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We present localized “particlelike” states composed of a pair of neutral fermions interacting with a scalar
Higgs field and the metric of spacetime, extending the Einstein-Dirac formalism introduced by Finster et al.
[Particlelike solutions of the Einstein-Dirac equations, Phys. Rev. D 59, 104020 (1999)]. We demonstrate
that, when the coupling between the fermions and the Higgs field is strong, there is a class of states in which
the total (ADM) mass no longer increases proportionally to the mass of the constituent fermions; indeed it
decreases. This phenomenon enables fermionic particles with much larger masses than in the Higgs-free
case to form localized states.
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I. INTRODUCTION

The reconciliation of quantum mechanics with general
relativity is one of the main outstanding questions of
modern physics. Despite the absence of a fully satisfactory
theory of quantum gravity, much progress has been made
by treating the gravitational field classically, most notably
perhaps in the prediction of Hawking radiation from black
holes [1]. Often, this “semiclassical” approach focuses on
the construction of quantum field theories in curved
spacetime, but this is limited in its scope. In particular,
modeling the full dynamics of general relativity proves
challenging, and often the gravitational “back-action” of
the matter sector on the spacetime is neglected, or treated as
a small perturbation. Consequently, in order to study
systems in which the effect of back-action is significant,
e.g. those with strong self-gravity, an alternative framework
is required.
These types of system include gravitationally localized

quantum states, in which particles are bound by their
gravitational interaction but the state is prevented from
collapse by the effects of the uncertainty principle. These
are often studied in an approximate framework in which the
matter sector is treated not as a quantum field, but instead as
a first-quantized wave function. In the context of scalar
fields, the resulting localized objects are known as “boson
stars” [2–4], which have been proposed as candidates for
dark matter [5] as well as black hole mimickers [6]. Their
fermionic counterparts [7,8], however, have received sig-
nificantly less attention, due to the added complexity of
spin considerations, as well as their limited astrophysical
applications. Referred to variously as “fermion stars,”
“Dirac stars,” and “Dirac solitons,” these objects could

potentially prove useful as models for the microscopic
structure of Standard-Model particles.
A major breakthrough in the study of fermionic localized

states was made by Finster et al. [9], who generated the first
spherically symmetric, numerical solutions to the coupled
Dirac and Einstein equations. The resulting “particlelike”
states, comprising a pair of neutral fermions, are free from
singularities, and a branch of solutions has been demon-
strated to be stable. Subsequent extensions of their analysis
include charged fermions [10], the coupling to an SU(2)
Yang-Mills field [11], and the cases of one [12] and many
[13–15] fermions.
In this paper we present a hitherto unexplored extension to

this framework: the addition of a Higgs field. This allows the
fermionmass, which in previous analyses has been treated as
an input parameter, to be generated dynamically via the
Higgs mechanism, as is the case for Standard-Model
fermions. By solving the minimally-coupled Einstein,
Dirac, and Higgs equations numerically, we show that
spherically symmetric particlelike solutions exist for a wide
range of parameter values, and are similar in structure to the
original Einstein-Dirac states found in Ref. [9]. Intriguingly,
however,we find a class of solutions inwhich the total energy
of the state (measured by the ADM mass) is no longer
proportional to the mass of its constituent fermions. Instead,
these two mass scales decouple at strong fermion-Higgs
coupling, allowing the ADMmass of the resulting localized
state to lie significantly below the fermion mass, and even to
decrease as the fermion mass increases.
This paper is organized as follows. In Sec. II, we derive

the equations of motion for the Einstein-Dirac-Higgs
system, and in Sec. III discuss the application of these
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to gravitationally localized states. In Sec. IV, we discuss the
anticipated dynamics of the Higgs field, before detailing in
Sec. V the numerical method by which we obtain particle-
like solutions. Examples of these solutions are presented in
Sec. VI, and an analysis of the observed mass-scale
separation is given in Sec. VII. We then briefly discuss
the issue of stability in Sec. VIII before concluding in
Sec. IX with a short summary and discussion.

II. EQUATIONS OF MOTION

We begin by briefly summarizing the derivation of the
equations of motion for a pair of neutral fermions interact-
ing via both gravity and a minimally-coupled real scalar
Higgs field. Much of this is similar to the Einstein-Dirac
case, so we refer the reader to the derivation given in
Ref. [9] for further details. Note, however, that precise
expressions may differ due to the respective sign conven-
tions employed.
The action for the Einstein-Dirac-Higgs system can be

written, using the mostly positive metric signature con-
vention ð−;þ;þ;þÞ, as

SEDH ¼
Z �

R
16πG

þ Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where g≡ detðgμνÞ is the determinant of the spacetime
metric gμν, R is the Ricci scalar, G is the gravitational
constant, and the Lagrangian density for the gravitational
sector has been taken to be of the usual Einstein-Hilbert
form. Note that, here and throughout this paper, we employ
natural units where ℏ ¼ c ¼ 1. We also set G ¼ 1 when
generating numerical solutions, and thus all quantities are
measured in Planck units. The Lagrangian density for the
matter sector can be written as

Lm ¼ Ψ̄ðD − μhÞΨ −
1

2
ð∇νhÞð∇νhÞ − VðhÞ; ð2Þ

whereD is the Dirac operator in curved spacetime, and Ψ̄ is
the usual adjoint spinor. The fermions are minimally
coupled (with coupling strength μ) to a Higgs field h,
which we model as a real scalar field. Hence the fermion
mass μh becomes a locally varying quantity, set by the local
value of h. Note that, without loss of generality, we shall
henceforth take μ > 0. The Higgs potential VðhÞ is taken to
be of the usual “Mexican hat” form,

VðhÞ ¼ λðh2 − v2Þ2; ð3Þ

where the constant λ is a positive dimensionless scaling
factor, and the stable minima of the potential occur at the
vacuum expectation values h ¼ �v. The mass associated
with small displacements around v, which we refer to
henceforth as the Higgs mass, takes the value:

mH ¼ 2v
ffiffiffiffiffi
2λ

p
: ð4Þ

Extremizing the action (1) with respect to the spinor Ψ,
the metric gμν, and the Higgs field h, gives respectively the
Dirac, Einstein, and Higgs equations:

