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The two-point string amplitude at tree level in flat spacetime reproduces the expected expression for free
particles. This has been proven by Erbin et al. in [J. High Energy Phys. 07 (2019) 139.] by two methods.
Here, we provide an alternative proof of this result. Our method consists in considering a timelike Liouville
direction as a regularization parameter, which suffices to break time translation invariance and, at the same
time, to stabilize the residual conformal symmetry in the worldsheet. This allows taking a limit and
restoring Poincaré symmetry in a controlled way, thus reproducing the correct expression of the two-point
amplitude.
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I. INTRODUCTION

In [1], Erbin, Maldacena, and Skliros showed that the
two-point string amplitude at tree level in flat spacetime
reproduces the expected expression for free particles.
Proving this amounts to show how to stabilize the residual
symmetry that persists after fixing the two vertex operators
on the projective sphere, or, more precisely, how the
divergent denominator that comes from modding out such
residual symmetry is canceled by another divergence that
comes from the integration over a zero mode in the
noncompact target spacetime. In a two-point correlation
function, one only has at hand two vertices to be fixed on
the worldsheet, while three are needed at tree level to cancel
the volume of the noncompact conformal Killing group:
this produces a 1=∞ factor. On the other hand, in the two-
point string amplitude, since the states are on shell, the
momentum conservation directly implies the energy con-
servation, and this yields a singular factor δð0Þ ¼ ∞. That
is to say, the latter singularity follows from time-translation
invariance. Interestingly, both infinities cancel each other,
producing the standard contribution to the S matrix of a
quantum field theory, as required by unitarity [1]. This
observation turns out to be important as the standard lore in
the literature is that the string two-point amplitude on the
sphere is zero [2]: for example, in seminal papers we read
that, if two vertex operators are inserted, then one should
fix two points and it remains to divide out by the volume of
the isotropy subgroup leaving two points invariant; and
when one fixes these points at zero and infinity, the group is

that of rotations and dilations and again has infinite volume,
so that the two-point function vanishes to tree level.1

The finite, nonzero result for the two-point string
amplitude was recently obtained in [1] by means of two
different methods: First, the authors considered a world-
sheet classical solution that spontaneously breaks time-
translation symmetry. The symmetry is, of course, restored
once the integration over the zero mode of the time
direction (x0) is performed, but the spontaneous symmetry
breaking allows us to have control on the ratio of divergent
quantities. The second method considered in [1] resorts to
the Faddeev-Popov trick. The results of both methods are in
complete agreement and yield a sensible finite answer. This
was later confirmed by other computations: in [5] the
authors considered the operator formalism, and in [6] a
calculation using the pure spinor formalism was addressed.
Here, we will present another, qualitatively different
method to obtain the tree-level two-point string amplitude:
we will consider an explicit symmetry breaking of time
translation by introducing worldsheet operators that, while
preserving conformal invariance in the worldsheet, break
Poincaré invariance in the target space. This amounts to
deal with a solvable time-dependent background in string
theory, which is achieved by considering a timelike
Liouville direction that allows us to take a limit in which
time-translation symmetry is eventually restored in a
controlled way. The paper is organized as follows: In
Sec. II, we will discuss the two-string amplitudes at tree
level and the problem one is dealing with. In Sec. III, we
will introduce the timelike Liouville background that will
work as a regulator to compute the two-point amplitude.
We will discuss in detail each step in the calculation that
leads to the correct result. Section IV contains somePublished by the American Physical Society under the terms of
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1For interesting discussions about the 2-point string amplitudes
see also [3,4].
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concluding remarks on the reflection coefficient and the
correlation functions in the timelike Liouville theory.

II. TWO-POINT STRING AMPLITUDES

Let us start by considering the Polyakov action

SP ¼ 1

2πα0

Z
Σ
d2zðδij∂Xi

∂Xj − ∂X0
∂X0Þ; ð1Þ

with i; j ∈ f1; 2;…; D − 1g. This action describes bosonic
string theory in D spacetime dimensions. A generalization
of our discussion to backgrounds of the form R1;D−1 ×M,
with M being an internal compact manifold is straightfor-
ward, as it is to consider the superstring extension; there-
fore, (1) suffices to make our point.
The N-point string amplitudes are given by the corre-

lation numbers2

ANðpμ
ð1Þ; p

μ
ð2Þ;…; pμ

ðNÞÞ ¼ hVpð1ÞVpð2Þ…VpðNÞ i; ð2Þ

which correspond to integratedN-point correlation functions
of dimension-(1, 1) primary operatorsVpðaÞ in theworldsheet
CFT defined by (1). The label pðaÞ is the D momentum
of the ath vertex (a ¼ 1;…; N) with components pμ

