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Electromagnetic decays of X(3823) as the y,(1°D,) state
and its radial excited states
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We study the electromagnetic (EM) decays of X(3823) as the y,(13D,) state by using the relativistic
Bethe-Salpeter method. Our results are I'[X(3823) — y.o7] = 1.2 keV, T'[X(3823) = y. 7] = 265 keV,
I'[X(3823) = yoy] =57 keV, and T[X(3823) — 57.y] = 1.3 keV. The ratio B[X(3823) — y.r]/
B[X(3823) = y.17] = 0.22, agrees with the experimental data. Similarly, the EM decay widths of
w,(n*D,), n = 2, 3, are predicted, and we find the dominant decays channels are y, (n’D,) — y.;(nP)y,
where n = 1, 2, 3. The wave function include different partial waves, which means the relativistic effects
are considered. We also study the contributions of different partial waves.
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I. INTRODUCTION

The bound state of charm and anticharm quarks (char-
monium) is significant in our knowledge of quantum
chromodynamics (QCD). It is a double-heavy meson,
but not heavy enough that its relativistic corrections are
still large [1]. Then the charmonium is crucial to test the
validity of phenomenological models, such as the quark
potential model, which already foresee a rich and mean-
ingful quarkonium spectra [2]. More charmonia and char-
moniumlike states have been discovered experimentally in
the last decade, such as the X(3872) [3], X(3915) [4],
%(3930) [5], w(4160) [6], Y (4260) [7], Z.(3900) [8], and
Z.+(3985) [9], and these new states have stimulated great
interests of studies, more details can be found in the review
papers [10-13].

Recently, a new bound state X (3823) has been observed,
which is considered to be a good candidate for spin triplet
D wave charmonium y,(1°D,). The Belle Collaboration
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first observed X(3823) in the B — y.yK decay with
a statistical significance of 3.80 [14]. The BESIII
Collaboration confirmed this particle in the process
ete™ - ntny.y with a statistical significance of 6.2¢
[15] and in process ete™ — "z w,(3823) followed by
y,(3823) — y.y with a statistical significance greater than
50 [16]. Its decay to z* 7z~ J /y also observed by the LHCb
Collaboration [17]. The mass of this particle is measured to
be 3821.7 £ 1.3 0.7 MeV, and the decay width is less
than 16 MeV at the 90% confidence level [15].

At present, the experimental data of X(3823) is still
relatively sparse. However, the experimental results
obtained have raised some theoretical concerns about the
properties of the particle. This particle has different pro-
duction channels, for example, it can be produced in the B
meson decay [18], B, decay [19], 70 decay [20], also in the
et e~ annihilation [21], etc. Forits decays, the DD channel is
forbidden since its mass is below the DD* threshold, hence
there is no Okubo-Zweig-lizuka (OZI)-allowed channel.
Therefore, the process of single photon radiation [22], decay
into light hadrons [23,24] are important. Different models
[25-30] have studied the radiative decays of y,(1°D,).
These studies show that as the strong candidate of y, (1°D,),
instead of the strong decays to light hadrons and the channel
#tn~J/P, its dominate decay channel is the radiative decay
to y.17> which is partly confirmed by the measured branch-
ing-fraction ratio By, (13D5) = y.r]/Blw.(1°D,) —
xeyl = 0.281’8:11? 4 0.02 [31]. So the radiative transitions
are crucial to study the property of X(3823).

Most existing theoretical predictions of the X(3823)
EM decay are provided by nonrelativistic methods.

Published by the American Physical Society
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FIG. 1.
antiquark, respectively.

However, we have found the relativistic corrections are
large for charmonia, especially for the higher excited
states [1,32], so it is necessary to study the properties of
X(3823) with different methods especially relativistic
one. The Bethe-Salpeter (BS) equation is a relativistic
dynamic equation used to describe bound state [33]. The
Salpeter equation [34] is its instantaneous version which is
suitable for the heavy meson, especially the double-heavy
meson. We have solved the complete Salpeter equations
for different states, see Refs. [35,36] as examples, and we
have improved this method to calculate the transition
amplitude [37] with relativistic wave function as input,
where the transition formula is also relativistic. Using this
improved BS method, we can get relatively accurate
theoretical results, which agree well with the experimental
data [38-40].

In this paper, the X(3823) as w,(13D,) state is studied
by the improved BS method, we will focus on the
EM decay processes of X(3823). Besides the dominant
channels y,(1°D;) = yeiy and y,(1°Dy) = ey, the
radiative decays y.oy and 7.y, whose studies are lacking
in the literature, are also calculated. We also provide the
results of y(n*Dy) = .y (mP)y, wo(n’Dy) = n.(mS)y,
and y, (1’ D,) — yoo(mF)y,withn =2,3andm = 1,2, 3.
Where y.,(mF) is the F wave dominant 2% state, mixed
with sizable P and D partial waves [41].

This paper is organized as follows. In Sec. II, we show
theoretical method to calculate the transition matrix ampli-
tude and the form factors as well as the relativistic wave
functions of initial and final states. In Sec. III, we give the
results and compare them with other theoretical predictions
and experimental data. Finally, we give the discussion and
conclusion.

II. THE THEORETICAL CALCULATIONS

In order to avoid tediousness, we will not introduce
the BS equation and Salpeter equation, interested reader
can find them in Refs. [33,34] or our previous paper, for
example, [35].

J4 Py

m my

Xr, (4)

ma Y ma

P2 P

Feynman diagrams for the transition X(3823) — y.;7. The two diagrams show that photons come from the quark and the

A. Transition amplitude

Take the EM decay X(3823) — y.,7 as an example, we
show how to use our method to calculate the transition
amplitude, which can be written as

(cs(Py,e2)y(k,€9)|X(P,€;))
= (2m)**(P — Py — k)egeME, (1)

where €, €, and ¢, are the polarization vectors (tensor) of
the photon, initial, and final mesons, respectively. P, Py,
and k are the momenta of initial meson, final meson, and
photon, respectively.

Invariant amplitude M¢ consists of two parts, corre-
sponding to the two subgraphs in Fig. 1, where photons are
emitted from quark and antiquark, respectively. The ampli-
tude can be written as

d4 d4
ME = / (2;;4 (2;]){1 Trlrp, (q5)
x Q1eriyp(q)(22)*6" (p2 — pb)S3' (=p2)
+7p,(qr)(27)*6* (p1 = p1)ST (P1)xp(9) Q2er*],

(2)

where yp(q), xp,(qy) are the relativistic BS wave functions

for X(3823) and y,, respectively. g and g are the internal
relative momenta of the initial and final mesons, respec-
tively. py, p,, p), and p) are the momenta of quark and
antiquark in the initial and final mesons, respectively. Q;
and Q, are the electric charges (in unit of e) of quark and
antiquark, respectively. S, S, are the propagators for quark
and antiquark.