ðD − μhÞΨ ¼ 0; ð5Þ

Gμν ≡ Rμν −
1

2
Rgμν ¼ 8πGTμν; ð6Þ

∇ν∇νh ¼ μΨ̄Ψþ dV
dh

; ð7Þ

where Tμν is the stress-energy tensor. For simplicity, we
seek static, spherically symmetric solutions to this coupled
system, corresponding to energy eigenstates. Using the
usual spherical polar coordinate system ðt; r; θ;ϕÞ, the
metric can be written as

gμν ¼ diag

�
−

1

TðrÞ2 ;
1

AðrÞ ; r
2; r2 sin2 θ

�
; ð8Þ

where the forms of the metric fields TðrÞ and AðrÞ are to be
determined. For the fermionic sector, the simplest case
compatible with spherical symmetry is that of two fermions
arranged in a singlet state. The appropriate ansatz for the
spinor wave function in this case is stated in Ref. [9], and
takes the following form:

Ψa ¼
ffiffiffiffiffiffiffiffiffi
TðrÞp
r

�
αðrÞχa

−iβðrÞσrχa

�
e−iωt: ð9Þ

A detailed discussion of the rationale behind this expres-
sion can be found in Ref. [16]. Here, the two fermions,
identified by their value of a ∈ f1; 2g, are assumed to have
a common energy ω, with their wave functions differing
only via the two-component basis vectors χ1 ¼ ð1; 0ÞT and
χ2 ¼ ð0; 1ÞT. The radial dependence of the spinor is
controlled by the unknown fermion fields αðrÞ and βðrÞ,
which can be identified, in the nonrelativistic limit, with
the fermion and antifermion parts of the wave function
respectively.
Using the ansatzes (8) and (9), we can reduce the

equations of motion (5)–(7) to expressions involving the
fields α, β, A, T and h. To do so, we require the form of
the Dirac operator in curved spacetime, which in general
can be written as D ¼ iγμð∂μ þ ΓμÞ, where Γμ is the spin
connection, and γμ are curved-space generalizations of the
Dirac gamma matrices, chosen to obey the anticommuta-
tion relations fγμ; γνg ¼ −2gμν. Using the vierbein formal-
ism [17], one can relate the curved-space gamma matrices
to their flat-space counterparts, γ̄a, by the relation
γμ ¼ eμaγ̄a. Considering the metric ansatz (8), we find
that the only nonzero vierbein components are ett ¼ T,

LEITH, LEGGAT, HOOLEY, HORNE, and DRITSCHEL PHYS. REV. D 107, 106020 (2023)

106020-2



err ¼
ffiffiffiffi
A

p
and eθθ ¼ eϕϕ ¼ 1, and hence the curved-space

gamma matrices take the following explicit forms:

γt ¼ T γ̄0; ð10Þ

γr ¼
ffiffiffiffi
A

p
ðγ̄1 sin θ cosϕþ γ̄2 sin θ sinϕþ γ̄3 cos θÞ; ð11Þ

γθ ¼ 1

r
ðγ̄1 cos θ cosϕþ γ̄2 cos θ sinϕ − γ̄3 sin θÞ; ð12Þ

γϕ ¼ 1

r sin θ
ð−γ̄1 sinϕþ γ̄2 cosϕÞ; ð13Þ

where the flat-space gamma matrices are related to the
usual Pauli matrices, as follows:

γ̄0 ¼
�
1 0

0 −1

�
; γ̄i ¼

�
0 σi

−σi 0

�
: ð14Þ

Utilizing this formalism, it can be shown that the Dirac
operator in curved spacetime can be written as (see Ref. [9]
for details):

D ¼ iγμ∂μ þ
i
2
∇μγ

μ ð15Þ

¼ iγt
∂

∂t
þ iγr

�
∂

∂r
þ 1

r

�
1 −

1ffiffiffiffi
A

p
�
−

T 0

2T

�

þ iγθ
∂

∂θ
þ iγϕ

∂

∂ϕ
: ð16Þ

By applying this to the spinor ansatz (9), the Dirac equation
then reduces to the following two coupled differential
equations:

ffiffiffiffi
A

p
α0 ¼ þ α

r
− ðωT þ μhÞβ; ð17Þ

ffiffiffiffi
A

p
β0 ¼ −

β

r
þ ðωT − μhÞα; ð18Þ

where a prime denotes differentiation with respect to r.
These are identical to those valid in the Einstein-Dirac case,
except that the fermion mass is replaced by μh. Note that
here we are considering only states with positive parity.
To derive an explicit expression for the Einstein equa-

tions, we first calculate the stress-energy tensor by varying
the matter Lagrangian as per the definition:

Tμν ¼
−2ffiffiffiffiffiffi−gp δ

δgμν
ð ffiffiffiffiffiffi

−g
p

LmÞ: ð19Þ

For the fermionic sector, it was shown in Ref. [9] that, for a
singlet state, the only contribution to the variation of the
Dirac operator is from the first term in (15). To evaluate
this, the following identities prove useful:

δγμ ¼ 1

2
gνσγσδgμν; ð20Þ

δ
ffiffiffiffiffiffi
−g

p ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν; ð21Þ

δgστ ¼ −gσμgτνδgμν: ð22Þ

The variation of the Higgs terms in the matter Lagrangian is
straightforward, and thus we arrive at the final form of the
stress-energy tensor:

Tμν ¼ −
X2
a¼1

ℜfΨ̄aðiγμ∂νÞΨag þ ð∂μhÞð∂νhÞ

− gμν

�
1

2
ð∂σhÞð∂σhÞ þ VðhÞ

�
; ð23Þ

where, as in the Einstein-Dirac case, the contribution from
each fermion can simply be added. Using the metric and
spinor ansatzes, the nonzero components of the (mixed)
stress-energy tensor are therefore found to be

Tt
t ¼ −

2ωT2

r2
ðα2 þ β2Þ − 1

2
Aðh0Þ2 − VðhÞ; ð24Þ

Tr
r ¼

2T
ffiffiffiffi
A

p

r2
ðαβ0 − βα0Þ þ 1

2
Aðh0Þ2 − VðhÞ; ð25Þ

Tθ
θ ¼ Tϕ

ϕ ¼ 2T
r3

αβ −
1

2
Aðh0Þ2 − VðhÞ: ð26Þ

Note that only two of these are independent, since the
stress-energy tensor is divergenceless, i.e. ∇μTμ

