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We study Wilson loops in holographic duals of the AV =4 SYM quark-gluon plasma. For this we
consider the Schwarzschild-AdSs and Kerr-AdSs black holes, which are dual to the nonrotating and
rotating quark-gluon plasmas, correspondingly. From temporal Wilson loops we find the heavy quark
potentials in both backgrounds. For the temperature above the critical one we observe the Coulomb-like
behavior of the potentials. We find that increasing the rotation the interquark distance decreases, we also see
that the increase of the temperature yields the similar behavior. Moreover, at high temperatures values of the
potentials in Kerr-AdSs are close to that one calculated in the Schwarzschild-AdSs black hole. We also
explore holographic lightlike Wilson loops from which the jet-quenching parameters of a fast parton
propagating in the QGP are extracted. We find that the rotation increases the value of the jet-quenching
parameter. However, at high temperatures the jet-quenching parameters have a cubic dependence on the

temperature as for the AdS black brane.
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I. INTRODUCTION

Recently, much interest has been paid to study and
understand a rotating quark-gluon plasma (QGP). It can be
created in noncentral heavy-ion collisions, where large
initial orbital momentum of ions is partially transferred to
the created medium, that leads to the relativistic rotation
[1,2]. The spacetime structure of the vorticity field, which
also arises in noncentral heavy-ion collisions, may have
nontrivial geometrical features, like femto-vortex sheets [3]
or elliptic vortex rings [4,5]. The nonzero vorticity may
result in different effects, for instance, the chiral vortical
effect (for a review, see [6]). Unfortunately, there is no
direct way to investigate the QGP, so different probes are
used to extract the information about the plasma properties.

One of these probes is the global polarization of
A-hyperons. Being produced in a rotating medium, par-
ticles with spin obtain a polarization that depends on
the magnitude of rotation [7,8]. In fact, by virtue of the
‘P-violation in the weak decay A — p + z, the angular
distribution of the detected protons depends on the ori-
entation of the A’s spin. In other words, measuring the
proton distributions and restoring the polarization of the
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A-hyperons, it is possible to estimate the magnitude of the
QGP rotation. This experiment was carried out by the
STAR Collaboration [9,10]. Surprisingly, the extracted
averaged vorticity value is @~ 10*> s~!, which leads to
the hypothesis that QGP is the fastest rotating fluid ever
observed in nature [10,11].

In a series of experiments [12—15] it was found that
hadron spectra with high transverse momenta pr are
suppressed in the medium. The suppression of elliptical
flows v, was also observed. This may indicate that the
medium formed in heavy-ion collisions is dense and
nontransparent. The increase of the nuclear modification
factor R4, which observed at experiments, also predicts
that the QGP is an opaque fluid.

Since the experiments also indicate that the quark-gluon
plasma produced in HIC is a strongly-coupled fluid [12], it
is quite reasonable to examine this system in the framework
of the holographic duality [16-18]. In this approach the
object of study is replaced by N' = 4 SYM plasma, that is
much more simpler and provides a qualitative insights of
the strongly-coupled regime. It worth to be noted that at
finite temperature strongly-coupled N' = 4 SYM and QCD
above the deconfinement temperature have much in
common. At high temperature lattice simulations show
that the stress tensor becomes traceless, which may indicate
a conformal symmetry [19].

Note that A" =4 SYM defined on R x R? at zero
temperature does not have a confinement-deconfinement
phase transition. The holographic calculations in back-
grounds with flat boundaries also predict that there is no
confinement-deconfinement phase transition in the dual
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theory on R x R3 [20—24]. However, the situation changes
if one discusses N' =4 SYM on R x S3. In [25] it was
shown that a first-order phase transition occurs in the free
N =4 SYM on R x S® at the Hagedorn temperature, in
[26] it was discussed for the one-loop order in the weak-
coupling expansion. Moreover, using the integrability the
Hagedorn temperature was calculated at any value of the 't
Hooft coupling in [27].

From the holographic point of view the strongly-coupled
N =4SYMon R x S at finite temperature is dual to a 5D
AdS black hole with a conformal boundary R x S, i.e., a
spherical horizon. In turn, a 5D AdS black hole with a
conformal boundary R x S® has the first order Hawking-
Page phase transition, which according to the holographic
dictionary corresponds to the deconfinement phase tran-
sition in dual theory [28,29]. Thus, the quark-gluon plasma
state at equilibrium can be associated to the AdS black hole
with a larger radius.

Following the holographic dictionary, a rotating AdS
black hole with a spherical horizon is a gravitational dual
to the rotating AN =4 SYM plasma [30-33]. Like
Schwarzschild-AdS black holes, rotating AdS black holes
also have a Hawking-Page phase transition [34-36], which
corresponds to a phase transition in the dual theory. Note
that the phase transition in Kerr-AdSs happens for certain
values of the rotational parameters. If at least one of the
rotational parameters is large enough then the phase
transition disappears [37]. The calculations of the critical
temperature 7. in the Kerr-AdSs background predict that
T, decreases with the rotation [37]. This is also observed in
other holographic backgrounds for studies of the rotating
quark-gluon plasma [38,39] and effective models [40—42].
However, it was shown in lattice calculations [43,44] that
rotating gluons increase the critical temperature, while the
rotating fermions decrease it.

In work [45] it was discussed holographic off-center
heavy-ion collisions using the 5D Kerr-AdS black hole
with two nonzero rotational parameters. In [46] the authors
extracted analytic expressions for transport coefficients (the
shear viscosity, the longitudinal momentum diffusion
coefficient, etc.) and calculated quasinormal modes for
spinning black holes. Scalar perturbations of the Kerr-AdSs
background with generic rotational parameters were also
calculated in [47], where it was shown that quasinormal
modes in Kerr-AdSs at low temperature can be encoded by
zeros of the Painleve V tau function. In [48] circular
pulsating string solutions in the 5D Kerr-AdS black hole
with equal rotational parameters were found.

Recently, within the framework of the holographic
duality the energy loss of heavy quarks were explored in
the rotating quark-gluon plasma in [37,49,50]. In these
works a holographic description of a rotating QGP is given
by a 5D Kerr-AdS black hole, while the heavy quarks at
finite temperature are associated by endpoints of open
strings in the AdS black hole. The endpoints are located on

the conformal boundary of the black hole background, so
the string hanging down to the black hole horizon. In
[38,39,51] thermodynamic quantities, Polyakov and
Wilson loops in a holographic rotating background were
studied, which mimic results for lattice simulations for a
pure gluon rotating system and a rotating system with
N =2 flavors.

In this paper we probe ' = 4 SYM quark-gluon plasma
on R x S by Wilson loops using holography. The dual
description of the expectation value of the rectangular
Wilson loop can be done in terms of the minimized Nambu-
Goto action of a classical string, where both endpoints
attach to the conformal boundary of the AdS black hole,
while the string stretches down to the horizon [22,23]. In
this work we focus on temporal and lightlike Wilson loops.
From the expectation value of a temporal Wilson loop we
extract a heavy quark-antiquark potential and explore the
affect of the rotation on it.