Since instead of the BS equation, the Salpeter
equation is solved, where we have used the instanta-
neous approximation, we need to make the same
approximation to the invariant amplitude. Here we only
show the amplitude formula we used, interested reader
can find the details in Ref. [37]. The amplitude has the
following form
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— 97 (gL + P e (q1)

97 (gL + Py el

P _ _
{Qle_[ gL+ azﬂﬂ]’%?ﬂ‘ﬂ) + (P;+(QL + aszL)y‘fwlﬁ(qL)

(QL>

+ @7 (gL + Py )y (q0) + @7 (g + Py v o7 (g1)]

_ P _ P
+ Ose |:§0}H—(‘IL - aIPfL>M(p;H—(QL) + (P}LJF(QL - aIPfL)M‘//;i (q1)
o P Z—t P
~ W (ar—aiPy) 0 (q0) = (g — Py, ) 0 (q.)
. P P
+ 5 (QJ__alpr)Mlllzi (q1) — @7 (QJ__alpr)Mgoi (qu)|r ¢ (3)
Where M is the mass of X(3823), a; =7t - and @ = "2 with the quark mass m; = m, and antiquark mass

my = M. €0i,f is the positive energy wave function, ¢; ¢
and final states, respectively. Py

is the negative energy wave function, i, f stand for initial
and @' are defined as P = P —
fi f

(P-Pp/M)PF and 5 = (0" ) re,

respectively. In order to compare these wave functions, we give their definitions in the initial state [37]

ot = Af (g1)np(g)A; (91)

i M — W] — Wy
-+ AT (q0)np(g1)A5 (q1)

! M+601+601f—Ef

—+ AT (g1 )np(q)A5 (q.)
2i — M—wz—wzf—Ef ’

’

with @; = \/m? — g7, oy = /m?, — g% and A¥(q,) =
3o [50) +J(m;+4,)], where i = 1,2, J = 1 for the quark
(i =1) and J = —1 for the antiquark (i = 2). E is energy

= fé% V(g ki )ei(ky),
where the Cornell potential V(g ,k ) is chosen [35,42].

As can be seen from the definition of Eq. (4), the
numerators of these wave functions have the similar
structure and the numerator values are comparable. But
the denominator of ™+, M — @w; — w, ~ 0, is much smaller
than others, for example the denominator of ¢,
M + @, + w, ~2M. So the contribution of ¢™ is much
larger than others. Therefore, to simplify the calculation,
the decay amplitude in Eq. (3) can be written as

of the final meson, 7p(q,)

&
M= (2(]; Tr [Qle T gL+ @Pr )Y e ()
+ 02697 (qL — a1 Py) %fﬂ?*(m)yf : (5)

We will compare the decay widths given by Egs. (3) and (5)
in Sec. III to prove that the decay width formula retaining
only the positive wave function ¢t is simple and effective.

B. The relativistic wave functions

Though the BS equation is the relativistic dynamic
equation, it cannot provide us the form of a relativistic

o _AT(g)ne(g)A5(91)

- 9

i M + (] + ()
o _ AN (g)me(g0)A5(90)

- bl

i M-w -y - Ef

4 _ A (q)np(qi)A5(q1)
2i M"‘Q)z"‘&)zf—Ef

: (4)

|
wave function for a bound state. In previous studies, the
relativistic formula of the wave function for a meson with
definite J”¢ numbers is constructed requiring each term in
the function having the same J©C as the meson. With this
wave function formula as input, the corresponding Salpeter
equation is solved for different J”C state, for example
see Ref. [43].

Here we do not show the detail how to solve the
corresponding Salpeter equation, but only show the rela-
tivistic wave function of X(3823) as a 27~ state [23]

P Pip),

P
0r-(q1) = i€uap— 4 1ePq sr" <f  +

c

(6)

where ¢/ is the polarization tensor of X(3823) and €, is
the Levi-Civita simbol. f; and f, are independent radial
wave functions and they are function of —qi.

The positive energy wave function for a 27~ state is

P an

MF2—|— e F5,

(7)

P
(/)EL’J[(CIJ_) ;wa/} MCIJ_qJ_ée/}(Syﬂ Fl +

where
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1 , 1 (m,
Fi=s1fi——/ 2 Fy=—s|—fi—-/f2
2 ‘ 2 | o,
M
Fy=—-—Fy,
a)C
where w, = \/m2 —¢% 1is the energy of charm quark.

According to the method in Ref. [41], we know that F'; and
F, terms are dominant D partial waves which will survive
in the nonrelativistic limit, while the relativistic term
including F5 is F partial wave.

The positive energy wave function for the 7, (07") is
written as [35]

Py Prdy
§0§—t (qu) = |:Af| + M; Afz + M%LAfs yS’ (8)

where Ay and A, terms are dominant S waves, relativistic
A 7, term is P wave, with

M, o m
s | @ i f
S TR s e
My
A== A

wp = /m qfl,mf m., a;, and a, are independent

radial wave functlons, and they are function of —q> 7L

The positive energy wave function for the y.q (071) is
written as [36]

Prdy,
2
My

dr,
@5 (a7,) = B, + 57 sz + Br.  (9)

where By, and By, terms are dominant P waves, relativistic
By, term is § wave, with

2
q m M

b; and b, are independent radial wave functions.
The positive energy wave function for the 11+ state .,
can be written as [36]

l/

e,
Mz h

(10)

Fr
(p1++ (qu) /w(x[iM q Eﬁ |:Cf1 sz

where Cy and Cy, terms are dominant P waves, relativistic
Cy, term is D wave, with

1 oy 1 [my
Cfl_§|:Cl+m—fC2:|, sz——§|:w—fC]+C2:|,
M
f
Crn==g, S

¢y and ¢, are independent radial wave functions.
The positive energy part of wave function for 2+ state
X can be written as [44]

03 (qr,) = epwdy a4,
P f q f P S ﬁf
x {Dfl T, P g Pt 7 ~Dy,

Prp. P
+Myer,ur'qs, {Dfﬂr w, Pt le ,

(11)

where D and Dy, terms are P partial waves, D , Dy, and
Dy terms are D partial waves, while D, and Dy, terms are
F partial waves, with

1
D = S0 ey (047 s+ 1y, da+ Mjeoyds = Mimyd,
M 1 m 7
f f f
D, — ds—wgds). Dy =5 |dy+Ldy L dg].
1 2myw; [myds — wyds) i {3"’@}( 4 o, 6:|
Dy == |—d;+ds— ds|, D, == |ds——dg|,
fa 2[mf 3tdy P fs =75 |% m,
D, =—-|——ds+dg|, Dy =—|—-ds+—dg]|,
Jo 2|: Cl)f 5+ 6:| 7 wa[ 5+mf 6:|
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d; are independent radial wave functions. 27 states are
very complicated, there are two typical kinds of states, one
is P wave dominant state with small amount of D and F
waves, the other is F' wave dominant state but with sizable
components of P and D waves [41].

