].
Nonperturbative effects in energy correlators are governed

by an additive underlying power law [76,90,91,126], which
over the width of the peak has a minimal effect on the
normalized distribution. This is confirmed by the small
differences in peak position between parton and hadron level
distributions. In Fig. 2 we also show an enlarged version for
n ¼ 2. Taking mt ¼ 170, 172 GeV with n ¼ 2 as represen-
tative distributions, we find that the shift due to hadronization
corresponds to a ΔmHad

t ∼ 250 MeV shift in mt. This is in
contrast with the groomed jet mass case where hadronization
causes peak shifts equivalent to ΔmHad

t ∼ 1 GeV [67].

IV. HADRON COLLIDERS

We now extend our discussion to the more challenging
case of proton-proton collisions. This study illustrates the
difference between energy correlators and standard jet
shape observables, and also emphasizes the irreducible
difficulties of jet substructure at hadron colliders.
Implicit in the definition of energy correlators,

hψ jEðn⃗1Þ � � � Eðn⃗kÞjψi, is a characterization of the QCD
final state jψi. In the correlator literature, jψi is usually
defined by a local operator of definite momentum acting on
the QCD vacuum, jψi ¼ Oj0i, giving rise to a perfectly
specified hard scale, Q. This is the case of eþe− collisions.
In hadronic final states at proton-proton collisions, the
states on which we compute the energy correlators are
necessarily defined through a measurement, e.g., by select-
ing anti-kT jets with a specific pT;jet. Due to the insensitivity
of the energy correlators to soft radiation, we will show that
it is in fact the nonperturbative effects on the jet pT
selection that are the only source of complications in a
hadron collider environment. This represents a significant
advantage of our approach, since it shifts the standard
problem of characterizing nonperturbative corrections to
infrared jet-shape observables, to characterizing nonper-
turbative effects on a hard scale. This enables us to propose
a methodology for the precise extraction of mt in hadron
collisions by independently measuring the universal non-
perturbative effects on the pT;jet spectrum. We now illus-
trate the key features of this approach.
The three-point correlator in hadron collisions is defined as

cMðnÞ
ðppÞðζ12;ζ23;ζ31Þ

¼
X

i;j;k∈jet

ðpT;iÞnðpT;jÞnðpT;kÞn
ðpT;jetÞ3n

×δ

�
ζ12− ζ̂ðppÞij

�
δ

�
ζ23− ζ̂ðppÞik

�
δ

�
ζ31− ζ̂ðppÞjk

�
; ð6Þ

where ζ̂ðppÞij ¼ ΔR2
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2ij þ Δϕ2

ij

q
, with η;ϕ the stan-

dard rapidity, azimuth coordinates. The peak of the EEEC
FIG. 2. Features of the EEEC measurement in equilateral
triangle configuration on the tops.
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distribution is determined by the hard kinematics and is found

at ζðppÞpeak ≈ 3m2
t =p2

T;t, where pT;t is the hard top pT , not pT;jet.
To clearly illustrate the distinction between the infrared

measurement of the EEEC and the hard measurement of the
pT;jet spectrum, we present a two-step analysis using data
generated in PYTHIA 8.3 (which we independently verified
with VINCIA 2.3 [127]; see Fig. 7 below). First, we generated
hard top quark states with definite momentum (like in eþe−),
but in themore complicatedLHCenvironment includingUE,
shown in Fig. 3, where we see a clear peak that is completely

independent of the presence of multi-parton interactions
(MPI) (the PYTHIA 8.3 model for UE). This illustrates that the
correlators themselves, on a perfectly characterized topquark
state, are insensitive to soft radiation without grooming.
We then performed a proof-of-principles analysis to

illustrate that a characterization of nonperturbative correc-
tions to the pT;jet spectrum allows us to extract mt, with
small uncertainties from nonperturbative physics. While we
will later give a factorization formula for the observable
dΣðδζÞ=dpT;jetdζ, for the present discussion it is useful to
write it as

dΣðδζÞ
dpT;jetdζ

¼ dΣðδζÞ
dpT;tdζ

dpT;t

dpT;jet
: ð7Þ

This formula, combined with Fig. 3, illustrates that the
source of complications in the hadron-collider environment
lies in the observable-independent function of hard scales
dpT;t=dpT;jet, which receives both perturbative and non-
perturbative contributions. To extract a value of mt, we
write the peak position as

