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In this paper, we determine, at weak coupling, the nonrelativistic n-body Schrödinger equation that
describes the low-lying color singlet bound states of two-dimensional adjoint quantum chromodynamics
with heavy quarks. In the case of three adjoint quarks, we show that the three-body equation reduces
equivalently to the Schrödinger equation that describes a point electric dipole in an electric field in a plane
angular sector. We conjecture that the three-body problem is exactly solvable. We show that the eigenstates
are given in terms of the triconfluent Heun functions. Equivalently, our conjecture also implies a bound
state of three adjoint quarks is described by a particle in two dimensions confined in a Cornell potential. We
expect the n-parton problem also to be solvable in a similar approach. We also comment on the Hamiltonian
that describes the associated classical n-parton system.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory that describes quarks and gluons (in four spacetime
dimensions). In particle (accelerators and) detectors, the
quarks and gluons are always observed bound together
into hadrons. Thus, at low energy, the theory is believed to
exhibit confinement. The main goal in QCD [and in general
in Yang-Mills (YM) theory] has been to understand con-
finement (and/or the existence of a mass gap). However, a
complete understanding of the phenomenon is still missing.
In part, this is because the phenomenon is nonperturbative,
and the theory is in general complex, for example, in terms
of the number of dynamical degrees of freedom it contains
and the phenomena it describes.
In two spacetime dimensions, adjoint QCD is a relatively

simple and tractable theory that exhibits, among some
other common properties, confinement [1–4] (and at finite
temperature deconfinement [5]).1 Therefore, it is useful to
study this simple model to gain insights into confinement
and other essential phenomena. A better understanding of
the theory will be also useful in constructing a string world
sheet realization of QCD strings. It is believed that at
low energy, the properties of QCD might be reproduced
by an effective theory of interacting long strings [6,7]. In

this paper, we consider this model with these perspectives
in mind.
In two spacetime dimensions, a gluon has no propagat-

ing degrees of freedom since there are no transverse spatial
dimensions. Therefore, it cannot form a color singlet bound
state with a matter quanta.2 In adjoint QCD, thus, the
quantum states are color singlet states of adjoint quarks
bound together by nondynamical, stringlike, color flux
tubes that confine the color gauge potential lines. The color
singlet or gauge invariant bound states can contain two or
more number of adjoint quarks. Thus, a color singlet bound
state can be viewed as a chain of adjoint quarks on a closed
string. However, depending on whether the number of the
adjoint quarks is even or odd, the bound state is either a
bosonic or fermionic state.
In two-dimensional QCD with fundamental quarks, all

the meson states consist a quark and an antiquark pair, and
they are arranged in a single Regge trajectory [8]. In adjoint
QCD, on the other hand, it is expected that the states are
grouped into separate multiple Regge trajectories [9]. See
also [5].
As suggested by ‘t Hooft [10], considering the large N

limit (whereN is the rank of the gauge group) simplifies the
theory. In this limit, there exists a systematic expansion in
powers of 1=N. This is easy to see since, in general, the
theory can be obtained by dimensional reduction from
higher dimensional gauge theories [9,11]. The theory,
however, despite being two-dimensional and/or relatively
simple, in the sense that the gluons are, for example,
nondynamical, has not been solved completely, even in thePublished by the American Physical Society under the terms of
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1Two-dimensional fundamental QCD does not exhibit a
deconfinement transition [5].

2However, it mediates a nonlocal Coulomb force between the
quarks.
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large N limit. This is mainly because, in this limit, pair
production and pair annihilation are not suppressed [9,11].
Therefore, the Hamiltonian relates states with different
number of adjoint quarks or partons. This makes the
computation of the exact spectrum analytically difficult.
The adjoint spectrum has been computed, however,

approximately in the large N limit in [9,11] and recently,
for finite values of N in [12]. In these papers, the authors
use discrete light cone quantization, and they numerically
diagonalize the light cone Hamiltonian. In this approach,
the light cone momentum and the momentum fraction
carried by a quark are discretized. Thus, since the light cone
Hamiltonian and momentum commutes, for a given total
momentum, the (approximate) truncated space of states
is finite dimensional, and therefore, diagonalizing the
Hamiltonian is relatively tractable. More recently, the
low energy approximate spectrum has been also computed
by diagonalizing the Hamiltonian in a set of states created
by operators with dimensions below a certain cutoff [13].
The main point is that the two point functions of low
dimension operators with a high dimension operator goes
to zero exponentially fast. Therefore, the high dimension
operators decouple from the low mass spectrum [14].3 As a
result, they can be ignored in the approximation with a
small error. The error depends on the cutoff. Also more
recently, a candidate relativistic Hamiltonian describing the
high energy asymptotics of confining string has been
obtained from effective long string world sheet theory
[7,15,16]. The Hamiltonian equivalently describes a one-
dimensional chain of ordered massless particles with
nearest neighbor interaction. The interaction potential is
related to the potential in Toda lattice (in certain limit) [17],
and the Hamiltonian has been shown to be integrable.
The low-lying bound states of heavy quarks are believed

to be described by a nonrelativistic Schrödinger equation.
In this paper, we determine the nonrelativistic Schrödinger
equation that describes the low-lying color singlet bound
states of the two-dimensional adjoint QCD with heavy
quarks. We work in the large N or planar limit. We keep
the (‘t Hooft) coupling parametrically small and fixed.
We use the method employed in the papers [18–22]. In
the paper [20], the authors obtained at weak coupling
the nonrelativistic Schrödinger equation that describes the
‘t Hooft model [8] in the limit of heavy quarks and large
number of colors. In this model, the quarks are in the
fundamental representation of the gauge group. They also
computed (at weak coupling) exactly the eigenstates and
the spectrum. Interestingly, the nonrelativistic limit of
‘t Hooft model was actually discussed, and the same results
were obtained earlier in [18,19].4

In Sec. II, we review in detail the method discussed in the
papers [18–22]. We also discuss the results obtained in
the papers [18–20] by applying the method to the two-
dimensional ‘t Hooft model [8]. In Sec. III, using the
same method, we derive, at weak coupling, the equation
that describes the low-lying bound states of the two-
dimensional adjoint QCD with heavy quarks. We find that
the equation equivalently describes a particle confined to
the surface of an inverted t-gonal pyramid potential in n
dimensions. For a bound state with three constituent
quarks, we conjecture that the corresponding equation is
exactly solvable.5 We show that the eigenstates are given in
terms of the triconfluent Heun functions. We discuss our
approach and the spectrum of the bound states of two and
three adjoint quarks in Sec. IV. On general grounds, we
expect the n-body problem also to be solvable in a similar
approach.
We provided in Appendix A representative plots of

closed periodic orbits in the associated classical system
of the three quarks system. We note that the classical
dynamics is sensitive to initial conditions. On general
grounds, we also expect sensitivity to initial conditions
in the general case. Chaotic dynamical systems are in
particular known to exhibit such behavior. However, in
general, sensitivity to initial conditions alone does not
necessarily imply chaos. Thus, the general n-body classical
system might be of interest to gain insights into chaos
theory. We hope to study the system in a similar way to that
of [23] in a separate paper in the future. In Appendix B, we
collected some interesting intermediate results and useful
equivalence relations.

II. THE LARGE MASS LIMIT OF THE
‘T HOOFT MODEL

In this section, we summarize the facts about the ‘t Hooft
model of two-dimensional QCD [8,10] with gauge group
UðNÞ and fundamental fermions in the large constituent
quark mass limit. In the next sections, we will generalize
this discussion to the case of two-dimensional adjoint
QCD. We will use the discussion presented in [20], but
we will take here the quark masses to be equal, m1 ¼
m2 ¼ m. See also [18] for a similar discussion.
The ‘t Hooft equation [8,10] involves the wave function

of a meson (a bound state of quark and antiquark pair),
ϕðξÞ. Here, 0 ≤ ξ ≤ 1 is the fraction of the light cone
momentum carried by one of the two quarks in the meson.
Of course, the fraction carried by the other is 1 − ξ. The
equation takes the form,

μ2ϕðξÞ¼ α

�
1

ξ
þ 1

1−ξ

�
ϕðξÞ−p:v:

Z
1

0

dξ0
ϕðξ0Þ

ðξ0−ξÞ2 ; ð2:1Þ3The high dimension operators correspond to heavy states, and
therefore, they decouple from the low energy physics. In this
case, the Hamiltonian is truncated.

4I thank Igor Klebanov for bringing to my attention these
interesting earlier works.