The lightlike Wilson loops can be used to study the
jet-quenching phenomenon in the quark-gluon plasma,
which is of interest since high-energy particles propagat-
ing through the QGP are strongly decelerated [52,53].
Following [54,55], the so-called jet-quenching parameter
g is defined as a coefficient of the L? term in the logarithm
of a long lightlike Wilson loop of width L. It encodes the
description of energy losses for relativistic partons mov-
ing in the quark-gluon plasma. More precisely, the para-
meter g gives the squared average transverse momentum
exchange between the medium and highly-energetic
parton per unit path length. In [56] the holographic
calculations for the jet-quenching parameter were gener-
alized for the case of an arbitrary diagonal metric. Using
holographic models, a modification of an ensemble of jets
was analyzed in [57,58], which propagate through a
strongly-coupled plasma. Thus, using the AdS/CFT
correspondence we are also able to find and analyze
the jet-quenching parameter. The holographic computa-
tions in the planar AdS black brane background yield the
following relation [54,55]:

rG)
e

It is worth noting that the jet-quenching parameter ¢
in (1.1) is not proportional to the “number of scattering
centers”, which is « N2. Moreover, the value of § in QCD
is smaller than that one predicted by (1.1).

In this work we show that the jet-quenching parameters
in the Schwarzschild-AdSs and the Kerr-AdSs at high
temperatures have the same dependence on 7T as for the
AdS black brane (1.1). We also find that rotation increases
the values of g.

The paper is organized as follows. In Sec. II we start with
a review of the Schwarzschild-AdSs and Kerr-AdSs black
hole solutions. Then we briefly discuss the calculation of

VT3,

q= (1.1)
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rectangular Wilson loops in holography. In Sec. III we
calculate the expectation values of temporal Wilson loops
in the Schwarzschild-AdSs; and Kerr-AdSs black hole
backgrounds and then analyze the corresponding quark-
antiquark potentials. In Sec. IV we evaluate lightlike
Wilson loops and estimate the jet-quenching parameters
in the Schwarzschild-AdS5 and Kerr-AdSs black holes. In
Sec. V we conclude and give a discussion.

II. SETUP
A. Gravity backgrounds

We consider a five-dimensional gravity theory with a
negative cosmological constant A

1
S= 3 / Bx\/=G(Rs — 2A). (2.1)
K
The Einstein equations following from (2.1) are
A
R/w = ggﬂlﬂ (22)

where we suppose A = —6/¢2. The simplest black hole
solution of a mass M and a spherical horizon to Eq. (2.2) is
the Schwarzschild-AdSs black hole with the metric

2o SO o 7o
ds” = 2 dr +f(r) dr
+ r*(d6? + sin? dg?* + cos? Ody?),  (2.3)
where the function f(r) is
f(r)=r+¢72r" -2M. (2.4)

In (2.3) the angular coordinates are defined as 0 < 6 < /2,
0 < ¢,w <2z It is worth noting, that the horizon of the
black hole is defined as a greater root of the equation
f(r)/r* = 0, thus we have

N NVBEEM + 1 -1
rh: \/§ .

The Hawking temperature of the black hole (2.3) is
given by

(2.5)

2r2 + £
Ty =" 2.6
H 27[7}1bﬂ2 ( )

Another black hole solution with a spherical horizon to
Eq. (2.2) is the Kerr-AdSs black hole with arbitrary
rotational parameters ¢ and b (in the static-at-infinity
frame [36])

dy? 2M
ds? = —(1 + y*¢~2)dT? + +
1 +y2f_2_A22—A;172 A3y2
x (dT — asin> @d® — b cos® OdWY)?
+ y*(d@®? + sin® @d®? + cos? O@dY?), (2.7)
with
A=1-a*"sin’>0 — b*¢%cos’ ©. (2.8)

In (2.7)-(2.8) the angular coordinates run as for the
Schwarzschild-AdSs; 0<©® <4, 0<®,¥ <2z The
horizon y, of the Kerr-AdSs black hole is a greater root
of the equation

1+ y*2 - N =0 (2.9)
Correspondingly, the Hawking temperature reads
1 1 1 1
Ty =— 1 +y2¢72 -— .
Rz (y+( i )<yi+a2+y2++b2) y+)
(2.10)

It is easy to see, that for a = b = 0 the Kerr-AdS5 metric
(2.7) comes to the Schwarzschild-AdSs (2.3) background,
e, Yilamp—o = 11-

The dependence of the Hawking temperature on y_ /¢
(r,/¢)is shownin Fig. 1. The rotational parameters belong to
therange 0 < a, b < £, soitis useful to take a fraction of £ as
a value of a or b. We see that both the Schwarzschild-AdSs
and Kerr-AdSs black holes have minima of the Hawking
temperature 7. In the case of the Schwarzschild-AdSs
black hole T is defined by

V2 %

—, with r,=——
nt h

ok
Note that the black hole solution does not exist for 7 < T,

In our calculations we set £ = 0.55 fm, so 70" ~ 0.16 GeV.
Above this point, there are two possible values of the

temperature, corresponding to the small (r, < #/+/2) and

big (r, > £/+/2)black holes, but only the latter is allowed as
a stable equilibrium [29]. The Hawking-Page phase tran-
sition occurs at the temperature 7. > 3/(27z¢) ~ 0.17 GeV.
Following the holographic dictionary the Hawking-
Page phase transition corresponds to the confinement-
deconfinement phase transition [28].

For the Kerr-AdSs black hole the Hawking-Page phase
transition also takes place. However, the presence of
rotation changes the behavior of the temperature; below
some critical values of the rotational parameters the
temperature is three-valued function on y_ . From the other
hand, a stronger rotation leads to the absence of the

min __
n =

(2.11)
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FIG. 1. The Hawking temperature Ty as a function of y, /¢

(ry/€). The case of the Schwarzschild-AdSs black hole
(a=b=0) is shown by a blue solid curve, the Hawking
temperatures for the Kerr-AdSs background for various values
of the rotational parameters are shown by dashed curves from top
to bottom according to increasing values of a and b. The
Hawking temperature for the AdS black hole with planar horizon
is depicted by the black solid line.

temperature ambiguity, and, hence, the Hawking-Page
phase transition disappears [37].

In Fig. 1 we also compare the Hawking temperatures of
the 5D AdS black holes with planar and spherical horizons.
We see that for the same values of the horizons, Ty of the
black hole with spherical symmetry has a greater value than
that one for the planar AdSs black hole. The spherical AdS
black hole with a large horizon, corresponding a high
temperature, behaves similar to the planar AdS black holes.

