
Hydrodynamic attractors for the speed of sound in holographic Bjorken flow

Casey Cartwright ,* Matthias Kaminski ,† and Marco Knipfer‡

Department of Physics and Astronomy, University of Alabama,
514 University Boulevard, Tuscaloosa, Alabama 35487, USA

(Received 16 December 2022; accepted 4 May 2023; published 26 May 2023)

The time evolution of the averaged energy-momentum tensor as well as its variation with energy
density are calculated in a far-from-equilibrium state of N ¼ 4 SYM theory undergoing a Bjorken
expansion. The calculation is carried out holographically where we consider a collection of trajectories of
the energy density in the space of solutions by small changes to the initial conditions of the bulk
spacetime. We argue that the proper interpretation of the variation of the diagonal energy momentum
tensor components with respect to the energy density is that of a far-from-equilibrium speed of sound. We
demonstrate remarkable agreement with a corresponding hydrodynamic prediction. We find by Borel
resummation that the holographic system has one attractor for this speed of sound longitudinal, and
another transverse to the direction of Bjorken expansion. Attractor times for various initial flow conditions
show that reaching an attractor does not imply or require local thermal equilibrium. In the cases studied,
reaching an attractor implies hydrodynamization (quantities evolve approximately according to hydro-
dynamics), justifying the name hydrodynamic attractor.
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I. INTRODUCTION

One of the basic hydrodynamic assumptions—like in
all effective field theories—is that the contributions from
derivatives of operators are less important than the
operators themselves, this leads to the gradient expansion
of conserved quantities like the energy-momentum tensor.
Surprisingly, hydrodynamics works well for the descrip-
tion of heavy ion collisions already early after the
collision, where gradients are still expected to be large.
Another way of saying this is that the hydrodynamic
expansion is like an expansion in the Knudsen number and
already works well for times when the Knudsen number is
still large [1]. This “unreasonable effectiveness of hydro-
dynamics” [1] might be explained by the presence of
hydrodynamic attractors, which implies that after a rather
short time the initial deviations from a hydrodynamic
evolution die away exponentially fast in a holographic

strongly coupled system [2]1 and the system follows the
hydrodynamic evolution independent from the exact
initial conditions. Naturally, attractor behavior has also
been seen in nonholographic contexts as well, such as
those found within QCD and kinetic theory [4–7].
Anisotropic attractors were considered [8], and attractors
(including early-time attractors at weak coupling) have
been further studied in the context of Bjorken flow with
higher-order viscous fluid dynamics [9] (also for Gubser
flow [10]), nonconformal systems [11], and in noncon-
formal kinetic theory [12], see also [13].2

Given that hydrodynamic models display attracting
behavior of the one point functions of the energy momen-
tum tensor, one may ask themselves if higher point
correlations also display this behavior. It is our goal, here,
to initiate such a study by continuing the story of attracting
behavior of the boost invariant evolution in N ¼ 4 SYM
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1AdS=CFT models for strongly coupled N ¼ 4 SYM theory
display no distinct early-time attractor [2,3], while in Israel-
Stewart and kinetic theory the universal attractor extends to
arbitrarily early times. Therein, the approach to the attractor at
early times is governed by a power law (presumably driven by the
expansion of the plasma) and it is exponential at late times
(presumably driven by collisions).

2These nonconformal systems show a progressing destruction
of the attractor behavior (depending on coupling strength and on
the degree to which the conformal symmetry is broken). It is
intriguing that the longitudinal pressure, PL, can still have an
early-time attractor [11]. However, see the more recent results
from [14].
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plasma. Using the characteristic formulation of general
relativity, we obtain numerical solutions to the Einstein
equations. These correspond to the out-of-equilibrium
evolution of data, which may be thought of as initialized
shortly after the “collision” of two heavy ions. To simulate
correlations with our evolutions we study the variation of
the energy momentum tensor with respect to the energy
density. We conduct this study by considering a class of
initial conditions sightly varied around a central initial
condition. We argue that the variation of the energy
momentum tensor, as a result of these perturbations of
initial conditions, reflects a potential out-of-equilibrium
speed of sound. Utilizing the confirmed hydrodynamic
attractors of N ¼ 4 SYM theory we provide a leading-
order resummation of the hydrodynamic expectation of the
speed of sound, and find excellent agreement between the
exact numerical evolution and the hydrodynamic attractor
expectation.
We note that due to the anisotropy of Bjorken flow, there

are two distinct derivatives with respect to the energy
density, because the energy-momentum tensor has diagonal
components longitudinal (hTkki) and transverse (hT⊥⊥i) to
the direction of the expansion. We compute the hydro-
dynamic value for these derivatives and compare these
expectations to the same derivatives computed with our
numerical far-from-equilibrium evolutions, finding remark-
able agreement from early times onward. In the discussion
section we propose these two derivatives as the two distinct
speeds at which sound waves propagate through the
Bjorken expanding plasma longitudinal versus transverse
to the expansion.3

In addition, using our numerical evolutions, we take the
opportunity to clarify previous results on entropy produc-
tion in holographic models [17] and confirm previous
numerical results about the hydrodynamic attractor of
N ¼ 4 SYM theory [18,19]. We further note that one
way to interpret the results of [2] is that in holographic
systems hydrodynamization occurs at the same time scale
as the system reaches the hydrodynamic attractor, a point
we confirm in the discussion of our results, relating it to the
time scale at which local thermal equilibrium is reached,
see Fig. 12.
We begin our work with a brief review of hydrodynamics

and the symmetries of a boost invariant plasma in Sec. II.
We then introduce the holographic model with which we
will work in Sec. III. Following this we discuss the
calculation of the speed of sound in thermodynamic
systems and its extension to hydrodynamic evolution in
Sec. IV. Here we compare our results with the out-of-
equilibrium gravitational calculation and discuss them in
the context of other out-of-equilibrium thermodynamic
quantities such as the entropy. We conclude this section

with a verification of the hydrodynamic attractor N ¼ 4
SYM theory as well as a derivation of expressions for the
resummed speeds of sound. Finally we conclude our work
in Sec. V with some discussion and questions to be
investigate in future work.

II. HYDRODYNAMICS

The modern view on hydrodynamics is that it is the long-
wavelength effective theory of some microscopic theory.
Hydrodynamics is a field theory of conserved quantities
which are conserved due to symmetries. The hydrodynamic
fields are

(i) the fluid velocity uμðxÞ,
(ii) the temperature TðxÞ,
(iii) possibly other fields if charges etc. are added.