ðaÞ ¼
ðp0

ðaÞ; p
i
ðaÞÞ (μ ¼ 0; 1;…; D − 1 and i ¼ 1;…; D − 1). The

expectation value in (2) is defined on the Riemann surface
that describes the worldsheet Σ; here, Σ ¼ S2. For example,
consider the illustrative example of tachyon N-point ampli-
tudes at tree level, which are defined by integrated correlators
of exponential operators on the Riemann sphere; namely,

hVpð1ÞVpð2Þ…VpðNÞ i

¼
Z
CN

YN
a¼1

d2za

Z
Xμ

ðCP1Þ

DXμe−SP

VolðPSLð2;CÞÞ
YN
b¼1

eip
ðbÞ
μb

Xμb ðzbÞ ð3Þ

with a; b ¼ 1; 2;…; N and μ; μb ¼ 0; 1;…:; D − 1. At tree-
level, we have Σ ¼ S2 with N punctures and thus the path
integral is defined on configurations XμðzÞ with suitable
boundary conditions on CP1nfz1;…; zNg. The factor
VolðPSLð2;CÞÞ in the denominator of (3) is the stabilizer of
the conformal symmetry, which fixes the gauge ambiguity
under projective invariance given by the Möbius group
PSLð2;CÞ ¼ SLð2;CÞ=Z2: Namely, this is the volume of
the noncompact conformal Killing group on the projective
sphere. The subtle point in the computation of the two-point
function is precisely taking care of such volume. The
noncompactness of the conformal Killing group makes
the two-point functions per unit of target space volume to be
zero. The usualway of dealingwith the factorVol−1ðPSLð2;CÞÞ in

the N-point amplitude with N ≥ 3 is fixing 3 out of N
insertion points of the vertices at arbitrary points of CP1,
usually taken to be z1 ¼ 0, z2 ¼ 1 and zN ¼ ∞. This cancels
the volume factor of the group PSLð2;CÞ; see (24) below.
Therefore, for the N-point amplitude with N ≥ 3 the calcu-
lation reduces to integrating over N − 3 points of the
worldsheet N-point correlation functions on the Riemann
sphere. However, there exists an obviously obstruction in the
case N ¼ 2, as a residual symmetry remains after the two
vertices are fixed and there is still a divergent factor in the
denominator. On the other hand, in the case of target space
with Poincaré invariance, there is an extra infinite factor in
the numerator of the amplitude: since the string states are on-
shell, in the case of the two-point amplitude the (D − 1)-
dimensional δ-function coming from the integration over the
zero-modes of the spacelike fields XiðzÞ, which realizes the
momentum conservation, automatically implies energy con-
servation, so producing an already evaluated factor δð0Þ. This
yields an indeterminacy of the form

A2ðpμ
ð1Þ; p

μ
ð2ÞÞ ¼

∞
∞

; ð4Þ

which is necessary to resolve. Resolving it demands to take
control over both divergent quantities. Here, we will do this
by introducing a Liouville dimension as a regulator, which
will provide us with a method to restore time translation
symmetry in a controlled way.
One can anticipate the final result, cf. [1]. Since the string

two-point amplitude is expected to reproduce the standard
free particle expression, which satisfies the requirement

A2ðpμ
ð1Þ; p

μ
ð2ÞÞ ¼

Z
RD

dDq
ð2πÞD−1 Θðq0Þδðqνqν þM2Þ

×A2ðpμ
ð1Þ; q

μÞA2ðqμ; pμ
ð2ÞÞ ð5Þ

with the mass-shell conditionM2 ¼ −qμqμ ¼ ðq0Þ2 − qiqi,
then the two-point amplitude, provided it is finite and
nonzero, has to be

A2ðpμ
ð1Þ; p

μ
ð2ÞÞ ¼ 2p0

ð1Þð2πÞD−1δðD−1Þðpi
ð1Þ þ pi

ð2ÞÞ: ð6Þ

As said in the Introduction, showing that (4) actually
yields (6) demands taking care of the two competing
divergences in the former expression and taking the limit
in a controlled way. This is exactly what the authors of [1]
did. Here, we will consider a rather different approach: we
will break Poincaré invariance explicitly by adding exact
marginal operators in the worldsheet CFT. While preserv-
ing conformal invariance, such operators will suffice to
break the shift symmetry under time-translation X0ðzÞ →
X0ðzÞ þ x0 in a controlled way. This actually means to
find a solvable time-dependent background in string
theory. This can be done by turning X0ðzÞ into a timelike
Liouville direction. This gives a solvable, time-dependent

2For short, we will omit normal ordering symbols ∶∶, as well as
explicit reference to ghost contributions hcc̄ðz1Þ…cc̄ðz3Þighosts.
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dilaton-tachyon deformation of the flat background, which
permits us to restore the Poincaré symmetry in the
appropriate limit, where the deformation vanishes.