ζðppÞpeak ¼ 3Fpertðmt; pT;jet; αs; RÞ
ðpT;jet þ ΔNPðRÞ þ ΔMPIðRÞÞ2

: ð8Þ

Here Fpert incorporates the effects of perturbative radiation.
At leading order, Fpert ¼ m2

t . Corrections from hadroniza-
tion and MPI are encoded through the shifts ΔNPðRÞ and
ΔMPIðRÞ. Crucially, in the factorization limit that we
consider, these are not a property of the EEEC observable,
but can instead be extracted directly from the nonpertur-
bative corrections to the jet pT spectrum [128]. This is a
unique feature of our approach.
To illustrate the feasibility of this procedure, we used

PYTHIA 8.3 (including hadronization and MPI) to extract

ζðppÞpeak as a function of pT;jet, over an energy range within the
expected reach of the high luminosity LHC. As a proxy for
a perturbative calculation, we used parton level data to
extract Fpert. To the accuracy we are working, Fpert is
independent of the jet pT , and can just be viewed as an
effective top mass

ffiffiffiffiffiffiffiffiffi
Fpert

p ðmtÞ. We also extract ΔNPðRÞ þ
ΔMPIðRÞ independently from the pT;jet spectrum. Note that
an error of �δ on ΔNP=MPI in a given pT;jet bin leads to an
error on

ffiffiffiffiffiffiffiffiffi
Fpert

p ðmtÞ of �δ
ffiffiffiffiffiffiffiffiffi
Fpert

p
=pT;jet.

Using Eq. (6) we fit ζðppÞpeak as a function of pT;jet for an
effective value of FpertðmtÞ. An example of the distribution
in the peak region is shown in Fig. 4, which also highlights
the insensitivity of the peak position to the use of charged

particles only (tracks). A fit to ζðppÞpeak for several pT;jet bins is
shown in Fig. 5. With a perfect characterization of the
nonperturbative corrections to the EEEC observable, the
value of FpertðmtÞ extracted when hadronization and MPI

FIG. 3. The n ¼ 1, 2 three-point correlators on boosted tops in
eþe− showing a clear peak at ζ ∼ 3m2

t =Q2. All graphs are
normalized to peak height. The bottom plot shows an enlarged
version of the n ¼ 2 three-point correlator in eþe− for mt ¼ 170,
172 GeV, at both hadron and parton level. The dashed and solid
lines are a polynomial fit to Monte Carlo data points.
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are included should exactly match its extraction at parton
level. This would lead to complete control over mt. In
Table I we show the extracted value of FpertðmtÞ from our
parton level fit, and from our hadronþMPI level fit for
two values of the PYTHIA 8.3 mt. The errors quoted are the
statistical errors on the parton shower analysis. The
HadronþMPI fit is quoted with two errors: the first
originates from the statistical error on the EEEC meas-
urement, and the second originates from the statistical
error on the determination of ΔNPðRÞ þ ΔMPIðRÞ from the
pT;jet spectrum. A more detailed discussion of this pro-
cedure is provided in Appendix B. Thus we find promising
evidence that theoretical control of mt, with conservative
errors ≲1 GeV, is possible with an EEEC-based meas-
urement. Our analysis also emphasizes the importance of
understanding nonperturbative corrections to the jet pT
spectrum. Theory errors are contingent upon currently
unavailable NLO computations, discussed in the following
section, and so are not provided. However, we expect

observable dependent NLO theory errors on mt to be
better than those in other inclusive measurements wherein
in the dominant theory errors are from PDFsþ αs
[129,130] and which mostly affect the normalization
of the observable. By contrast the EEEC is also inclusive,
but the extracted mt is only sensitive to the observ-
able’s shape.
The goal of this paper has been to introduce our novel

approach to top mass measurements, illustrating its theo-
retical feasibility and advantages. Our promising results
motivate developing a deeper theoretical understanding of
the three-point correlator of boosted tops in the hadron
collider environment. Nevertheless, there remain many
areas in which our methodology could be improved to
achieve greater statistical power and bring it closer to
experimental reality. These include the optimization of δζ,
the binning of pT;jet and ζðppÞ, and including other shapes
on the EEEC correlator. Regardless, our analysis does
demonstrate the observable’s potential for a precision mt
extraction when measured on a sufficiently large sample of
boosted tops. We are optimistic that such a sample will be
accessible at the high-luminosity LHC where it is forecast
that ∼107 boosted top events with pT > 500 GeV will be
measured [131].