Unlike in quantum field theory, in hydrodynamics one
does not start from a generating functional Γ½uμ; T;…;
∂αuμ; ∂αT;…�, but from the 1-point functions of conserved
currents.4 For example, an ideal hydrodynamic description
of an uncharged fluid has conserved currents consisting only
of the energy-momentum tensor

hTμν
ð0Þi ¼ ðϵþ PÞuμuν þ Pgμν; ð1Þ

which is usually just written as Tμν
ð0Þ (without the h·i). The

energy-momentum tensor is conserved

∇μT
μν
ð0Þ ¼ 0; ð2Þ

where ∇μ is the covariant derivative (simply ∂μ in
Minkowski spacetime) and this equation is also called
the relativistic Euler equation. If conserved charges are
present, say an electric charge ρðxÞ, then a conserved
current at leading order in the derivative expansion would
have the form jμ ¼ uμρðxÞ. The form the currents take as a
function of the fields is named constitutive equations.
Generally, also an equation of state (EOS) is needed and
often it is given5 in the form PðϵÞ.
Symmetries play an important role in reducing the

complexity of hydrodynamic equations. One highly sym-
metric flow, in particular, has been of enormous use in
understanding the hydrodynamic evolution of heavy-ion
collisions: boost invariant expansion. While studied pre-
viously, it was in 1982, that James D. Bjorken published a
seminal study of the time evolution of the central region of

3Sound modes on top of Bjorken flow were already studied in
kinetic theory [15,16].

4See Refs. [20–22] for the first constructions of generating
functionals for hydrodynamics, and the first frameworks for
including dissipative terms in a hydrodynamic generating func-
tional [23–25], for an accessible review see Ref. [26].

5Examples are dust, PðϵÞ ¼ 0, and (conformal) relativistic
matter in 3þ 1 dimensions, PðϵÞ ¼ ϵ=3.
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heavy-ion collisions [27]. In this work, central collisions6 of
large nuclei are considered, where for transverse distances
much smaller than the nuclear radii, the fluid expansion of
QGP near the collision axis is longitudinal and homo-
geneous.7 In the longitudinal8 direction the fluid, a distance
z from the stationary center, moves along the beam direction
with longitudinal velocity v=t, where t is the time elapsed
since the collision occurred. The most important assumption
of this work is “the existence of a central plateau structure
for the particle production as a function of rapidity.” This
assumption implies that boosts, with γ much smaller than
that of the colliding nuclei, do not affect the description of
the fluid and hence that the initial conditions for the fluid are
the same as those that existed in any other Lorentz frame,
i.e. the physics of the longitudinal expansion depends only
on the spacetime interval ds2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt2 − dx23

p
. This leads

naturally to the description of the longitudinal expansion in
terms of proper time τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − x23
p

and spacetime rapidity
ξ ¼ arctanhx3=t. This situation is depicted in Fig. 1 (where

the transverse directions have been suppressed). Incoming
from the left and right sides, the two beams collide at the
origin. The hyperbola shaped lines are lines at constant τ.
Bjorken’s assumption of a central plateau implies that the
evolution only depends on τ, thus along each hyperbola
the system looks the same. The solutions obtained for the
hydrodynamic equations under these assumptions9 are
particularly simple, especially so when ignoring viscous
effects. Remarkably, despite the simplicity of the solutions
and the rather restricting assumptions, practice shows that
the flow discussed in [27] provides reliable results, con-
sistent with the experimental measurements [33].
Let us now consider, briefly, some details associated with

the second-order gradient expansion of the one-dimensional
longitudinal expansion as described in [27]. To second order
in the gradient expansion we include an additional term10 in
the energy-momentum tensor

Tμν ¼ ðϵþ PÞuμuν − Pgμν þ πμν; ð3Þ

where π is symmetric, traceless (πμμ ¼ 0) and ∂μπ
μν ¼ 0.

This is the shear stress tensor and to second order it is
given by

πμν ¼ −ησμν þ ητπ

�
huα∇ασ

μνi þ ∇αuα
d − 1

σμν
�

þ κðRhμνi − 2uλuρRλhμνiρÞ
þ λ1σ

hμ
λσ

νiλ þ λ2σ
hμ
λΩνiλ þ λ3Ωhμ

λΩνiλ; ð4Þ

where R is the curvature tensor (4 index) or the Ricci tensor
(2 index) and Ω is the fluid vorticity. The quantity σ is
defined as

1

2
σμν ¼ ∂

hμuνi; ð5Þ

where the projector is defined as Δαβ ¼ uμuν − gμν and we
have introduced the notation for the projection operation
defined as [33]

Bhμνi ¼ 1

2
ΔμαΔνβðBðαβÞÞ −

1

d − 1
ΔμνΔαβBαβ; ð6Þ

for a general rank 2 tensor.
For the case at hand, both the Riemann and Ricci tensor

and the fluid vorticity vanish. The resulting expression for
the stress tensor is given by

FIG. 1. Schematic sketch of boost invariance along the beam
axis, which is assumed by Bjorken invariance. The hyperbolas are
lines of constant proper time τ and the time evolution only
depends on τ, the system is invariant along the hyperbolas.

6Ignoring the spectator nucleons is a simplification that might
be much too restricting. One can imagine that an off-central
collision would lead to rotation because the spectator nucleons
would drag the resulting lump into a rotation. It has also
been measured that heavy ion collisions lead to the most
vortical fluid [28]. Progress is being made on the spinning case
based on holography [29–31].

7As stated in [27], for distances on the order of the nuclear radii
there is a rarefaction front moving inward towards the central
region at the speed of sound of the medium. While for distances
larger than this, the fluid expands radially outwards.

8Within this region the fluid may be considered to have a
translational and rotational invariance in the plane transverse to
the beam direction. A generalization of this longitudinal flow that
allows for transverse expansion is Gubser flow [32].

9Note, that by “solution” here we also refer to quantities which
may only be known in terms of an asymptotic series expansion,
e.g., in τ [18].

10We can in fact add another term to the energy-momentum
tensor at first order ζΔμνΔλσ∇σuλ where ζ is the bulk viscosity.
However, for a conformal fluid this contribution must vanish to
preserve the trace condition on the energy-momentum tensor.
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πμν ¼ π̄diagð0; 1; 1;−2Þ; π̄ ¼ 2η

3τ
−
4λ1
9τ2

þ 4ητπ
9τ2

: ð7Þ

We then see that for a conformal fluid (P ¼ ϵ=3) the
viscous hydrodynamic equations in a boost invariant
flow to second order in the expansion11 in proper time
τ become [33,34]

∂τϵþ
4ϵ

3τ
¼ 4η

3τ2
þ 8ητπ

9τ3
−
8λ1
9τ3

; ð8Þ

where η, τπ are first-order transport coefficients, namely
the shear viscosity and relaxation time respectively, and λ1
is a second-order transport coefficient. Scaling under
conformal transformations allows a redefinition of the
transport coefficients, Eq. (8) can be written as [33,34]