Note that the conformal boundary for both solutions
(2.3), (2.7) is defined at infinity of the holographic
coordinates r — +oo (y = 4o0) and has the form'

ds? = —dr* + d@? + sin? d¢? + cos? Ody>.  (2.12)

B. Wilson loops in holography
Following the holographic prescription the expectation
value of the Wilson loop on the contour C can be calculated
using a Nambu-Goto action of an open string in a holo-
graphic background [20,21]

(W(C)) = e~Sx, (2.13)

'For the Kerr-AdSs the coordinates in (2.12) should be capital.

where Syg is a regularized action of the string. Hence,
consider a string which is governed by the Nambu-Goto

action
1
SNG = ﬁ dodzy/— det(gaﬂ)’

where ¢ and 7 parametrized the string world sheet, (g,) is
the induced metric on the worldsheet

(2.14)

Gap = Gun0, XM X", (2.15)
Gy 1s a spacetime metric, XM are embedding coordinates,
and a, f are world sheet indices. To consider a temporal
recangular Wilson loop, one should take one temporal and
one spacial coordinate to parametrize the string world sheet.

It’s known that the interquark potential is related to the
expectation value of the static temporal Wilson loop as
follows:

(W(C)) ~ e~ TVIL), (2.16)
where the distance between quarks L and the temporal
extent of the Wilson loop 7 — co. Thus, taking into
account (2.13) the quark-antiquark potential can be found
in the following way

S
y _ —°NG

"= (2.17)

T—co

A generalization to the finite-temperature case was suggested
in [22,23]. In the work [24] the quark-antiquark potential was
explored in the rotating D3-brane background.

Note that the Cornell potential [59,60] includes the
Coulomb term, which dominates at short distances, and
the linear-confining term

V,.=oL

K
i A (2.18)
where L is the interquark distance, « and ¢ are the Coulomb
strength and string tension parameters, respectively. In the
confined phase the expectation value of the Wilson loop
reproduces an area law
<W(C)> ~ e~ OLT — p—oArea(C) (2'19)
Using the expectation value of the lightlike Wilson loop
on the contour C in the adjoint representation one is able to
find the jet-quenching parameter g for a fast parton [54,55]

(WA(C)) ~ exp [— iEQL‘LZ} ,

where L~ is a large side of the rectangular contour C and L
is a short side. At the same time, the Wilson-loop operator

(2.20)
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in the adjoint representation is related to the Wilson-loop
operator in the fundamental representation as follows:

(WA(C)) = (WF(C))*. (2.21)

Following the holographic dictionary (2.13), we have

(WE(C)) = ™S, (2.22)
Taking (2.20) into account we find the relation for the jet-
quenching parameter

43

Q:

II1. HOLOGRAPHIC WILSON LOOPS
A. Wilson loop in Schwarzschild-AdS5 black hole

It is instructive to start with a nonrotating case of the
holographic background, so, first, we consider a holo-
graphic Wilson loop in the 5D Schwarzschild-AdS black
hole with a spherical horizon (2.3)—(2.4).

Parametrizing the world sheet of the static string in the
following way:

t=t o=¢, ¢el0,2zLy], r=r(¢), (3.1)
we get nonzero components of the induced metric (2.15)
f(r
9o = Gtt == (2)’
r
2 2 cin2 r?
oo = Gyop + 1 Gr,:r(sin 0+ ) 3.2
$d 70 (3.2)

where f(r) is defined by (2.4) and we denoted ' = dr/d¢.
The boundary conditions for the string endpoints are

given by
o) -oo-1) -0

In Fig. 2 we show the string configuration for (3.1)
and (3.3).

Equations (3.1)—(3.3) yield the following expression for
the Nambu-Goto action (2.14) of the string in the
Schwarzschild-AdS5 background

(3.3)

Ly

_ 2 02 ”2
=5 L_¢d¢ f(r)sin®0 + r>. (3.4)
From (3.4) it is easy to find the integral of motion
in? 0/ ‘
H— _sintoyflr) _ ¢ (3.5)

29 1 C
sin 9+f(r)

R E’.]: ______________ >
L¢/2 [-Lo/2 7
b, = () e | REEE L PN
Ly/2 Lg/2 R
1 I
T
ry :
t, T 1 1
¢, ® : !
T
1 \/
I'm,Ym 1
1
1
1
Ih, Y+ 1
1

FIG. 2. The schematic illustration of the holographic Wllson
loop configuration. The string endpoints are located at ¢ = + 4’
The red dashed lines depict the configuration of the free quarks

The string has a turning point, which is defined by
7’|, =0, thus from (3.5) we have

_ SOV ¢

, (3.6)
) r? C
sin“ 0 + 70
so the constant of integration is defined by
4
= 3.7
sin 6/ ()|, 37

with r,, = r(¢,,). Note that r,, is located above the horizon
ry,, see Fig. 2.

From Eq. (3.5) we find the equation of motion repre-
sented as

M_1>. (3.8)

2 = sinzef(r)< 7

Plugging (3.8) into the Nambu-Goto action (3.4) and
coming to the integration in terms of r, we obtain

_ T Csin6
S =~ / ™ v/ (3.9)

C? sin? 6?f

From the other hand, we have the expression for the
distance between quarks L, from (3.8),

L¢ 4 o0 1
Lo 2 [%4 . (310
2 sinb ., \/f(r)\/C?sin?0f (r) — £* (3:10)

It worth to be noted that Eq. (3.9) has a divergence at the
conformal boundary r — +oco of the spacetime (2.3) and
we have to regularize (3.9). The renormalization procedure
represents a subtraction of the “self-energy” of two free
static quarks, which holographically corresponds to the

106017-5
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action of the static straight strings stretched from the
boundary » = oo to the horizon ry,

T [ T o0
SO:E/,,I’ dr\/—GnGrr:w<[m dr—f—rm—rh).

(3.11)

Then, taking into account (3.11), the regularized action
takes the form

SNG = Sng —So

T </oo < Csin6+/F (1)
=— dr =
ma \Jr, \/C*sin?0f (r) — 2

One can try to estimate the relation between S{3 (3.12)
and Ly (3.10). In order to find this we introduce the
following notation in Egs. (3.10) and (3.12)

—1>—rm+rh>.

(3.12)

T
NG = _Il(rrm C)’

= L, =2l ,O).
NG 7[(1/ 17/ Z(rm )

(3.13)

The derivatives of these quantities with respect to C are
related in the following way

oly(r,,,C) Col(r,,C)
= _ 3.14
oC 4 oC ( )
Integrating lhs of Eq. (3.14), we obtain
coly(r,.C) Ly i /oo dr
———dC = — + — , 3.15
/) oC 2 sin€ ), \/f(r) ( )

at the same time using integration by parts of rhs (3.14) one
has

cCoal(r,,C) Crd o 1 [C€
EXNmC) o T g 2 [T d
/0 7 aC C SNG A 1 (r, €©)dC,

where we define

Ach (. €)dC = /°° dr( (x/iiﬁ%— . c)

) —C(rp—=ry). (3.17)

iZ
" sind\/F(r)

Taking into account (3.14)—(3.17) we get the following
relation between the quantities Syg and Ly

w T ¢/L
Rl G ) N AT

where

B V/C?sin? 0f ( ) g)
f3(rm. €) = jm ar < £sin@\/f( 4
C

_?(rm_rh)’

(3.19)

and C is defined by (3.7).

Plugging (3.7), (3.18)—(3.19) into (2.17) and doing some
algebra, we find the following relation for the quark-
antiquark potential

smﬁw m( +I';>,

S

_(rm_rh)‘|v

(3.20)

where /A = £2 /&’ and the distance between quarks L is
given by (3.10) with C defined in (3.7).