FIG. 4. The n ¼ 1, 2 three-point correlators on decaying top
quarks with a fixed hard pT , with and without MPI. Here a clear
peak can be seen at ζ ≈ 3m2

t =p2
T;t.

FIG. 5. The three-point correlator on top jets in hadron
collisions. A clear peak can be seen at ζ ≈ 3m2

t =p2
T;jet which is

insensitive to the usage of tracks.

FIG. 6. Plot of the peak position as a function of pT;jet, as used
in our fitting procedure.

TABLE I. The effective parameter FpertðmtÞ extracted at parton
level, and hadronþMPI level. The consistency of the two
simulations provides a measure of our uncertainty due to
uncontrolled nonperturbative corrections. Statistical errors are
shown.

PYTHIA 8.3 mt Parton
ffiffiffiffiffiffiffiffiffi
Fpert

p
Hadron þ MPI

ffiffiffiffiffiffiffiffiffi
Fpert

p
172 GeV 172.6� 0.3 GeV 172.3� 0.2� 0.4 GeV
173 GeV 173.5� 0.3 GeV 173.6� 0.2� 0.4 GeV
175 GeV 175.5� 0.4 GeV 175.1� 0.3� 0.4 GeV

173–172 0.9� 0.4 GeV 1.3� 0.6 GeV
175–172 2.9� 0.5 GeV 2.8� 0.6 GeV
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V. FACTORIZATION THEOREM

Combining factorization for massless energy correlators
[132] with the bHQET treatment of the top quark near its
mass shell [27,28,43,67] allows us to separate the dynamics
at the scale of the hard production, the jet radius R, the
angle ζ, and the top width Γt. While factorization is
generically violated for hadronic jet shapes (see [133]),
our framework is based on the rigorous factorization
for single particle massive fragmentation [134–141].
Assuming ζ ≪ R, we perform a matching at the perturba-
tive scale of the jet radius, using the fragmenting jet
formalism [142–144], which captures the jet algorithm
dependence. The final jet function describing the collinear
dynamics at the scale of ζ is therefore free of any jet
algorithm dependence. Correspondingly, we expect to
obtain the following factorized expression,

dΣ
dpT;jetdη dζ

¼ fi ⊗ fj ⊗ Hi;j→t

�
zJ;pT;t ¼

pT;jet

zJ
; η

�

⊗ Jt→tðzJ; zh;RÞ ⊗ J½tracks�EEEC ðn; zh; ζ;mt;ΓtÞ;
ð9Þ

for the energy-weighted cross section differential in pT;jet,
rapidity η, and ζ. This can be used to compute FpertðmtÞ in
a systematically improvable fashion. Obvious dependen-
cies, such as on factorization scales, have been suppressed
for compactness. Here fi are parton distribution func-
tions, and Hi;j→t is the hard function for inclusive massive
fragmentation [145,146], which is known for LHC
processes at NNLO [147]. Jt→t is the fragmenting jet
function, which is known at NLO for anti-kT jets
[143,144], but can be extended to NNLO using the
approach of [148]. The convolutions over fi;j Hi;j→t

and Jt→t alone determine the pT;jet spectrum, independent
of the EEEC measurement. Finally, JEEEC is the energy
correlator jet function, which can be computed in a well-
defined short-distance top mass scheme (such as the MSR
mass [39,41,149]), and can include information from
track or fragmentation functions. Around the top peak,
JEEEC is almost entirely determined by perturbative
physics and is currently known at LO. The NLO
determination of JEEEC is an outstanding theoretical
problem and is very involved, thus beyond the scope
of this paper, though a road map toward its completion
has recently become available [105,114,115]. In the
region of on shell top, JEEEC can be matched onto a
jet function defined in bHQET [27,28,39,40,67]. The
functions in the factorization formula above exhibit
standard DGLAP [150–152] evolution in the momentum
fractions zJ and zh ¼ pT;hadron=pT;jet, and the ⊗ denote
standard fragmentation convolutions. A more detailed
study of the structure of the factorization will be provided
in a future publication.