τ∂τ ln ϵ ¼ −
4

3
þ 16Cη

9τT
þ 32CηCπð1 − CλÞ

27τ2T2
; ð9Þ

where TðτÞ ¼ ðϵðτÞ=σSBÞ1=4 can be interpreted as temper-
ature. For N ¼ 4 SYM the dimensionless transport
coefficients take the values [3]

Cη ¼
1

4π
; Cπ ¼

2− logð2Þ
2π

; Cλ ¼
1

2− logð2Þ : ð10Þ

In terms of these coefficients we can solve for the
temperature from Eq. (9), which to third order in τ is
given as

T ¼ Λ̃
ðΛ̃τÞ1=3

�
1 −

1

6πðΛ̃τÞ2=3 þ
logð2Þ − 1

36π2ðΛ̃τÞ4=3

þ 2π2 − 21 − 24log2ð2Þ þ 51 logð2Þ
1944π3ðΛ̃τÞ2

�
: ð11Þ

We will refer to this solution for the temperature as T3rd.
We will use these hydrodynamic approximations for
comparison to our numerical data below.

III. HOLOGRAPHIC SETUP AND NUMERICS

As a gravitational dual theory, we consider the Einstein-
Hilbert action

S ¼ 1

16πG

Z
d5x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ ð12Þ

for which G is the five-dimensional Newton constant, and
the cosmological constant is given in terms of the anti–de
Sitter (AdS) radius L, by Λ ¼ −6=L2. The numerical
technique we work with was pioneered by Chesler and

Yaffe [35] (an excellent review is given in [36]). We now
discuss the general method for solving the Einstein field
equations (EFEs) via the characteristic method. We begin
by fixing a general metric ansatz in generalized Eddington-
Finkelstein coordinates

ds2 ¼ 2drdv −
r2

L2
gμνdxμdxν: ð13Þ

A further reduction of this ansatz consistent with the
symmetries of the system is given in the next section.
Given an ansatz we begin by writing the EFEs in the
characteristic formulation using directional derivatives
referred to as characteristic derivatives

_Φðv; rÞ ¼ ∂vΦþ 1

2
g00∂rΦ: ð14Þ

These directional derivatives point along outgoing null
geodesics in generalized infalling Eddington-Finkelstein
coordinates. The foliation of the spacetime into null
hypersurfaces in this way leads to the EFEs developing
a nested structure. Starting from some initial data on an
initial time slice v0, the EFEs can be solved to obtain the
full metric at this time. From the definition of the dotted
derivative and from the boundary expansion one can
obtain the time evolution equations required to propagate
the initial data to the next time slice. The procedure is the
then repeated until a final time slice is reached.
The time evolution itself can be written schematically as

dΦ
dt

¼ F ½Φ�; ð15Þ

where F ½Φ� can be complicated to calculate. To obtain this
one has to go through the nested system of differential
equations. Then, given an initial Φðv0Þ, the data can be
propagated to the next time slice using one’s favorite time-
stepping algorithm.
This procedure is not new, it has been used in a large

number of publications (see for example [35–41]). For this
reason we relegate a large portion of the details associated
with our numerical solutions to Appendix A. In the
following we will only give basic details required for the
remaining exposition of this work.

A. Metric ansatz

Consistent with the symmetries discussed in Sec. II the
metric ansatz given in Eq. (13) can be reduced to

ds2 ¼ 2drdv − Aðv; rÞdv2 þ eBðv;rÞSðv; rÞ2ðdx21 þ dx22Þ
þ Sðv; rÞ2e−2Bðv;rÞdξ2; ð16Þ

where v is the Eddington-Finkelstein time, r is the bulk
AdS direction, x1 and x2 are the coordinates in the plane

11This expression is nonlinear in amplitudes, an expansion in
increasing number of gradients, including dissipative effects.
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transverse to the beamline and ξ ¼ 1
2
ln½ðtþ x3Þ=ðt − x3Þ�

is the rapidity in longitudinal direction. As discussed in
Sec. II the conservation equations of the fluid at the
conformal boundary of AdS spacetime will depend only
on τ. With that in mind, it is useful to set the boundary
metric in terms of the coordinates ðτ; x1; x2; ξÞ to be
given by

lim
r→∞

1

r2
ds2 ¼ −dτ2 þ dx21 þ dx22 þ τ2dξ2: ð17Þ

Comparing to Eq. (16), this places boundary conditions on
the metric functions A, B, S, namely,

lim
r→∞

A → r2; ð18Þ

lim
r→∞

B → log

�
1

τ2=3

�
; ð19Þ

lim
r→∞

S → rτ1=3: ð20Þ

Also, limr→∞ v ¼ τ, so the Eddington-Finkelstein time is
the proper time on the boundary.

B. Initial conditions

The initial data required to begin the evolution consists
an initial time v0, an initial value of the asymptotic
coefficient a4 (dual to the energy density), an initial value
for the radial shift diffeomorphism λ as well as a profile for
Bðz; v0Þ on the initial time slice (where we have already
changed variables, r ¼ 1=z, placing the boundary at the
finite location z ¼ 0). For the initial profile we follow
previous authors [2,17,41] and choose to parametrize our
solutions as deviations away from a vacuum AdS solution
to the Einstein equations,

B ¼ Bd þ BAdS; ð21Þ

where one can check directly that B ¼ BAdS ¼ −2=3
logðvþ zÞ is a solution to the Einstein equations provided
A ¼ AAdS ¼ z−2 and S ¼ SAdS ¼ z−2=3ð1þ v=zÞ1=3.
To implement this choice of parametrization of the initial

profile one has to be careful to merge this choice with the
choice made of the parametrization of the function B used
to construct the numerical routine. There, one works with
“subtracted” functions, defined to remove singular terms
from the function. This is done since our choice of spectral
decomposition is only well-suited to the approximation of
regular functions. Hence, we work with the following
schematic form [the exact scheme we work with is given
in Eq. (A4)] of the metric components in our numerical
scheme,

B ¼ z4Bs þ ΔB; ð22Þ

S ¼ z4Ss þ ΔS; ð23Þ

A ¼ As þ ΔA: ð24Þ

To optimize the routine one analytically inserts the rede-
finitions given in Eq. (22) into the Einstein equations and
simplifies the resulting equations. Doing so leads to the
equations of motion being written for the regular functions
Bs, Ss and As rather than the singular functions B, S and A.
Given that the equations of motion are now written in

terms of the regular functions, rather than the singular
functions, the initial data actually required to begin the
evolution is for the regular function Bsðu; v0Þ on the initial
time slice. This requires us to translate the data prescribed
in Eq. (21) as

Bs ¼
1

z4
ðBd þ BAdS − αΔBÞ: ð25Þ

For the choice of deviation we take,

Bd ¼ Ω1z4 cos ðγ1zÞ þ Ω2z4 tan ðγ2zÞ þ Ω3z4 sin ðγ3zÞ

þ
X5
i¼0

βiziþ4; ð26Þ

where Ωf1;2;3g, γf1;2;3g and βf1−5g are free parameters. One
notes that this is precisely the parametrization of the initial
data used in [17],

Bsðz; v0Þ ¼ Ω1 cos ðγ1zÞ þ Ω2 tan ðγ2zÞ þΩ3 sin ðγ3zÞ

þ α

z4

�
−
2

3
ln

�
1þ z

v0

�
þ 2z3

9v30
−

z2

3v20
þ 2z
3v0

�

þ
X5
i¼0

βizi ð27Þ

where we have inserted an α into our expression in Eq. (25)
to match [17]. Furthermore, we select the same parameters
as given in Table I of [17], reproduced here in Table I. It is
important to note that although we do not use the same
horizon-fixing scheme as [17] our time evolution is
identical. For more details see Appendix B.