In Figs. 3 and 4 we present the numerical studies of the
dependence of the quark-antiquark potential V; (3.12) on
the distance L (3.10). For all plots we perform numerical
calculations at various temperatures keeping the 't Hooft
coupling fixed as 4 = 6z and varying the angle 6. In order
to set the minimal Hawking temperature 70" = 0.16 GeV,
we put £~ 0.55 fm. It worth to be mentioned, that the
phase transition occurs at a slightly higher temperature,
namely, at T, = 3/(27£) ~ 0.17 GeV.

The interquark distance L, (3.10) as a function of the
integration constant C (3.7) is depicted in Fig. 3A. We
observe that L, decreases as the temperature increases. One
can also see that for a fixed temperature Ty the distance L
takes the smaller values while @ increases.

In Fig. 3B we show the distance between the quark-
antiquark pair Lj, (3.10) as a function of the quantity
1 = (ry/r,)*. This plot illustrates the dependence of the
interquark separation L on the turning point r,,. As in the
previous plot we observe that the distance decreases with
increasing temperature 7'y and that the angle reduction
leads to a decrease in the distance between quarks. In
Fig. 3B we also see that L, increases until it reaches its
maximal value L ., and then it decreases. It is interesting
that one is able to obtain the same value of L by tuning the
temperature 7'y and the angle 6.

The behavior of the quark-antiquark potential V ; on the
interquark distance L is presented in Fig. 4A. For the plot
we choose Ty = 0.17 GeV, that corresponds to the decon-
fined phase. We see that the quark-antiquark potential is
double valued, however, the upper branch of the potential is
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L T"=0.16GeV | - Th=0.17GeV, 6=11/9 0.8 TI"=0.16GeV .
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(@)

FIG. 3.

quark-antiquark pair L, as a function of 1 — :7"

m

unphysical. It corresponds to an unfavorable string con-
figuration in contrast to the lower branch, which is
associated with the lower-energy string configuration.
Note that at the distance L, = L(r,,) the potential V
tends to be zero and the configuration of two noninteracting
straight strings is more preferable energetically. The same
holds for L, > L,(r,,). Thus, L,(r,,) can be interpreted as
the screening length [23]. In the work [61] it was argued
that the timelike screening length, which corresponds to the
mean-free path for traveling “light” (gluon) in a medium,
has the value 1/zT. As we can see from Fig. 4A, this
condition is satisfied for 6 > z/9.

From Fig. 4A we see that the interquark potential has the
Coulomb-like behavior. If we estimate (3.20), we find that
Vq(-{ has the Coulomb-like term. Indeed, the numerical

- — Ty=0.30GeV, 6=r1/12

0.0 0.2 0.4 0.6 0.8 1.0
1—rh4/rm4

(b)

(a) The distance between quark-antiquark pair L, as a function of the integration constant C (3.7). (b) The distance between

evaluation of the term /5 confirms that at small distances
the contribution from /5 is inversely proportional to the
length /3 ~—1/L,. We show the dependence /3 as a
function of 1/L, in Fig. 4B. Note that /5 is double valued
because of the string configuration, see Fig. 3A. In the
deconfined phase the string term vanishes. In our work we
are able to approximate Eq. (3.20) as

K
L) - _—+V0.

Vgl
q9 L¢

(3.21)

However, in [62,63] it was suggested that in addition to the
Coulomb contribution one has to include the medium-
dependent term. In Table I we present values of x and V),
which obtained from fitting of V ; in Fig. 4A. As one can

[ — 0.00 )
i 1 e Ty=0.17GeV, 6=r1/6 s
[ - 1 Th=0.17GeV, 6=11/9 _0_05:_
0 —< - = Ty=0.17GeV, 6=r1/12 : ]
ot 1 e T,4=0.20GeV, 6=r1/6 -0.10¢ ]
s [ ] T4=0.20GeV, 6=11/9 & . ]
S _qF . T20.20G = —0.15[F ]
=T 1 — — Ty=0.20GeV, 6=r1/12 Eo ]
< L i T..20.30GeV. §=71/6 - B | Schwarz-AdSs | ]
i S(r:T:\]lvarz—AdSt; 1 R=0.50GeY, G=m -0.20F 1 TN"=0.16GeV | -
L TI"=0.16GeV | 1 T4=0.30GeV, 6=71/9 o, Te=0.17GeV | 1
i Te=017GeV | 1 — - T,=0.30GeV, 6=/12  _go5[ s b
i A=6TT i C ]
_3' ) T 080l b b ]
0.0 0.6 0.8 0 5 10 15 20
1/L [1/fm]
(b)
FIG. 4. (a) The quark-antiquark potential V' as a function of the distance L. (b) The dependence of 75 on the inverse distance 1/L,.
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TABLE I.  Fitting coefficients of V; (3.21) at temperatures
Ty =0.17, 0.20, 0.30 GeV and angles 0 = z/6,7/9,7/12,
corresponding to Fig. 4.

Ty, GeV 0 x, GeV -fm Vo, GeV
/6 0.711459 2.67669
0.17 /9 1.04008 2.67669
/12 1.37443 2.67669
/6 0.707247 3.6193
0.20 /9 1.03393 3.6193
/12 1.3663 3.6193
/6 0.704129 6.08073
0.30 /9 1.02937 6.08073
/12 1.36027 6.08073

see, the constant V) does not depend on the angle @, but it
grows as the temperature 7'y increases. Surprisingly, at the
temperature  just above the critical one, i.e,
Ty ~0.171 GeV, the value of V, is equal to Euler’s
number. The Coulomb strength parameter x weakly
depends on Ty and increases with decreasing angle 6.

In Fig. 5 we compare our results for the potential in the
Schwarzschild-AdSs background with V ; in the planar AdS
black hole [23]. Forthis we set R = £'in the planar AdS black
hole case and fix 6 = z/6 for the Schwarzschild-AdSs
background. We see that for the same quark-antiquark
distance V ; in Schwarzschild-AdSs (solid curves) takes
greater values than the potential in the planar AdS back-
ground (dotted curves) [23]. This difference becomes more
significant as the temperature increases.

B. Wilson loop in Kerr-AdSs black hole

Now we turn to the discussion of the holographic Wilson
loop in the 5D Kerr-AdS black hole (2.7)—(2.8).

1 e

Y
o
S
Q
>
Q.
wn

an [GeV]
|

Schwarz-AdSs
T"=0.16GeV
T.=0.17GeV
6=11/6, A=671T

B .
M P S Y ST B R B AT S A B R

0.0 0.1 0.2 0.3 0.4 0.5
L [fm]

FIG.5. V,; inthe Schwarzschild-AdSs (solid curves) and in the
planar AdS (dotted curves) black holes at fixed § = z/6 and
Ty = 0.17, 0.30, 0.50 GeV.

For the parametrization of the string world sheet we
employ the following gauge condition:

t=T, c=®, y = y(®), € [0,27Ly).