ν ¼ 0.
The components of the Einstein tensor can be obtained

from the metric ansatz (8) via the standard sequential
procedure of calculating the Christoffel symbols, the
Riemann and Ricci tensors, and the Ricci scalar. We find
that the only nonzero components are

Gt
t ¼

1

r2
ð−1þ Aþ rA0Þ; ð27Þ

Gr
r ¼

1

r2

�
−1þ A −

2rAT 0

T

�
; ð28Þ

Gθ
θ ¼ Gϕ

ϕ ¼ A0

2r
−
A0T 0

2T
þ 2AðT 0Þ2

T2
−
AT 0

rT
−
AT00

T
: ð29Þ

Combining these with the stress-energy tensor components
above, we find that the Einstein equations reduce to the
following two independent differential equations:
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1 − A
r2

−
A0

r
¼ 8πG

�
2ω

r2
T2ðα2 þ β2Þþ 1

2
Aðh0Þ2 þ VðhÞ

�
;

ð30Þ

1−A
r2

þ2AT 0

rT
¼8πG

�
2T

ffiffiffiffi
A

p

r2
ðβα0−αβ0Þ−1

2
Aðh0Þ2þVðhÞ

�
:

ð31Þ

The bracketed terms in these two equations are respectively
the energy density and the radial pressure in the matter
sector.
Finally, the Higgs equation (7) can be rewritten, using

the metric and spinor ansatzes, as:

Ah00 − A

�
T 0

T
−

A0

2A
−
2

r

�
h0 ¼ 2μ

r2
Tðα2 − β2Þ þ dV

dh
: ð32Þ

Together, Eqs. (17), (18), (30), (31), and (32) constitute a
coupled set of five differential equations, for the five
unknown fields α, β, A, T and h. Within the semiclassical
framework considered here, these equations fully define the
behavior of a pair of static, neutral fermions interacting via
gravity and a minimally coupled Higgs field.

III. BOUNDARY CONDITIONS

Our aim is to seek particlelike solutions to the above
equations of motion, representing gravitationally localized
states. We therefore require the following boundary con-
ditions. First, the metric should be asymptotically flat,
implying AðrÞ; TðrÞ → 1 as r → ∞. Second, the fermion
wave function should be correctly normalized, i.e. the inner
product ðΨjΨÞ ¼ 1. Using (9), this can be rewritten as

4π

Z
∞

0

Tffiffiffiffi
A

p ðα2 þ β2Þdr ¼ 1: ð33Þ

In order for asymptotic flatness to be satisfied, the energy-
density contribution from the Higgs field must vanish at
large r. Considering (30) and (31), this is achieved when
h0 ¼ 0 and VðhÞ ¼ 0, implying h → �v as r → ∞, i.e. the
Higgs field should asymptote to one of its two possible
vacuum expectation values.
In addition, we are required to specify boundary con-

ditions at r ¼ 0. As in the Einstein-Dirac case, it is possible
to obtain a small-r expansion which guarantees that the
particlelike states are free from central singularities. This
can be written as follows:

αðrÞ ¼ α1rþ � � � ð34Þ

βðrÞ ¼ 1

3
α1ðωT0 − μh0Þr2 þ � � � ð35Þ

TðrÞ ¼ T0 þ
4πG
3

T0ðVðh0Þ þ α21T0ðμh0 − ωT0ÞÞr2 þ � � �
ð36Þ

AðrÞ ¼ 1 −
8πG
3

ðVðh0Þ þ 2ωα21T
2
0Þr2 þ � � � ð37Þ

hðrÞ ¼ h0 þ
1

3
ð2λh0ðh20 − v2Þ þ μα21T0Þr2 þ � � � ; ð38Þ

where the coefficients α1, T0 and h0 are unconstrained. We
note that there is no guarantee that this is the unique
expansion for which nonsingular states can be generated,
but it is certainly that which will produce solutions most
similar to those found in the Einstein-Dirac case.
A cursory glance at the above expansion, along with the

equations of motion, suggests that μ, λ, v, ω, α1, T0 and h0
are all free parameters within the theory. This is not the case
however: imposing normalization and asymptotic flatness
together removes a total of four degrees of freedom, and
thus only three of these may be freely specified. As in the
Einstein-Dirac case, one of these parameters is the central
redshift z≡ Tð0Þ − 1, which can be employed as a measure
of how relativistic a state is, with z ≈ 1 marking the
crossover from nonrelativistic to relativistic. For the two
remaining free parameters, we could choose mf ¼ μv and

mH ¼ 2v
ffiffiffiffiffi
2λ

p
, but it turns out to be significantly more

computationally efficient to choose instead v and ξ, where ξ
is the Higgs to (asymptotic) fermion mass ratio:

ξ≡mH

mf
¼ 2

ffiffiffiffiffi
2λ

p

μ
: ð39Þ

We find that each choice of fv; ξg then defines a one-
parameter family of solutions where, as for the Einstein-
Dirac case, the value of the central redshift z uniquely
identifies states within each family. The four remaining
parameters (μ, ω, α1 and h0) will take values dependent on
the state in question. We note that this is by no means the
only parametrization possible, and an example of an
alternative can be found in Appendix C.

IV. HIGGS FIELD DYNAMICS

Before presenting our numerical results, we first outline
the expected behavior of the Higgs field for particlelike
states, employing a similar rationale to Schlögel et al. [18].
Consider first the situation outside the localized fermion
source,where the fermion fieldsα andβ are negligible. Let us
also temporarily introduce a time-dependence to the Higgs
field. In this case, the Higgs equation can be written as

T2ḧ − Ah00 þ A

�
T 0

T
−

A0

2A
−
2

r

�
h0 ¼ −

dV
dh

; ð40Þ
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where the dot denotes a time-derivative. Note the sign
difference between the ḧ and h00 terms: this implies that
the two dynamically stable minima in the Higgs potential
(h ¼ �v) are unstable maxima from the point of view of
spatial variations [19]. Hence, in the static case that we are
considering here, the Higgs potential is effectively inverted
compared to its usual form.
At positions within the fermion source, the coupling to

the fermions introduces an additional term on the right-
hand side of the Higgs equation. Combining this with the
Higgs potential VðhÞ, we can rewrite the Higgs equation as
∇μ∇μh ¼ −∂Veff=∂h, where we have defined an effective
potential that takes the form

VeffðhÞ ¼ −λðh2 − v2Þ2 − 2μ

r2
Tðα2 − β2Þh: ð41Þ

Hence the fermionic term introduces a “tilt” to the intrinsic
Mexican-hat Higgs potential via a term that is linear in h;
this is illustrated schematically in Fig. 1.
We shall consider here only states in which α and β are

nodeless (ground states), and only those with positive
parity. As in the Einstein-Dirac case, we find that these
correspond to states with positive (asymptotic) fermion
mass. Consequently, mf ¼ μv must be positive, implying
that the Higgs field outside the fermion source should
asymptote to h ¼ þv. In addition, since α is the dominant
fermion field, the cumulative tilt to the Higgs potential must
always be in the direction indicated in Fig. 1, implying
h < v within the fermion source.