VI. CONCLUSIONS

We have proposed a new paradigm for jet-substructure
based measurements of the top mass at the LHC in a
rigorous field theoretic setup. Instead of using standard jet
shape observables, we have analyzed the three-point
correlator of energy flow operators, and have illustrated
a number of its remarkable features. Our results support the
possibility of achieving complete theoretical control over
an observable with top mass sensitivity competitive with
direct measurements whilst avoiding the ambiguities asso-
ciated with the usage of MC event generators.
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APPENDIX A: LEADING-ORDER ANALYSIS

Here we perform a leading-order analysis of the observ-
able which suffices to explain the general features of the
spectrum in Fig. 2. For concreteness, we will define the
kinematics assuming a eþe− → tð→ bqq̄0Þ þ X process
where we take the b; q; q̄0 partons to be massless. No
further complications, beyond the need for more ink, are
introduced by using the longitudinally invariant kinematics
needed for measurements at the LHC. At leading order,
we can factorize the Born cross section dσð0Þ=σð0Þ into the
dimensionless three-body phase space for the top’s
decay products, dΦ3, and the dimensionless weighted
squared matrix element, σtjMðt → bW → bqq̄0Þj2=σð0Þ
where σt is the cross section to produce a top quark. As
jMðt → bW → bqq̄0Þj2 ∼Oð1Þ, we can approximate the
differential EEEC distribution in Eq. (3) as

1

σð0Þ
dΣð0Þ

dQdζ12dζ23dζ31
≈
Z

dΦ3
cMðnÞðζ12; ζ23; ζ31Þ; ðA1Þ
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reducing the problem of understanding the observable of
interest to studying three-body kinematics.
Before directly working with Eq. (A1), let us develop

some intuition for the three-body kinematics. Consider
the decay of a top quark in its rest frame, with
p̃t ¼ p̃b þ p̃q þ p̃q̄0 . Here we are using p̃i as a rest-frame
momentum and pi as a lab-frame momentum. In the top
rest frame, the angular parameters on which the EEEC
depends are given by

ζ̃12 ¼
p̃b · p̃q

2ẼbẼq
; ζ̃31 ¼

p̃b · p̃q̄0

2ẼbẼq̄0
; ζ̃23 ¼

p̃q · p̃q̄0

2ẼqẼq̄0
:

ðA2Þ

Momentum conservation requires that ζ̃12 þ ζ̃23 þ ζ̃31 ∈
½2; 2.25�. Let the lab frame top momentum be pt ¼ ðEt; p⃗tÞ.
In the boost between the lab and rest frame, cosh β ¼
Et=mt ∼ ζ−1=2. To first order in mt=Et ≪ 1, we also
have sinh β ≈ cosh β. Hence the sum of lab frame EEEC
parameters is

ζ12 þ ζ23 þ ζ31

≈
�
mt

Et

�
2
�
x̃tbx̃tqζ̃12 þ x̃tbx̃tq̄0 ζ̃31 þ x̃tqx̃tq̄0 ζ̃23

�
; ðA3Þ

where

x̃ti ¼ ð1þ cos θ̃tiÞ; ðA4Þ

with θ̃ti denoting the angle between parton i and the boost
axis in the top’s rest frame. The function

g≡ x̃tbx̃tqζ̃12 þ x̃tbx̃tq̄0 ζ̃31 þ x̃tqx̃tq̄0 ζ̃23

is also kinematically bounded so that g ∈ ½0; 3�. Upon
averaging over the possible boost axes one finds that
hgi ∈ ½1; 2.25�. Thus, returning to Eq. (A1), we expect
the partially integrated EEEC distribution

dΣ
dQdζ

¼
Z

dζ12dζ23dζ31

×
dΣð0Þ

dQdζ12dζ23dζ31
δð3ζ−ζ12−ζ23−ζ31Þ; ðA5Þ

to be peaked around ζ ≈ hgim2
t =ð3E2

t Þ ≈ 2m2
t =ð3E2

t Þ.
However, this peak will have a large width [of the order
of 3m2

t =ð4E2
t Þ], whose origin can be understood by

interpreting the parameters x̃ti ∈ ½0; 2� as three sources of
(correlated) random noise in the shape of the flow of energy
which “smears” the EEEC distribution. We can largely
remove the noise by constraining the shape of the energy
flow on the celestial sphere. This is most simply done by
requiring that

ffiffiffiffiffiffi
ζij

p
approximately form the sides of an

equilateral triangle (
ffiffiffiffiffiffi
ζij

p
≈

ffiffiffiffiffiffi
ζik

p
). Consequently,

x̃tbx̃tqζ̃12 ≈ x̃tbx̃tq̄0 ζ̃31 ≈ x̃tqx̃tq̄0 ζ̃23; ðA6Þ

removing two of the noisy degrees of freedom from the
distribution. Upon including this constraint, we find that
hgi ≈ 2.1 with a small variance. This motivates us to
introduce an EEEC distribution on equally spaced triplets
of partons and allow for small asymmetries around this
configuration governed by the parameter δζ:

dΣðδζÞ
dQdζ

¼
Z

dζ12dζ23dζ31

Z
dσcMðnÞ

△
ðζ12; ζ23; ζ31; ζ; δζÞ;