IV. OUT-OF-EQUILIBRIUM SPEED OF SOUND,
ENTROPY AND TEMPERATURE

A. Hydrodynamic expectation

Generally, the speed of sound of a relativistic fluid
with a conserved charge in global thermal equilibrium is
defined as12

12It is important to note that given an equilibrium state that is
characterized bymore than one intensive thermodynamic quantity,
the temperature and, say, the chemical potential, one must hold the
ratio of entropy over charge density fixed during differentiation,
i.e. c2s ¼ ð∂P

∂ϵÞs=n.
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c2s ¼
�
∂P
∂ϵ

�
; ð28Þ

with the pressure P, the energy density ϵ (the upright index
on cs stands for “sound”). The speed of sound can be
computed by derivatives of the energy-momentum tensor
with respect to itself,

c2s ¼ −
∂Ti

i

∂T0
0

; Ti
i ¼ P; T0

0 ¼ −ϵ; ð29Þ

where we recall that for an ideal fluid the energy-momentum
tensor with one raised and one lowered index is isotropic.
One can then compute the derivative in Eq. (29) and find
c2s ¼ 1=3. This reasoning can be extended to higher orders
in the gradient expansion. To begin with, we focus on the
shear stress-tensor correction, πL to the ðx1; x1Þ-component
of the energy-momentum tensor which is given by

Tx1
x1 ¼ ðPþ πL=2Þ; πL=2 ¼ 2η

3τ
−
4λ1
9τ2

þ 4ητπ
9τ2

: ð30Þ

Computing the derivative given in Eq. (29) gives13

∂Tx1
x1

∂T00
¼ ∂P

∂ϵ
þ 1

2

∂πL
∂ϵ

; ð31Þ

where we now make use of the equation of state for a
conformal fluid, P ¼ ϵ=3, to find that the first term above
gives the zeroth order (in dissipative corrections) to the
coefficient c2s , referred to as the speed of sound of a
conformal fluid, c2s ¼ 1=3. Now we are left with the
computation of the shear component πL. To compute its
derivative we recall the relation between the hydrody-
namic transport coefficients and their dimensionless
counterparts [3]

η ¼ 4Cηϵ

3T
;

ητπ
ϵ

¼ 4

3

CηCπ

T2
;

λ1
ϵ
¼ 4

3

CηCπCλ

T2
; ð32Þ

allowing us to rewrite ðη; τπ; λÞ in terms of a relation
between temperature and energy. Inserting this into the
shear stress tensor component gives

πL ¼ 16Cηϵ

9τT
−
32CηðCλ − 1ÞCπϵ

27τ2T2
: ð33Þ

We can now directly compute the derivative with respect to
energy making use of the relation T ¼ T0ϵ

1=4 which gives

∂πL
∂ϵ

¼ 4Cη

3τT
−
16CηðCλ − 1ÞCπ

27τ2T2
: ð34Þ

Altogether, we find the following expressions for the energy
derivatives of the energy-momentum components given in
terms of the dimensionless transport coefficients valid to
second order in the derivative expansion

c2;ð2Þ⊥ ¼ c2s þ
2Cη

3τT
þ 8Cηð1 − CλÞCπ

27τ2T2
; ð35Þ

c2;ð2Þk ¼ c2s −
4Cη

3τT
−
16Cηð1 − CλÞCπ

27τ2T2
; ð36Þ

where the superscript “(2)” indicates that these are the
second-order corrected speeds of sound. This second- as
well as the first-order correction to the conformal speed of
sound stem from the fact that the viscous plasma is
expanding in longitudinal direction. Hence, the medium
on which perturbations are propagating is changing its
pressure over time, and acquires different pressures in
longitudinal and transverse directions. These changes in
the pressures of the plasma lead to a change in the
propagation speed of longitudinal waves, such as the sound
waves.

B. Holographic out-of-equilibrium calculation

Given our hydrodynamic expectation derived above, our
goal now is to compute

c2⊥ ¼ −
∂hTx1

x1i
∂hT0

0i
; c2k ¼ −

∂hTξ
ξi

∂hT0
0i
; ð37Þ

in the holographic model. The simplest way to access this
quantity is by direct variation of the pressure and energy in
the holographic model.
To facilitate the derivative required in the calculation of

the speed of sound we compute an array of N curves with
initial energies in the interval ðϵ0 − Δϵ; ϵ0 þ ΔϵÞ with the
variation in energy Δϵ small.
For each instant in time τi, we may use the family of

curves ϵjðτiÞ ≔ ϵðτi; ϵ0 − Δϵþ jδϵÞ to construct a finite
difference representation of the derivative using the cen-
tered differences rule

dPjðτiÞ
dϵjðτiÞ

¼ ðPjþ1ðτiÞ − Pj−1ðτiÞÞ
ðϵjþ1ðτiÞ − ϵj−1ðτiÞÞ

; ð38Þ

We can use this procedure to construct the speed of sound
for each curve j at time τi,

c⊥;jðτiÞ2 ¼
dP⊥;jðτiÞ
dϵjðτiÞ

; ck;jðτiÞ2 ¼
dPk;jðτiÞ
dϵjðτiÞ

: ð39Þ

13Both ϵ and P here depend on πL through solutions to the
equations of motion. Once solutions for ϵ are found P is related to
ϵ via the equation of state ϵ ¼ 3P. This behavior is in analogy to
the anisotropic equilibrium states generated by a magnetic field,
where the pressures and energy density depend on the value of the
magnetic field.
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The results for the speed of sound are displayed in Fig. 2.
In order to generate the plots, the time evolution has been
performed for all initial conditions from [17] as displayed in
table I with Δϵ ¼ 0.0075. One can see that the proposed
speeds of sound do not fully approach the conformal value
of c2 ¼ 1=3, rather c2⊥ stays slightly above and c2k stays