V. NUMERICAL METHOD

We now outline the numerical method via which
particlelike states of the Einstein-Dirac-Higgs equations
can be obtained. First, in order to deal with the conditions
of asymptotic flatness and normalization, we implement a
“rescaling” procedure similar to that employed in Ref. [9].
This relies on the fact that, for localized states (where α,
β → 0 and h → v at large r), the equations of motion
automatically imply A → 1 and T → const as r → ∞, and
the normalization integral will evaluate to a constant. Thus,
it is sufficient to generate first an “unscaled” solution (by

temporarily specifying values for T0 and μ), for which the
fermion fields decay at large r and the Higgs field
asymptotes to v, but which is not correctly normalized
nor asymptotically flat. The true, physical solution can then
be obtained by simply rescaling the fields such that both
Tð∞Þ and the normalization integral are equal to 1.
More formally, having generated an unscaled solution

(denoted by a tilde), for which T̃0 ¼ 1 and μ̃ ¼ 1=v, we
define

τ ¼ lim
r→∞

T̃ðrÞ; ð42Þ

χ2 ¼ 4π

Z
∞

0

ðα̃2 þ β̃2ÞT̃Ã−1=2dr; ð43Þ

and then rescale the fields and parameters as follows, to
obtain the physical solution:

αðrÞ ¼
ffiffiffi
τ

χ

r
α̃ðχrÞ; βðrÞ ¼

ffiffiffi
τ

χ

r
β̃ðχrÞ;

TðrÞ ¼ 1

τ
T̃ðχrÞ; AðrÞ ¼ ÃðχrÞ;

hðrÞ ¼ h̃ðχrÞ; ω ¼ χτω̃;

μ ¼ χμ̃; λ ¼ χ2λ̃: ð44Þ

Note that the value of the Higgs field itself, and thus its
vacuum expectation value, remains unaltered under the
rescaling procedure.
We have now reduced the problem to one of obtaining

unscaled solutions to the equations of motion. These can be
generated by tuning the values of ω̃ and h0 such that the
fermion fields become normalizable (decay sufficiently
rapidly at large r) and the Higgs field asymptotes to v. Due
to the coupling between the fields, however, ω̃ and h0
cannot be sought independently, and thus a two-parameter
shooting procedure is required. Fortunately, it is possible to
implement this sequentially by first choosing a value for h0,
performing a simple binary chop to find the ground-state
value of ω̃ for which the fermions become normalizable,
and then noting the behavior of the Higgs field at large r. If
hð∞Þ < v, then h0 should be increased; if hð∞Þ > v, then
h0 should be decreased. By iterating this procedure, it is
possible to force hð∞Þ to its vacuum expectation value,
while ensuring that the fermions remain normalizable. Note
that this works well only for solutions that are fermion-
dominated (ξ < 2); for Higgs-dominated states, the shoot-
ing order should be reversed such that a binary chop in h0 is
performed at chosen values of ω̃.
There is one further complication that arises when

numerically generating solutions. As mentioned, each
physical ground-state solution can be uniquely identified
by the values of three parameters: ξ, v and z. In the unscaled
system, however, the role of the central redshift is taken by
the parameter α̃1, which, unlike in the Einstein-Dirac

FIG. 1. Left: The intrinsic Mexican-hat Higgs potential VðhÞ,
with two stable minima at h ¼ �v. Right: The (inverted) effective
Higgs potential VeffðhÞ, which exhibits a tilt inside the localized
fermion source.
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system, is not necessarily guaranteed to be in one-to-one
correspondence with z. Indeed, for small values of ξ and v,
we find that there are regions in which multiple (ground-
state) solutions can be found with the same value of α̃1, but
upon rescaling their values of z are found to differ. This
property further complicates the solution-finding procedure,
since we must ensure that all solutions for a particular value
of α̃1 have been identified. To achieve this, we perform an
initial coarse-grained sweep of the solution space by varying
h0 over the region ½−2v; v�, from which we can ascertain the
presence of additional solutions by noting changes in the
asymptotic behavior of the Higgs field.

VI. PARTICLELIKE SOLUTIONS

We now present numerical results illustrating the struc-
ture of the particlelike states present in the Einstein-Dirac-
Higgs system. These are generated via the method outlined
in the preceding section, using Mathematica’s built-in
differential equation solver, NDSolve, with a minimum
accuracy of 8 digits. We shall here discuss only ground-
state solutions (i.e. those in which α and β are nodeless),
although an example of an excited state can be found in
Appendix D.
We have been successful in generating solutions with

parameter values ranging approximately from fv; ξg ¼
f0.07; 0.03g–f10; 30g. The upper limits on this arise from
issues concerning numerical precision, but the reason
behind the lower limits is less clear. In particular, we have
been unable to obtain solutions below v ¼ 0.07 for any
value of ξ. We suspect that this is associated with the failure
of our numerical method, since we observe indications of a
further degree of multivaluedness (similar to that detailed in
Ref. [15]) appearing at very small values of v. In addition,
no parameters appear to become singular as v ¼ 0.07 is
approached, and therefore we tentatively conclude that

solutions below this threshold do indeed exist, but we are
unable to generate them.
Examples of three particlelike solutions are shown in

Fig. 2. These have a common value of v ¼ 0.08, but differ
in their values of ξ and z. Solution (a) is Higgs-dominated
(ξ > 2), while solutions (b) and (c) are fermion-dominated
(ξ < 2). Plotted on the left are the radial profiles of the
fermion number density nfðrÞ, defined as

nf ¼ 2T
r2

ðα2 þ β2Þ; ð45Þ

which takes considerably different forms for the three
states. For all three, nf decays exponentially at large r
(consistent with the notion of a localized state), but in
solution (a), the peak occurs at r ¼ 0 (as in the Einstein-
Dirac case), whereas for solutions (b) and (c) it is shifted
significantly outwards in radius.
The metric fields are singularity free, with TðrÞ decreas-

ing monotonically from a central maximum, while AðrÞ≤ 1
throughout. Outside the localized fermion source, the
metric fields approach the standard Schwarzschild form,
for which T−2