5In the sense that one can write down a closed analytic
expression.
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where μ is a dimensionless6 measure of the meson massM,

M2 ¼ g2N
π

μ2; ð2:2Þ

and

α ¼ πm2

g2N
− 1 ð2:3Þ

is a dimensionless measure of the size of the ‘t Hooft
coupling or equivalently, the size of the coupling at the scale
of the quark massm. Large α corresponds to weak coupling.
p.v. in (2.1) stands for principal value (see [18,20]).
We are interested in studying this system in the limit

α ≫ 1. Loosely speaking, the first term gives a large
contribution, of order α, to μ2, and the second term gives
a small correction. Also, the first term can be thought of as
the contribution of the masses of the quarks to the mass of
the meson. For g ¼ 0, the second term, which is what gives
confinement, is absent, and we get a continuum of values of
μ2, starting from the minimal value obtained when ξ ¼ 1

2
,

μ20 ¼ 4α; ð2:4Þ

or using (2.2), (2.3), M2 ¼ ð2mÞ2. This is precisely what
one would expect for a state of two quarks of mass m. As ξ
deviates from 1

2
, the order α contribution to μ2 grows. Thus,

if we want μ2 to be 4α plus a small correction, we want the
wave function ϕðξÞ to be sharply peaked around ξ ¼ 1

2

(see also [18]).
Now, suppose we want to turn on the coupling g, while

keeping the ratio α very large. In the notation of [20], we
take a1 ¼ a2 ¼ 1, so α1 ¼ α2 ¼ α, k1 ¼ k2 ¼ 1

2
, and write

ξ ¼ 1

2
þ ω: ð2:5Þ

The ‘t Hooft equation (2.1) takes the form,

μ2ϕðωÞ ¼ α

�
1

1
2
þω

þ 1
1
2
−ω

�
ϕðωÞ− p:v:

Z
1
2

−1
2

dω0 ϕðω0Þ
ðω0 −ωÞ2 :

ð2:6Þ

As mentioned above, we are looking for states whose μ2 is
of the form,

μ2 ¼ μ20 þ γ; ð2:7Þ

where μ0 is given by (2.4), and γ grows slower than α at
large α, i.e., limα→∞

γ
α ¼ 0. Substituting (2.7) into (2.6), we

get a ‘t Hooft type equation for γ,

γϕðωÞ ¼ 4αω2

1
4
− ω2

ϕðωÞ − p:v:
Z 1

2

−1
2

dω0 ϕðω0Þ
ðω0 − ωÞ2 : ð2:8Þ

We are looking for solutions to this equation in which
γ ≪ α. This means that the wave function ϕðwÞ is sharply
peaked around w ¼ 0. Thus, we can neglect the ω2 in the
denominator on the right-hand side (rhs) of (2.8), so it takes
the form,

γϕðωÞ ¼ 16αω2ϕðωÞ − p:v:
Z

1
2

−1
2

dω0 ϕðω0Þ
ðω0 − ωÞ2 : ð2:9Þ

To formalize the requirement that for large α, the wave
function ϕðωÞ is sharply peaked at ω ¼ 0, we demand that
if we rescale ω by a factor t ¼ tðαÞ, that we need to
determine; i.e., we write

ω ¼ st; ð2:10Þ

then the wave function,7

ϕðωÞ ¼ ϕðstÞ ¼ fðsÞ; ð2:11Þ

where f is a function that is not sensitive to α. Plugging this
ansätz into (2.9) and demanding that the two terms on the
rhs scale in the same way with α as α → ∞, we find that we
must take

t ¼ α−
1
3; ð2:12Þ

and, if we take this value for t, then γ on the left-hand side
(lhs) behaves like γ ∼ α

1
3. Thus, it is convenient to define

γ ¼ γ̄α
1
3; ð2:13Þ

in terms of which the ‘t Hooft equation (2.9) takes the form,

γ̄fðsÞ ¼ 16s2fðsÞ − p:v:
Z

∞

−∞
ds0

fðs0Þ
ðs0 − sÞ2 : ð2:14Þ

A number of things to note at this point:
(1) Since γ̄ is obtained by solving a problem, (2.14),

which does not contain the expansion parameter α, it
does not depend on α. Therefore, the solution for γ,
(2.13), grows slower with α than the leading term in
(2.7), in agreement with the assumptions that went
into the analysis.

(2) In going from (2.9) to (2.14), we extended the range
of integration. In fact, the correct range of integration
in (2.14) should have been taken to be −1=2t to
þ1=2t, with t given by (2.12). In the limit α → ∞,
the boundaries of the integral go to infinity, so we
expect the mistake in extending them to be small.

6The gauge coupling in two dimensions is dimensionful. 7Note that the Eq. (2.9) is linear in ϕ.
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How small depends on the behavior of the solution
fðsÞ for large values of the integrand. We comment
on this later in the section.

The variable s in (2.14) is a momentum type variable—it
is related via (2.5), (2.10), (2.12), to the light cone
momentum fraction ξ carried by a quark.8 To solve (2.14),
it is useful to Fourier transform it to position space, as done
in [18,20]: we define

f̂ðxÞ ¼ 1

2π

Z
∞

−∞
dsfðsÞeisx; ð2:15Þ

and write (2.14) as an equation for f̂ðxÞ,

γ̄ f̂ðxÞ ¼ −16f̂00ðxÞ þ πjxjf̂ðxÞ: ð2:16Þ

The lhs and the first term on the rhs are obvious, and the
second term on the rhs relies on the definition of the
principal value [see, e.g., Eq. (4) in [20] and Eq. (3.57)
in [18] ].
Comments:
(1) Equation (2.16) is interesting: it is the Schrödinger

equation for a particle in the potential jxj.9 This is
basically the confining Coulomb potential in one
spatial dimension. An interesting fact is that the
treatment of the pole at zero momentum exchange in
(2.14) (the iϵ prescription associated with the prin-
cipal value in that equation) is directly related to the
fact that the potential rises both for positive and for
negative x.

(2) Of course, the momentum s is lightlike momentum,
and the conjugate position variable x is thus the light
cone separation of the two quarks. Nevertheless,
we get a compelling picture of the meson as a pair
of quarks separated by the amount x in a lightlike
direction, with the energy of the pair growing
linearly with their separation. We will make use
of this picture later, in the adjoint case.

The solution of (2.16) is an Airy function [18,20]. This is
easy to see as follows. Consider first, the region x > 0.
In this region, the Schrödinger equation (2.16) can be
written as

f̂ðxÞ ¼ gðyÞ; ð2:17Þ

where gðyÞ is a solution of the equation,

g00ðyÞ ¼ ygðyÞ; ð2:18Þ

and

y ¼ aðx − bÞ; a ¼
�
π

16

�1
3

; b ¼ γ̄

π
: ð2:19Þ

This is in agreement with Eqs. (18), (19) in [20] and
Eqs. (3.59), (3.60) in [18].
The solution of (2.18) is gðyÞ ¼ AiðyÞ. The reason we

need the Ai Airy function rather than the Bi is the usual: we
need the solution to go to zero as x; y → ∞, and the Ai
function indeed goes to zero at infinity, while Bi blows up
exponentially.
Thus, for x > 0, the solution to the Schrödinger equa-

tion (2.16) is f̂ðxÞ ¼ AiðyÞ. What about negative x? Since
the problem (2.16) is symmetric under x → −x, there are
two kinds of eigenstates, symmetric and antisymmetric
under x → −x. As usual, we will label the bound states by
an integer n, with n ¼ 0; 2; 4;… corresponding to the
symmetric solutions, and n ¼ 1; 3; 5;… corresponding to
the antisymmetric ones.
Let us start with the antisymmetric ones. These must

vanish at the origin, f̂nðx ¼ 0Þ ¼ 0, which means that

Aið−abnÞ ¼ 0; bn ¼
γ̄n
π
: ð2:20Þ

So, −abn must be zeros of the Airy function Ai.
Similarly, for the symmetric wave functions, the deriva-

tive of the wave function must vanish at x ¼ 0. Therefore,
for the symmetric ones, −abn must be zeros of the
derivative of the Airy function Ai0.
For highly excited states, the authors [20] assert that the

values γ̄n have the asymptotic behavior (see also [24]),

γ̄n ≃
�
3π2

�
nþ 1

2

��2
3

: ð2:21Þ

We show this by applying semiclassical quantization to
classical periodic orbits later in Sec. IV.
Another interesting question is, what is the momentum

space wave function fðsÞ (2.15) ? To compute it, we need
to do the inverse Fourier transform,

fðsÞ ¼
Z

∞

−∞
dxf̂ðxÞe−isx: ð2:22Þ

We start by breaking the integral (2.22) into two parts,

fnðsÞ ¼
Z

∞

−∞
f̂nðxÞe−isxdx

¼
Z

0

−∞
f̂nðxÞe−isxdxþ

Z
∞

0

f̂nðxÞe−isxdx; ð2:23Þ

where n is a positive integer and labels the zeros γ̄n. For
even n, since f̂n is invariant under parity, we have

8One can think of s as follows. In the center of mass frame, the
two quarks have energy E and momentum �p. s is proportional
to p, and the wave function fðsÞ is the momentum space wave
function of the bound state.

9This is also the equation that governs a point electric dipole on
a line with electric field proportional to x. As we will see in
Sec. IV, viewing it in this picture is more useful.
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f2nðsÞ ¼ 2

Z
∞

0

f̂2nðxÞ cosðsxÞdx; ð2:24Þ

and for odd n, f̂n picks a minus sign under parity, and thus,
we have

−if2nþ1ðsÞ ¼ −2
Z

∞

0

f̂2nþ1ðxÞ sinðsxÞdx: ð2:25Þ

The integral that we need to evaluate, therefore, using
(2.19) and (2.17), is given by

InðsÞ ≔ 2

Z
∞

0

f̂nðxÞe−isxdx

¼ 2

Z
∞

0

dzAiðaz − abnÞe−isz: ð2:26Þ

The real part of I2n gives (2.24), and the imaginary part of
I2nþ1 gives (2.25).
The Airy function AiðxÞ is an entire function with zeros

located on the negative real axis. Therefore, it can be
written as

AiðzÞ ¼
X∞
k¼0

ckzk; ð2:27Þ

where ck is a constant. Using this and performing a term by
term integration, we find10

In ¼ −2ie−isbn
X∞
k¼0

ckðiaÞk
dk

dsk
1

s
ðeisbn − δs;0Þ

¼ −2ie−isbnAi
�
ia

d
ds

�
1

s
ðeisbn − δs;0Þ: ð2:28Þ

We use this result shortly. See Fig. 1 for numerical plots of
the momentum space wave function fnðsÞ, i.e., (2.24) and
(2.25), for n ¼ 0, 1, 2, 3, 4, and 5.
We now estimate the order of the error that we earlier

introduced in (2.14) while taking the interval of integration
length from 1=t to infinity. To estimate the order of the
error, therefore, we only need the asymptotic behavior of
fðsÞ for large s.
In the large s limit, we have

In ¼ −
2i
s

X∞
m¼0

�ai
s

�m
AiðmÞð−abnÞ

¼ −
2iAið−abnÞ

s
þ 2aAi0ð−abnÞ

s2
þOðs−3Þ; ð2:29Þ

where AiðmÞ is the mth derivative of Ai. Thus, the term that
we ignored in (2.8) in taking the limits of integration to
infinity, for odd n, is of order

Z
∞

1
t

dsfnðsÞ
s2

≈ −ia4Aið4Þð−abnÞ
Z

∞

1
t

ds
s7

≈ −ia4Aið4Þð−abnÞt6: ð2:30Þ

Similarly, for even n, the error is of order

Z
∞

1
t

dsfnðsÞ
s2

≈ a3Aið3Þð−abnÞ
Z

∞

1
t

ds
s6

≈ a3Aið3Þð−abnÞt5: ð2:31Þ

We note from (2.8) that the contribution from odd n
however cancels since the integrand is odd under
s → −s. Thus, the error we introduced by extending the
integration limit to infinity comes only from even n, and it
is of order t5. This is in agreement with [21].