slightly below. One can note that the variation of the speed
of sound as computed with this method can vary wildly. The
curves for some initial conditions even display superluminal
speeds and others display instabilities, indicating that these
initial conditions should be discarded. Interestingly, we will
see that this seems to be related to the violation of the weak-
energy condition in those cases. Furthermore, the out-of-
equilibrium speed of sound in the transverse direction is
nontrivial, as expected, due to the anisotropy in the system
as a result of the nontrivial shear stress tensor.
In order to understand the merit of the calculation one

should compare the holographic calculation with the hydro-
dynamic expectation as computed in Sec. IVA. This
comparison is displayed in Fig. 2 as dashed lines. Here

one can see clearly that despite the rapid fluctuations of the
speed of sound as computed in the holographic method they
quickly approach the hydrodynamic expectation in Eq. (36)
and Eq. (35).
It is interesting to note that the “out-of-equilibrium”

component of the speed of sound in both the transverse and
longitudinal direction in the hydrodynamic calculation is
due solely to the contribution of the shear stress tensor [as
can be see in Eq. (36) and Eq. (35)]. One can isolate the
ideal and shear stress component of the speed sound via

c2s ¼
1

3

�
2c2⊥ þ c2k

�
; Δc2shear ≡ ∂πL

∂ϵ
¼ 2

3
ðc2⊥ − c2kÞ: ð40Þ

Our numerical data gives c2s ¼ 1=3 for the entire time
evolution using Eq. (40) while the shear component is
displayed in Fig. 3. There one sees that the shear compo-
nents quickly approach the second-order result expected
from applying Eq. (40) to Eq. (36) and Eq. (35).

C. Thermodynamic consistency

A fundamental idea in the study of hydrodynamics is the
notion of local thermal equilibrium.
a. Local versus global thermal equilibrium Let us

define local thermal equilibrium. The process of reaching
local thermal equilibrium will be referred to as local
thermalization.

Local thermal equilibrium is reached at a space-
time point x within a fluid, if and only if the
thermal quantities energy density ϵðxÞ, temper-
ature TðxÞ, pressure PðxÞ, entropy density sðxÞ
can be defined within a fluid volume element

FIG. 2. Hydrodynamic Comparison: The images display the
speed of sound as computed via the full evolution scheme. Top:
c2k. Bottom: c

2⊥. The hydrodynamic expectation of the thermo-

dynamic derivatives are shown as (Red—first order in the
derivative expansion, Blue—second order in the derivative
expansion) dashed lines. The conformal speed of sound in the
system is displayed as a dashed black line c2s ¼ 1=3.

FIG. 3. Shear component of the speed of sound: The image
displays the derivative of the shear stress tensor with respect to
the energy. The lines indicate isolating the shear component of
the energy-momentum tensor from the full holographic evolution
as done in Eq. (40). The hydrodynamic expectation of the
derivative of the shear stress tensor with respect to the energy
is shown as dashed lines (Red—first order in the derivative
expansion, Blue—second order in the derivative expansion).
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located at x, and if these quantities take their local
equilibrium values at that location x. This defi-
nition of local thermalization implies that the
thermodynamic relation ϵðxÞ þ PðxÞ ¼ sðxÞTðxÞ
is satisfied locally at x. This may also be referred
to as local thermodynamic consistency.

This definition is in line with the principle that in global
thermal equilibrium all observables take their equilibrium
values [42,43]. In analogy to that, we define local thermal
equilibrium as the state in which all local observables reach
local equilibrium values. Note, that any neighboring fluid
element at x1 ¼ xþ Δx can have vastly different values of
ϵðx1Þ ≠ ϵðxÞ; Tðx1Þ ≠ TðxÞ;…, allowing for large spatial
and time gradients. In other words, local thermal equilibrium
could be reached, while the system displays large gradients,
indicating that it is far from global thermal equilibrium.
Global thermal equilibrium is reached when the ergodic

hypothesis is satisfied, i.e. the system had sufficient time
to explore all of the phase space accessible to it under
the given macroscopic constraints [42,43].14 In that case,
the standard concepts of statistical mechanics apply and the
time-averaged values of all observables are equal to their
ensemble-averaged values. This allows the standard tech-
nique of considering multiple fictitious copies of a system,
a thermodynamic ensemble, and computing ensemble
averages [42] instead of long-time averages which are
often more difficult to compute. By definition, the time it
takes a system to reach ergodicity is long compared to all
scales in the system.15

At least in equilibrium, the dual field theory entropy is
given by the area of the black hole event horizon [47,48].
However, motivated by advances in the understanding of
fluid dynamics in the AdS=CFT duality, which gave rise to
the fluid/gravity correspondence [49,50], numerous authors
have considered how to define out-of-equilibrium entropy.
Many of these notions are based on trapped surfaces [51,52]
including the most popular workhorse of the community
defined by the area of the outer-most trapped surface, or
apparent horizon, whose area is proposed as the relevant one
dual to the field theory entropy [53]. In our coordinates the
field theory entropy associated with the apparent horizon
can be computed from the ratio of the apparent horizon
area, AAH

SðτÞ ¼ 1

4G
AAH ¼ 1

4G

Z
d3x

ffiffiffiffiffiffi
−g

p

¼ 1

4G
SðzAH; τÞ3

Z
dxdydξ; ð41Þ

and the field theory area A (with field theory metric γ)

A ¼
Z

d3x
ffiffiffiffiffiffi
−γ

p ¼ τ

Z
dxdydξ; ð42Þ

and is given by

sðτÞ ¼ 1

4G
AAH

A
¼ SðzAH; τÞ3

4Gτ
: ð43Þ

While we can work directly with sðτÞ is useful to construct a
dimensionless entropy density16 σ defined as [17]

σðτÞ≡ sðτÞ
2π4T3

idealðτÞ
¼ AAHðτÞ

π3Λ2A
¼ jSðzAH; τÞj3

π3Λ2
: ð44Þ

This can be seen in Fig. 4 where we have plotted the
dimensionless entropy density scaled with the true out-of-
equilibrium temperature T, rather than that of an ideal boost
invariant fluid.17 For a static, planar, Schwarzschild black
brane in AdS4þ1 one finds a Stefan-Boltzmann like relation
between the energy density ϵ and the temperature T as
ϵ ¼ σSBT4. The Stefan-Boltzmann constant σSB in this case
is given by18 σSB ¼ 3π3L3

16G in terms of gravitational data or

σSB ¼ 3π2N2
c

8
in terms of field theory data. We make use of

this relation to define T out of equilibrium and in our
notation in Appendix A is given as

T ¼ a1=44 =π: ð45Þ

14Several example systems have been rigorously proven to
satisfy the ergodic hypothesis [44–46].