Sch ¼ ASch ¼ 1–2GM=r. This allows us to
identify an Arnowitt-Deser-Misner (ADM) mass M, which
provides a measure of the total energy of the localized state.
With regard to the Higgs field, in all three solutions this

rises from a constant central value before asymptoting
toward v ¼ 0.08. In solution (a), the effect of the fermion
tilt is such that the Higgs field deviates only slightly from
its vacuum expectation value, and hence its properties are
similar to that of an Einstein-Dirac state (where h is pinned
at v). For solutions (b) and (c), however, the fermion tilt is
large enough that the Higgs field becomes negative at
small r, resulting in the local fermion mass becoming
negative within the central regions of the fermion source.

0.5 1 5 10
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.5 1 5 10

0.5

1

2

0.5 1 5 10

�0.15

�0.10

�0.05

0.00

0.05

FIG. 2. Fermion number density, metric and Higgs field profiles for three particlelike solutions of the Einstein-Dirac-Higgs system,
corresponding to the three states labeled in Fig. 4. These have equal values of v ¼ 0.08, but different values of the Higgs-to-fermion
mass ratio ξ and of the central redshift z. Included alongside the metric fields are the Schwarzschild profiles corresponding to a point
source with ADMmass equal to that of solution (c). The dashed lines included alongside the Higgs field profiles track the values of h for
which dVeff=dh ¼ 0, i.e. the equilibrium positions of the effective Higgs potential. Within the fermion source, these depart from their
asymptotic values, f0;�vg, due to the fermion tilt. The values of the fermion mass, ADMmass and fermion-Higgs coupling strength for
the three states are as follows—(a): fmf ¼ 0.558;M ¼ 1.08; μ ¼ 6.97g, (b): fmf ¼ 1.00;M ¼ 0.946; μ ¼ 12.6g, and (c):
fmf ¼ 3.68;M ¼ 0.899; μ ¼ 46.0g. Full details of these and other parameters associated with the solutions are given in Appendix A.
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The extent to which the Einstein-Dirac-Higgs states
differ from their Einstein-Dirac counterparts can be more
clearly illustrated by considering the families of solutions
defined by the values of the Higgs vacuum expectation
value v and the Higgs-to-fermion mass ratio ξ. This is
shown in Fig. 3, where we plot the fermion energy ω as a
function of the asymptotic fermion mass μv, for a selection
of families, alongside the known Einstein-Dirac relation.
As can be seen, the spiraling behavior is preserved in the
Higgs case, with each curve initially approximating the
nonrelativistic relation ω ¼ mf before spiraling toward an
infinite-redshift solution (see Appendix B). In the relativ-
istic regime, however, the families with smaller values of v
and ξ begin to deviate significantly from the Einstein-Dirac
relation, and, in particular, the maximum allowable fermion
mass increases substantially.

VII. MASS-SCALE SEPARATION

In this section, we demonstrate the existence of a
somewhat unexpected phenomenon in the Einstein-
Dirac-Higgs system: a mass-scale separation occurs at
strong fermion-Higgs coupling, with the ADM mass of a
state no longer being proportional to the mass of its
constituent fermions. As an example, consider the mass
scales of the three states shown in Fig. 2. Despite their
similar ADM masses (1.08, 0.946 and 0.899 respectively),
they have significantly different asymptotic fermion masses
(0.558, 1.00 and 3.68 respectively), as a consequence of
their differing μ values. Why, one might wonder, has the
ADM mass not increased in proportion with the fermion
mass for the states in which the fermion-Higgs coupling is
strong, i.e. when the value of μ is large?
Before exploring potential reasons for this, we first

illustrate the effect more clearly by analyzing the families

of states defined by v and ξ, and in particular the properties
of the maximally-bound state in each family. Note that, as
in the Einstein-Dirac case, we find that the most bound state
in each family appear always to correspond to that of
maximum fermion mass. We have shown previously in
Fig. 3 that the value of the maximum fermion mass shows a
general increase with both decreasing v and ξ, but what is
the corresponding change in the ADM mass?
To answer this, consider Fig. 4, in which we have

isolated the maximally-bound states for a selection of
families with v ¼ 0.08 but differing values of ξ, and plotted
the ADM mass of each as a function of fermion mass. This
clearly indicates a decoupling of mass scales at ξ ≈ 2, with
states above this threshold exhibiting an ADM mass that is
approximately twice the fermion mass (as in the Einstein-
Dirac case), while states with ξ < 2 depart significantly
from this expectation. Indeed, in the most extreme case
shown here, the total fermion mass is over ten times larger
than the ADM mass of the state.
This increase in fermion mass appears to be driven

primarily by a corresponding increase in the fermion-Higgs
coupling strength μ. When we generate solutions, however,
μ is not an input parameter; instead we specify the values of
v and the Higgs-to-fermion mass ratio ξ. What ranges of v
and ξ, then, correspond to strong coupling? This can be
answered by exploring the phase space spanned by v and ξ.
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FIG. 3. Fermion mass-energy relations for the families of
Einstein-Dirac-Higgs states defined by the Higgs vacuum expect-
ation values v and Higgs-to-fermion mass ratios ξ indicated.
Included also is the corresponding curve for the Einstein-Dirac
case. Note the increase in the maximum fermion mass as v and ξ
are decreased.
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FIG. 4. The ADM mass of a localized, two-fermion state as a
function of the mass of the constituent fermions. Plotted are the
most bound states (those with maximum possible fermion mass)
for a fixed value of the Higgs vacuum expectation value,
v ¼ 0.08, and for various values of the Higgs-to-fermion mass
ratio ξ. The three labeled states correspond to those shown in
Fig. 2. For solutions with large values of ξ, the ADM mass of the
state is in direct proportion to the fermion mass, and approaches
the Einstein-Dirac relation found by Finster et al. [9] asmH → ∞.
There is, however, a separate class of states, with lower values of
ξ, for which the ADM mass becomes parametrically smaller than
the sum of the masses of the constituent fermions. This allows
states with ever higher fermion mass to be formed as mH is
decreased.
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To do so, we require a reference solution that allows us to
compare properties across the various families of states.
Ideally, we would choose the maximally-bound state, in
line with our earlier analysis, but unfortunately this proves
computationally unfeasible, since it requires a large portion
of each spiraling family to be generated for every value of ξ
and v. Instead, we utilise the fact that the minimally bound
state in each family occurs at an approximately constant
value of α̃1 ¼ 0.25, and can therefore be more readily
employed as a reference solution.
The results of this analysis are illustrated in Fig. 5, where