(3.22)

The components of the induced metric (2.15) are

2M

= Grr = _<1 —|—y2f_2 - A3y2> s

2Masin’ ©
16 — GTCD = _Tyzv

, 2Ma? sin”> ©
Yoo = G<1><D + y/szy = 51n2 ®(y2 A3 2 >
y
y/2
A (3.23)
A%y

where A is given by (2.8) and we denoted ¥y = dy/d®. We
also suppose the following boundary conditions for the
location of the string endpoints

Lo\  (Lo\ _
y 5 ) =75 ) =
Taking into account (3.22)—(3.24) we write down the
Nambu-Goto action in the following form:

Lm
/2fAy 2 2
+yFsys1n®,
/ \/ fa(y) »0)

(3.25)

(3.24)

where for clarity we introduced the notation using dimen-
sionless functions

faol) = 14577 = 2,
fw() =14y - Azsz’
Fa®) = fa0) + IO 1y ey a6)
The system (3.25) has the integral of motion
H—_ Y Fp3(y) sin* © (3.27)

\/y 2 fABEl; + y?F3(y) sin? ©

The turning point is defined by y' =0, so from (3.27)
we have
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= y(q)m>'
(3.28)

. 4 :
—ys1n®\/FA3(y)|y:ym:—E, with y,,

The equation of motion which follows from (3.27) is
given by

faz(y)
far(y)

(o
V2 = y2F s (y) sin’® { sin@y?F s (y) — 1].

f2
(3.29)

Substituting (3.29) into (3.25) and coming to the integra-
tion with respect to y one yields to the expression,

:i/wdy Csin®y\/Fp:(y) fas(y)
NG 1d ), \/C2 sin? @y?Fs(y) — Fa(y)
(3.30)

Equation (3.30) is divergent at the conformal boundary
y = +oo of the Kerr-AdSs black hole.

Just like in the Schwarzschild-AdS case, the renormal-
ization procedure is a subtraction of the single quarks “self-
energy”, which is represented by the action of a static
straight string in Kerr-AdSs,

Sozl dy\/m a/(/omr/ym)
Ym Y+
fA3(Y)
d 3.31
)™ (331)

Subtracting (3.31) from (3.30) we get

ren Far(y Csin®yy/F s (y)
SNG— -1

far(y \/CZSIIlz@yzFA%( )—£?

far(y)

Faly) (3:32)

From Eq. (3.29) we find the interquark distance L,

Lo /°° p 4
= = y
2 v SiNOy\/F s (y) \/C?sin? @y?F 53 (y) — £2

fA*()’)
fAz()’)

(3.33)

As in the previous subsection one can find the relation
between the string action (3.30) and the quark-antiquark
distance (3.33). For this reason, we define (3.32) and (3.33)

T Lo
St =—1 ,C), — =1Ly, C). 3.34
NG T[(Z/ l(ym ) D) Z(y ) ( )

Correspondingly, derivatives of 1,(y,,, C) and I,(y,,, C)
(3.34) with respect to C are

ol (ym, C) _/oo J y£% sin®+/F 51 ()
oc ), P02 Fu(y) - £2)
Sas (y)
Fal) (3.35)
ol (ym. C) _ /°° yCZsin®\/F ()
oc ), Vit 0ch () - )
Sas ()’) (3 36)
a2 (y) '

Comparing (3.35) with (3.36), we find the following
relation:

aI2(.Ym7c) Ca]l(ym7c>
=— . 3.37
oC 4 oC ( )
Integrating the lhs of Eq. (3.37), we obtain
cal, (ym’ C) Lo
—— 2dC=—+1 3.38
[ Oyl (339)
where we use the notation
dy far(y)
Iy =i . 3.39
A° /M sin@y+/F 3 (y) \ fa2(¥) ( )

At the same time, integrating the rhs of Eq. (3.37) by parts,
we come to

c C
[P ge—cny,0- [“nocpic
0 oC 0

(3.40)

The latter integral can be easily found

c o /CTsin?Oy’F 22
/h(ym,odc /dyV SOy “()
0 Y sin@®y+/Fps (y

Jar( y y'" fA3 y
far( 2(y)
Now collecting Eqgs. (3.37)—(3.41), we get

¢ T (Lo
5= g (345

(3.41)

(3.42)
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T,(0,0)=0.17GeV

15¢ |TH"(0,0)=0.16GeV [
05¢ O=r1/6 a=b=0
Ty=0.17GeV

a=0.05¢

a=b=010" pg.15¢

Ty=0.30GeV

0.5_ T T T I T T T I T T T I T T T I T T T ] 0'5_
" a=0.15¢ T1"(0,0)=0.16GeV | 1 I
L b=0.05¢ T.(0,0)=0.17GeV |- i
L ’ - 04
0.4r a=b=0 O=r1/6 . i
0.3F 1 _o3f
€ I 1 E I
[ i I
~ 02 1 o2t
0.1 ] 0.1
~ Ty=
S~ 030Gy ]
00 i MR B R |.-.|.-|. l= T == —1- |_': 00
0 2 4 6 8 10 0.0
C
(a)
FIG. 6.
1 T T T T I I’ T T T I T T T T I T T T T I T T T T 0'00
i y/ a=0-05( 1
I //‘Z, of <« b=0.15¢ ]
0 -0.05
> [ ; : =
o [ =
= -1 § = -0.10
g N o
> o o>higis ]
- ()] 2 H O -
L o ifffio ]
2o 8 ifff i | T00=017Gev | _0.15
- TN iT | TR0.0)=0.16GeV | 1
L =i i | e=me, aser | ]
L F : E 4
_3 o E e by v v b Py —- -2
0.0 0.1 0.2 0.3 0.4 0.5 0-20
L [fm]
(a)
FIG. 7. (a) The dependence of the quark-antiquark potential V ,

length 1/Lg.

where

s

0.2 0.4

1 _Y+4/Ym4
(b)

0.6 0.8

(a) The behavior of the interquark distance Lg on the integration constant C (3.28). (b) L¢ as a function of 1 — I;:*

R L
- Ty=0.17GeV 1
[ T+(0,0)=0.17GeV | ]
- T"(0,0)=0.16GeV | A
[ a=0.15¢ O=r1/6 |
| b=0.05¢ i

1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1

5 10 15 20
1/L [1/fm]
(b)

on the distance Lg. (b) The behavior of 75 (3.43) on the inverse

So, taking into account (3.43), we find the same expression
as (3.20) for the quark-antiquark potential

4 fas(y \/C251n2®y2F s(y)— 52—C> C
' fary ysin®+/F 3 (y 4
(3.43)

Vg =

\/f;ymmn@\/FAx (Vim ( +I3>

(3.44)

Figs. 6A—6B show the dependences of the interquark

distance Lg (3.33) on the constant C (3.28) and the quantity
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TABLE II. Fitting coefficients in the (3.20) at temperatures
Ty =0.17 GeV and Ty = 0.30 GeV, © = z/6 and rotational
parameters are fixed as in Fig. 7A.