15Alternately, thermodynamic equilibrium may be reached
much faster, by the principle of typical configurations [43].
According to that principle, almost all accessible microscopic
configurations the system can assume are macroscopically
equivalent, producing the same values for all observables. These
configurations are called typical. There exist only few nontypical
configurations, which relax quickly to a typical configuration.
This principle of typical configurations dominating is adopted in
the eigenstate thermalization hypothesis (ETH) [43], however,
has less rigorous support than the ergodic hypothesis [43].

16We call it σ because it is like a dimensionless entropy density
and σ is the lower letter s in the Greek alphabet.

17When normalized to the temperature as obtained from the
hydrodynamic expansion the entropy density never converges to
a single curve. Instead the curves from all of the evaluations come
to a band. When normalized to the temperature as obtained from
the Stefan-Boltzmann law the entropy density from each curve
collapses to a single curve at approximately τT ¼ 1. There seems
to be a maximal possible entropy density around σ ≈ 0.8 for early
times. The curves close to this value at early times seem to not
produce any entropy until they are close to the attractor at around
tT ≈ 1.2. Notice that the vertical red line, which indicates the
attractor behavior for f, Δp=ϵ and c2⊥;k only occurs when the
entropies have already long converged to one curve, indicating
the hydrodynamic behavior starts earlier for the entropy than for
the other quantities. We note that our data/analysis agrees with
Jakub Jankowski (private communication).

18For more information see Ref. [54].
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The standard definition of the speed of sound is valid only
in global thermal equilibrium. Clearly we are not in a state
of global thermal equilibrium but perhaps we are in local
equilibrium. To measure whether or not this is the case we
can use the local thermodynamic Euler relation, as defined
above, now with x → τ as this is the only coordinate
dependence consistent with Bjorken symmetry

ϵðτÞ þ PðτÞ ¼ sðτÞTðτÞ ð46Þ

as a reference. Using the Euler relation one obtains the
entropy density as s ¼ ðϵþ PÞ=T which can be compared
directly with the entropy as computed from the apparent
horizon. The results of the calculation are displayed in
Fig. 5. The dashed lines in the figure represent the entropy
density as obtained from the apparent horizon while the
solid lines represent the entropy density obtained from the
Euler relation. Clearly the Euler relation, a thermodynamic

equation, will not be a valid equation throughout the full
evolution. Indeed there are large deviations between the
entropy density computed from the Euler relation and that
from the apparent horizon for τT ≲ 1. However, for τT ≳ 1
the entropy as computed via the Euler relation quickly
begins approaching the entropy density computed from the
apparent horizon. This is further displayed in Fig. 7 where
we have displayed the difference between the thermody-
namic entropy density sthermo ¼ ðϵþ PÞ=T and the entropy
density as computed from the apparent horizon shorizon. On
the left this is computed using the ideal temperature as
obtained in TðτÞ ¼ Λ̃2=3=τ1=3. From Fig. 6, we see that
the pressure that satisfies the Euler relation the earliest is the
isotropic pressure P, followed by the transverse P⊥, and
the worst is the longitudinal Pk. This may suggest that the
isotropic pressure P is a candidate for an out-of-equilibrium
generating functional in this case.
As in Fig. 5, one sees in the upper image of Fig. 7 after a

time of τT3rd ≳ 1 all of the curves begin a universal
trajectory, asymptotically approaching zero. The image on
the bottom in Fig. 7 displays that this approach to agreement
between thermodynamic and horizon based entropy den-
sities is faster when taking into account further terms of the
hydrodynamic derivative expansion. This can be seen by
noticing that the solid lines (representing the difference
computed with T ¼ T3rd) is closer to the axis for all curves
displayed then corresponding dashed line (representing the
difference computed with T ¼ T ideal).

FIG. 4. Scaled Entropy Density: The scaled entropy σ defined
in Eq. (44) (see Ref. [17]) is displayed for all the initial conditions
considered in this work. The red and blue dashed lines indicate
the first and second-order hydrodynamic expansion from [17].
Top: Dimensionless entropy normalized with the dynamical
temperature, T, computed from the Stefan-Boltzmann law [see
Eq. (45)]. This entropy measure agrees from early times onward
with the second-order hydrodynamic prediction (blue dashed
curve) [17]. Bottom: Dimensionless entropy normalized with the
temperature, T3rd, computed from the hydrodynamic equations.

FIG. 5. Thermodynamic Consistency: A comparison of the
entropy density as obtained from the thermodynamic Euler
relation with the entropy density obtained from the apparent
horizon. The thermodynamic estimated was computed by iso-
lating the isotropic component of the energy-momentum tensor
P ¼ 1

3
ð2T1

1 þ Tξ
ξÞ. The dashed lines indicate s as obtained from

the apparent horizon while the solid lines indicate the s as
obtained from the Euler relation. Clear deviations from between
the solid and dashed curves can be seen for times τT ≲ 1. While
for τT ≳ 1 the dashed and solid curves differ but both follow the
same falloff. For larger times the curves continuously come closer
to agreement.
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In summary what we have found in the series of images
displayed in Figs. 5–7 is
(1) shorizon agrees with hydrodynamic expectations after

a time scale of approximately τT ≳ 0.8.
(2) shorizon agrees reasonably well with thermodynamic

expectations after a time scale of approxi-
mately τT ≳ 1.

Taken together we can expect a thermodynamic definition
of the speed of sound to agree hydrodynamic expectations
after a similar amount of time has passed in the evolution of
the system. This is exactly what is seen in Fig. 2.
Furthermore, it is now interesting to compare this time
scale to what has already been observed in the literature. In
Fig. 11 on the left hand side we show the pressure
anisotropy divided by the energy density as a function
of τT. This has been studied for instance in [19] in the

context of attractor solutions in hydrodynamics. The blue
dotted line in the left image shows the analytic form for the
attractor obtained in [19]. The red vertical line in the figures
indicates an approximate time when the attractor behavior
sets in. Here we see this is exactly the same time at which
the attractor behavior of the speeds of sound c2⊥;k begin.
Furthermore, it is exactly the time scale when shorizon agrees
with hydrodynamic expectations and reasonably agrees
with thermodynamic expectations.

D. Borel resummation

The formulation of hydrodynamics with which we have
worked with up until this point has been the standard
Landau-Lifschitz formulation. However, working to finite
order in the corrections [for instance Eq. (4) includes all

FIG. 6. Thermodynamic Consistency: A comparison of the
entropy density as obtained from the thermodynamic Euler
relation with the entropy density obtained from the apparent
horizon. Top: The Euler relation computed using Pk ¼ Tξ

ξ.
Bottom: The Euler relation computed using P⊥ ¼ Ti

i for i ¼ 1,
2. The dashed lines indicate s as obtained from the apparent
horizon while the solid lines indicate the s as obtained from the
Euler relation. Clear deviations from between the solid and dashed
curves can be seen for times τT ≲ 1. While for τT ≳ 1
the dashed and solid curves differ but both follow the same falloff.
For larger times the curves continuously come closer to agreement.