we plot the fermion mass, ADM mass and fermion-Higgs
coupling strength as a function of both v and ξ, with the
data corresponding to the minimally-bound state in each
family. From these, we observe that smaller values of both
v and ξ correspond to larger values of μ, and in addition that
regions of strong coupling roughly equate to regions of
large fermion mass. This is consistent with the behavior
shown previously in Fig. 3. Furthermore, the value of the
ADM mass exhibits little variation over the entire range of
v and ξ plotted, whereas the fermion mass increases
significantly by comparison as v and ξ decrease. This
confirms that indeed the mass-scale separation is most
prominent at small values of v and ξ (and hence at strong
coupling). We note that it is not surprising that small ξ
implies large mf (and μ), since ξ ∼ 1=μ, but it is unclear
why small values of v imply the same.
Although it is clear from the above analysis that the

observed mass-scale separation is driven primarily by an
increase in the fermion-Higgs coupling strength, the precise
mechanism through which this is achieved remains unclear.
In particular, we can provide no satisfactory answer as towhy
the ADMmass of states at strong coupling does not increase
in proportion to the constituent fermionmass. Some progress
can be made, however, by expressing the ADM mass using
the Komar integral [20], which reduces to:

M ¼ 4ω − 8π

Z
∞

0

drffiffiffiffi
A

p
�
μhðα2 − β2Þ þ r2

T
VðhÞ

�
: ð46Þ

For states with large values of μ, the Higgs field is initially
negative due to the strong fermion tilt (see Fig. 2), and hence
the first term in the integral switches sign between the inner
and outer regions of the fermion source. Its overall contri-
bution is therefore negligible, and thus the large value of μ
does not directly affect the ADM mass.
This is not a complete explanation since wewould expect

the fermion energy ω also to scale with the fermion mass.
Instead, we find the reverse is true; ω tends to be lower for
states in which the fermion mass is large. Without knowing
what precisely affects the value of ω, it is difficult to put
forward an explanation for this. One suggestion may be that
the change in the fermion density profiles (itself a conse-
quence of the strong fermion-Higgs coupling) prevents ω
from increasing. Also potentially related is the observed
disparity between the radial decay scales of the fermion and
Higgs fields (see Ref. [21] for details), which occurs only
for ξ < 2. The link between this and the value of ω,
however, is not clear.

VIII. BINDING ENERGY AND STABILITY

The decoupling of mass scales also affects the binding
energy of states, defined as Eb ¼ M − 2mf, i.e. the differ-
ence between the energy of the state and that of two
individual delocalized fermions. With this definition, a state
is considered bound if it has a negative value of Eb (energy
is required to break it apart). As we have shown, it is
possible for the fermion mass to far outweigh the ADM
mass at strong coupling, and as such these states are highly
bound. Indeed, in contrast to the Einstein-Dirac case, it is
even possible for entire families of solutions to become
bound. An example of this is shown in Fig. 6.
It is important to note, however, that negative binding

energy does not necessarily imply stability. Indeed, the only
conclusion that can be drawn from a binding energy
analysis is whether the state will remain spatially localized
upon (infinitesimal) perturbation. Although this of course
includes the case of a stable state, it also encompasses the
possibility of gravitational collapse, e.g. to a black-hole
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FIG. 5. Contour plots illustrating the behavior of the fermion mass mf, ADM mass M and fermion-Higgs coupling strength μ, as a
function of the parameters ξ and v, for the least-bound states in each family. Note that the contours become less smooth at smaller values
of ξ where errors arising from our numerics are largest.
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type object, or indeed decay to another localized state, both
of which have been observed in dynamical simulations of
Dirac stars [22].
A full stability analysis of the Einstein-Dirac-Higgs

states presented here is beyond the scope of this paper,
but we can gain some insight by invoking comparisons with
the Einstein-Dirac case, the stability of which has been
examined, both analytically and numerically, in Refs. [9]
and [22]. In particular, Finster et al. [9] demonstrate, via
Conley index theory, that Einstein-Dirac states with red-
shifts lower than that of the state of maximum fermion mass
are stable, while those above this threshold are unstable.
Their argument relies on the spiraling nature of the family
of solutions, in particular that there is a continuous
connection to the nonrelativistic regime, where solutions
are known to be stable, as well as the existence of a well-
defined quantity (in this case the fermion mass) that can be
used as a bifurcation parameter.
The same argument can be applied in the Einstein-Dirac-

Higgs case. As evidenced in Fig. 3, the families of states
exhibit a similar spiraling behavior. Moreover, due to the
choice of our parametrization, the value of the Higgs
vacuum expectation value v is constant within each family,
and hence it is possible for the (asymptotic) fermion mass
mf ¼ μv to serve as a bifurcation parameter. In addition,
each state is continuously connected to the nonrelativistic
regime, where solutions involve a Higgs field that deviates
from its vacuum expectation value by an ever smaller
amount as mf → 0. Since these low-mass, nonrelativistic
states so closely resemble their Einstein-Dirac counterparts,
it seems reasonable to expect that they should be stable, and
thus a continuous connection to a stable state can be
established. Finally, one might be concerned that the

existence of multiple families of solutions results in addi-
tional decay pathways compared to the Einstein-Dirac case.
However, since the properties of the Higgs field and Higgs
potential (governed by mH, λ and v) are global features, it
seems reasonable to consider only dynamical processes in
which these quantities remain fixed, and thus transitions
between families are excluded.
We therefore conclude that the same stability criterion

that applies in the Einstein-Dirac case should equally apply
here, i.e. each family of states should contain a stability
transition point corresponding to the respective state of
maximum fermion mass. We note that this behavior is
similar to that exhibited by other gravitationally localized
objects, such as boson stars [23]. The expected stability
regimes for the fv; ξg ¼ f0.08; 0.14g family are indicated
in Fig. 6. We note that, for all families of states, the stability
transition point appears to coincide with the minimum of
the binding energy Eb, but not necessarily the global
maximum of the ADM mass. Instead, the minimum in
Eb only coincides with a local maximum of M for families
where ξ and v are small. This differs from the Einstein-
Dirac case, where the global extrema of m, M and Eb all
coincide, and is another consequence of the mass-scale
separation that occurs when the Higgs field is introduced.
The above argument establishes the existence of a stable

branch of Einstein-Dirac-Higgs states for each value of ξ
and v. We therefore conclude that the inclusion of the Higgs
field allows stable bound states to exist in which the
constituent fermions are significantly more massive than
allowed in the Einstein-Dirac system. These correspond to
states in which the mass-scale separation is prominent.