III. LIOUVILLE REGULARIZATION

A. Time-dependent background

We will consider a time-dependent deformation of (1).
This consists in turning the time direction X0 into a timelike
Liouville direction. In such case the worldsheet CFT
reduces to timelike Liouville field theory coupled to
D−1 spacelike free scalars Xi (i¼1;2;…;D−1); namely3

S½μ� ¼ 1

4π

Z
Σ
d2z

�
δij∂Xi

∂Xj − ∂X0
∂X0

þ 1ffiffiffi
2

p QRX0 þ 4πμe
ffiffi
2

p
bX0

�
; ð7Þ

with

Q ¼ b −
1

b
: ð8Þ

This admits an interpretation as two-dimensional quantum
gravity coupled to free matter fields. From the string
theory point of view, this corresponds to consider a
time-dependent background with the following dilatonic
and tachyonic configurations

ΦðXÞ ¼ Q

2
ffiffiffi
2

p X0 þΦ0; TðXÞ ¼ 2πμe
ffiffi
2

p
bX0

; ð9Þ

respectively. μ is a positive parameter that controls the
strength of the tachyon wall potential. Its value can be
changed as μ → μ� by shifting

X0ðzÞ → X0ðzÞ þ 1ffiffiffi
2

p
b
log

�
μ�
μ

�
; ð10Þ

which is equivalent to shifting the dilaton expectation value
Φ0 ¼ hΦi, which means rescaling the string coupling. This
is associated to the fact that the value of μ only enters as an
overall factor in the Liouville observables, controlling the
Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling of the
worldsheet correlators. Keeping track of the μ dependence
will be important because, whatever limit of (7) we could
be interested in, this has to be consistent with keeping the
string coupling finite.
The background charge Q in (7) takes the value (8) for

the Liouville potential barrier μe
ffiffi
2

p
bX0

to be an exact
marginal operator. In other words, this ensures the time-
dependent deformation to preserve conformal invariance.

There is a second marginal operator, e−
ffiffi
2

p
X0=b, which, in the

timelike theory, has the opposite sign in the exponent. The
third term in (7), which is the dilaton term, involves
the scalar curvature R, which in the conformal gauge
has to be understood as keeping record of a δ-function
contribution to the S2 curvature coming from the point at
infinity in CP1.
The central charge of the theory defined by action (7) is

c ¼ D − 6Q2 ¼ D − 6ðb − 1=bÞ2; ð11Þ

which, provided b ∈ R, lies in the semi-infinite segment
−∞ < c ≤ D (with the Liouville contribution to the central
charge being cL ¼ c −Dþ 1 ¼ 1–6Q2). Notice that we
could have considered a more general background of the
form R1;D−1 ×M, and in that case (11) would have
received an extra term cM. We take M ¼ TD−26 for
simplicity.
Here, we are interested in the Liouville operator only as a

regularization trick that will allow us to obtain a finite result
for the flat space two-point amplitude. In other words, we
will compute the two-point function in the time-dependent
background and, after that, we will proceed to turn off the
Liouville deformation and restore time translation sym-
metry. More precisely, the specific limit we want to take is

b ¼ 1þ ε → 1; Q ≃ 2ε → 0; ð12Þ

and, at the same time,

μ ∼ ϵ → 0: ð13Þ

The latter amounts to keep the string coupling finite while
turning off the Liouville deformation. We find convenient
to take πμ ¼ −Q. In the limit (12)–(13), taking into account
the ghosts contribution, cghosts ¼ −26, the critical condition
yields

D ≃ 26þ 24ε2; ð14Þ

which can be thought of as a sort of dimensional regu-
larization in target space. Target space dimensional regu-
larization using the Coulomb gas approach has been
considered in the context of superstring amplitudes in [7].