FIG. 1. Numerical plots of the momentum space wave function fnðsÞ. On the left-hand side, we have fnðsÞ for n ¼ 0 (orange), n ¼ 2
(black), and n ¼ 4 (purple). On the right-hand side, we have ifnðsÞ for n ¼ 1 (orange), n ¼ 3 (black), and n ¼ 5 (purple). We note that
the wave functions go to zero for large s.

10In general, we cannot exchange integration and sum unless
the sum In exists.

ð1þ 1ÞD QCD WITH HEAVY ADJOINT QUARKS PHYS. REV. D 107, 106022 (2023)

106022-5



Note that we also ignored the ω2 in the denominator of
the first term on the rhs of (2.8), which is of the order t2.
Therefore, we are only considering the order t correction.
As a result, at order t, we can freely extend the limit of
integration to infinity.
We next apply the above method to the two-dimensional

adjoint QCD.

III. THE LARGE MASS LIMIT
OF 2D ADJOINT QCD

The theory is described by the action [5,9,11],

S ¼
Z

d2x tr

�
iq̄γαDαq −mq̄q −

1

4g2
FαβFαβ

�
; ð3:1Þ

where the matrices γ0 ¼ η00γ0 ¼ γ0, γ1 ¼ η11γ1 ¼ −γ1,
fγα; γβg ¼ 2ηαβI2×2 are the 2 × 2 Dirac matrices in the
Majorana representation, the field-strength tensor Fαβ¼
∂½αAβ� þ iA½αAβ�, the covariant derivative Dα¼∂αþ i½Aα; ·�,
and the fermion q is a two component (Majorana–Weyl)
spinor in the adjoint representation. We denote its top
component as ψ and bottom component as ψ̄ . The fermions
ψ and ψ̄ areN × N Hermitian traceless matrices. The gauge
potential Aα is an N × N Hermitian traceless matrix. m is
the bare fermion mass,11 and g is the gauge coupling.12 We
work in the ordinary vacuum of the theory [25–27].
It is very convenient to use light cone quantization

[28–30]. We introduce the light cone coordinates by the
definitions,

x� ¼ x0 � x1ffiffiffi
2

p : ð3:2Þ

We treat xþ as the time variable. A useful gauge is A− ¼ 0.
In this gauge, we find

S ¼
Z

dxþdx−tr
�
iψ∂þψ þ iψ̄∂−ψ̄ − i

ffiffiffi
2

p
mψ̄ψ

þ 1

2g2
ð∂−AþÞ2 þ AþJþ

�
; ð3:3Þ

where

Jþij ¼ 2ψ ikψkj ð3:4Þ

is an SUðNÞ current. The gauge potential Aþ and the left
moving fermion ψ̄ are nondynamical and can be eliminated
using their equations of motion. We write the gauge

potential Aþ ¼ Aþ;0 þ Āþ, where Aþ;0 is the zero mode.
Using the variational principle of least action, we find

Z
dx−Jþ ¼ 0; ∂

2
−Āþ − g2Jþ ¼ 0;

ffiffiffi
2

p
∂−ψ̄ −mψ ¼ 0:

ð3:5Þ

Using these, the light cone momentum and energy are
given by

Pþ ¼
Z

dx−trðiψ∂−ψÞ; ð3:6Þ

P− ¼ 1

2

Z
dx−tr

�
im2ψ

1

∂−
ψ − g2Jþ

1

∂
2
−
Jþ

�
: ð3:7Þ

We now quantize the theory at xþ ¼ 0. We write the
fermions as

ψ ijðx−Þ ¼
1

2
ffiffiffi
π

p
Z

∞

−∞
dkψ ijðkÞe−ikx− : ð3:8Þ

The modes ψ ijðkÞ with k < 0 are creation operators, and
the modes ψ ijðkÞ with k ≥ 0 are annihilation operators.
The fermion modes satisfy the canonical anticommuta-

tion relation given by

fψabðkÞ;ψcdðk0Þg ¼ δðkþ k0Þ
�
δadδbc−

1

N
δabδcd

�
: ð3:9Þ

In terms of the modes, the translation generators takes the
form,

Pþ ¼
Z

∞

0

dkkψabð−kÞψbaðkÞ;

P− ¼ 1

2
m2

Z
∞

0

dk
k
ψabð−kÞψbaðkÞ

þ 1

2
g2

Z
∞

0

dk
k2

Jþabð−kÞJþbaðkÞ; ð3:10Þ

where the current Fourier transform is given by

JþðkÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dx−Jþðx−Þe−ikx− : ð3:11Þ

Upon writing the current in terms of the modes, we find, in
the largeN limit, that the light cone Hamiltonian operator is
given by13

11See [1–4] for a discussion on the massless case.
12Note that in two dimensions, the gauge coupling g is

dimensionful.

13In general, there are additional string breaking terms, which
are suppressed by a factor of 1=N2. These are terms given by
product of traces.
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P− ¼ 1

2
m2

Z
∞

0

dk
k
ψ jið−kÞψ ijðkÞ þ

g2N
2π

Z
∞

0

dk
k
CðkÞψ jið−kÞψ ijðkÞ −

g2

2π

Z
∞

0

dk1dk2dk3dk4Aðk1; k2; k3; k4Þ

× δðk1 þ k2 − k3 − k4Þψ ijð−k4Þψ jkð−k3Þψklðk1Þψ liðk2Þ þ
g2

2π

Z
∞

0

dk1dk2dk3dk4Bðk1; k2; k3; k4Þ

× δðk1 þ k2 þ k3 − k4Þ · ½ψ jkð−k4Þψklðk1Þψ liðk2Þψ ijðk3Þ þ ψ ilð−k3Þψ ljð−k2Þψ jkð−k1Þψkiðk4Þ�; ð3:12Þ

where

Aðk1; k2; k3; k4Þ ¼
1

ðk4 − k2Þ2
−

1

ðk1 þ k2Þ2
; ð3:13Þ

Bðk1; k2; k3; k4Þ ¼
1

ðk2 þ k3Þ2
−

1

ðk1 þ k2Þ2
; ð3:14Þ

CðkÞ ¼
Z

∞

0

dp

�
k

ðp − kÞ2 −
k

ðpþ kÞ2
�
: ð3:15Þ

We simplify CðkÞ further as

CðkÞ ¼
Z

∞

0

dp

�
k

ðp− kÞ2 −
k

ðpþ kÞ2
�
;

¼ lim
ϵ→0

�Z
k

0

dp
k

ðp− k− ϵÞ2 þ
Z

∞

k
dp

k
ðp− kþ ϵÞ2

�

−
Z

∞

0

dp
k

ðpþ kÞ2 ;

¼ 2

Z
k

0

dp
k

ðp− kÞ2 ¼ p:v:2
Z

k

0

dp
k

ðp− kÞ2 : ð3:16Þ

Note the integral is understood in the principal value sense.
The light cone vacuum j0i is the ground state of P− with

eigenvalue zero.14 All the physical states jχi must satisfy
the zero charge constraint,

Z
dx−Jþjχi ¼ 0: ð3:17Þ

The Hilbert space that the translation generators are
taken to act on, in the large N limit, is the space spanned by
states of the form,

tr½ψð−k1Þψð−k2Þ � � �ψð−knÞ�j0i: ð3:18Þ

These states satisfy the zero charge constraint. From the
first line in (3.10), we see that the total Pþ of a state of the
form (3.18), kþ, is

kþ ¼
Xn
i¼1

ki: ð3:19Þ

It is diagonal on the states (3.18). To solve the theory, we
need also to diagonalize the light cone Hamiltonian, P−

(3.10), on these states. In general, this is hard, since P−

relates states with different values of the quark or parton
number n (3.18). However, one may hope that this effect
becomes less significant in the limit,

λ≡ g2N
m2

→ 0: ð3:20Þ

This limit is the weak coupling limit of the theory. Indeed,
one can think of λ as the size of the (‘t Hooft) coupling at
the scale m, which is the scale associated with the bound
states in this theory.15

Let us start with the free theory, i.e., λ ¼ 0. In that case,
P− (3.10) is also diagonal on the states (3.18), and we can
compute its value, k−,

k− ¼ m2

2

Xn
i¼1

1

ki
: ð3:21Þ

It is useful to define the variables xi via

ki ¼ xikþ: ð3:22Þ

These variables take value in (0,1) and can be thought of
as the light cone momentum fraction carried by the i’th
parton. Obviously, one has [from (3.19)]