Ty, GeV alt b/t k, GeV -fm Vo, GeV
0 0 0.711459 2.67669

0.17 0.15 0.05 0.711887 2.95381

’ 0.1 0.1 0.711556 3.05421
0.05 0.15 0.710322 3.23494

0 0 0.704129 6.08073

030 0.15 0.05 0.702162 6.39186

) 0.1 0.1 0.701980 6.62686
0.05 0.15 0.701468 6.96067

4 .
1- ;%, respectively. In the plots, the temperature Ty and the

value of the angle ® are fixed, while we vary the rotational
parameters a and b. In both Figs. 6A and 6B we see that L,
decreases as the rotational parameters increase, so the
interquark distance has the bigger values for zero rotational
parameters.

The dependence of the potential V ; on the interquark
distance Lg, is shown in Fig. 7A. We set Ty = 0.17 GeV
and 1 = 6z. From Fig. 7A we see that V ; is double valued,
but only the lower curve is significant as for the nonrotating
case. This branch corresponds to the string configuration
with the lower energy. The potential V; crosses zero at
Lo, = Lo(y,,), which can be interpreted as the screening
length. The upper branch of the potential, which starts at
Lo, is related to a configuration of two separated straight
strings. We can observe in Fig. 7A that at Ty = 0.17 GeV
the potential V,; for nonzero rotational parameters
(color solid curves) can have greater values than in
Schwarzschild-AdSs (black solid curve). Increasing the
temperature Ty = 0.3 GeV the potential V ; in Kerr-AdSs
comes closer to V ; in the Schwarzschild-AdSs black hole.
It should be noted that the same values of V ; at different
temperatures corresponds to different Lg, which decreases
as the temperature increases.

From Fig. 7A one can see that the potential has also the
Coulomb form, which is similar to the Schwarzschild-AdS
case. This is also confirmed by the dependence of the /5-
term on the inverse interquark distance 1/L depicted in
Fig. 7B. Note that in [24] it was shown that the quark-
antiquark potential in the rotating D3-brane interpolates
between the Coulomb and confining parts.

We are able to find an approximation of V ; (3.44)
assuming that above the critical temperature Ty =
0.17 GeV it is given by (3.21). We write down x and V,
for various values of the rotational parameters a and b
in Table II.

We see that the Coulomb strength parameter x weakly
depends on the rotational parameters (at least for values of
a and b under consideration) and on the temperature. On
the contrary, the term V|, strongly depends on the rotation
and Ty.

IV. JET-QUENCHING PARAMETER

A. Jet-quenching parameter in the 5D
Schwarzschild-AdS black hole

In this section, we will discuss the jet-quenching
parameter in the 5D Schwarzschild-AdS background
(2.3)—(2.4) following the holographic prescription.

To find the jet-quenching parameter § we have to come
to the scaled “light cone” coordinates

dxt =2(dr—£4dg),  dxm =2(de+£dg).  (4.1)
By virtue of the transformations (4.1) we come to the
following form of the Schwarzschild-AdSs metric (2.3)

1

ds? = — <r—2 sin%0 — @> [(dx™)? + (dx™)?]

ZANE 7

1 /r . ) f(r) .
—F<Psln 9"‘7 dx~dx
r2

dr’ + r*d6* + r’cos*Ody?,
f(r)

+ (4.2)

where f(r) is given by (2.4). We have to study a holo-
graphic lightlike Wilson loop (2.20) in the background
(4.2). We choose the coordinates on the string world sheet
as follows:

T=x", c=y. (4.3)
Moreover, for the string configuration we also suppose

X = x(o), 0(c) = const, x" (o) = const. (4.4)

Taking into account (4.3)—(4.4) we find the corresponding
Nambu-Goto action (2.14)

L/2 r

— L_
Vo

N 2nal -L/2

x \/ (]% — 22 in? 9) (cos2 0+ fr(/i)>, (4.5)
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where we define r' = dr/dy. The corresponding first
integral is given by

Mo cos? G{f(r) ; 4z/”_z/zsin2 9' (4.6)
2¢%, [cos* 6 + iG]
From (4.6) we find the equation of motion
2
0
2 = fi(;)cj‘; [cos O(f (r)£2 — r* sin? 6) — 4C2£9],
(4.7)

where C is some constant. Plugging (4.7) into (4.5) and
integrating with respect to r the Nambu-Goto action can be
represented as

L~ oo
S = — dr
o rpte
" cos O(f(r)£* — r*sin? 0)
263\/F(r)\/cos2 0(f (r)£2 = r*sin? 0) — 4C2£5

(4.8)

The relation (4.8) is divergent on the background boundary
r — +oco and has to be renormalized. Moreover, since
Eq. (4.8) contains a multiplier f(r)~'/? we regularize the
action on the lower bound as r, + ¢. The normalization of
Eq. (4.8) can be performed through the subtraction of the
static mass of the quark and antiquark, which is given by

\/f V£2 — rsin? 0
o ,h+€ 203/ f(r) '

With (4.9) the regularized string action is given by

So = (4.9)

\/f )2 — r*sin® 0
71'(1/ rh+e \/f(}")
( cosé\/f V2 — rsin® 0 1>

V/cos? (f(r)£? — r*sin? @) — 4C2£° -

Sree = §— 8, =

(4.10)

Expanding (4.10) for small C (in the low-energy limit)
we find

" - f2c2
Sree = na/—cosz’ (4.11)

where we denote by Z by the following integral:

dr

4.12
25in% @ ( )

T'm \/f \/f
and r,, is defined as a positive real solution to the equation
r? 4+ r*¢=2cos’ 0 — 2M = 0. (4.13)

To find the relation between L and C we remember that
r(+L/2) = oo and we have

L 206 [ dr
2 o8Oy, \/F(r)\/cos20(f(r)F2 = r*sin?0) — 4C2£°
(4.14)
or for small C we get
L 2/C 4.15)
2 cos’d '

Deriving C from (4.15) and substituting into the action
(4.11) we come to

L~ L2 coszé’
na’ 16£2% [«
e \/f

We note that r,, > r, and r,, coincides with r, only for
60 = 0. In this case we need to shift the turning point to
regularize the divergence near ry, i.e., r,|g_o = r» + €.

Taking into account (2.23) and (4.16), we find the jet-
quenching parameter

. VA cos? 9
q= ,
bﬂ4 [
\/_ﬂ f \/f \/ f 2 sin?
with 4 = #*/a’* and f(r) given by (2.4).
We are not able to calculate (4.17) analytically. However,
for small @ and £ = 1 we can estimate the expression for §.

First, we find the integral in the denominator of (4.17) for
¢ =1 and small 0

reg __

(4.16)

4f‘ sin®

(4.17)

106017-12



PROBING THE HOLOGRAPHIC MODEL OF N =4 ..