B. Liouville two-point function

The two-point tachyon amplitude in the theory defined
by (7) is given by

A2ðpμ
ð1Þ;p

μ
ð2ÞÞ ¼

Z
Xμ

ðCP1Þ

DX0DXie−S½μ�

VolðResÞ ei
ffiffi
2

p
pð1Þ
i1
Xi1 ð0Þþ ffiffi

2
p

αX0ð0Þ

×ei
ffiffi
2

p
pð2Þ
i2
Xi2 ð1Þþ ffiffi

2
p

αX0ð1Þ; ð15Þ3We set α0 ¼ 2 hereafter.

REMARKS ON THE TWO-POINT STRING AMPLITUDES PHYS. REV. D 107, 106021 (2023)

106021-3



where we have fixed z1 ¼ 0 and z2 ¼ 1, and where the
Liouville momenta are taken to be α ¼ Q=2þ ip0

a; here,
a ¼ 1, 2 while i; ia ¼ 1;…; D − 1 and μ ¼ 0; 1;…; D − 1.
These values of α are the natural generalization of the
momentum of normalizable states in spacelike (c ≥ 25)
Liouville field theory.
The nontrivial part of the calculation comes from the

Liouville piece, which is the non-Gaussian contribution to
the worldsheet theory. Due to the exponential form of the
vertices VpðaÞ , the integral over the zero modes (xi) of
the spacelike fields XiðzÞ (i ¼ 1;…; D − 1) produces a
momentum δ-function. For other string states, such as
massless states, the same computation holds. This means
that we can separate that dependence as follows:

A2ðpμ
ð1Þ; p

μ
ð2ÞÞ

¼ ð2πÞD−1δD−1ðpi
ð1Þ − pi

ð2ÞÞlimε→0
A0

2ðp0
ð1ÞÞ; ð16Þ

where A0
2ðp0Þ stands for the Liouville factor

A0
2ðp0

1Þ ¼
Z
X0

ðCP1Þ

DX0e−SL½μ�

VolðResÞ e
ffiffi
2

p
αX0ð0Þe

ffiffi
2

p
αX0ð1Þ; ð17Þ

with the timelike Liouville action SL½μ� ¼ S½μ�−
1
4π

R
Σ d

2z∂Xi∂Xi. Therefore, the problem reduces to that
of solving the timelike Liouville two-point function (17) in
the limit of the Liouville central charge cL → 1. This limit
is known to be subtle, especially in what regards the three-
point function, cf. [8]; nevertheless, as we will see, in the
case of the two-point function it comprises no major
difficulty and leads to the correct result.

C. Integration of the zero mode

Let us first integrate the zero mode of X0ðzÞ. In order to
do so, let us split the field in its expectation value hX0i ¼ x0

and its fluctuations X̃0ðzÞ around it; namely, we make
X0ðzÞ ¼ X̃0ðzÞ þ x0, with hX̃0i ¼ 0. This results in

A0
2ðp0

1Þ ¼
Z
X̃0

ðCP1Þ

DX̃0

VolðResÞ

× e
1
4π

R
CP1

½ð∂X̃0Þ2− Qffiffi
2

p RX̃0�e
ffiffi
2

p
αX̃0ð0Þe

ffiffi
2

p
αX̃0ð1Þ

×
Z
R
dx0e

ffiffi
2

p
x0ð2α−Q

8π

R
CP1

RÞe−μ
R
C
expð ffiffi

2
p

bX0Þ; ð18Þ

which we can write in the following form:

A0
2ðp0

1Þ ¼
Z
X̃0

ðCP1Þ

DX̃0e−SL½μ¼0�

VolðResÞ e
ffiffi
2

p
αX̃0ð0Þe

ffiffi
2

p
αX̃0ð1Þ

×
Z
R
dx0

Z
Rþ

dηe
ffiffi
2

p
x0ð2α−Q

8π

R
CP1

RÞe−μη

× δ

�
η − e

ffiffi
2

p
bx0

Z
C
e

ffiffi
2

p
bX̃0

�
ð19Þ

by introducing a δ-function. The integral in η goes overR≥0

because the marginal operator
R
C d

2z expð ffiffiffi
2

p
bX0ðzÞÞ has

bounded support. Now, we can use basic properties of the
δ-function4 to write

A0
2ðp0

1Þ ¼
Z
X̃0

ðCP1Þ

DX̃0e−SL½μ¼0�

VolðResÞ e
ffiffi
2

p
αX̃0ð0Þe

ffiffi
2

p
αX̃0ð1Þ

×
Z
R
dx0

Z
Rþ

dη e
ffiffi
2

p
x0ð2α−Q

2
χðCP1ÞÞ

× δ

�
x0 þ 1ffiffiffi

2
p

b
log

�
η−1

Z
C
e

ffiffi
2

p
bX̃0

��
; ð20Þ

where the Euler characteristic of the sphere can be
computed using the Gauss-Bonnet theorem, namely,
1
4π