Xn
i¼1

xi ¼ 1: ð3:23Þ

In terms of xi, (3.21) can be written as

M2 ¼ 2kþk− ¼ m2
Xn
i¼1

1

xi
: ð3:24Þ

The smallest value this quantity can take isM ¼ mn, which
is obtained by setting all xi to be equal to 1=n. Moving
away from this value, M2 increases, and it diverges when
any of the xi → 0. Thus, in the free theory, i.e., λ ¼ 0, we
find a continuum of masses starting at mn, precisely as we

14This should not cause confusion in the massive case. 15And with the process of pair creation of the adjoint quarks.
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would expect for states of n free particles. Now, we would
like to turn on the leading effect of the interaction in (3.10).
Consider, as an example, bound states consisting of two

quarks. We can write these states in general as

jϕi ¼
Z

1

0

dxϕðxÞtr½ψð−xkþÞψð−ð1 − xÞkþÞ�j0i; ð3:25Þ

where ϕðxÞ is the wave function associated with the state.
We saw earlier that for λ ¼ 0 the states that minimize the
energy correspond to wave functions that are very sharply
peaked around x ¼ 1=2. Such states have mass M ∼ 2m,
the mass of a state of two free quarks. In general, we will
choose the wave function ϕðxÞ to satisfy the boundary
condition,

ϕð0Þ ¼ 0; ð3:26Þ

this is consistent with our definition of the modes. Note that
the wave function is by definition antisymmetric under
x → 1 − x,

ϕð1 − xÞ ¼ −ϕðxÞ: ð3:27Þ

Thus, (3.26) also implies vanishing of the wave function at
x ¼ 1. The inner product between two states of the form
(3.25), jϕi and jϕ0i, is given by

hϕ0jϕi ¼ 2N2

kþ
δðkþ − kþ0Þ

Z
1

0

dxϕðxÞϕ0ðxÞ: ð3:28Þ

In particular, the norm hϕjϕi, is positive definite, as
expected.

Similarly, we can define a general n partons gauge
invariant bound state as

jϕi ≔
Z

kþ

0

dk1 � � � dknδ
�Xn

i¼1

ki − kþ
�
ϕnðk1;…; knÞ

× tr½ψð−k1Þ � � �ψð−knÞ�j0i; ð3:29Þ

where ϕn is the wave function associated with the state jϕi.
Therefore, for even number of partons, the state is bosonic
and for odd number of partons, the state is fermionic. Note
that by definition the wave function has the property,

ϕnðk1; k2;…; kn−1; knÞ ¼ ð−1Þn−1ϕnðk2; k3;…; kn; k1Þ:
ð3:30Þ

We will choose the wave function, in general, to satisfy the
condition,

ϕnð0; k2;…; kn−1; knÞ ¼ 0; ð3:31Þ

this is consistent with our definition of the modes.
It is important that we are working in a given sector in

which Pþ is kept fixed. This is because in general there
is no sense in which one can study nonrelativistic limit in
light cone coordinates if Pþ is not fixed. For a given Pþ
eigenvalue, the light cone quantization looks very much
like a nonrelativistic theory [18,31]. Therefore, there is a
sense in which nonrelativistic limit is sensible.
Acting with the light cone Hamiltonian P− (3.12) on

the state jϕi gives the following equation for the M2
n of

the state:

M2
nϕnðx1;…; xnÞ ¼ m2

Xn
i¼1

1

xi
ϕnðx1;…; xnÞ þ

2g2N
π

Xn
i¼1

ϕnðx1;…; xi−1; xi; xiþ1;…; xnÞ ·
Z

xi

0

dy
1

ðy − xiÞ2

þ g2N
π

Xn
i¼1

1

ðxi þ xiþ1Þ2
Z

xiþxiþ1

0

dyϕnðx1;…; xi−1; y; xi þ xiþ1 − y; xiþ2;…; xnÞ

−
g2N
π

Xn
i¼1

Z
xiþxiþ1

0

dyϕnðx1;…; xi−1; y; xi þ xiþ1 − y; xiþ2;…; xnÞ ·
1

ðy − xiÞ2

þ g2N
π

Xn
i¼1

Z
xi

0

dy
Z

xi−y

0

dzϕnþ2ðx1;…; xi−1; y; z; xi − y − z; xiþ1;…; xnÞ

·

�
1

ðyþ zÞ2 −
1

ðxi − yÞ2
�
þ g2N

π

Xn
i¼1

ϕn−2ðx1;…; xi−1; xi þ xiþ1 þ xiþ2; xiþ3;…; xnÞ

·

�
1

ðxi þ xiþ1Þ2
−

1

ðxiþ1 þ xiþ2Þ2
�
; x1 ¼ xnþ1;

Xn
i¼1

xi ¼ 1: ð3:32Þ
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We note that for even values of n, the equation only
involves bosonic states, and similarly, for odd values of n,
it only involves fermionic states. Thus, it does not mix
bosonic and fermionic states. We also note that the equation
relates or mixes states with different partons number n,
n� 2. This is the main reason why solving this equation

analytically and exactly, even in the planar limit, has been
difficult. We rewrite this equation using the redefinitions,

πM2
n ¼ g2Nμ2n; α ¼ m2π

g2N
; ð3:33Þ

as

μ2nϕnðx1;…; xnÞ ¼ α
Xn
i¼1

1

xi
ϕnðx1;…; xnÞ þ

Xn
i¼1

Z
xi

0

dy
Z

xi−y

0

dzϕnþ2ðx1;…; xi−1; y; z; xi − y − z; xiþ1;…; xnÞ

×

�
1

ðyþ zÞ2 −
1

ðxi − yÞ2
�
þ
Xn
i¼1

1

ðxi þ xiþ1Þ2
Z

xiþxiþ1

0

dyϕnðx1;…; xi−1; y; xi þ xiþ1 − y; xiþ2;…; xnÞ

þ
Xn
i¼1

Z
xiþxiþ1

0

dy
ðy − xiÞ2

½ϕnðx1;…; xi−1; xi; xiþ1;…; xnÞ − ϕnðx1;…; xi−1; y; xi þ xiþ1 − y; xiþ2;…; xnÞ�

þ
Xn
i¼1

ϕn−2ðx1;…; xi−1; xi þ xiþ1 þ xiþ2; xiþ3;…; xnÞ
�

1

ðxi þ xiþ1Þ2
−

1

ðxiþ1 þ xiþ2Þ2
�
;

x1 ¼ xnþ1;
Xn
i¼1

xi ¼ 1: ð3:34Þ

Here, we have used the identity,

Z
xiþxiþ1

xi

dy
1

ðy − xiÞ2
¼

Z
xiþ1

0

dy
1

ðy − xiþ1Þ2
: ð3:35Þ

We now write as we did in the previous section,

xi ¼
1

n
þ ωi;

Xn
i¼1

ωi ¼ 0: ð3:36Þ

In the following analysis, we will assume nωi ≪ 1.
Therefore, the states are sharply peaked around x1 ¼
x2 ¼ � � � ¼ xn ¼ 1=n. We also define

μ2n ¼ n2αþ γn: ð3:37Þ

We are interested in the large α limit such that

lim
α→∞

γn
n2α

→ 0: ð3:38Þ

Using the above redefinitions, the lhs of (3.34) becomes

n2αϕnðx1;…; xnÞ þ γnϕnðx1;…; xnÞ: ð3:39Þ

We next look the rhs of the Eq. (3.34) term by term.
From the first term, we have

α
Xn
i¼1

1

xi
ϕnðx1;…; xnÞ ¼ α

Xn
i¼1

n
1þ nωi

ϕnðx1;…; xnÞ

¼ n2αϕn þ n3α
Xn
i¼1

ω2
iϕn

þOðn4αω3
i Þϕn: ð3:40Þ

From the second term with

y ¼ 1

n
þ ωy; z ¼ 1

n
þ ωz; nωy ≪ 1; nωz ≪ 1;

ð3:41Þ

we have

Xn
i¼1

Z
xi

0

dy
Z

xi−y

0

dzϕnþ2

�
1

ðyþ zÞ2 −
1

ðxi − yÞ2
�
¼

Xn
i¼1

Z
ωi

−1
n

dωy

Z
−1
nþωi−ωy

−1
n

dωzϕnþ2

�
n2

4
−

1

ðωi − ωyÞ2
þOðnωy þ nωzÞ

�
:

ð3:42Þ
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From the third term, we find

Xn
i¼1

1

ðxi þ xiþ1Þ2
Z

xiþxiþ1

0

dyϕn ¼
Xn
i¼1

1

ð2n þ ωi þ ωiþ1Þ2
Z

1
nþωiþωiþ1

−1
n

dωyϕn;

¼
Xn
i¼1

�
n2

4
−
n3

4
ðωi þ ωiþ1Þ þOðω2

i Þ
�Z

1
nþωiþωiþ1

−1
n

dωyϕn: ð3:43Þ

From the fourth term, we get

Xn
i¼1

Z
xiþxiþ1

0

dy
ðy − xiÞ2

· ½ϕnðx1;…; xnÞ − ϕnðx1;…; y; xi þ xiþ1 − y;…; xnÞ�

¼
Xn
i¼1

Z
1
nþωiþωiþ1

−1
n

dωy

ðωy − ωiÞ2
· ½ϕnðω1;…;ωnÞ − ϕnðω1;…;ωy;ωi þ ωiþ1 − ωy;…;ωnÞ�: ð3:44Þ

From the last term, we get

Xn
i¼1

ϕn−2

�
1

ðxi þ xiþ1Þ2
−

1

ðxiþ1 þ xiþ2Þ2
�
¼

Xn
i¼1

ϕn−2

�
1

ð2nþωi þωiþ1Þ2
−

1

ð2nþωiþ1 þωiþ2Þ2
�
;