PHYS. REV. D 107, 106017 (2023)

In 2r—v/2/V/8M+1-1
2r+v2+/VBM+1-1

/3 arctan (f) =

8M+1+1

oo dr
[ﬁe AP =2M |\ SM T I/VBM =1 V8M + 1M 1+ 1

1

V2

T'n

arctan | ————
(1 +2rﬁ)m< ( ra

rpte

h
+ 2rh

) n 1H(€+€2rh) mtl In(o0) r2—|—1>
+1

E Zrh

(2T} + Ty /7T — D/ 2Tu(V/7'Th 2 + aTy) + 1

X | —arccot <

Ty + \/7*Th =2 )
\ﬁ\/ﬂTH(\/nlez{ -2+ aTy) + 1

VATu(/@T =2+ aTy) + 1 (In(eo) ~In ())
+

(4.18)

V2(aTy +\/7°Th - 2)

Thus, for high temperatures, £ = 1, and small 6 we get
the dependence ¢ on the temperature as for the planar AdS
black brane [54]

A
€]~£KT3,

> (4.19)

where k is some constant.

In Fig. 8A we show the jet-quenching parameter g (4.17)
for different 6 (solid curves) as a function of the temper-
ature Ty.

Note that we are able to trace the behavior of g starting
from the 79", since below this temperature the black hole
does not exist. From Fig. 8 A we see that for small values of
the angle 0, the parameter ¢ is quite close to the curve ggyym
[see Eq. (1.1)] corresponding to the planar AdSs black
brane from [54]. It is interesting that we can find a
small value of 6, for instance 6 < /9, such that the jet-
quenching parameter ¢ is even smaller than ggyy for all
values of Ty. Thus, we see that the value of the jet-
quenching parameter for the Schwarzschild-AdS black hole
depends on the location of the quark.

The fact that g in the Schwarzschild-AdS background for
very small angles @ can lie below the curve ggy) in the AdS
black brane background is explained by that we have the
different contributions of the metric coefficients for the
AdSs black holes with planar and spherical horizons.
Taking 6 ~ 0 we change the contribution from the G- -
term (4.2) in the Nambu-Goto action (4.5).

It is instructive to look on the dependence of §/T73; on the
ratio Ty/TH". We depict this for the Schwarzschild-AdS
black hole (solid curves) and AdS black brane (dashed curve)

|

in Fig. 8B. Comparing to §gyw/ T}, which is constant for all
range of Ty /T, the quantity §/ T3 for the Schwarzschild-
AdS; background has a nonlinear behavior on 7' up to some
value of Ty, above which it also takes a constant value. From
this figure, one can conclude that at high temperature the jet-
quenching parameter ¢ in the AdS black hole has a generic
dependence on Ty as T3;.

B. Jet-quenching parameter in the Kerr-AdSs
background

Now we turn to the calculation of the jet-quenching
parameter g in the Kerr-AdSs background (2.7) with two
arbitrary rotational parameters. Here we use the following
“light cone” coordinates suggested in [64]

dx™ =dT — ad®, dx~ =dT + ad®. (4.20)
Taking into account (4.20) and putting for simplicity £ = 1
the Kerr-AdSs metric (2.7) takes the form,

=L@ P+ (10) + g (14500 ) (@)’

<5(y) =L

e (1— sin4®)> dx~dx™*
y

R
2
2M 2M

———b(1-5in*@)d¥dx" ———bcos*OdWdx~

A’y Ay

dy?

+y2d@?,
fa2 (y)

2M
+cos’0® <y2 32 bzcos2®> d¥? +
y

(4.21)
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FIG. 8.
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| Schwarz-AdSs i
N TH"(0,0)=0.16GeV |
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r A=67T 1
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(a) The dependence of g on the temperature Ty for different values of 6. The case ggyy for the planar AdSs black brane [see

Eq. (1.1)] is shown by the black dashed curve. (b) §/ T%I as a function of Ty /T for different values of 6. The case §gyy for the planar

AdSs black brane is shown by the black dashed line.

where f:(y) is given by (3.26), and we introduced the
following notation:

2
ny)=1+y*- %sinz(a,

2

§) =-(1+y*) - % sin’@,
oM
{(y) =nly) - A3—y2cos4®. (4.22)

We parametrize the string world sheet as follows:

T=x", c="Y, (4.23)
so L is a length along ¥ and we have L~ along the light
cone direction. We also suppose that

X = x# (o), (4.24)
thus the Wilson loop lies at constant x™ and ©
(o) = const, x" (o) = const. (4.25)

We also impose the following constraint for the string
endpoints
y(£L/2) = oo, (4.26)

and

(4.27)

The string dynamics in the background (4.21) is gov-
erned by the Nambu-Goto action (2.14) defined as

L~ k4 1
S = d¥—
2nad A 2£2

where for simplicity we introduce

¥ (y)
Sfa ()’)

+8(y). (4.28)

) =020 (1(0) g e O+ 0N ) (429

and y' = [‘11—\}, The integral of motion, which follows from

(4.28), is given by

A)

H = I v ok (4.30)
2\/P0) + 726
From (4.30) one obtains the equation of motion
2 = T2 0B0) <ﬂ(y2) _ 1). 431)
4%)) 4c

By owning (4.31), we find the Nambu-Goto action (4.28) in
terms of the holographic coordinate y
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(a) The jet-quenching parameter g as a function of T in the Kerr-AdSs geometry at different rotational parameters (color solid

curves), in the AdS black hole with a planar horizon (the dashed curve) and in the Schwarzschild-AdS; background (the solid black
curve). (b) /T3 as a function of Ty/TH" for different values of rotational parameters.

sl 2y COBG) ‘
7o [y T2/ Fe(0)(B(y) - 4C)

As in the nonrotating case considered in the previous
section the string action Eq. (4.32) has a divergence near
the boundary y — 4oo0. To renormalize it one has to
subtract the “self-energy” of two quarks, i.e., the action
of two straight strings in the background (4.21),

B N e B LRV
SO"na/ji ay/|G- Gy ﬂa/[i 2/a0)
(

(4.32)

4.33)

The regularized Nambu-Goto action (4.32) is given by

Srcg:S_SOZE/ocdy \/C(y) ( \/:B(y) 1>
md Jy, 2/ far(y) \V/,

Bly)—4C?
(4.34)

To find a relation between the constant C and the
interquark distance L, we can use the relation (4.31),

L[ 20\/20) |
2 o T Ve 0BOIVAY) —4C?

In the limit for small C the Nambu-Goto action (4.34) and
the distance L between string endpoints (4.35) take the
following form:

(4.35)

I-
reg — Z 27 4 4.
S mx,C +0(CY), (4.36)
L
5 =2CT + O(C3), (4.37)
where for convenience we introduce
o ¢@)
vo PO (y)

with f2(y), {(v), and f(y) are given by (3.26), (4.22), and
(4.29), respectively. Finally, plugging (4.37) into (4.36) we
find that the Nambu-Goto action is

L L?
- zd 16Z°

Teg

(4.39)

Correspondingly, by owning (2.23) the jet-quenching
parameter ¢ in the Kerr-AdSs background can be read
off as follows:

VA
g =——, 4.40
1Vt (440
or restoring the dimension with # one can write § = BT

In Fig. 9A we show the behavior of the jet-quenching
parameter g in the Kerr-AdSs background (4.40) as a
function of Ty for different rotational parameters a and b
(color solid curves). From this figure we find that nonzero
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(a) The dependence of the ratio g in the Kerr-AdSs to ggyy in the planar AdS black hole on the rotational parameter a for

different b and Ty; Ty = 0.17 GeV (solid blue), Ty = 0.20 GeV (dashed red), Ty = 0.30 GeV (dotted green). (b) §/gsym as a
function of the rotational parameter b for different @ and Tyy. The rotational parameter a is fixed as a = 0.20¢ for Ty = 0.17, 0.20,

0.30 GeV.

rotational parameters increase § comparing to gsyy, which
is calculated in the planar AdS black brane background.
However, it is worth noting that for a < b the value of the
jet-quenching parameter ¢ is greater than for a > b. We see
that g increases with the temperature faster in the Kerr-AdS
background then in the nonrotating AdS black hole, so one
can say that the rotation promotes to the energy loss.