For latter use, we show the nonrelativistic forms of the
wave functions. We know that in the nonrelativistic limit,
only the lowest order ¢ (or g ) term in wave function has
contribution, and the wave function of each state contains
only one independent radial wave function. Considering
the whole wave functions, the nonrelativistic ones for 277,
0~T, 0™, 17", and 2% states can be written as

p 4
(p;t(ql) /wa/} qj_q /35 (1 _M> F], (12)

P
st = (165 a0

oitta) = (fe ) 09

v

P ]’f
(p1++(qu) /Al/llﬁM qhg]ﬂcy#<1 Mf)cjl’ (15)

P
(p;rt(qu) = Mfef,;wyﬂq;l (1 _Vj; Df5' (16)

C. The form factors

Using Eq. (5), where we integrate internal g, over the
initial and final state wave functions, then obtain the
amplitude described using form factors.

(1) For the channel X(3823) — 7.('S,)y, there are two

form factors h; and h,,

M = Pee, PiPvhy + €.Pihs. (17)

(2) For X(3823) — y.0(*Py)y, there is only one form
factor ¢,

M5 = iefey, PPy Pl (18)

(3) For X(3823) = x.,(*P,)y, there are five form fac-
tors s;,

Mg = em,PfP”P”P cers) + efP”P S €182
+ €., PE€PYsy + e,wefP"P”s4 + eief;s5,
(19)

where e’; is the polarization vector of y, ;.

(4) For X(3823) — 102 (P,)y or X(3823) = 12 (CFy)r.
the amplitude is more complicated, which can be
represented by eight form factors g;,

MG = iehPrP (epp,€rapP° 91 + €$€f,/l¢P 0
+ 626 rapgs + €ﬁP,-€§v,/194)
+ ie<P (epp s ppgs + €$€f.¢Pg6)
+ i€ (epp €.0p g7 + €fer109s)- (20)

where e, is the polarization tensor of y.,(*P,), and
we have used some abbreviations, for example,
Gﬂlpfpeﬁpfé'fﬂlp = Eﬁﬂ"wPf.”PVEﬁaP?Ef’/{/,Pﬂ. If the
final state is ’F, state, the definitions of the form
factors are same as those for 3P, state. Since the
expressions of /;, s;, t;, and g; are complex and long,
their specific expressions are not given here, we put
their detailed description in Appendix B.

The thing to note here is that most of these form
factors are not independent. Due to the Ward identity
(P:— Ppg)M: =0 (i = 1, 2,3, 4), they are linked by the
following constrain conditions:

h2 - (MZ —MEf)hl, (21)

Sy = (M2 —MEJ«)SI +S4, S5 = (M2 —MEJ')S:;, (22)

—(M? - MEy)g,.
(23)

g3 = (M*>—MEp) g+ gs+ 97, g5 =

Other form factors such as ¢, g5, and gg are independent
and have no such constraints.

Then, the amplitude square for the EM decay of
X(3823) is

M = 2J—|—IZ‘9§ Jme, (24)

where, 852/)

is the polarization vector of the final state
photon y, J is the total angular momentum of the initial

state. For the X(3823) — 1.('Sy)y decay channel, we have

14¢2
M2 = 57hZM2|Pf|4. (25)
For X(3823) — x.0(*Py)y
1462
M3 = =5 M2 By, (26)

For X(3823) = y.;(°P,)y and X(3823) = y,(*P,)y, the
modulus square of amplitudes is more complex, and for
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brevity they are placed in Appendix C for the reader’s
reference.

Finally, the two-body decay width formulation can be
written as

_ Pyl
8zM?

[M, (27)

where, |P/| = (M? - M3)/2M.

D. Decay widths in nonrelativistic approximation

Although this article presents a relativistic calculation,
we like to give the decay width in the nonrelativistic
approximation, since the later has simplified formula and
may help to see the problem clearly. Using the non-
relativistic wave functions in Egs. (12)—(16), we obtain
the radiative decay widths of X(3823).

For the X(3823) — 7.(!Sy)y decay channel, we have

_— 2aE3 /qqudcosﬁ 2¢°F, :
" oMM, 2r)>  \V5M
' <4(Afl + A7) ’

Nir )(300529—1)} ,

M,

(28)

where E, is the energy of emitted photon, g = ||, 6 is the

angle between g and ﬁf. In nonrelativistic limit, since
. = m., wave functions F; and A, are related to the
original radial wave functions directly, F;, = F,(q) =
fr==f2 A; = Mypay=~Mgay. Ay (qy,), and A (7))
correspond to the two diagrams in Fig. 1, where the
photons emitted by quark and antiquark, respectively.

Ay, (qfi):Afl (\/52+202§'ﬁf+0!%13}2«) (where g, =

qL+aPy) and A% (q; ) =A% (\/qﬁ—2alcj’~ﬁf+a%ﬁ?c)

(where gy = q, —a;Py ). Then it can be seen that we

have already consider the recoil effect in the transition.
In the above equation of the decay width, the repre-

. . . 2
sentations of the radial wave functions (2‘17\/1—1;‘) and

(A +A7) . .. ..
T are based on their normalization conditions,
f

3 452 o o, 4A2 (q))
f([zln‘)% 4q51;,4 (@) _ 1 for 27~ state and f é :)g ﬁ} ff — 1 for

0~ state. Therefore, it can be seen from the formula of
decay width that this is a M| magnetic radiative transition,
and a subscript M; is marked.

For X(3823) — y.1(°Py)y, we have

o 2aE; /qqudcose 2¢°F,
> oMM, 272 \\V5M

where, subscript M, denote the M, magnetic radiative transitions. Normalization condition |

state has been considered.
For X(3823) — y.1(°P,)y, we have

2

16M(E; — E,)

TaE}EX(M + M ;)?
3T 36MM’

where

W= [ (i) (

@)y, = / dq <2qu 1) .1.(M>(3CO539_0059),

(27)* \v/5M

B IME[(M + M)

B, — B 2
) 1 (Q( i fz))(cos39—cos6')] , (29)
M3 M,
f
dBq, A58, (ap) 1 for 0++
e oyt
aM
1) (2 . — N 30
(Dg,( >M2+Ef(M—|—Mf) (Dg, 3w, (30)
V2q(Cy +C
M) (3cos?0 — 1), (31)
J3M,
32
o (32

<3>M7 =

/(i;; <2\;1$> 1. (ﬁq%c}])

When giving the upper representation, the normalization condition for the 17 state, f

concerned.