¼
Xn
i¼1

ϕn−2 ·
n2

4

�
nðωiþ2 −ωiÞ−

3n2

4
ðωiþ2 −ωiÞðωi þ 2ωiþ1 þωiþ2Þ þOðω3

i Þ
�
:

ð3:45Þ

We next rescale the ωi’s as

ωi ¼ sit; ωy ¼ syt; ωz ¼ szt: ð3:46Þ

As we did in the previous section, we assume that the wave
functions,

ϕnðω1;…;ωi;…;ωnÞ ≔ ϕnðs1;…; si;…; snÞ; ð3:47Þ

do not depend on t. That is, the wave functions are sharply
peaked around x1 ¼ x2 ¼ � � � ¼ xn ¼ 1=n. We take

t ¼ α−
1
3; ð3:48Þ

and redefine γn as

γ̄n ¼ tγn: ð3:49Þ
In the large α limit, we then get

γ̄nϕn ¼ n3
Xn
i¼1

s2iϕn − tn4
Xn
i¼1

s3iϕn þOðt2Þϕn þ t
Xn
i¼1

Z
si

− 1
nt

dsy

Z
− 1
ntþsi−sy

− 1
nt

dszϕnþ2

�
n2t2

4
−

1

ðsi − syÞ2
þOðt3Þ

�

þ t2
Xn
i¼1

�
n2

4
−
n3t
4

ðsi þ siþ1Þ þOðt2Þ
�Z 1

ntþsiþsiþ1

− 1
nt

dsyϕn

þ
Xn
i¼1

Z
1
ntþsiþsiþ1

− 1
nt

dsy
ðsy − siÞ2

· ½ϕnðs1;…; snÞ − ϕnðs1;…; sy; si þ siþ1 − sy;…; snÞ�

þ t2
Xn
i¼1

ϕn−2 ·
n2

4

�
nðsiþ2 − siÞ −

3n2t
4

ðsiþ2 − siÞðsi þ 2siþ1 þ siþ2Þ þOðt2Þ
�
: ð3:50Þ

Therefore, to leading order, we have the mass squared equation,

γ̄nϕn ¼ n3
Xn
i¼1

s2iϕn þ
Xn
i¼1

Z
∞

−∞

dsy
ðsy − siÞ2

· ½ϕnðs1;…; snÞ − ϕnðs1;…; sy; si þ siþ1 − sy;…; snÞ� − tn4
Xn
i¼1

s3iϕn þOðt2Þ:

ð3:51Þ
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Note that at this order, i.e., OðtÞ, only ϕn contributes to
the mass squared equation. Thus, for the low-lying states,
there is no pair production or annihilation, as expected.
This was noted already in [9,11], and there is also recent

numerical evidence that suggests this is the case for the
low-lying states even at moderate values of the coupling
[32]. Note also that, at this order, we see using (3.34) that
(3.51) is equivalent to the n-parton ‘t Hooft equation,

μ2nϕnðx1;…; xnÞ ¼ α
Xn
i¼1

1

xi
ϕnðx1;…; xnÞ þ

Xn
i¼1

Z
xiþxiþ1

0

dy
ðy − xiÞ2

· ½ϕnðx1;…; xi−1; xi; xiþ1;…; xnÞ

− ϕnðx1;…; xi−1; y; xi þ xiþ1 − y; xiþ2;…; xnÞ�: ð3:52Þ

Therefore, the goal is to solve this equation in the region in
which the momentum fractions x1 ¼ � � � ¼ xn are near 1=n.
In particular, for n ¼ 2, we have

μ22ϕ2ðxÞ ¼
α

xð1 − xÞϕ2ðxÞ − 2

Z
1

0

dy
ðy − xÞ2 ϕ2ðyÞ: ð3:53Þ

Note that the integral is defined in the principal value sense;
see (3.16). This is the ‘t Hooft equation (2.1).16 The source
of the extra factor 2 will be discussed shortly.
We write the Fourier transform of the wave function ϕn

as

ϕ̂nðx⃗Þ ≔
1

ð2πÞn
Z

eix⃗·s⃗ · δðs1 þ � � � þ snÞϕnðs⃗Þds⃗; ð3:54Þ

equivalently,

δðs1 þ � � � þ snÞϕnðs⃗Þ ¼
Z

e−ix⃗·s⃗ϕ̂nðx⃗Þdx⃗: ð3:55Þ

To do the Fourier transform of the mass squared
equation (3.51), we need the value of the integral,

Z
∞

−∞

e−iðxi−xiþ1Þsy

ðsy − siÞ2
dsy: ð3:56Þ

As in the t’ Hooft model, the integral is defined by a
principal value prescription. We assume the following
integration prescription17:

p:v:
Z

fðsÞ
ðs − s0Þ2

ds ¼ 1

2

Z
fðsÞ

ðs − s0 þ iϵÞ2 ds

þ 1

2

Z
fðsÞ

ðs − s0 − iϵÞ2 ds: ð3:57Þ

Using this prescription, we get

Z
∞

−∞

e−iðxi−xiþ1Þsy

ðsy − siÞ2
dsy ¼ −πjxi − xiþ1je−iðxi−xiþ1Þsi : ð3:58Þ

Using the above result, we see that

Z
∞

−∞

dsy
ðsy − siÞ2

δðs1 þ � � � þ snÞϕnðs1;…; sy; si þ siþ1 − sy;…; snÞ ¼ −π
Z

jyi − yiþ1je−iy⃗·s⃗ϕ̂nðy⃗Þdy⃗: ð3:59Þ

Therefore, to order OðtÞ, the Fourier transform of Eq. (3.51) becomes

γ̄nϕ̂nðx⃗Þ ¼ −n3
Xn
i¼1

∂
2
xi ϕ̂nðx⃗Þ þ π

Xn
i¼1

jxi − xiþ1jϕ̂nðx⃗Þ þOðtÞ: ð3:60Þ

The wave function ϕ̂n has the following symmetries:

ϕ̂nðx1 þ c;…; xn þ cÞ ¼ ϕ̂nðx1;…; xnÞ; ϕ̂nðx1; x2;…; xn−1; xnÞ ¼ ð−1Þn−1ϕ̂nðx2; x3;…; xn; x1Þ. ð3:61Þ

Here, c is a constant.

16See also [33] for a similar equation obtained using a
formulation of 2D fundamental QCD in terms of bilocal fields
and the method of coadjoint orbits. 17This is similar to (3.16).
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We note that the n-parton bound state potential is given
by a pairwise sum of two-parton potentials. This can be also
seen directly from the n-parton ‘t Hooft equation (3.52).
The doubling of the strength of the coulomb interaction
or potential for n ¼ 2 is due to the two color flux tubes
connecting a pair of partons (in a quark antiquark pair there
is only one flux tube) (see, for example, [11]). For three
adjoint quarks, the potential V is given by

Vðx1; x2; x3Þ ¼ jx1 − x2j þ jx2 − x3j þ jx3 − x1j þOðtÞ:
ð3:62Þ

In ð1þ 1ÞD fundamental QCD, a similar expression was
obtained in [18] for a baryon, which is a bound state of
three quarks, in the heavy-quark limit; see Sec. (3.9) of the
paper.18 In ð1þ 3ÞDQCD, there are two ansätzes regarding
the three quraks potential. They are known as the Δ and Y
ansätzes. In the Δ ansätz, the potential is given by (3.62).
There is no clear answer however regarding the correct
three quarks static potential. For recent discussions on three
quarks potential in phenomenological models of QCD,
see [34–37].
In the next section, we discuss the cases n ¼ 2 and

n ¼ 3. These cases can be easily generalized to the n ≥ 4
cases in a similar manner.

IV. DISCUSSION

We now discuss the n-body nonrelativistic Schrödinger
equation,

γ̄nϕ̂nðx⃗Þ ¼ −n3
Xn
i¼1

∂
2
xi ϕ̂nðx⃗Þ þ π

Xn
i¼1

jxi − xiþ1jϕ̂nðx⃗Þ;

xnþ1 ¼ x1; ð4:1Þ

with the (boundary) conditions or constraints,

ϕ̂nðx1 þ c;…; xn þ cÞ ¼ ϕ̂nðx1;…; xnÞ;
ϕ̂nðx1; x2;…; xn−1; xnÞ ¼ ð−1Þn−1ϕ̂nðx2; x3;…; xn; x1Þ;

ð4:2Þ

for the cases where the partons number n is 2 and 3. We
begin our discussion with n ¼ 2.
The n ¼ 2 case is very similar to the (fundamental)

‘t Hooft model. See also [27] for a related result. In this
case, the Schrödinger equation is

γ̄2ϕ̂2ðx1; x2Þ ¼ −16ð∂2x1 þ ∂
2
x2Þϕ̂2ðx1; x2Þ

þ 2πjx1 − x2jϕ̂2ðx1; x2Þ; ð4:3Þ

and

ϕ̂2ðx1; x2Þ ¼ −ϕ̂2ðx2; x1Þ: ð4:4Þ

It is very convenient to introduce the Jacobi coordinates,

z1 ¼ x1 − x2; z2 ¼
x1 þ x2

2
; ð4:5Þ

in terms of which the equation becomes

γ̄2ϕ̂2 ¼ −8
�
2∂2z1 þ

1

2
∂
2
z2

�
ϕ̂2 þ 2πjz1jϕ̂2: ð4:6Þ

Since we are interested on bound states, we set the center of
mass coordinate z2, using the translation symmetry, to zero.
Therefore, the relative motion of the quarks is described by

γ̄2ϕ̂2 ¼ −16
d2ϕ̂2

dz21
þ 2πjz1jϕ̂2; ϕ̂2ðz1Þ ¼ −ϕ̂2ð−z1Þ:

ð4:7Þ

After rescaling the coordinates, this can be put into the
more familiar form,

γϕ ¼ −
1

2

d2ϕ
dz2

þ jzjϕ; γ ¼ γ̄2
2π

�
π

2 · 8

�1
3

;

ϕðzÞ ¼ −ϕð−zÞ: ð4:8Þ

This is the Airy equation, and its solutions are discussed in
detail in Sec. II. The wave function ϕ̂2 in the adjoint case is
given by

ϕ̂ðlÞ
2 ðzÞ ¼

8<
:

Ai
�
ðπ
8
Þ13
�
z − γ̄ðlÞ

2

2π

��
; z > 0;

−Ai
�
ðπ
8
Þ13
�
−z − γ̄ðlÞ

2

2π

��
; z < 0;

ð4:9Þ

where γ̄ðlÞ2 are given by the equations,

Aið−γ̄ðlÞ2 =2πð8π2Þ1=3Þ ¼ 0; l ¼ 1; 2; 3;…: ð4:10Þ

Therefore, the masses are given by

M2
ð2;lÞ ¼ m2

�
4þ λ

2
3γ̄ðlÞ2

�
; λ ≔

g2N
m2π

; l ¼ 1; 2; 3;…:

ð4:11Þ

The quantum spectrum for the highly excited bound
states can be computed by considering the periodic orbits
of the corresponding classical Hamiltonian. The classical
Hamiltonian in this case is

H ¼ p2

2
þ jzj: ð4:12Þ18I thank Igor Klebanov for bringing to my attention this result.
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A typical periodic motion in this system is described by

zðtÞ ¼
	−tðt − t2Þ; 0 ≤ t ≤ t2;

ðt − t2Þðt − 2t2Þ; t2 ≤ t ≤ 2t2:
ð4:13Þ

Here, T ¼ 2t2 is the period. We now apply the Einstein-
Brillouin-Keller (EBK) quantization. We first evaluate the
action integral,

2

Z T
2

0

p2dt ¼ T3

24
¼ 8

3
E

3
2; ð4:14Þ

where E is the energy of the system along the orbit. This
gives making use of the EBK quantization condition the
spectrum,

En ¼
�
3

4
π

�
nþ 1

2

��2
3

: ð4:15Þ

From this, it follows that

γ̄ðnÞ2 ¼ 2π

�
2 · 8
π

�1
3

En ¼ 2

�
3π2

�
nþ 1

2

��2
3

: ð4:16Þ

Note the factor of 2 due to the two flux tubes. In one
dimension, EBK is similar to Wentzel-Kramers-Brillouin
(WKB) approximation. Putting all together, we have for the
highly excited states,

M2
ð2;nÞ ¼ m2

	
4þ 2 · λ2=3

�
3π2

�
nþ 1

2

��2
3



; ð4:17Þ

where n is odd and large integer and λ is the ‘t Hooft
coupling (4.11) at the scale of the constituent quark
mass m.
We now consider the three partons case. In this case, the

Schrödinger equation takes the form,

γ̄3ϕ̂3ðx⃗Þ ¼ −27ð∂2x1 þ ∂
2
x2 þ ∂

2
x3Þϕ̂3ðx⃗Þ þ πðjx1 − x2j

þ jx2 − x3j þ jx3 − x1jÞϕ̂3ðx⃗Þ; ð4:18Þ

with the constrains on the wave function,

ϕ̂3ðx1 þ c;…; x3 þ cÞ ¼ ϕ̂3ðx1;…; x3Þ;
ϕ̂3ðx1; x2; x3Þ ¼ ϕ̂3ðx2; x3; x1Þ

¼ ϕ̂3ðx3; x1; x2Þ: ð4:19Þ

We next conjecture that this equation is solvable. In
particular, after making a change of coordinates, we
conjecture that it can be solved using the method of
separation of variables. It is important that one makes a

change to parabolic coordinates to solve the problem.19 We
expect that this generalizes to a n-parton state.
We write (4.18) as

γϕ̂3 ¼ −
1

2
ð∂2x1 þ ∂

2
x2 þ ∂

2
x3Þϕ̂3 þ ðjx1 − x2j þ jx2 − x3j

þ jx3 − x1jÞϕ̂3;

γ ¼ γ̄3
π

�
π

2 · 27

�1
3

: ð4:20Þ

Since we are interested in the relative motion of the quarks,
we introduce the Jacobi coordinates,

z1 ¼
x1 þ x2 þ x3

3
; z2 ¼

x2 − x1ffiffiffi
2

p ;

z3 ¼
ffiffiffi
2

3

r �
x3 −

x1 þ x2
2

�
: ð4:21Þ

We note that

x1 − x2 ¼ −
ffiffiffi
2

p
z2; x2 − x3 ¼

1ffiffiffi
2

p ðz2 −
ffiffiffi
3

p
z3Þ;

x3 − x1 ¼
1ffiffiffi
2

p ðz2 þ
ffiffiffi
3

p
z3Þ; ð4:22Þ

The relative motion of the quarks then becomes

γψ ¼ −
1

2
ð∂2z2 þ ∂

2
z3Þψ þ Vðz2; z3Þψ ; ð4:23Þ

where the potential V is given by

Vðz2; z3Þ ¼
ffiffiffi
2

p
jz2j þ

1ffiffiffi
2

p jz2 −
ffiffiffi
3

p
z3j þ

1ffiffiffi
2

p jz2 þ
ffiffiffi
3

p
z3j:

ð4:24Þ

The equation can be written in a more familiar and useful
form using the polar coordinates. We define

z2 ¼ −r sinϕ; z3 ¼ −r cosϕ; ð4:25Þ

where

0 ≤ r < ∞; 0 ≤ ϕ < 2π: ð4:26Þ

The lightlike separations of the partons are given in terms
of the polar coordinates by

19I would like to mention that a similar equation to (4.18) was
previously obtained in [18] by K. Hornbostel for a baryon. I thank
Igor Klebanov for bringing this result to my attention. However,
the equation was not solved. The author is not aware of any other
work.
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x1 − x2 ¼ −
ffiffiffi
2

p
z2 ¼

ffiffiffi
2

p
r sinϕ;

x2 − x3 ¼
1ffiffiffi
2

p ðz2 −
ffiffiffi
3

p
z3Þ ¼

ffiffiffi
2

p
r sin

�
ϕþ 2

3
π

�
;

x3 − x1 ¼
1ffiffiffi
2

p ðz2 þ
ffiffiffi
3

p
z3Þ ¼

ffiffiffi
2

p
r sin

�
ϕþ 4

3
π

�
: ð4:27Þ

This follows from (4.25) and (4.22). The different sectors or
orderings in the original and new coordinates are related as
follows:

x1 > x2 > x3; i:e:; 0 < ϕ <
1

3
π;

x1 > x3 > x2; i:e:;
1

3
π < ϕ <

2

3
π;

x3 > x1 > x2; i:e:;
2

3
π < ϕ < π;

x3 > x2 > x1; i:e:; π < ϕ <
4

3
π;

x2 > x3 > x1; i:e:;
4

3
π < ϕ <

5

3
π;

x2 > x1 > x3; i:e:;
5

3
π < ϕ < 2π: ð4:28Þ

In terms of the polar coordinates, the Schrödinger
equation now becomes

Hψ ¼ γψ ; ð4:29Þ

where H is the Hamiltonian,

H ¼ −
1

2

�
∂
2

∂r2
þ 1

r
∂

∂r
þ 1

r2
∂
2

∂ϕ2

�

þ
ffiffiffi
2

p
r

�
j sinϕjþ

���� sin
�
ϕþ 2π

3

�����
þ
���� sin

�
ϕþ 4π

3

�����
�
; ð4:30Þ

and the wave function satisfy the symmetry,20

ψðr;ϕÞ ¼ −ψ
�
r;ϕþ π

3

�
; ð4:31Þ

which also implies

ψðr;ϕÞ ¼ ψðr;ϕþ 2πÞ: ð4:32Þ

Note also that the equation is invariant under the parity
ϕ → −ϕ. We will later show that this implies a Neumann

boundary condition on the wave function. Thus, we only
need to consider the sector,

�
1

2
p2
r þ

1

2r2
p2
ϕ þ 2

ffiffiffi
2

p
r sinϕ − γ

�
ψðr;ϕÞ ¼ 0;

π

3
< ϕ <

2π

3
; ð4:33Þ

with the antiperiodic boundary condition,

ψ

�
r;
π

3

�
¼ −ψ

�
r;
2π

3

�
; ð4:34Þ

and the usual boundary conditions at r ¼ 0 (i.e., the wave
function must be finite at the origin and it must be also
single valued as we approach the origin from different
angular directions) and r ¼ ∞ (i.e., the wave function must
be normalizable),

ψð0;ϕÞ ¼ 0; ψð∞;ϕÞ ¼ 0; ð4:35Þ

where

p2
r ¼ p̄2

r −
1

4r2
; p̄r ¼

−i
r
1
2

∂

∂r
r
1
2; pϕ ¼ −i

∂

∂ϕ
; ð4:36Þ

are the (generalized) radial and angular momenta operators.
We slightly rewrite (4.33) and (4.34) in the following

form:

�
1

2
p2
r þ

1

2r2
p2
ϕ þ pr cosðϕ − ϕ0Þ − γ

�
ψðr;ϕÞ ¼ 0;

ϕ0 −
π

6
< ϕ < ϕ0 þ

π

6
; ð4:37Þ

where

ψðr;ϕ0 − π=6Þ ¼ −ψðr;ϕ0 þ π=6Þ; ð4:38Þ

and the constant p ¼ 2
ffiffiffi
2

p
. The phase ϕ0 takes different

values depending on which sector or domain ϕ belongs to.
It only takes the values�π=6;�π=2;�5π=6 since there are
only six domains in total. In (4.33), ϕ0 ¼ π=2. Also note
that (4.37) and (4.38) are invariant under ϕ → 2ϕ0 − ϕ.
Thus, the equation has a Z2 reflection symmetry.
We note that this equation together with the cyclic

constraint (4.31) describes a particle confined in (or to
the surface of) an inverted hexagonal pyramid potential;
see Fig. 2. The hexagonal base is at infinity. That is, it is
open upwards and unbounded. The potential has the same
symmetry group as the base. In general, the general
equation (4.1) describes a particle confined to the surface
of an inverted t-gonal pyramid potential in n dimensions.
We saw that t ¼ 1 for n ¼ 2, and t ¼ n! for n ¼ 3.