R
CP1 R ¼ χðS2Þ ¼ 2. Commuting integrals and integrat-

ing over x0, we get5

A0
2ðp0

1Þ ¼
Z
X̃0

ðCP1Þ

DX̃0e−SL½μ¼0�

bVolðResÞ e
ffiffi
2

p
αX̃0ð0Þe

ffiffi
2

p
αX̃0ð1Þ

×

�Z
C
e

ffiffi
2

p
bX̃0

�
s
Z
Rþ

dη η−1−se−μη; ð21Þ

where s ¼ ðQ − 2αÞ=b. The last factor in this expression
produces a factor μsΓð−sÞ together with the insertion of s
marginal operators

R
d2w exp ð ffiffiffi

2
p

bX0ðwÞÞ. This is the
standard trick in the Coulomb gas realization of a non-
compact CFT, cf. [23]. This means that expression (21) has
actually to be written in its operatorial form; namely

A0
2ðp0

1Þ ¼
μsΓð−sÞ

b

Z
Cs

Ys
r¼1

d2wr

Z
X̃0

ðCP1Þ

DX̃0e−SL½μ¼0�

VolðResÞ

× e
ffiffi
2

p
αð1ÞX̃0ð0Þe

ffiffi
2

p
αð1ÞX̃0ð1ÞYs

l¼1

e
ffiffi
2

p
bX̃0ðwlÞ: ð22Þ

It is obvious that this expression is merely formal unless
s ¼ ðQ − 2αÞ=b ¼ −2ip0

1=b is a positive integer number.
In such case, and in the limit b → 1we are interested in, the
energy spectrum in the Euclidean theory turns out to be

4i.e. the composition of the linear functionals, δðfðxÞÞ ¼P
fxi=fðxiÞ¼0g δðx − xiÞ=f0ðxiÞ.
5We absorb a factor

ffiffiffi
2

p
in the definition of the measure.
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ip0 ∈ 1
2
Z<0. However, the physical region corresponds to

complex s, for which (21) can only be taken formally.
Therefore, for generic values of s an analytic extension of
the formula (21) is needed. Such extension amounts to first
solve the integrals for s ∈ Z≥0 and then extend the resulting
expression to s ∈ C. Such an extension, however, is not
uniquely defined as it is an extension of an expression
originally defined over Z>0 to an expression defined over
C. In particular, phase ambiguities arise. Nevertheless, this
procedure happens to be under control and can be carried
out in a very natural way: As a matter of fact, the integrals
involved yield expressions in terms of quotients and
products of Γ-functions and then, at the end, it reduces
to analytically extending combinatorial expressions.

D. Interpretation of (22)

Formula (22) corresponds to an s-point function in the
timelike free boson theory S½μ ¼ 0�. The insertion of the s
integrated operators

R
d2z expð ffiffiffi

2
p

bX0ðzÞÞ have a natural
interpretation: from the conformal field theory point of
view, they are a precise amount of screening operators
needed to screen the background charge Q at infinity. The
presence of integrated marginal operators also admits a
natural target space interpretation: they can be thought of as
the tachyons that constitute the exponential wall; these
tachyons interact among themselves and also with the two
vertices. From string theory perspective, Liouville field
theory coupled to additional matter [free bosons XiðzÞ with
i ¼ 1; 2;…; D − 1] can actually be thought of as a σ-model
describing a tachyon-dilaton background with D − 1 flat
directions and one noncompact X0-dependent direction.
The fact that the s insertions are integrated means that they
are hard sources that constitute the wall, and so they are
integrated over the whole noncompact direction X0.
According to this, the prefactor Γð−sÞ in (22) has the
same interpretation as the one given in [9]; it is the factor
associated to the poles of resonant correlators with a
definite number of tachyon insertions.

E. Alternative derivation of (22)

An alternative way of arriving to expression (22) is to go
back to expression (18) and, there, expand the interaction
term as follows:

e
ffiffi
2

p
x0ð2α−Q

2
χðCP1ÞÞe−μ

R
C
d2w expð ffiffi

2
p

bX0ðwÞÞ

¼ e
ffiffi
2

p ð2α−QÞx0 X∞
s¼0

ð−1Þsμs
s!

e
ffiffi
2

p
bx0s

Z
Cs

Ys
l¼1

ðd2wle
ffiffi
2

p
bX̃0ðwlÞÞ:

Then, we can integrate over the zero mode x0, which only
appears in exponentials. This generates a δ-function factor;
namely

X∞
s¼0

ð−1Þsμsffiffiffi
2

p
s!