M+E;, 3M M
: -1 30 1—— a|.
){( E, +2Mf >cos + ( Mf> cos ] (33)

dq, 8‘]‘76‘2/] (ar)

Gn) M, =1 has been

113002-6



ELECTROMAGNETIC DECAYS OF X(3823) AS THE ...

PHYS. REV. D 107, 113002 (2023)

For X(3823) — y.,(3P,)y, we have

TaESEX(M + M)? 42 4 AR
r,=——1 Lt e )2+ — (1 e ) (4), (5
) 36MM; K +7(M+Mf)2)< 5 +Ey< +7(M+Mf)2>< e S,
4
+ TE, (M + M, (—=8EE, +2ME, — TM* 4+ 3MM ; 4 10M7)(4) , (6) Mz] , (34)

where

e, :/g? (%) r (

o= éi?s (”ZZ) o

2
Here, [ f;f)fg d M;Df 5 = 1 is the normalization condition of
the 27 state.

The nonrelativistic expression of decay widths in
Eqgs. (28)-(30) and (34) can be further simplified.
Since in radiative decay, compared with initial meson mass
M, the recoil momentum |13f\ =E,=r is usually a

small quantity, for example, in the radiative decays of

|
r
Afl MCOS@ :Afl

So only the even power of r exists in

r? *A
— 2 A
Afl +A/fl —2Af1 +_2COS GW
and the odd power of r exists in
0A 177 FA,
A —A’ —2—cos6’7f ——cos3g— T .
fi (L cos 6) REYYE (L cos §)>

Then after integrating the angle 6, the lowest order
contribution in decay width T'; for X(3823) — #5.(!S;)y is

32ar’ 0’A 2
r=— 2 ([ aggF,—1 ) (38
101257 MoM2 (/ 1 la(ﬁcow)z)Ml )

VMpq(Dy, =D

VMl ?}3’5 +Dp) )(300529— 0, (35)
(D
<\/_q \/gs )> (5c0s°0 — 3 cos ), (36)

0A 1 0*A
d(j7cos0) \M 2’ d(fcos 6)?

M T 0(f5cos0) \M 2’6( cos9)

}5>> (cos’0 — cos 0). (37)

V3

X(3823) to 7c, Yeo» Xe1» and y.o, the recoil momenta
are 0.746, 0.386, 0.298, and 0.256 MeV, res-
pectively. Then the wave functions, for example,
Ap (V@ + qreos0+0.251%) = A, (M cos 6) and
A% (=37 Mcos0), can be expanded in a dimensionless

quantity 7 cos 6. If the first four terms of Taylor expansion
are retained, then we have

2 1 oA 3
i cosd | + —7f‘ i cos@d | ,
M 319(fcos0)* \M

PA 3
fi <L0059> .
M
|

r 2 1
—cosd —_—
<M ) 3! (1 cos 0)°
where we can see that the leading order 2A; does not
contribute, which is consistent with the nonrelativistic
results in Refs. [27,45].

For X(3823) — y.1(°*Py)y, we find that the contri-
bution of E; transition expanded to all orders is zero,
which also confirms the results in Refs. [27,45]. Further,
only the M, transition has contribution, and the lowest
order result is

32ar

_ /d Sp anz 2
27025 M \J 1T (g cos0)) o,

(39)

The decay widths of X(3823) — y.,(°P,)y and
X(3823) = y.,(3P,)y can be simplified as
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56ar’ (M + M)* [ r? 0*C 2
Iy = Ew) f2 2 /dqq4F1r7j£12
101257 M° M2 |31 9% cos 6)

E,
0°C
2( [ dgg*Fy—+—L—
+ (/ K ld(ﬁcos0)2>51
oC
dqq’Fy 4
<(J o sena) ) “

28ar (M + M) [ 12 *D 2
Iy = 7 4f 2 /d‘]q4F1 y 9 2
101257* M 3M d(35c080)” ) f,

2 *D
™ d(37c080)% )

<(faorrigens),, ) (1)

where we retain the lowest order contribution of the E|
transition and the lowest cross term between E; and M,.
From the simplified expression of nonrelativistic decay
widths, it can be seen that, X(3823) — #.(!Sy)y decay is
a M, transition. For X(3823) — y.;(°Py)y, the E; tran-
sition has zero contribution, then its contrition comes
from the M, transition. While the main contributions of
X(3823) = y.1(°Py)y and X(3823) = y.,(’P,)y come
J

M, 35y =3.949 GeV, M, r =4.038 GeV,

X

M

2e0(3P) = 4.140 GeV,

It can be seen from Ref. [43], most of our predictions
about the mass spectrum consist well with experimental
data, especially the case of bottomonium. However,
there are still some states whose theoretical masses are
different from the experimental data. For example, our
prediction of M, op) = 3.929 GeV [43], while the data is
My 3872) = 3.872 GeV, another is the mass of 7,(2S), our
prediction 3.576 GeV is lower than data 3.636 GeV. To see
the difference in decays, for these two states, we use the
theoretical mass as well as the experimental data to
calculate the decay width, and give two groups of results.

MX(:1(3P) =4.229 GCV,

from the E; transition, so we conclude that the decay
widths of X(3823) — y.,(°P;)y and X(3823) = y.»(*P,)y
are much larger than those of X(3823) — n.(1Sy)y
and X(3823) = .1 (°Py)y.

III. RESULTS AND DISCUSSIONS
A. Masses

In our calculation, some model-dependent parameters
have been used, for example, the mass of the charm quark
is fixed at m,. = 1.62 GeV [1]. Since V, in the kernel
originates from QCD nonperturbative effects, its value is to
account the states with JPC, so we fix it by fitting the
masses of the ground states. Thus the parameter V|, vary
with JP€. And we vary the free parameter V, [43] to fit
the mass of the ground state. For example, M3p,(1p) =
3.823 GeV [46] is actually not our prediction, but an input,
while those of the first and second radial excited states are
our predictions,

M;p,op) = 4.154 GeV,  Mjp,3p) = 4.408 GeV.  (42)
For other charmonia, we have calculated the mass spectrum

in Ref. [43]. For example, the masses of some highly
excited states are predicted as,

M, o) = 4.314 GeV,
M)((-Z(}P) =4.271 GeV.