The dependence §/T3; on Ty/TH™(0,0) for the Kerr-
AdSs background is depicted in Fig. 9B. We observe
that §/ T3, increases up to some value of Ty, above which
it becomes a constant similar to the case of the
Schwarzschild-AdS black hole. Therefore, at high tem-
peratures the jet-quenching parameter g is proportional to
T3, as in the Schwarzschild-AdSs (4.19) and the planar
cases (1.1) [54]

g ~ Kot T3, (4.41)
where the coefficient k,, depends on values of a and b.

It is instructive to see the ratio §/ggyy in terms of a
rotational parameter. In Figs. 10A and 10B the quantity
q/qsym is depicted as a function of one rotational param-
eter (a or b), while another rotational parameter varies. We
plot this for various values of Ty. From Fig. 10A we see
that the jet-quenching parameter in the Kerr-AdSs black
hole is larger than that one in the AdS black hole with a
planar horizon. It also can be found from Fig. 10A that g in
Kerr-AdSs with a fixed b decreases as the parameter a
increases. Fig. 10B shows that the dependence of §/ggym

on the rotational parameter » is nonmonotonic. For some
fixed a the quantity §/gsyym increases as b increases
reaching its maximal value and then decreases. This is
related to the definition of the “light cone” coordinates
(4.20), which yields the emphasis of the parameter a.

It is interesting to compare ¢ in Kerr-AdSs with the jet-
quenching parameter in other holographic backgrounds
with the rotation. For this we focus on the rotating D-
instanton background from [51]. The rotating D-instanton
background is characterized by the angular velocity @ and
the instanton density ¢. In Fig. 11 we show the ratio /g
as a function of Ty, where g is the jet-quenching parameter
in the Kerr-AdSs black hole and ¢, is the jet-quenching
parameter in the D-instanton background. We plot §/§, in
terms of Ty for different values of the angular velocity @
and the rotational parameters a and b. From Fig. 11 we
observe that for all w, a, and b, the ratio §/§p turns to have
a common form; it increases up to some 7'y, and then takes
a constant value. Thus, one can conclude that both jet-
quenching parameters g and g, have the same behavior at
high temperatures.

We also present g/, in terms of Ty, where ¢ is taken
for the AdS black brane (black dashed line) and the
Schwarzschild-AdSs background (black solid curve), in
these cases we set @ =0 for the D-instanton angular
velocity. Note that the values of the D-instanton density
q are taken in terms of 7. In fact, we change ¢ in Fig. 11
from 0 to #*; however, the dependence of §/§, on q is
almost negligible. We see that the ratio §/§p has a similar
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FIG. 11. g/qp as a function of Ty for various values of the

angular velocity of the D-instanton w = 0.1, 0.3, 0.5 and fixed
parameters a and b of Kerr-AdSs; a = b = 0.1 (solid) and
a=0.15¢, b = 0.05¢ (dashed). The cases of §/gp, where g
corresponds to the AdS-Schwarzschild and AdS black brane are
shown by black solid curve and dashed line, correspondingly
(w = 0).

dependence on T’ for both the Kerr-AdS5 and the rotating
D-instanton background.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated holographic Wilson
loops in the Schwarzschild-AdSs and Kerr-AdSs black
holes. The both backgrounds have the conformal boundary
R x S3 and are holographically dual to the nonrotating and
rotating N’ =4 SYM quark-gluon plasma, correspond-
ingly. In particular, we have calculated the temporal and
lightlike Wilson loops in the Schwarzschild-AdSs and
Kerr-AdSs backgrounds.

From the holographic temporal Wilson loops we have
found the quark-antiquark potentials. We have shown that
the expressions for the potentials in both backgrounds
contain the linear and Coulomb-like terms. At temperatures
above the critical one (T > 0.17 GeV) we have observed
the Coulomb-like behavior (see Figs. 4A, 7A). We have
estimated the coefficients of the Coulomb terms both in the
Schwarzschild-AdSs and Kerr-AdSs backgrounds from
fitting of V ;. For the nonrotating case (a = b = 0) we
have seen that the distance between quark-antiquark pair
can be decreased either by increasing the temperature 7y or
reducing the angle 6, see Fig. 4A. The same dependence is
inherited for the nonzero rotating parameters (see Fig. 6).
Note that a similar deformation of the string profile was

also observed in [65] for rotating mesons in a static
background. We have seen that the rotation increases the
values of the quark-antiquark potential V ; compared to the
Schwarzschild-AdSs case at the same interquark distance.
At high temperatures (T = 0.30 GeV) we have observed
that Vz in the Kerr-AdSs background becomes closer to
V.5 in the Schwarzschild-AdSs black hole (Fig. 7A) at least
for certain values of the angle 6 ().

Considering the holographic lightlike Wilson loops, we
have calculated the jet-quenching parameters g. For the
Schwarzschild-AdSs black hole we have found that the
analytic expression for ¢ at high temperatures and 6 ~ 0 has
a cubic dependence on Ty, which is similar to that one in
the AdS black brane (with a planar horizon) [54]. We have
also observed this from the dependence of §/T3 on
Ty/TH"(0,0) (see Fig. 8B). As we have seen for Vg,
the value of the jet-quenching parameter g also depends on
6. For example, one can obtain a value of ¢ at 0 < /9,
which is smaller than in the AdS black brane.

In the case of Kerr-AdSs; we have found that the jet-
quenching parameter increases with the rotation, see
Fig. 9A. However, at high temperatures we still have the
dependence § ~ k.o T3; with .., defined by values of a and
b. Thus, the cubic dependence of § on Ty takes place at
high temperatures for the rotating and nonrotating cases.
In both cases, we have observed a strong dependence on the
angle 6 (or ®), which is related to the geometries.
Remarkably, in [51] it was found the jet-quenching
parameter in the rotating case (the rotating D-instanton
background) also takes larger values.

An interesting future direction could be the generaliza-
tion to a charged Kerr-AdSs background [66], which
corresponds to the case with a nonzero chemical potential.
Another interesting problem would be a study of spacial
Wilson loops in the Kerr-AdS; and the Kerr-Newmann-
AdSs black holes and comparing the results with the lattice
results for the rotating quark-gluon plasma [43,44]. It
would be useful to consider holographic probes moving
along a circle in the rotating QGP as was discussed for
nonrotating black branes in [67,68].
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