δð2αþbs−QÞ
Z
Cs

Ys
l¼1

ðd2wle
ffiffi
2

p
bX̃0ðwlÞÞ

¼ ð−μÞðQ−2αÞ=bδð0Þffiffiffi
2

p ððQ−2αÞ=bÞ!

Z
Cs

YðQ−2αÞ=b

l¼1

ðd2wle
ffiffi
2

p
bX̃0ðwlÞÞ: ð23Þ

The evaluation of this δ-function produces a divergent
factor δð0Þ, which we wrote above in an informal way but
which can be treated more carefully; for example, by
writing

lim
s→Q−2α

b

ð−1Þsμs
s!

δðQ−bs−2αÞ¼ lim
ε→0

ð−μÞQ−2α
b ΓðεÞ

Γð1þðQ−2αÞ=bÞ
¼ μ

Q−2α
b lim

ε→0
Γðð2α−QÞ=b− εÞ:

This reproduces the prefactor in (22).

F. Fixing the Killing conformal group

Now, let us deal with the volume of the conformal
Killing group, i.e. the stabilizer of PSLð2;CÞ. The volume
of this noncompact group can be parametrized as follows:

VolðSLð2;CÞÞ ¼
Z
C3

d2z1d2z2d2w1

jz1 − z2j2jz2 − w1j2jw1 − z1j2
; ð24Þ

which is standard in the string theory amplitude compu-
tations. This permits us to cancel the factor (24) in the
denominator of (22) by simply fixing the two vertex
operators and, along with them, one of the s marginal
operators. As usual, we choose z1 ¼ 0, z2 ¼ 1, and
w1 ¼ ∞. The latter insertion has to be understood as being
accompanied with the appropriate factor that extracts the

singularity, namely, in the limw1→∞jw1j4e
ffiffi
2

p
bX0ðw1Þ. This

yields

A0
2ðp0

1Þ¼
μs

b
Γð−sÞ

Z
Cs−1

Ys
t¼2

d2wt

×
Z
X̃0

ðCP1Þ

DX̃0e−SL½μ¼0�e
ffiffi
2

p
αX̃0ð0Þe

ffiffi
2

p
αX̃0ð1Þe

ffiffi
2

p
bX̃0ð∞Þ

×
Ys
r¼2

e
ffiffi
2

p
bX̃0ðwrÞ; ð25Þ

with s ¼ ðQ − 2αÞ=b. This is exactly the point where the
divergence coming from the residual conformal symmetry
is canceled out. By fixing one screening operator at
w1 ¼ ∞, we manifestly see how the time-dependent back-
ground happens to stabilize the worldsheet residual con-
formal symmetry.
In this way, we are left with an (sþ 2)-point correlation

function of a free theory; namely
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A0
2ðp0

1Þ¼
μmþ1

b
Γð−m−1Þ

Z
Cm

Ym
t¼1

d2wt

×
�
e

ffiffi
2

p
αX̃0ð0Þe

ffiffi
2

p
αX̃0ð1Þe

ffiffi
2

p
bX̃0ð∞ÞYm

r¼1

e
ffiffi
2

p
bX̃0ðwrÞ

�
free

;

ð26Þ

where m¼s−1¼ðQ−2αÞ=b−1¼−2ip0
1=b−1. Therefore,

we can try to solve it by using free field techniques.
However, before doing so, we have to take care of the
following issue: As pointed out before, expressions like
(25) are only well defined for s ∈ Z>1. In order to make
sense out of such a formula for generic values of s, we have
performed an analytic continuation. In order to do so, we
consider the multiple integral expression coming from (26),
we solve it for m ¼ s − 1 ¼ −2ip0

1=b − 1 ∈ Z≥1, we
write the combinatoric factors in terms of quotients of
Γ-functions, and then we analytically extend the final
expression. We do this in detail in the following subsection.