B. Wave functions

We consider X (3823) as the 27~ ground state y, (1°D,).
From the Eq. (6), it can be seen that, there are two
independent radial wave functions f; and f,. Our results
of f and f, are show in Fig. 2, where instead of f| and f>,
we show the diagrams of g>f, and g*f, since they always
appear together. From Fig. 2, we can see clearly that the
solution of the 27~ state has the property f| ~ f», this is
correct, since in a nonrelativistic limit f| = f,.

We also show the numerical results of the radial wave
functions for excited states y, (2°D, ) and y, (3> D,) in Fig. 2.

112
s AN e -la1?f

27°(1D)(GeV™")
27°(2D)(GeV™")

27°(3D)(GeV™")

191 GeV

2
Iq] GeV

2
1q] GeV

FIG. 2. The radial wave functions of the ground, first and second excited 27~ state y,(13D,), y,(2°D,) and w,(3°D,).
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FIG. 3. The radial wave functions of the 1.(2S) and 7.(3S).
15 . . . . . .
191b1 ] 19161
----- 1q1b2 ] -====1qlbz
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[0}
$ S ]
& J
= ;
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1q| GeV

|q] GeV

FIG. 4. The radial wave functions of the y.o(2P) and y.y(3P).

In general, from the number of nodes of the wave function, we
can tell whether the state is a ground state or an excited one. For
example, the radial wave function of the ground state has no
node, while that of the first excited state has one node and the
second excited state has two nodes, etc.
For the S wave states 7.(nS) and the P wave states
Yeo(nP), ye1(nP), and y ., (nP), we have shown the 18, 25,

1P, and 2P wave functions in previous paper [43], but since
the theoretical masses of 2'S, and 23P, states are a little
different from data, which make the wave functions a little
difference from the old ones in Ref. [43], we like to show
the wave functions for all the excited S and P states one

more time in this paper. In Fig. 3, we show the radial wave
functions for 5.(2S) and #5.(3S); in Figs. 4-6, we give

. . —— 20 . . .
1q1c / 1q]cq
151 E f
1qlc2 15-.% lqlc |
/ { \
' f ‘\\
= 10-; 1 =~ 10.{i ' i
. 7
S ! >
[ ' [
o g \
& 50 158 s \ 1
i I \ i [ 1
. | \ L \
i \ 0 \ / .
of \ y \
A
—5f i
5 ) ) ) L ) )
0 1 2 3 4 0 1 2 3 4
la] GeV la| GeV
FIG. 5.

The radial wave functions of the y.;(2P) and y.,(3P).
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FIG. 6. The radial wave functions of the y.,(2P) and y.,(3P).
Xes(2P) and y.;(3P), with J = 0, 1, 2, respectively; and in ['[X(3823) — y.o(18)y] = 1.25 keV,
Fig. o2(1F 2 (2F).
ig. 7, xe2(1F) and yo(2F) I[X(3823) = 7,.(18)y] = 1.34 keV. (43)

From Figs. 3-5, we can see that, similar to the 27~ case,
there are two independent radial wave functions for 7.(nS),
Yeo(nP) and y. (nP), n=2, 3. And they are almost
equivalent, this is also confirmed by the nonrelativistic
limit where they are the same. In Fig. 6, y.,(nP) has four
independent radial wave functions ds, d4, ds, and dg, where
the pure P wave terms ds and dg are dominant. And the
relation ds ~ —dg is also consistent with the nonrelativistic
limit ds = —dg. All other terms are relativistic corrections
and they are D and F waves. While in Fig. 7, for y.,(nF),
ds and d,(~d5) terms are dominant F partial waves, the P
waves ds and dg(~ — ds) terms are sizable, all other terms
which are not shown here are D partial waves.

C. EM decay widths of X(3823)
as the state y,(13D,)
If Eq. (3), the complete amplitude formula, is used,
considering X(3823) as the y,(1°D,) state, the final state

when Eq. (5) is chosen, that is, only the positive energy
wave function contributes to the amplitude, then the decay
widths are

T[X(3823) = y.0(18)7] = 1.22 keV,

I'[X(3823) — 7.(1S)y] = 1.30 keV. (44)
From the above results, it can be seen that the contributions
of the positive energy wave functions ¢+ to the decay
width are dominant, and the contributions of other terms are
about 2.4% and 3.0% for the two channels. Therefore, in
the following calculation, for simplicity, the formula Eq. (5)
of decay amplitude is adopted.

The EM decay results of other channels for X(3823)

[w>(1°D,)] are

are n.(1S) and y.o(1P), the decay widths are T[X(3823) = xic1.c2)(1P)y] = {265,57} keV,  (45)
6_ T T T T T T T | B — T T 8 T T T T
: 1q | 3dy/M? [ 1q|3ds/M? ]
ss /N ===e- lqidsm® 1 L f\ 1q13d,/M? ]
A I N lalds 1 ¢t [\ e |q1ds ]
41 4
= f/ X == -lqld =~ ar /N ameee- - 1
L [q1ds T> lalds
8 4 $ ]
& Zi .'c':: s &
C 2 D)
[ /' N
r ,'I \
: ./ * Sos ]
0- rf " " " L " MG T - L L
0 1 2 3 4 3 4

lq| GeV

lq| GeV

FIG. 7. The radial wave functions of the y.,(1F) and y.,(2F).
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TABLE I. The decay widths (keV) of the radiative transition X(3823) — y.,(1P)y (J/ =0, 1, 2), X(3823) — 5.(15,2S)y, and the
ratio of LW2(1D)=xx(1P)y)
T(y2(1D) =y (1P)y)”
[20] [25] [26] [27] [28] [29] Ours
RE RE NR RV RS RVS NR GI NR, NR, RE NR, NR, RE EX [31]
T(w,(1D) = . (1P)y) 250 260 297 215 215 215 307 268 307 342 208 285 296 265
T(y,(1D) = y»(1P)y) 60 56 62 55 51 59 64 66 64 70 55 91 96 57
L2 (1D)=20(1P)y) g 24 22 21 26 24 27 21 25 21 20 26 32 32 22 og+14 4 o
Ty (1D) =y (1P)y) ~11
T(w2(1D) = x0(1P)y) 1.2
Ty (1D) = ne(1S)y) 1.3
C(y,(1D) = ,.(28)y) 0.069(0.067)
and This result and all other theoretical predictions in Table I
are within the range of current experimental value
T'[X(3823) = 7.(2S)r] = 0.069 keV. (46) 0.287-11 & 0.02 [31]. The consistence shows that this ratio

We can see the dominant decay channel is X(3823) —
Xc1(1P)y, and its decay width is much larger than others.