ðA7Þ

where the operator cMðnÞ
△

in the collinear limit is

cMðnÞ
△
ðζ12;ζ23;ζ31;ζ;δζÞ

¼
X
i;j;k

En
i E

n
jE

n
k

Q3n δ

�
ζ12−

θ2ij
4

�
δ

�
ζ31−

θ2ik
4

�
δ

�
ζ23−

θ2jk
4

�

×δð3ζ−ζ12−ζ23−ζ31Þ
Y

l;m;n∈f1;2;3g
Θðδζ− jζlm−ζmnjÞ:

ðA8Þ

As previously explained, three-body kinematics determines
that this distribution is peaked at ζpeak ≈ 3m2

t =ð4E2
t Þ∼

m2
t =Q2. Furthermore, at the LHC the peak should be

resilient to collinear radiation since ln ζpeak < 1=αs.
We can now complete our leading-order discussion by

computing the Born contribution to Eq. (A7). Expanding
for δζ ≪ ζ, we obtain

dΣ0ðδζÞ
dQdζ

∝ ðδζÞ2
Z

1

0

dz1dz2dz3

�
z1z2z3
8

�
n

× δ

�
m2

t

4E2
t
− z1z2ζ − z1z3ζ − z2z3ζ

�

× δð1 − z1 − z2 − z3ÞjMðt → bW → bqq̄0Þj2;
ðA9Þ

where z1 ¼ Eb=Et and z2 ¼ Eq̄0=Et. The delta function
causes the distribution to be sharply peaked at ζ ¼
3m2

t =ð4E2
t Þ. This matches the intuition we have developed

from considering pure kinematics.
Looking at Eq. (3) to all orders in αs, up to power

corrections in δζ,

dΣðδζÞ
dQdζ

¼ 4ðδζÞ2GðnÞðζ; ζ; ζÞ
�
1þO

�
δζ

ζ

��
; ðA10Þ

where the latter to leading order in δζ ≪ ζ can be written as

4ðδζÞ2GðnÞðζ; ζ; ζÞ ¼ dΣ0ðδζÞ
dQdζ

þOðαsÞ; ðA11Þ

NEW PARADIGM FOR PRECISION TOP PHYSICS: WEIGHING … PHYS. REV. D 107, 114002 (2023)

114002-7



whilst in the region where 2δζ > ζ

dΣðδζÞ
dQdζ

≈
Z

dζ12dζ23dζ31GðnÞðζ12; ζ23; ζ31Þ: ðA12Þ

Figure 7 demonstrates that this dependence on δζ is born
out in simulation for eþe− and pp collisions. To con-
clude, our discussion motivates that an optimal choice of
δζ will be a function of Q that strikes a balance between
statistics and constraining the three-body kinematics
(δζoptimal ≈ κζpeak=2 for κ ≲ 1). A more sophisticated
analysis may also sum over several shapes of energy
flow on the celestial sphere to increase statistics—perhaps
allowing for smaller values of δζoptimal.
Finally, in Fig. 8 we show the top peak in the three-point

correlator for n ¼ 2 in eþe− → tþ X simulations in
VINCIA 2.3. We find the peak position almost in line with
that of PYTHIA 8.3, justifying our earlier assumption that the
features of the observable are largely determined by the
fixed-order expansion in αs.