FIG. 7. Thermodynamic Consistency—differences: The differ-
ence between the entropy density as obtained from the thermody-
namic Euler relation (sthermo) with the entropy density obtained
from the apparent horizon (shorizon). Top: The difference is
computed with T ¼ T ideal ¼ Λ̃2=3=τ1=3. Bottom: The difference
is computed with T ¼ T3rd displayed with solid lines. In the right
image the difference is also displayed forT ¼ T ideal as dashed lines.
Notice that the solid line is always closer to zero then the dashed
line of the corresponding color. This indicates that using T3rd in the
equation for the thermodynamic entropy density is closer to value
of the entropy density as computed from the apparent horizon. In
both cases the Euler relation was computed with Pk.
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terms to second order only] leads to a theory which does not
have a well-posed initial value problem [18]. For this reason
authors often concern themselves with the Müller-Israel-
Stewart (MIS) formulation of hydrodynamics [55,56]. This
formulation can be regarded as a UV completion of the
standard Landau-Lifschitz formulation of relativistic hydro-
dynamics in the sense that it describes the dynamics of the
system also at very early times [18]. In the MIS formulation
the shear stress tensor is regarded as a dynamical variable
which obeys a relaxation equation,

ðτΠuα∂α þ 1ÞΠμν ¼ −ησμν þ � � � ; ð47Þ
where τΠ is the relaxation time. The solutions for the energy
density, or temperature in a boost-invariant fluid in MIS
theory lead to an infinite series whose radius of convergence
is zero. It can then be expected that methods of resurgent
analysis may provide further insight into the behavior of the
solution. This topic has been explored in a number of
publications [18,19,57] etc. The MIS equations of motion
for our system of interest are given in terms of the
dimensionless variables19 w ¼ τT and f ¼ τ _w=w

0 ¼ CτΠfðwÞðwf0ðwÞ þ 4fðwÞÞ þ
�
w −

16CτΠ

3

�
fðwÞ

−
4

9
ðCη − 4CτΠÞ −

2

3
w: ð48Þ

An image of the function f, as computed from the full
numerical evolution, is shown versus τT together with
zeroth-, first- and second-order expansions given in
Eq. (9) in Fig. 8. As demonstrated in [18] one can look
for transseries solutions to Eq. (48) of the form,

fðwÞ ¼
X∞
m¼0

cmΩðwÞm
X∞
n¼0

an;mw−n

ΩðwÞ ¼ w−ðCη−2Cλ1Þ
CτΠ e−

3
2
CτΠw ð49Þ

for which one finds factorially divergent coefficients an;m
(as displayed in Fig. 9 for the first 250 coefficients of each
sector).20 To compute the Borel resummation one starts with
a Borel transformation,

f̂ðξÞ≡ BðfðwÞÞ ¼
X∞
n¼0

fn
n!

ξn: ð50Þ

The Borel transformation can be analytically continued via
diagonal Padé approximation and the resulting expression
transformed back to w via lateral Laplace transformation

Lθ½f̂�ðwÞ ¼
Z

eiθ∞

0

dξe−ξwf̂ðξÞ; ð51Þ

to compute the resummation procedure.
In [19] the author studies the leading-order attractor of

N ¼ 4 SYM theory. Computing 240 coefficients of the
solution to Eq. (48) the author computed the Borel
resummation of the series solution to fðwÞ and translated
the results into the pressure anisotropy

AðwÞ ¼ P⊥ − Pk
P

; P ¼ ϵ=3: ð52Þ

FIG. 8. The function f as a function of τT together with zeroth-,
first- and second-order expansions given in Eq. (9) with T → T3rd
and Cη ¼ 1=ð4πÞ, Cπ ¼ 0.21, Cλ ¼ 0.77.

FIG. 9. Coefficients of the Transsseries: The coefficients an;m
of the transseries in Eq. (49) are displayed for the first three
instanton sectors. One can see they each have a distinct slope
which can be checked to coincide with the distance to the nearest
singularity.

19Note that the conventions in which we present the coef-
ficients CX agrees with [3], which deviates from [58]. However,
we have checked that our results are reproduced also when
working in the conventions from [58].

20It was necessary to use extended precision arithmetic in
order to obtain these coefficients, keeping the first 250 decimal
places. See provided notebook which computes these coeffi-
cients directly.
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The resulting resummation is very well approximated by
the rational function

A0ðwÞ ¼
2530w − 276

3975w2 − 570wþ 120
: ð53Þ

This result can be quickly translated into expressions for
the speed of sound. To see this, begin by differentiating the
pressure anisotropy with respect to the dimensionless time
w, after some manipulation one finds

∂wA ¼ ∂wϵ

ϵ
ð3Δc2 −AðwÞÞ; Δc2 ¼ c2k − c2⊥: ð54Þ

Using the definition of w and the Stefan-Boltzmann relation
the ratio ∂wϵ

ϵ can be re-expressed in terms of w as

∂wϵ

ϵ
¼ 4

w
: ð55Þ

Combining these two results gives

Δc2 ¼ −
1

3

�
w
4
∂w − 1

�
AðwÞ: ð56Þ

To extract information about the individual speeds of
sound, one can use the trace relation which ensures that
2c2⊥ þ c2k ¼ 1. A small manipulation reveals that

Δc2 ¼ −1
2

þ 3

2
c2k ¼ 1 − 3c2⊥: ð57Þ

With these two results in hand one can isolate c2⊥ and c2k
from Eq. (56) which gives

C2⊥ ¼ 1

3
þ 1

9

�
A0ðwÞ þ

w
4

∂A0ðwÞ
∂w

�
; ð58aÞ

C2k ¼
1

3
−
2

9

�
A0ðwÞ þ

w
4

∂A0ðwÞ
∂w

�
; ð58bÞ

where we have replaced A by its resummed expression A0

and denoted the resummed speeds of sound by script
characters to distinguish them from the other expression
used thus far. Shown in Fig. 10 is the resummed expression
along with the numerical calculation of the out-of-equi-
librium speeds of sound (top image, parallel, bottom
image, transverse). While in Fig. 11 pressure anisotropy
and its attractor are shown on the top, the speeds of sound
and their attractor are shown on the bottom. Finally, it is
interesting to note that, to leading order, the attractor
behavior of the speed of sounds follows directly from the
attractor behavior of the pressure as can be seen by the
appearance ofA0 in the expressions for the speed of sound.
In addition, not only does the longitudinal direction

experience attractor behavior, but also the transverse
direction. This is a result of the conformal symmetry
which links the evolution of the pressures and the energy
density and hence the speeds of sound.