For comparison, we show our results and other model
predictions [20,25-29] in Table 1. Where, RE represents a
relativistic method, NR the nonrelativistic method, GI is
the relativistic Godfrey-Isgur model, RV and RS represent the
relativistic method using vector and scalar potential, respec-
tively, while RV S the mixture of them. In our results, the value
in parentheses is calculated using the experimental mass. It can
be seen that the decay width is insensitive to the mass of
particle. We can also see that our results of X(3823) —
X{c1.c23(1P)y are close to those of relativistic method RE in
Refs. [20,25] and relativistic GI model in Ref. [27].

In Table I, we also show the ratio of the decay rate
X(3823) — y.oy to that of X(3823) — y,7, our result is

B[X(3823) = y.o7]

= 22%.
BIX(823) = gay] 22"

(47)

TABLE II

cancels some model dependent uncertainties, and it is more
reflective of the true value. So we also give the ratio

B[X(3823) = xeor]
B[X(3823) = ya17]

= 0.46%. (48)

The result is within the experimental limit <0.24 detected
by BESIII [31]. The channel of X(3823) — y.,y was also
calculated in Ref. [47], and they gave a decay width of

1.42 keV, witch is a little bigger than ours, while their ratio
BIX(3823)—yor] _

BXGS3)=gar] = 0.62% closes to ours.

D. EM decay widths of y,(2°D,)

Our predictions for the EM decay widths of the
excited state w,(2D) and other theoretical results are
shown in Table II. The dominant decay channel is

w2(2D) = yc1(2P)y,

w>(2D) = n.y.

The decay widths (keV) of the radiative

transition of the w,(2D) - y.,v (J =0, 1, 2) and

[27] [47] [29] Ours

NR Gl NR, NR, NR; NR, NR, RE
C(w2(2D) = y.1(1P)y) 26 23 17 26 10 68 68 33
[(y2(2D) = y . (1P)y) 7.2 0.62 6.7 10 3.8 20 20 7.3
T(w2(2D) = x02(1F)y) 6.2
[(y2(2D) = 100(2P)y) 113
[(y2(2D) = x.1(2P)y) 298 225 140 178 92 223 188 237 (230)
T(w2(2D) = y2(2P)y) 52 65 39 64 19 115 64 58
L(wa(2D)=ye1 (1P)y) (%) 8.7 10 12 15 11 30 36 14
L(y2(2D) =01 (2P)r)
C(y2(2D) =20 (2P)y) (%) 17 29 28 36 21 52 34 25
T(y2(2D)—x1(2P)y)
I'(y2(2D) = n.(18)y) 2.1
T(w2(2D) = 5.(28)y) 0.33 (0.32)
['(y,(2D) = n.(3S)y) 0.092
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TABLE III. The EM decay widths (keV) of the excited state y,(3D).
Initial state Final state Ctour) Final state Cour) Final state Cour)
w2(3D) Xeo(1P) y 0.26 Xeo(2P) ¥ 0.54 X0(3P) ¥ 1.1
w2(3D) Xe(1P) y 38 X (2P) v 40(41) Xe1(3P) y 218
w2(3D) Xe2(1P) y 6.8 X2 (2P) y 8.3 X2(3P) y 41
w2(3D) Xe2(1F) v 8.3 X2 (2F) v 11
> (3D) n.(18) v 4.6 n.(28) v 2.55(2.44) n.(38) v 0.24
[y, (2D) = y.1(2P)y] = 237 keV, (49)  amount of P partial wave, while for the y,(1P) state, as a

which is close to those of the relativistic GI model
in Ref. [27] and nonrelativistic potential model NR;
in Ref. [29].

If instead of using the theoretical mass of y.;(2P), the
experimental value is used, then the decay width for
w>(2D) = y.1(2P) becomes to 230 keV, see the value
in parenthesis in Table II. Combined with the result of
v (2D) = 1,.(2S) in Table II, two groups of values are also
given, we confirm the previous conclusion that the radiative
electromagnetic decay width is not very sensitive to
the mass.

The channels y,(2D) = y.(1P)y and y,(2D) -
X2(2P)y also have sizable contributions, so we also
calculate their decay ratios to the channel y,(2D) —
Xc1(2P)y, and list them in Table II. We can see that,
unlike the case of y,(1D), the ratios of y,(2D) are much
different from model to model. The reason may due to the
relativistic corrections being not included or fully consid-
ered, because in previous paper [41], we have pointed out
that higher excited states have much larger relativistic
corrections than those of lower excited and ground states.
This conclusion has been confirmed in the weak transition
process [32].

E. EM decay widths of y,(33D,)

The predictions for the EM decay width of excited state
w,(3D) are shown in Table III. The dominant decay
channel is w,(3D) — y.,(3P),

Ty, (3D) = .1 (3P)y] = 218 keV. (50)

We can see that, the dominant EM decay channel for
wo(nD) is y.1(nP)y, and the second is y.,(nP)y, where
n=1, 2, 3, respectively, while y.(nP)y and 7n.(nS)y
channels always have small contributions.

F. Contributions of different partial waves

In a previous work [41], we point out that, in a complete
relativistic method, the relativistic wave function for a J*
state is not a pure wave. This conclusion is also valid for the
charmonium. For the X(3823) as the 27~ state y,(1°D,),
besides the main D wave, it also includes a small part of F'
wave; for the 77.(15), it is dominated by S wave with a small

P wave dominant state, it includes a small component of S
wave, etc, see the details in Sec. II.B.

In this subsection, we study the contributions of different
partial waves of the initial and finial mesons to the decay
width. The results are shown in Tables IV-IX, where
“complete” means the complete or whole wave function is
used, “S wave” means only the § partial wave has
contribution and other partial waves are deleted. From
these tables, we can see that in all the decays, the main
contribution of 27~ state y, comes from its dominant
partial wave, namely D wave, which is also its non-
relativistic term, and its relativistic correction term, namely
F partial wave, has a relatively small contribution.

Table IV shows the case of w,(1D) — 5.(1S)y. We
know that 7.(1S) is a S-wave dominant state, which only
contains a small amount of P partial wave. But from
Table IV, we can see that the contribution of D wave —
Swave transition is suppressed, indicates that the major
contribution of this decay process is due to relativistic effect
(dominant by Dwave — P wave transition).

Table V shows the result of y,(1D) — y.o(1P)y. This
result is similar to the case of w,(1D) — 5.(1S)y, the
contribution of dominant P wave in final state is very small,
while the contribution of the small component of S wave is
large. From the form factor formula, Eq. (B2), we can see
the origin of this result. The P wave term of the unique

TABLE IV. The decay width (keV) of different partial waves
for y,(1D) — n.(1S)y.