APPENDIX B: DETAILS OF THE EEEC
ANALYSIS AT HADRON COLLIDERS

Here we describe the details of the proof-of-principles
peak position analysis outlined in Sec. IV. The longitudinal
boost invariant measurement operator for the EEEC
observable is

cMðnÞ
ðppÞðζ12;ζ23;ζ31Þ

¼
X

i;j;k∈jet

ðpT;iÞnðpT;jÞnðpT;kÞn
ðpT;jetÞ3n

δ

�
ζ12− ζ̂

ðppÞ
ij

�

×δ

�
ζ23− ζ̂

ðppÞ
ik

�
δ

�
ζ31−ζ̂

ðppÞ
jk

�
; ðB1Þ

where ζ̂ðppÞij ¼ ΔR2
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2ij þ Δϕ2

ij

q
. As before, the peak

of the cMðnÞ
△

EEEC distribution is determined by the top

quark hard kinematics and is found at ζðppÞpeak ≈ 3m2
t =p2

T;t,
where pT;t is the hard top pT , not pT;jet. Consequently, the
basic properties of the dΣðδζÞ=dpT;tdζ distribution are
completely insensitive to nonperturbative physics. In
Secs. III and IV we demonstrated this insensitivity by
parton shower simulation wherein we showed evidence
that the top decay peak is nearly entirely independent of
hadronization and UE. Consequently, in the limit that
pT;t=ðΔNP þ ΔMPIÞ → ∞, the top decay peak position is
exactly independent of nonperturbative effects. However,
since pT;t is not directly accessible, the observable we
consider is

dΣðδζÞ
dpT;jet dζ

¼ dΣðδζÞ
dpT;tdζ

dpT;t

dpT;jet
; ðB2Þ

where pT;jet is the pT of an identified anti-kT top jet. The
top peak position in the distribution dΣðδζÞ=dpT;jetdζ will

FIG. 7. The effect of applying different δζ cuts to ensure an
equilateral configuration for eþe− → tþ X and pp → tþ X
processes. The δζ cuts isolate the peak, which is governed by
the hard decay of the top, from the “bulge” contribution.

FIG. 8. Comparison of PYTHIA 8.3 and VINCIA 2.3 parton
showers result. The differences in the peak positions are less
than 300 MeV, and hence compatible with the uncertainties of our
analysis.
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be shifted by hadronization and UE due to shifts in the jet
pT distribution. This shift can be measured independently
from our observable and will be universal to all measure-
ments of energy correlators on top quarks at the LHC.
We can parametrize the all-orders peak position in

dΣðδζÞ=dpT;jetdζ as

ζðppÞpeak ¼ 3ð1þOðαsÞÞ
m2

t

fðpT;jet; mt; αs;ΛQCDÞ2

≡ 3ð1þOðαsÞÞ
m2

t

ðpT;jet þ ΔðpT;jet; mt; αs;ΛQCDÞÞ2
:

ðB3Þ

Mainly, Δ receives three additive contributions from
perturbative radiation, hadronization, and from UE/MPI:

Δ ¼ Δpert þ ΔNP þ ΔMPI: ðB4Þ

Some simple manipulations can be made so as to minimize
the sensitivity to Δ in an extracted value of mt. We define
the following function of measurable and perturbatively
calculable quantities,

ρ2ðζðppÞvpeak ; pv
T;jetÞ ¼

�
ζðppÞrefpeak − ζðppÞvpeak

�

×

�
3ð1þOðαsÞÞ

ðpv
T;jetÞ2

−
3ð1þOðαsÞÞ

ðpref
T;jetÞ2

�
−1
;

ðB5Þ

where ζðppÞrefpeak is the peak position in a fixed reference pT

bin, pref
T;jet, and ζ

ðppÞv
peak is the peak position for a variable pT;jet

value, pv
T;jet, larger than the reference value (we require

pv
T;jet > pref

T;jet to avoid divergences). ρ
2 is defined so that, in

the limit pv
T;jet; p

ref
T;jet → ∞, we have ρ2 → m2

t . In the

analysis below we set 3ð1þOðαsÞÞ ↦ 3 so that, in the
limit pv

T;jet; p
ref
T;jet → ∞, we find ρ2 → Fpert as defined in

Eq. (8). Now let us make a further definition,

Δvðpv
T;jet − pref

T;jet; mt; αs;ΛQCDÞ
≡Δðpv

T;jet; mt; αs;ΛQCDÞ − Δref ; ðB6Þ

where

Δref ≡ Δðpref
T;jet; mt; αs;ΛQCDÞ: ðB7Þ

We can substitute Eq. (B3) into Eq. (B5) to find
ρðpv

T;jet;Δref ;ΔvÞ, which is plotted in Fig. 10, left.
ρ has an asymptote as pv

T;jet → ∞ around which we
perform a series expansion:

ρðpv
T;jet;Δref ;ΔvÞ

¼ ffiffiffiffiffiffiffiffiffi
Fpert

p pref
T;jet

pref
T;jetþΔref

�
1−

2pref
T;jetΔrefþðΔrefÞ2
2ðpv

T;jetÞ2

þðpref
T;jetþΔrefÞ2ðΔrefþΔvÞ

8ðpv
T;jetÞ3

þO
�

1

ðpv
T;jetÞ4

��
: ðB8Þ

Thus a fit of the asymptote of ρ, and its first nonzero
correction, can be used to extract Fpert and Δref . All
dependence on Δv enters in the higher-order terms.
However, in the limit that pref

T;jet → ∞, ρ2 → Fpert and so
while the fit for Fpert will become exact, the error on a fit for
Δref will diverge. In practice it will be necessary to perform
the EEEC measurement with boosted tops in order to get a
well-defined peak. Consequently, fits for Δref will suffer
from parametrically large errors (as can be seen in the large
deviation between the exact and expanded curves at low

FIG. 9. The function ρ defined in Eq. (B5) for Δref ¼ 0 GeV,
as well as the exact and expanded to second order (ρð2Þ)
for Δref ¼ 5 GeV.

FIG. 10. An example of the best fit for ρ’s asymptote (ρasy)
using the fit function in Eq. (B13). The data being fitted are
produced using PYTHIA 8.3 with mt ¼ 172 and with pref

T;jet binned

in the range pref
T;jet ∈ ½590; 610� GeV. The dashed lines are the

best fit for the asymptotes, ρ ¼ ρasy.
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pref
T;jet in Fig. 9). However, as previously stated, Δref can be

extracted from an independent measurement of the top-jet
pT distribution,

dσpp→tð→bqq̄0ÞþX

dpref
T;jet

¼ Dðmt; pT;jet; αs;ΛQCDÞ: ðB9Þ

One can parametrize the nonpertubative effects in D in the

same way as we did in ζðppÞpeak to give

Dðmt; pT;jet;αs;ΛQCDÞ
¼ Dpertðmt; gðpT;jet; mt; αs;ΛQCDÞ; αsÞ; ðB10Þ

where Dpertðmt; pT;jet;αsÞ is the all-orders perturbative
top-jet pT distribution, and gðpT;jet;…Þ captures all the
nonperturbative modifications to pT;jet. As before, we
parametrize the modifications via introducing a shift
function Δ0 defined as

Δ0ðpT;jet; mt; αs;ΛQCDÞ≡ gðpT;jet; mt;αs;ΛQCDÞ − pT;jet;

ðB11Þ

where

Δ0ref ≡ gðpref
T;jet; mt; αs;ΛQCDÞ − pref

T;jet: ðB12Þ

It is required for consistency with the factorization in
Eq. (9) that, up to corrections which are suppressed by
powers of mt=pref

T;jet and ΛQCD=pref
T;jet, Δ0ref ≈ ðΔref − Δref

pertÞ
where Δref

pert is the perturbative contribution to Δref . At the
level of accuracy to which we are working, Δref

pert can be
absorbed into Fpert justifying why we dropped it above.
Thus, we fit for Fpert using the following procedure:
(i) Following Eq. (B8) we fit for the asymptote of ρ

(which we label ρasy) using a polynomial in
ð1=pv

T;jetÞn. In this paper we found that a third
degree polynomial,

ρðpT;jetÞ ¼ ρasyþ c2ðpv
T;jetÞ−2þ c3ðpv

T;jetÞ−3; ðB13Þ

TABLE II. A more detailed version of Table I, showing separate results at parton, hadron and hadronþMPI
level. Five datasets for ρ were averaged over with pref

T;jet ∈ ½550; 650� GeV binned in 20 GeV intervals and
pv
T;jet ∈ ½900; 2000� GeV. One such dataset and its fit are shown in Fig. 10. In each column the first error is from the

fit of the ρ asymptote and is statistical. The second error (when given) is also statistical and is the error from using
the parton shower to determine Δ0ref ≈ Δref as extracted from the top jet pt distribution. Errors have been combined
in quadrature in the final row. No theory errors are given.