20Recall that the fermions are Hermitian. Also, in two
dimensions, we can impose simultaneously both Weyl and
Majorana conditions.
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We also note that the Eq. (4.37) describes a nonrelativ-
istic point electric dipole in a plane angular sector with
electric field proportional to r in an appropriate unit.21 The
plane angular sector has (wedge) angle π=3. The quantity p
is the magnitude of the electric dipole moment in an
appropriate unit, and the phase ϕ0 is the electric field
angular direction. In general, we expect such interpretation
to arise in the general case (4.1).
The trajectories of charged particles in the presence of

electric field are parabolic. Thus, it is very convenient to
use parabolic coordinates to simplify the equation further.
We introduce the parabolic coordinates with the definitions,

r sin ðϕ − ϕ0Þ ¼ ξστ; r cos ðϕ − ϕ0Þ ¼
1

2
ðτ2 − σ2Þ;

ð4:39Þ

where ξ ¼ �1 is introduced for convenience. We assume,
without loss of generality, σ ≥ 0. Note that at σ ¼ 0, i.e.,
ϕ ¼ ϕ0, one can choose either τ ≥ 0 or τ ≤ 0. In what
follows, we assume ξτ ≥ 0 at σ ¼ 0. In these coordinates,
the Eq. (4.37) now becomes

−
1

2

1

ðσ2 þ τ2Þ ð∂
2
σ þ ∂

2
τÞψ þ 1

2
pðτ2 − σ2Þψ − γψ ¼ 0;

jτj ≥ χσ; χ ¼ 2þ
ffiffiffi
3

p
: ð4:40Þ

The equation has decomposed into two parts. We note that

−
1

2
∂
2
σψ −

1

2
pσ4ψ − γσ2ψ ¼−

�
−
1

2
∂
2
τψ þ 1

2
pτ4ψ − γτ2ψ

�
;

jτj≥ χσ: ð4:41Þ

Therefore, this equation can naturally be solved using the
separation of variables method. We write the wave function
as a product of two functions as

ψðτ; σÞ ¼ TðτÞSðσÞ: ð4:42Þ

This ansätz leads to the equation,

S00

S
þ pσ4 þ 2γσ2 ¼ −

�
T 00

T
− pτ4 þ 2γτ2

�
; jτj ≥ χσ:

ð4:43Þ
Thus, for this equation to hold for all values of τ and σ, we
need to demand

−
d2T
dτ2

þ ðpτ4 − 2γτ2 − lÞT ¼ 0;

−
d2S
dσ2

− ðpσ4 þ 2γσ2 − lÞS ¼ 0; ð4:44Þ

where l is a constant and jτj ≥ χσ. The separation constant l
is determined by imposing the appropriate boundary
conditions on T and S. Note that S≡ TðiσÞ. Thus, we
only need to solve the first equation.
The conditions (4.35) and (4.38) on the wave function

are now given by

Tð�∞Þ ¼ 0; TðτÞ ¼ −Tð−τÞ: ð4:45Þ
Consider the case τ > 0. We write T as

TðτÞ ¼ e−aτ
3−bτHðτÞ; a ¼ p

1
2

3
¼ 2

3
4

3
;

b ¼ −
γ

p
1
2

¼ −
γ

2
3
4

: ð4:46Þ

Plugging this into the equation for T, we get

d2H
dz2

− ð3z2 þ ξÞ dH
dz

− ð3z − δÞH ¼ 0; ð4:47Þ

where

z ¼ η
1
3τ; η ¼ 2a; ξ ¼ 2b=η

1
3; δ ¼ ðb2 þ lÞ=η2

3:

ð4:48Þ
The function Hðδ; 0; ξ; zÞ is the triconfluent Heun function
[38]. The triconfluent Heun function Hðα; β; ν; zÞ satisfies
the equation,

d2H
dz2

− ð3z2 þ νÞ dH
dz

− ðð−β þ 3Þz − αÞH ¼ 0: ð4:49Þ

Since (4.37) is the two-dimensional generalization of (4.8),
the triconfluent Heun function can be considered as the
generalization of Airy function.

FIG. 2. The confining potential that a bound state of three
quarks sees.

21Alternatively, it describes a unit point charge in a constant
electric field background. The unit charge can be treated as a
dipole with dipole moment proportional to r⃗. The constant
electric field has the angular direction ϕ0.
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The solution for T is then given by

TðτÞ ¼
8<
:

exp
h
−
�
23=4

3
τ2 − 2−3=4γ

�
τ
i
Hðδ; 0; ξ; η1=3τÞ; τ > 0;

− exp
h�

23=4

3
τ2 − 2−3=4γ

�
τ
i
Hðδ; 0; ξ;−η1=3τÞ; τ < 0:

ð4:50Þ

We need to impose a boundary condition at ϕ ¼ ϕ0,
i.e., at σ ¼ 0. In general, SðσÞ has a definite parity. This
corresponds to the following two possible boundary con-
ditions. One boundary condition is

S0ðσÞjσ¼0 ¼ 0: ð4:51Þ

The other boundary condition is

SðσÞjσ¼0 ¼ 0: ð4:52Þ

However, we note that ϕ ¼ ϕ0 is the fixed point of the Z2

reflection symmetry mentioned above. Thus, at σ ¼ 0, SðσÞ

must vanish. That is, SðσÞ is an odd function. Therefore,
SðσÞ ¼ cTðiσÞ for some constant c.
The wave function should be also continuous at ϕ −

ϕ0 ¼ −π=6 and ϕ − ϕ0
0 ¼ π=6, where ϕ0

0 ¼ ϕ0 − π=3. We
next show that indeed it is continuous. Let ψϕ0

ξ ðτ; σÞ
denotes the wave function in the sector ϕ0 with ξ ¼ þ1
or ξ ¼ −1. We thus have from (4.31) that

ψ
ϕ0
0

ξ0 ðτ; σÞ ¼ −ψϕ0

ξ ðτ; σÞ: ð4:53Þ

We also have from (4.42) and (4.50) with ξ ¼ þ1 that

ψϕ0

þ1ðτ; σÞ ¼
	
TðτÞSðσÞ; τ > σ > 0; i:e:; 0 < ϕ − ϕ0 < π=6;

−Tð−τÞSðσÞ; −τ > σ > 0; i:e:; − π=6 < ϕ − ϕ0 < 0;
ð4:54Þ

where Tð0Þ ¼ 0, Tð∞Þ ¼ 0, and SðσÞ ¼ cTðiσÞ. Therefore, we observe that with ξ0 ¼ −ξ, the wave function is continuous.

ψ
ϕ0
0

−1ðτ; σÞ ¼
	−Tð−τÞSðσÞ; −τ > σ > 0; i:e:; 0 < ϕ − ϕ0

0 < π=6;

TðτÞSðσÞ; τ > σ > 0; i:e:; − π=6 < ϕ − ϕ0
0 < 0:

ð4:55Þ

This also implies the wave function ψðr;ϕÞ is even under
the symmetry ϕ → −ϕ. Therefore, the first derivative of ψ
with respect to ϕ at ϕ ¼ 0 must vanish. That is,

ðτ∂σ − σ∂τÞψϕ0

þ1ðτ; σÞjτ¼χσ ¼ 0: ð4:56Þ

This further constrains the wave function. In general,
solving the Neumann boundary condition (4.56) is difficult
since it requires some knowledge of the properties of the
Heun function. However, I will next show indirectly that it
leads to a reasonable answer.
Comments:
(1) The constraint (4.56) ensures that the wave function

matches smoothly across the boundaries of the
different sectors. The Neumann boundary condition
should be viewed as a constraint on l. This will
become evident as we go along. It is trivially
satisfied at σ ¼ 0, τ ¼ 0.

(2) For complex z ≔ τ þ iσ, the anti-Stokes lines for
TðzÞ divide the complex plane into six domains.
Interestingly, the lines are given by the directions ϕ0.
They trace their origin from the cyclic symmetry.

(3) For small σ and large τ, i.e., near ϕ ¼ ϕ0 and far
away from the origin r ≫ 1, we have ϕ − ϕ0 ¼
2σ=τ and r ¼ τ2=2. Interestingly, in this limit, the
Eq. (4.44) reduces to

�
−
1

2

d2

dr2
−

l
4r

þ pr − γ

�
RðrÞ ¼ 0; SðσÞ ¼ c · σ;

ð4:57Þ

where RðrÞ ¼ r1=4TðrÞ and c is some constant. Note
the appearance of the Cornell potential [39,40]. This
is reasonable since it is known to describe well
confinement and/or bound states of heavy quarks in
(1þ 3)D [41]. In fact, the first equation in (4.44) in
general describes, interestingly, a particle in two
dimensions in a Cornell potential. It reduces to

�
1

2
p2
r þ

p2
ϕ

2r2
−

l
4r

þ pr − γ

�
χðr;ϕÞ ¼ 0; ð4:58Þ

where pr and pϕ are the radial and angular momenta
(4.36), and the ϕ dependence of χðr;ϕÞ is expðimϕÞ
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for some known m; see Appendix B for the details.
The equation for R reduces in the strict large r
limit to Airy equation. The wave function is ψ0≈
ðϕ − ϕ0Þ · r1=4 · Ai. Thus, the spectrum is given by
(4.15) and (4.20) with p ¼ 2

ffiffiffi
2

p
,

γ̄ðj;lÞ3 ¼ ð2 · 27 · π2Þ13γ ¼ 3

�
3π2

�
jþ 1

2

�
þ � � �

�2
3 þ � � � ;

ð4:59Þ

where j is large integer and � � � denotes corrections
that involve j and l. The factor 3 is due to the three
flux tubes. In general, we expect a factor of n. n is
the number of flux tubes or adjoint quarks. This is
the case since the quarks are on a closed string, and
each quark is connected to two flux tubes.