—
9—— 0 Complete Swave(A; ,A;)) Pwave(Ay,)
Complete 1.3 0.0035 1.3
Dwave(Fy, F;) 3.1 0.41 1.3
Fwave(F3) 0.39 0.39 0

TABLE V. The EM decay width (keV) of different partial
waves for y,(1D) = y.o(1P)y.

ottt c !
9—— omplete Swave(B; ) Pwave(By,,By,)
Complete 1.2 1.3 0.19
Dwave(Fy, F,) 1.3 1.4 0.19
Fwave(F) 0.14 0.14 ~0
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TABLE VI. The EM decay width (keV) of different partial
waves for y,(1D) = y. (1P)y.

1+t
2= Complete Pwave(Cy,,Cy,) Dwave(Cy,)
Complete 265 204 4.0
Dwave(Fy, F,) 209 211 42
Fwave(F3) 34 0.17 0.0056

additive relation, F,(By, + B.’fg)(3coszt9 —1), is sup-
pressed due to the angle integral. The rest have subtractive
relationships, By, — B}z and By, — B}-?, therefore their
contributions are also suppressed. And in the nonrelativistic
limit, the contribution of all these P wave terms is zero. So
for the EM decay w,(1D) — y.o(1P)y, the contribution of
S wave which provides the relativistic correction is greater
than the that of P wave.

Table VI show the result of y,(1D) — y.;(1P)y. We can
see that, the main contribution of the final state come from
the dominant P partial wave which provides the non-
relativistic result, and the relativistic correction (D partial
wave in 17 state) contribute very small. The form factors
for this decay are shown in the Appendix B, but they are
very complicated, we will not discuss the details.

Tables VII-IX show the results of y,(1D) — y.,(1P)y,
V2(2D) = 1 (1P)y, and >(2D) = yor(1F)7, respec-
tively, where three final mesons are all 2+ states. The
first two are 1P wave dominant states combined with small

D and F partial waves, the third one is 1F wave dominant
state but combined with sizable P and D partial waves [41].
Tables VII and VIII show us that compared with the
dominant P wave, the contributions of D and F partial
waves in 1P dominant final state are small, and the nodal
structure in the wave function of y,(2D) results in the
smaller decay width of y,(2D) — y.,(1P)y compared with
w>(1D) = y.»(1P)y. From Table IX, we can see that
besides the large contribution of F wave in the 1F
dominant state, the contribution of D partial wave is also
large, but those of P wave are suppressed.

If we only keep the dominant partial waves in wave
functions and ignore the small partial waves which provide
us relativistic corrections for both the initial and final states,
then we obtain the nonrelativistic results,

I[X(3823)(1D) — 5.(1S)y] = 0.41 keV,  (51)

FO[X(3823)(1D> —’)({co,cl,d}(lp)}’]
= {0.19,211, 44} keV, (52)

Compared with the complete relativistic results, the rela-

tivistic effects (defined as ") make up 68%, 84%, 20%,
23% of X(3823) — n.(18)y, X(3823) — y.,(1P)y (J =0,
1, 2), respectively. So the contribution of the relativistic

correction plays a leading role in the decay processes of
w2(1D) = n.(18)y and y,(1D) — yeo(1P)y.

TABLE VII. The EM decay width (keV) of different partial waves for y,(1D) = y.,(1P)y.

2++
2= Complete Pwave(Dy,,Dy,) Dwave(Dy,,Dy,,Dy.) Fwave(Dy,,Dy,)
Complete 57 18 1.5 0.23
Dwave(F,, F,) 75 44 49 0.70
Fwave(Fs) 17 6.1 1.4 0.0057
TABLE VIII. The EM decay width (keV) of different partial waves for y,(2D) = y.,(1P)y.

2t+
2—— Complete Pwave(D;,,Dy,) Dwave(Dy,,Dy,,Dy.) Fwave(Dy,,Dy,)
Complete 7.3 34 0.39 0.046
Dwave(F,, F,) 9.2 49 0.56 0.066
Fwave(F5) 0.38 0.24 0.037 0.00028

TABLE IX. The EM decay width (keV) of different partial waves for y,(2D) — y.»(1F)y.

2++
2= Complete Pwave(Dy,.Dy,) Dwave(Dy,,Dy,,Dy.) Fwave(Dy,,Dy,)
Complete 6.2 0.65 3.6 5.6
Dwave(Fy, F,) 4.8 04 2.9 43
Fwave(F3) 0.55 0.055 0.12 0.46
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G. Discussion and conclusion

In a previous paper [23], we have estimated the anni-
hilation decay (including ggg and ggy final states) width
of X(3823), which is about 9.8 keV. From Eichten’s
work [25], we can get the decay width [y, (°D,) — J/
wrn| ~ 45 keV. So the total decay width of X(3823) can be
estimated as,

I[X(3823)| ~T(ner) + > T(xesy) + (I /yrr)
+T'(gg99) + T'(g9gy) ~ 379 keV. (53)

Therefore, the process X(3823) — y.,y whose partial width
is estimated as 265 keV, is the dominant decay channel of
X(3823). The detection of this channel in experiment is
crucial to confirm X(3823) being the state y,(°D,).

In conclusion, we study the EM decays of y,(n’D,)
(n=1, 2, 3) by using the relativistic Bethe-Salpeter
method, where the new particle X(3823) is treated as
w>(13D,) in this paper. We find for y, (nD,), the dominant
EM decay channel is y,(n*D,) — y.(nP)y. Our results
show that T'[X(3823) — y.;7] = 265 keV, compared with
the estimated total width I'[X(3823)] =~ 379 keV, this is the
dominant decay channel. The decay ratio B[X(3823) —
xe2v)/B[X(3823) — y.17] =22% is consistent with the

|
d*q dq
/ () gL F=fuP . / (27) q1 g4 F

observation 0.287)1! £0.02, and the decay ratio
B[X(3823) — y.o7]/B[X(3823) = y.17] 20.46% is also
less than experimental upper limit 0.24. In addition, we
calculated the contributions of different partial waves. For
the decays X(3823) — 7.(15)y and X(3823) — y.o(1P)y,
the main contribution comes from the relativistic effect,
while for the X(3823) — y.;(1P)y (J =1, 2) decay, the
nonrelativistic contribution is the dominant one. These
results may provide useful information to reveal the nature
of X(3823) as the charmonium y,(1°D,).