PYTHIA 8.3 mt EEEC Parton
ffiffiffiffiffiffiffiffiffi
Fpert

p
EEEC Hadron

ffiffiffiffiffiffiffiffiffi
Fpert

p
EEEC HadronþMPI

ffiffiffiffiffiffiffiffiffi
Fpert

p
172 GeV 172.6� 0.3 GeV 172.4� 0.2� 0.5 GeV 172.3� 0.2� 0.4 GeV
173 GeV 173.5� 0.3 GeV 173.9� 0.3� 0.5 GeV 173.6� 0.2� 0.4 GeV
175 GeV 175.5� 0.4 GeV 175.2� 0.3� 0.5 GeV 175.1� 0.3� 0.4 GeV

173–172 0.9� 0.4 GeV 1.5� 0.8 GeV 1.3� 0.6 GeV
175–172 2.9� 0.5 GeV 2.8� 0.8 GeV 2.8� 0.6 GeV
175–173 2.0� 0.5 GeV 1.3� 0.8 GeV 1.5� 0.6 GeV

FIG. 11. On the left, the pT;jet spectrum at parton level, hadron level, and including MPI. A precise characterization of the states on
which the energy correlator is computed requires an understanding of the nonperturbative shifts between these distributions. On the
right, the hadron level and hadronþMPI curves shifted by constant values so that the three curves overlap. In both figures pT;jet ∈
½550; 650� GeV as this is the range in which we chose pref

T;jet in our analysis.
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optimized the reduced χ2. The value of ρasy was
found to be stable, within our statistical accuracy,
against the inclusion of further higher-order terms,
cnðpv

T;jetÞ−n. Figure 10 shows one such fit. No error
bars are shown in Fig. 10 as it was produced from a
single Monte Carlo sample. Fits of five samples are
averaged over to produce the results and their errors
in Table II.

(ii) We extract Δ0ref from the top-jet pT spectrum as
shown in Fig. 11.

(iii) Finally, we compute Fpert using the asymptote of ρ,
ρasy, defined above in Eq. (B13) as

ffiffiffiffiffiffiffiffiffi
Fpert

p ¼ ρasy
pref
T;jet þ Δref

pref
T;jet

: ðB14Þ

The outcome of this procedure is given in Table II which
shows the extracted Fpert from PYTHIA 8.3 with mt ¼
172 GeV and 173 GeV. The important outcome of this
analysis is that the differences between the measured
masses with parton, hadron and hadronþMPI data are
≲1 GeV and are smaller than the statistical errors. This
analysis was not optimized to give a good statistical error
and certainly can be improved. Thus we find promising
evidence that complete theoretical control of the top mass,
up to errors <1 GeV, is possible with an EEEC based
measurement.
To cross-check our result, purely to demonstrate self-

consistency, in Fig. 12 we illustrate a theory fit of ρ using
parton shower data from PYTHIA 8.3 with mt ¼ 172 GeV at
parton level and hadron level. The curves in Fig. 12 are not
the third degree polynomial used to extract ρasy in
Eq. (B13). Rather, the curves are, truncated at second
order, using the values of Fpert given in Table II and the
values of Δ0ref given in Fig. 11. Error bars correspond to the
errors on Fpert and Δref . To illustrate the partonic curve, a
value of Δref

pert ¼ ð11� 3Þ GeV has been used which was
extracted from the fit for ρð2Þ [i.e., c2 in Eq. (B13)]. This
Δref

pert is not used in any of the preceding analysis (or
anywhere else in this article) where all dependence on Δref

pert

is absorbed into the definition of Fpert. Each error band
shows the combined statistical error from the determination
of the asymptote and ofΔref (including the dominant 3 GeV
error on Δref

pert).
We find agreement between the MC data and our theory

fit. Figure 13 along with Fig. 6 further demonstrates the
excellent agreement between theory and parton shower data
wherein we fit ζpeakðpt;jetÞ with the ansatz in Eq. (8), also
using the values for Fpert in Table II resultsmt and the values
of Δ0ref given in Fig. 11.

FIG. 12. This figure shows parton shower data for ρ generated
in PYTHIA 8.3 at parton level, hadron level, and with MPI (shown
in open markers) overlaid with curves from Eq. (B8) demon-
strating the self-consistency of our results. Five datasets for ρ
were averaged over with pref

T;jet ∈ ½550; 650� GeV binned in
20 GeV intervals.

FIG. 13. Energy correlator peak positions as a function of pT;jet at parton level and hadron level. (See Fig. 6 for an analogous figure
including MPI). The theory fit uses the ansatz in Eq. (8) with the values of Fpert given in Table II and Δ0ref extracted in Fig. 11. Excellent
agreement between the theoretical fit and PYTHIA 8.3 is observed in all cases.
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