G. Coulomb gas and conformal integrals

The correlators in the timelike free theory on CP1 can be
computed using Green’s function

hX̃0ðwiÞX̃0ðwjÞifree ¼ þ log jwi − wjj2; ð27Þ

which implies

he
ffiffi
2

p
αX̃0ðwiÞe

ffiffi
2

p
bX̃0ðwjÞifree ¼ e2αbhX̃0ðwiÞX̃0ðwjÞifree

¼ jwi − wjj4αb: ð28Þ

Then, applying the Wick theorem, we arrive at the
following integral expression:

A0
2ðp0

1Þ ¼ b−1μmþ1Γð−m − 1Þ

×
Z
Cm

Ym
i¼1

d2wi

Ym
r¼1

jwrj4αbj1 − wrj4αb

×
Ym
t¼1

Yt−1
l¼1

jwt − wlj4b2 ;

which is actually an extension of the Shapiro-Virasoro
integral. This integral has been solved by Dotsenko and
Fateev in [22]. Assuming m ∈ Z≥1, this yields

6

A0
2ðp0

1Þ ¼
ðπμÞmþ1

b
Γð−m − 1ÞΓðmþ 1Þγ−mðb2Þ

×
Ym
r¼1

γðrb2Þγ2ð1þ 2αbþ ðr − 1Þb2Þ
γð2þ 4αbþ ðm − 2þ rÞb2Þ ; ð29Þ

where γðxÞ ¼ ΓðxÞΓ−1ð1 − xÞ. It is convenient to rewrite
this expression using functional properties of the γ-function
and momentarily assuming m ∈ Z>0. Among the proper-
ties of the γ-function we will need, there are the reflection
property γð1 − xÞ ¼ γ−1ðxÞ and the shift property and
γð1þ xÞ ¼ −x2γðxÞ. Using this and the fact m ¼ s − 1 ¼
−b−2 − 2αb−1, we can rewrite one of the factors in (29) as
follows

Ym
r¼1

γðrb2Þγð1þ 2αbþ ðr − 1Þb2Þ

¼
Ym
r¼1

γðrb2Þγð−rb2Þ ¼ ð−1Þs−1
b4ðs−1Þ

1

Γ2ðsÞ : ð30Þ

In a similar way, we can rewrite another factor as follows

Ym
r¼1

γð1þ 2αbþ ðr − 1Þb2Þ
γð2þ 4αbþ ðm − 2þ rÞb2Þ ¼

γðb2 − 2αbÞ
γð1þ b2Þ : ð31Þ

Replacing (30) and (31) in (29) and, again, using some
properties of the γ-function, we finally obtain the following
result

A0
2ðp0

ð1ÞÞ ¼ ðπμγð−b2ÞÞQ−2α
b
γðb−2 þ 2b−1αÞγðb2 − 2bαÞ

ð2α − bþ b−1Þ ;

ð32Þ

which turns out to be the timelike Liouville two-point
function, with α ¼ Q=2þ ip0

ð1Þ.

H. Restoring Poincaré symmetry

Now, we can take the limit (12) of the expression (32),
which actually corresponds to removing the Liouville
deformation and ipso facto restoring time translation
symmetry. Replacing b ¼ 1þ ε in (32), taking the limit
ε → 0, which implies Q ≃ 2ϵ, and using basic properties of
the Γ-function, such as

Γð1þ 2ip0
ð1ÞÞΓð1 − 2ip0

ð1ÞÞ
Γð2ip0

ð1ÞÞΓð−2ip0
ð1ÞÞ

¼ ð2p0
ð1ÞÞ2; ð33Þ

we find

lim
ε→0

A0
2ðp0

1Þ ¼ 2p0
ð1Þlimε→0

�
μπ

2ε

�ðεþ1Þðp0
ð1Þþp0

ð2ÞÞ
; ð34Þ

which here we wrote in terms of the Euclidean momentum
p0
ð1Þ → ip0

ð1Þ, i.e. α ¼ −p0
ð1Þ ¼ −p0

ð2Þ. This expression man-
ifestly shows that the choice (13) was the correct one. On
the one hand, it corresponds to turning off the Liouville
potential by keeping the KPZ scaling finite; on the other
hand, it renormalizes the Liouville cosmological constant μ6We absorb a factor π in the definition of the amplitude.
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as usual in the cL → 1 limit of Liouville theory, cf. [8]. In
fact, we can chose μ� ¼ −Q=π in (10) to finally obtain

A2ðpμ
ð1Þ; p

μ
ð2ÞÞ ¼ 2p0

ð1Þð2πÞD−1δðD−1Þðpi
ð1Þ þ pi

ð2ÞÞ; ð35Þ

with the δ-function in the momenta coming from the
integration over the zero modes of the spacelike fields,
xi. Equation (35) exactly reproduces the free particle
expression (35); cf. (2.15) in [1], (2.51) in [5], and (15)
in [6]. Notice that a different choice for the numerical
coefficient κ≡ πμ�=Q would have been absorbed in the

normalization of the vertices, as VpðaÞ → κp
0
ðaÞVpðaÞ ; this is

because the KPZ scaling of the Liouville N-point functions

in the limit Q → 0 is given by κ−
P

N
a¼0

p0
ðaÞ.