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China (NSFC) under the Grants
No. 12075073, No. 11865001, No. 12075074, the Natural
Science Foundation of Hebei province under the Grant
No. A2021201009, Post-graduate’s Innovation Fund Project
of Hebei University under the Grant No. HBU2022BS002.

APPENDIX A: THE INTEGRALS OVER THE
RELATIVE MOMENTUM

When calculating the integral with respect to ¢ in the
amplitude Eq. (5), we apply the following formula

= fuP} Py + [nd),

d*q
/ s L = FaPl Py P+ FalPh o+ Py 1+ P ).

)

d'&
/( 3‘11_61J_QJ_qJ_F f41PM P% P% Pfl +f42(P?LP?L90iﬁ

+ P§ P ) + faldl T+ gl gl + ol ),

27)

where F = F(q3, qu‘l)’ and we have used the following abbreviations

2

pro=pi Ll p
fi f M ’

The coefficient f;; are calculated as

dq _q dq g
fn _/WF—COSQ, fa _/WF

3
fn= /(;’—)F%(COSZG— 1),

d% q’%
fa = /(27[)3 2—(cos3t9 —cosf),

fo= [ ke

8r?
dq _q
fuz = /WF§(COS49 —2cos?0 + 1),

q—(Scos“H 6cos?0 + 1),

M a UP M S ua v Q p v S a
+ Py Py gl + Py Py g + Py PY gl + Py Py df
(A1)
P"P”
g =g"- (A2)
32 (3cos?0 — 1),
.
d3 q 3
fa1= W F(SCOS@ 3cos0),
_ &q . q 4 2
fa = 2n) W(%COSH 30cos?6 + 3),
(A3)
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where 6 is the angle between ¢ and f’f, we have defined ¢ = |q_" and r = |f’f|

APPENDIX B: FORM FACTORS

Here, we will give the detailed expression of the form factors in the corresponding decay channel. For the decay channel
X(3823) — 5.(1Sy)y, the form factors &, and h, are

2 2 JF 1 F
hlz/q d(]d00594{ q {J(Afz—A}z)]Lcosﬁ+ { 2(Af3—A/f)

Q)2 \MM; M 1B, MM, | M,
F 7 2 |F; 7
Ay, = AL) | == (5c080 = 3c0s0) = |2 (Ay, = A} )| —=—
VRS fz)} 2|pfy( c0s"6 - 3 cos6) MM, [M( £ =A%) 2P|

2

1 FyasE Er\ _a
39 —cos) +— |F(Ay, + A L1 Ay + A =253
X (cos’@ — cos )+Mf[ 1Ay, +A%) + M, (As, +A%) M) 2B,

x (3 29—1)+Ef —2(A —A')+F3(A —A)) 1—Ef 7 (5c0s30 — 3cosb) ¢,
COS M_f Mf f3 13 M £ £y — |_)f|3 COS COS

hy = (M? = MEp)h, (B1)

where ay = a; = a, = 0.5.
For the decay channel X(3823) — y.,(*Py)y, the form factor ¢, is

2dagd cos 0 F1q? F 2
l‘l:/q d 4{[ 39 (va]+B}l)+—2(Bf]+B}l)] ‘_’,|2(3cos2e—1)

(27) MM, M 2P,
1 Fl F2 q3 5
+m [M (B, — B}z) _E(B]g —B}})] 2|I_5f (cos’@ — cos )
1 [F 3
- [ il (By, — B}z)] 7 (3cos*0 — cos 9)}. (B2)
MMf M ’ 2 Pf|

For the decay channel X(3823) — y.,(°P,)y, the form factors s; are

2
q-dgdcos asFE,
51 :/ 4{{ L (apEH(Cy, + C) = Ppg(Cp, = Cf)) + 2 ( a;EF(Cy, + C,) + Prq(Cy, = C}))

2 3
(27) MM

_ F3q* (C, +C) 7 (3cos20 — 1) — i(c -C,) - (Cy = CL) £ q (500539 3cos0)
Msz f f] 2|ﬁf|2 Mf fi fi MMf fi Wl m 2|Pf|

2

/ afEfPfq / 2 /
Pra(Cp, + Cp) + = 5 (Cry + Cp ) +q7(Cp, = Cp)

F
+[ 2(Cf2 Cl)+—5r
¥

F5
M*M
3 Faa E P asE% 2
T (5c0830 — 3 cos 0) + HELS il LA e -C), TS, - T (3cos0 -1

i~ f f3
1 Mf 3 2 Pf

F E 1 q3 Fy E Prq

+ [M; ((Cfl Cy)+ M2 (Cf3 C; ))} e 2P |(cos39—cos 0) + [MM ((Cf1 +C) + f% (Cy, — C}3)>
Fl 1 q4 F3(XfEfq2 E

A Cff})] Mg, e 0 e+ 1)+ {Ms—Mf (€1, =€) =T (€r =)

2 3
——cosf— |— | =(Cy, = C" ——=(C;, = C — = (5c0s%0 — 3 cos 6
X cos {M( (Cy, f1)+ M% (Cy, f3)>:| M2|Pf|3( cos cos )

113002-15



LI, PEI, WANG, WANG, FENG, and WANG PHYS. REV. D 107, 113002 (2023)

F
Fiq E; ¢ F, .
_ C, C ——3 20— 1) — —P(Cr —C 2E2(Ch — C F,
Msz( nt ) M2|P| (3cos ) Msz( q*(Cy, f3)+af f( 2 ))_|_M

arE7Prq

Ef q 3 ! 3 !
C., -C SV ) 5c08°0 —3cosf) — |——— | P q C, +C -+
) ( & ):| M2|P | ( €08 cos ) |:M2Mf ( ! ( fi 1) M}%

F E 3
X (Cp,+C) + 7*(Cy, = les)) _Mz(cfz - C}z)} Mf 1 IE (5c0s*0 — 3 cos )

2|Pf
F E ¢
+ {M;( (Cy, -C, O+ (Cf3 ))] Mf2 \ﬁ I (5c0s*0 — 3 cos 0)
F, , anfE} , F3q* E; ¢ 2
{MM Y (Cry+ C) + S (G C) 3 Pra(C = Cp)| s Geoo =) (B)

where we have defined Pyg = P;-q, = —|13f\|21'| cos 6.

2dqgd cos 0 FioE Fra,E%
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2
q
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F3 F2 q3
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2 2 2 2 2
g-dqdcos @ Fiq a |P | Fia7E;q q
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For the decay channel X(3823) — y.,(*P,)y, the form factors g; are
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APPENDIX C: THE AMPLITUDE SQUARE
For X(3823) — y.,(°P})y, the square modulus of amplitude is
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For X(3823) — y.,(*P,)y, the square of the amplitude is
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