The spectrum γ in general is determined by the boundary
conditions at τ ¼ 0 and τ ¼ ∞, and the smoothness
condition (4.56). We stress that the ansätz (4.33) and thus
the conjecture holds provided we find nontrivial and real
values for the spectrum γ that are consistent with the
boundary conditions and smoothness of the wave func-
tion (4.56).
In this paper, we studied analytically the mass spectrum

of the low-lying bound states with n constituent adjoint
quarks of equal mass m in two-dimensional adjoint QCD
in the case n ¼ 3. In the absence of the interaction term
or λ ¼ 0, in general, the mass spectrum M is a smooth
surface and symmetric about the minimum value given by
M0 ¼ nm. We studied the spectrum around this minimum
value at weak coupling or heavy quarks limit α ≫ 1. In the
n ¼ 3 case, we obtained the result (4.59) for the spectrum
and, to the best of my knowledge, this result has not been
obtained before. We also determined the nonrelativistic
Schrödinger equation that describes the low-lying bound
states for any n in the heavy quarks limit. Also this general
equation, to the best of my knowledge, has not been
reported elsewhere in the literature before.
We hope to provide a detailed analysis of the spectrum γ

beyond the approximate answer (4.59) and related quan-
tities in a future paper. We also hope to study the n ≥ 4
cases in a separate paper in the future.
The same analysis can be also done for the case where

the fermions have different masses. We hope to study this
and extend the discussion to higher orders in the coupling
in the future.
In Appendix A, we provided representative plots of

periodic motions in the associated classical system.
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APPENDIX A: 3-PARTON CLASSICAL
DYNAMICS

The associated classical system to the n-body quantum
system (4.1) is described by the Hamiltonian,22

H ¼ 1

2

Xn
i¼1

p2
i þ Vðq1;…; qnÞ; ðA1Þ

where the potential V is given by

Vðq1;…; qnÞ ¼
Xn
i¼1

jqi − qiþ1j; qnþ1 ≔ q1: ðA2Þ

We hope to study the large n limit of the Hamiltonian (A1)
by applying the collective field method [42] in the future.
We also hope to study entanglement entropy for coupled
mesons in a similar approach to that of [43] in a future
paper.
In this appendix, we provide representative plots of

classical periodic motions that possibly correspond bound
states in the 3-parton quantum system. We will choose the
center of mass position to be zero; thus, z1ðtÞ ¼ 0. The
classical Hamiltonian in this case is given by

H ¼ 1

2
p2
2 þ

1

2
p2
3 þ Vðz2; z3Þ; ðA3Þ

where the potential Vðz2; z3Þ is given by (4.24). The
equations of motion are given by Hamilton’s equations,

_z2 ¼ p2; _z3 ¼ p3; − _p2 ¼
∂H
∂z2

; − _p3 ¼
∂H
∂z3

:

ðA4Þ

In this classical system, there are two classes of closed
periodic orbits, depending on initial conditions. We hope to
discuss their semiclassical quantization in relation to the
spectrum of the quantum system in a future work.
In the first class, the trajectories of the three quarks, i.e.,

x1ðtÞ; x2ðtÞ, and x3ðtÞ, meet together only at zero position.
In terms of z2ðtÞ and z3ðtÞ, this implies, z2ðtÞ and z3ðtÞmeet
or cross each other only at the origin. Thus, there is no
exchange of momentum. The energies along the trajectories
z2ðtÞ and z3ðtÞ are conserved independently. A typical plot
is given in Fig. 3.

22At the quantum level, HϕðmÞ
n ¼ EðmÞ

n ϕðmÞ
n , EðmÞ

n ¼ γ̄ðmÞ
n =

ð2π2Þ1=3n.
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In the second class of closed periodic orbits, the
trajectories z2ðtÞ and z3ðtÞ meet at least once away from
zero position before they both meet again at the origin for
the first nonzero time. In this case, there is an exchange of
momentum between z2 and z3. However, the total energy is
conserved. A typical plot is given in Fig. 4.

APPENDIX B: THE QUARTIC ANHARMONIC
OSCILLATOR

The quartic anharmonic oscillator is described by the
Eq. (4.44),

−
d2T
dτ2

þ ðpτ4 − 2γτ2 − qÞTðτÞ ¼ 0; p > 0: ðB1Þ

Here, q is the energy of the oscillator and thus, positive, γ is
the quadratic coupling and p is the quartic coupling.

We first note that the radial part of the equation,

�
1

2
p2
r þ

p2
ϕ

2r
þ pr − γ

�
ψðr;ϕÞ ¼ 0; ðB2Þ

where

p2
r ¼ −

1

r2l
∂

∂r
r2l

∂

∂r
¼ −

1

rl
∂
2

∂r2
rl þ lðl − 1Þ 1

r2
;

p2
ϕ ¼ −

∂
2

∂ϕ2
; ðB3Þ

is equivalent to (B1) with l ¼ 1=4. To see this, we write

FIG. 3. All the masses are taken to be one in mass unit. On the left side, we have the trajectories x1ðtÞðblueÞ, x2ðtÞðorangeÞ, and
x3ðtÞðgreenÞ. On the right side, we have z2ðtÞ ¼ ðx2ðtÞ − x1ðtÞÞ=

ffiffiffi
2

p
(blue) and z3ðtÞ ¼

ffiffiffiffiffiffiffiffi
3=2

p
x3ðtÞ (orange). At t ¼ 0, _x1 ¼ ð5=3Þ_x2,

_x2 ¼ 1, _x3 ¼ −_x1 − _x2. Here, the plot is for a half period.

FIG. 4. All the masses are taken to be one in mass unit. On the left side, we have the trajectories x1ðtÞðblueÞ, x2ðtÞðorangeÞ, and
x3ðtÞðgreenÞ. On the right side, we have z2ðtÞ ¼ ðx2ðtÞ − x1ðtÞÞ=

ffiffiffi
2

p
(blue) and z3ðtÞ ¼

ffiffiffiffiffiffiffiffi
3=2

p
x3ðtÞ (orange). At t ¼ 0, _x1 ¼ α_x2,

_x2 ¼ 1, _x3 ¼ −_x1 − _x2, α ≈ 1.880810. α is given by the real solution of a polynomial of degree 8. Here, the plot is for a half period.
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r ¼ 1

2
τ2; ψðr;ϕÞ ¼ TðrÞe

ffiffi
q
2

p
ϕ: ðB4Þ

This gives precisely (B1).
We write (B2) as

�
−
1

2

d2

dr2
þ lðl − 1Þ

2r2
−

q
4r

þ pr − γ

�
RðrÞ ¼ 0; ðB5Þ

where l ¼ 1=4 and RðrÞ ¼ rlTðrÞ ¼ r1=4TðrÞ. As it is clear
from (B3), the 1=r2 term comes from the radial momentum
operator. We note that (B5) can be put in the form,

�
1

2
p2
r þ

l2

2r2
−

q
4r

þ pr − γ

�
χðrÞ ¼ 0; ðB6Þ

where χðrÞ ¼ r−1=2RðrÞ, pr is the two-dimensional radial
momentum operator (4.36), and l can be thought of as the
effective orbital angular momentum. Note that the effective
potential is convex everywhere; see (B5) [44]. Therefore,
the quartic oscillator (4.44) equivalently describes a particle
in two dimensions in a Cornell potential,

VðrÞ ¼ −
q
4r

þ pr: ðB7Þ

In the case q ≠ 0, the large r limit of (B5) gives

�
−
1

2

d2

dr2
−

q
4r

þ pr − γ

�
RðrÞ ¼ 0: ðB8Þ

Note we kept the 1=r term to account for the q dependence.
We also note that for small r (B5) is the (radial part of the)

hydrogen problem. In this limit, the equation reduces to

�
−
1

2

d2

dr2
−

q
4r

þ lðl − 1Þ
2r2

− γ

�
RðrÞ ¼ 0: ðB9Þ

Here, the coupling γ is the energy of the particle, and the
energy q measures its charge. The solutions are given by
Whittaker functions.
Note also (B9) is equivalent to setting p ¼ 0 in (B1).

Thus (depending on the sign of γ), it also describes the
harmonic oscillator.
We note that in the case in which q ¼ 0 the Eq. (B5)

reduces to

�
−
1

2

d2

dr2
þ lðl − 1Þ

2r2
þ pr − γ

�
RðrÞ ¼ 0: ðB10Þ

The solutions give a relation between the couplings p and γ
which corresponds to a state in (B1) with zero energy. A
semiclassical calculation [24]23 gives

γðn;lÞ ¼
�
3

4
π · p

�
nþ l

2

��2
3

: ðB11Þ

In the large r limit, the Eq. (B10) further reduces to

�
−
1

2

d2

dr2
þ pr − γ

�
RðrÞ ¼ 0: ðB12Þ

In this limit, the solutions are given by Airy functions. γ is
given by (B11) with l ¼ 0 and large n.
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