IV. CONCLUDING REMARKS

By considering the Liouville dimension as a regularizing
parameter, we have obtained the correct expression for the
string two-point amplitude (35), including the correct
dependence with the energy, 2p0

ð1Þ. This is consistent with
the normalization in (5); notice that the latter equation can
be written as

A2ðpμ
ð1Þ;p

μ
ð2ÞÞ ¼

Z
RD

dD−1q
ð2πÞD−1

1

2q0
A2ðqμ;pμ

ð1ÞÞA2ðqμ;pμ
ð2ÞÞ:

ð36Þ

The crucial ingredient in our calculation was the
Liouville two-point correlation function; namely
he

ffiffi
2

p
αXðz1Þe

ffiffi
2

p
αXðz2ÞiL ¼ jz1 − z2j4αðα−QÞBLðαÞ, with XðzÞ

being the Liouville field. In relation to the dependence
of the two-point amplitude (35) with the energy, it is worth
not to mistake the Liouville two-point function for the
Liouville reflection coefficient RLðαÞ. While both quan-
tities are closely related, they differ by a factor that is
crucial for our computation; namely RLðαÞ=BLðαÞ ¼
π=ðQ − 2αÞ; see (4.20)–(4.21) in [24]. In fact, if instead
of considering the two-point function we started with the
reflection coefficient, then we would had never gotten the
proper factor 2p0

ð1Þ in (35), but rather

lim
b→1

RLðαÞ ¼ −
π

2p0
ð1Þ

lim
ε→0

A0ðp0
ð1ÞÞ; ð37Þ

recall that α ¼ Q=2þ ip0
ð1Þ. About the factor 2p

0
ð1Þ, see the

discussion around Eq. (4.13) in [25], and see also Eqs. (3.3)
and (A.6) in [26], and Eqs. (4.16) and (4.49) in [27]. All
those references discuss a similar factor appearing in the
two-point function of the SLð2;RÞ WZW model, which is
closely related to the Liouville two-point function [28].

Also in relation to the reflection coefficient in the timelike
theory, it would be interesting to think whether one could
interpret our calculation as that of the particle creation rate
in the time-dependent background, whose analytic con-
tinuation gives the correct result for the two-point function.
As a consistency check of expression (32) for the

timelike Liouville two-point function, we can observe that
this corresponds to the analytic extension b → ib of the
spacelike Liouville two-point function. Also, it is related to
the timelike partition function ZL as the analogous space-
like observables are; namely, we have

lim
p0
ð1Þ→iQ=2

A0
2ðp0

ð1ÞÞ ¼
π2

1þ b2
ZL; ð38Þ

cf. [24]; α¼Q=2þip0
ð1Þ. It would be interesting to explore

an adaptation of our techniques to the computation of the
partition function.
Another important remark is about the three-point

function: Actually, the question might arise as to whether
we are not being too naive when thinking that the limit
b → 1 of the timelike Liouville theory is actually equiv-
alent to recovering the time-translation invariant theory. As
a matter of fact, it is a known result that such cL → 1 limit is
subtle, especially regarding the tree-point function, and that
c ¼ 1 interacting conformal field theories that obey con-
sistency conditions are obtained in such limit [15,16].
In [8], the author showed that two possible nontrivial
c ¼ 1 theories appear as a limit from Liouville theory; this
depends on the possible values of the Liouville momenta
αðaÞ: while for purely imaginary momenta the limiting
theory is identified with the theory proposed in [10], which
is itself a limit of unitary minimal models, for other values
of αðaÞ a different theory is obtained, cf. [11]. The timelike
c ¼ 1 three-point function is known to exhibit special
features. In particular, the limiting procedure connecting
the three-point function to the two-point function is
obstructed due to the existence of a dimension-0 operator,
other than the identity, in the timelike theory [12,15,20].
The special features of the timelike three-point function
were discussed by many authors, and notably by Harlow,
Maltz, and Witten in [12]; see also [13–21] and references
therein and thereof. Our computation, however, only relies
on the expression for the two-point function, for which no
special features are expected to appear and the result was
expected to yield the correct two-point function as shown.
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