IX. SUMMARY AND DISCUSSION

In this paper, we have constructed gravitationally local-
ized solutions to the minimally coupled Einstein-
Dirac-Higgs system, and have shown that the resulting
particlelike states are well behaved and free from singu-
larities. Somewhat unexpectedly, at strong fermion-Higgs
coupling, we find that the ADM mass appears to become
parametrically smaller than the mass of the constituent
fermions, allowing fermions of much larger mass than in
the Einstein-Dirac case to form localized states.
The implications of this mass-scale separation are some-

what intriguing. In particular, for states in which it is a
dominant feature, the disparity between mass scales implies
that much of the mass of the constituent fermions is
“hidden” from an external observer (at least from a
gravitational point of view). For the solutions presented
in this paper, the largest disparity observed is of approx-
imately a factor of ten, but it may be possible for even more
extreme situations to occur. For example, we have been
unable to determine whether the downward trend shown in
Fig. 4 continues at even lower values of ξ (due to numerical
difficulties), but if an extrapolation can be trusted, it would
imply that states may exist which contain ultrahigh-mass
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FIG. 6. Binding energy as a function of (rms) radius R̄ for the
family of localized states with v ¼ 0.08 and ξ ¼ 0.14. In the
Einstein-Dirac case (inset), only a portion of the curve contains
solutions that are bound (those with negative binding energy), but
with the addition of the Higgs field it is possible for all solutions
in a family, even the highly-relativistic states located near the
center of the spiral, to become bound.
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fermions, but whose external gravitational mass is com-
paratively negligible.
Finally, we note the existence of a series of papers by

Dzhunushaliev et al. [24–26], which appear to report an
effect similar to that discussed here, although in the context
of including additional nonlinearities and/or Proca fields
within the Einstein-Dirac system. Our analysis differs from
these, however, in a number of important ways. First, the
models considered by Dzhunushaliev et al. are restricted to
a contact interaction between the fermions; in our model,
by contrast, fermion-fermion interactions are mediated by
the Higgs field and thus occur at all spatiotemporal
separations consistent with causality. Second, their analysis
is performed at a purely classical level, i.e. without
imposing the normalization of the spinor wave function,
and as a result the fermion mass exists as a free parameter
within the system. Nonetheless, it is certainly true that a
branch of solutions does exist in which the ADM mass of
states fails to scale with the mass of the constituent
fermions, but the mechanism through which this is
achieved differs significantly from that discussed here.
To conclude, we emphasize that the analysis contained

within this paper is restricted to a semiclassical approxi-
mation, and its applicability in a more rigorous quantum
context is unclear. Nevertheless, our results provide an
illustrative study of how fermionic objects of a finite extent
may be expected to interact with a Higgs field, within the
framework of general relativity.
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APPENDIX A: DATA FOR FIGURES

Throughout this paper, we have presented examples of
individual localized states in the Einstein-Dirac-Higgs
system. Various parameter values associated with these
solutions are presented in Table I, from which the states
could be reconstructed, if desired. Note that the values of
the Higgs mass and asymptotic fermion mass can be

obtained from these using the relations mf ¼ μv and
mH ¼ 2v

ffiffiffiffiffi
2λ

p
.

APPENDIX B: POWER-LAW SOLUTION AND
INFINITE-REDSHIFT STATES

For the Einstein-Dirac system, it was shown in Ref. [13]
that the radial structure of localized states can be under-
stood in terms of distinct zones. In particular, for high-
redshift solutions, there exists a “power-law” zone where
the solution approximates that of the massless Einstein-
Dirac equations, for which all fields have a simple power-
law dependence on r. It was also demonstrated that the
infinite-redshift solution located at the center of the
spiraling curves contains a power-law zone that extends
all the way to r ¼ 0. Here, we show that similar properties
exist for the states in the Einstein-Dirac-Higgs system.
First, we derive the analog of the massless power-law

solution. In the context of the Einstein-Dirac-Higgs system,
this requires μh ≪ ωT, i.e. that the local fermion mass is
negligible compared to the local fermion energy. Since this
occurs in regions in which the solution is highly relativistic,
we expect the energy density from the fermions to
dominate over the contribution from the Higgs field.
Then the Dirac and Einstein equations reduce to:

ffiffiffiffi
A

p
α0 ¼ þ α

r
− ωTβ; ðB1Þ

ffiffiffiffi
A

p
β0 ¼ −

β

r
þ ωTα; ðB2Þ

1 − A − rA0 ¼ 16πGωT2ðα2 þ β2Þ; ðB3Þ

1 − Aþ 2rAT 0

T
¼ 16πGT

ffiffiffiffi
A

p
ðβα0 − αβ0Þ: ðB4Þ

This is precisely the massless Einstein-Dirac system; thus
the power-law zone is a region in which the Higgs field has
no effect on either the metric or the distribution of the
fermion source. From Ref. [13], the solution to the above
system is

TABLE I. Parameter values for the individual localized states shown in figures throughout the paper.

Figure v z μ λ ω α1 h0 M R̄

2(a) 0.08 0.46440042 6.9726065 58.826861 0.46654990 0.040731809 0.068129517 1.0838776 5.6178928
2(b) 0.08 1.4559839 12.558979 11.036032 0.25207591 0.040663327 −0.087130486 0.94600990 2.4967371
2(c) 0.08 1.2450824 46.018093 11.130976 0.23545904 0.0090303129 −0.054588173 0.89889341 2.2349828
7 0.1 34176.148 4.7236279 0.22312660 0.25907640 0.078863525 −0.082817471 0.94212579 2.9007476
8 0.1 ∞ 4.6770234 0.21874548 0.25955448 – −0.081575838 0.94171974 2.9083848
10 0.1 1.1720432 11.607477 1.3473353 0.98587504 0.077537351 0.024036623 2.3021427 13.839702
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αðrÞ ¼ αpr; βðrÞ ¼ βpr;

AðrÞ ¼ 1

3
; TðrÞ ¼

ffiffiffi
2

3

r
ωr−1; ðB5Þ

where

αp ¼ 31=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω

48πGð ffiffiffi
3

p
− 1Þ

r
; ðB6Þ

βp ¼ 31=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω

48πGð ffiffiffi
3

p þ 1Þ
r

: ðB7Þ

The behavior of the Higgs field in the power-law zone is
governed by the Higgs equation, which, upon substituting
the solution above, reduces to

1

3
h00 þ 1

r
h0 ¼ μ

12
ffiffiffi
2

p
πGr

þ 4λhðh2 − v2Þ: ðB8Þ

To proceed further, we assume that the power-law zone
occurs at small r (this should certainly be the case at high
redshift), and that hðrÞ also has a simple power-law
dependence. Thus, in order for the Higgs energy density
not to contribute to the Einstein equations, we require h0ðrÞ
to lead with a power greater than −1 at small r. This implies
that the second term on the right-hand side of (B8) must be
negligible. We can then solve for hðrÞ to give

hðrÞ ¼ μ

12
ffiffiffi
2

p
πG

r −
c1
2r2

þ c2; ðB9Þ

where c1 and c2 are constants. From the argument abovewe
are forced to set c1 ¼ 0, and therefore, in the power law
zone, the Higgs field must be approximately linear, i.e.

hðrÞ ¼ μ

12
ffiffiffi
2

p
πG

rþ h0: ðB10Þ

These expressions can be readily checked by analyzing
the structure of high-redshift states, an example of which is
shown in Fig. 7. This clearly illustrates the separation of the
solution into three distinct zones: the core (in which the
fields follow the small-r expansion), the power-law zone
(where all fields have approximately power-law depend-
ence on r), and the evanescent zone (in which the fermion
fields decay exponentially). As predicted, the Higgs field
is indeed approximately linear in the power-law zone
(h0 ¼ const), and the precise numerical values agree well
with those derived in the expressions above. Note that the
oscillations within the power-law zone are caused by a
fermion self-trapping effect, details of which can be found
in Ref. [14].
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FIG. 7. An example of a high-redshift solution, showing the
structural separation into three distinct zones (core, power-law,
and evanescent). The fields have been rescaled by the appropriate
powers of r such that they are approximately constant in the
power-law zone. Also included is the predicted power-law zone
value for h0 calculated from (B10). The parameter values for this
solution are detailed in Appendix A.
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FIG. 8. An example of an infinite-redshift state, showing the radial profiles of the fermion, metric and Higgs fields. The power-law
zone here extends to r ¼ 0, with α ∼ r, β ∼ r, T ∼ 1=r, A ¼ 1=3 and h ∼ rþ h0 at small r, as evident. The parameter values for this
solution can be found in Appendix A.
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As the redshift is increased further, the spatial extent of
the core shrinks toward zero, and it is therefore possible to
generate infinite-redshift states numerically by replacing
the small-r expansion (34)–(38) with the power-law
expressions (B5) and (B10). An example of such an
infinite-redshift solution is shown in Fig. 8. Note that
the metric field T diverges at r ¼ 0, and the state contains a
central spacetime singularity. The input values for this
solution are fξ; vg ¼ f0.28; 0.10g, and thus we expect the
state to lie at the center of the orange spiral shown earlier in
Fig. 4. Noting the output parameter values of mf ¼ 0.468
and ω ¼ 0.260, this is indeed confirmed to be the case.

APPENDIX C: ALTERNATIVE
PARAMETRIZATIONS

Recall that, of the three physical parameters fμ; λ; vg,
only two can be freely specified as inputs; the other is fixed
by imposing normalization. As previously mentioned, the
computationally efficient choice for the two input param-
eters is v and ξ ¼ mH=mf ¼ 2

ffiffiffiffiffi
2λ

p
=μ. As such, the families

of solutions presented in the main text are defined by these
values.
It is important to note that this is not a unique choice,

however. It should in principle be possible to choose any
two parameters from the set fμ; λ; vg (or two independent
combinations), with each separate choice defining a distinct
family of states. As an example of this, we have generated
the family of solutions defined by fλ ¼ 0.053; v ¼ 0.3g,
and the resulting fermion mass-energy curve is shown in
Fig. 9. Note that this contains only a relatively small
number of points, since it is significantly more difficult to
obtain computationally. Nonetheless, it is clear that this
family of states exhibits the expected spiraling behavior,
and we find that the curve is indeed parametrized by the
central redshift. We expect other parameter choices to
produce similar curves. It is important to point out,
however, that choosing a new pair of parameters to use
does not produce a new set of states; it only reparametrizes
the 2-dimensional manifold of solutions.

APPENDIX D: EXCITED STATES

The analysis presented in the main text is limited to
ground-state solutions of the Einstein-Dirac-Higgs system.
We are also able to obtain excited states, and have found
that these are similar in structure to those in the Einstein-
Dirac case [9,15]. In particular, for each value of the central
redshift z, there exists a (presumably infinite) tower of
excited states, where the nth excited state contains a total of
n nodes in the fields α and β.
An example of an 8th excited state is shown in Fig. 10.

Note that the additional oscillations in the fermion fields
affect not only the metric but also the Higgs field, since the
tilt in the effective Higgs potential is proportional to
α2 − β2. Note also that the term “excited” implies higher
fermion energy only when the system is nonrelativistic. For
example, it is possible at high redshift for an excited state to
have a lower value of ω than the ground state, and in such
cases only the nodal structure can be used to categorize the
states.
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FIG. 9. The fermion mass-energy relation for the family of
states with parameter values v ¼ 0.30 and λ ¼ 0.053, along with
the corresponding Einstein-Dirac curve for comparison.
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FIG. 10. An example of an 8th excited state (n ¼ 8), showing the radial profiles of the fermion, metric and Higgs fields. There are a
total of eight nodes in α and β (four in each). The parameter values for this solution can be found in Appendix A.
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