E. Discussion

There are four main observations:
(1) All quantities f, ck=⊥, ΔP=P, Pk=ϵ and σ quickly

approach one “universal” curve independent of
their initial conditions. This occurs approximately
at τT ≈ 1 in agreement with other studies [18,19,33].

(2) Interestingly, the only quantity that approaches the
attractor not at the same time is the dimensionless
entropy density, which seems to reach it much
earlier,21 around τT ≈ 0.8 This has already been
mentioned in [17].

FIG. 10. The speed of sound attractor: Results for the re-
summed speed of sound C2 are displayed. Top: C2k Bottom: C2⊥.
Both the results of the hydrodynamic calculation and the out-of-
equilibrium calculation approach the leading-order attractor
solutions shown as black curves.

21This may not be so surprising given the work of [59,60]
where the authors find that deformations of the apparent horizon
(backreacted on the geometry) decay with twice the QNM
frequency ∝ e−2wIt.
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(3) The speed of sound calculated with our method
also converges to an attractor at the same time as
the other quantities with the exception of σ. This
is not too surprising, since the quantities needed
for the calculation of speed of sound are P⊥;k, ϵ
and σ, which all approach attractors in some way.
After reaching the attractor the speed of sound
only very slowly approaches the conformal value
of c2 ¼ 1=3. There are regions where our notion
of speed of sound gives c2k;⊥ larger than 1 and
smaller than 0. Both of these regimes indicate
instability. Whether this signals a breakdown of
our method, or a failure in the ability to interpret
our results as a speed of sound requires further
analysis. In terms of a mode analysis, c2k;⊥ < 0

indicates an instability,22 including an exponen-
tially growing mode. While c2k;⊥ > 1 clearly vio-
lates causality. Interestingly, the only curves which
violate the causality bound are those which violate
the energy conditions (see Fig. 14), where we
reproduce with our code the corresponding plot
from [17]. Four observations based on our limited
data from the six initial conditions which violate the
dominant energy condition (DEC), three of which
also violate the weak-energy condition (WEC):
(a) Violation of WEC implies c2k;⊥ > 1, the con-

verse is not true.
(b) Violation of the DEC appears to be unrelated to

c2k;⊥ > 1 (DEC can be violated while c2k;⊥ < 1).
(c) Transverse speed of sound: instabilities

(c2k;⊥ < 0) occur in same cases in which
also c2k;⊥ > 1.

(d) Longitudinal speed of sound: different from
transverse case, it may be that c2k;⊥ > 1, but
no instability with c2k;⊥ < 0 is present.

We stress that these are observations based on a small data
set, hence, we can not claim but only speculate on these
statements being true in general.
(4) If any of the pressures should be thought of as a

generating functional, then it should satisfy
ϵþ P ¼ sT, which the conformal P does the best
job at after the least amount of time, then P⊥, then
Pk the latest. Considering the pink curve, the
attractor in s is reached at τT ≈ 0.6 before the local
thermal equilibrium which is reached at τT ≈ 0.7, at
which time also the sound attractor is reached,
finally the pressure anisotropy attractor is reached
the latest at τT ≈ 0.9. This analysis was made more
comprehensively by analyzing 25 initial conditions,
see Fig. 12.

In Fig. 12 we calculate the time it takes for various
quantities to hydrodynamize. This is measured as a percent
relative difference,

2

				 XðτTðτÞÞ − XexpectedðτTðτÞÞ
XðτTðτÞÞ þ XexpectedðτTðτÞÞ

				 < δ; ð59Þ

where 100δ ¼ %difference. A similar study was conducted
in [63] of the hydrodynamization times in the same system.
It is important to note a few relevant differences. First, we
do not the same normalization used in [63], that is an
equation of the form

FIG. 11. Attraction: The attractor behavior of the system is
displayed. Top: ΔP=P for P ¼ ϵ=3. Bottom: the speed of sound
C2 (green longitudinal, orange transverse). The functions in both
images are displayed as a function of τT, where T ¼ ðϵ=σSBÞ1=4.
The vertical dashed red line indicates the approximate onset of an
attractor. In both images the black lines are the leading-order
attractor solutions. For Δp=P the blue dashed curve is the
attractor as proposed by [19] given Eq. (53) and the speed of
sound attractor solutions, C2, are given in Eq. (58a) and Eq. (58b).
Both quantities converge to the attractor at approximately the
same time τT ≈ 1.1. The horizontal dashed black line shows the
conformal value c2 ¼ 1=3.

22This is often referred to as the gradient instability and is
particularly interesting in the nonlinear regime of classical EFT
models of materials where c2 < 0 represents the endpoint of a
strain-stress relation. See for example the recent works [61,62].
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				XðτTðτÞÞ − XexpectedðτTðτÞÞ
XexpectedðτTðτÞÞ

				 < δ ð60Þ

as we feel this should only be used when there is a “correct”
answer. In our case, however, the quantities we compare to
are approxmiations, such as the second-order hydrodynamic
values of pressures or energy density. Furthermore, the
Borel resummed expressions we have discussed are only the
leading-order solutions. In addition, we find it misleading to
normalize every quantity to an effective temperature,
especially when the effective temperature is a truncated
solution to the hydrodynamic equations. For hydrodynamic
quantities we normalize to the temperature expanded to the
same order; e.g. σ2nd=T2nd. Any time we reference quan-
tities computed using the gravitational evolution we use the
full effective temperature as given by the Stefan-Boltzmann
equation, for example we use σ ¼ sðτÞ=T3 where T is given
in terms of the gravitational evolution as T ¼ ðϵ=σSBÞ1=4.
Each relative difference can be computed using these
definitions to find a unique τ� for which the expression
in Eq. (59) is satisfied for all future times. Given such a τ�

the values reported in the figure are constructed with the full
effective temperature, i.e. τ�Tðτ�Þ.
In Fig. 12 we have compared each expression to its best

case scenario, i.e.
(i) The speeds of sound to their Borel resummed

expressions.
(ii) The pressure anisotropy to its Borel resummed

expression.
(iii) The entropy density as calculated from the apparent

horizon to the second-order hydrodynamic approxi-
mation of the field theory entropy density.

(iv) The entropy density as calculated from the apparent
horizon to the entropy density extracted from the
Euler relation.

Figure 12 shows in the top plot the times at which the
relative difference between the various quantities computed
in this work and their attractor is within 5%. The dashed
lines indicate the mean time of attraction. The entropy first
reaches its attractor behavior followed by a local notion of
thermal equilibrium. Shortly after the perpendicular speed
of sound reaches its attractor, then the pressure anisotropy
reaches its attracting behavior followed by the longitudinal
speed of sound. Notice that there are initial conditions for
which this ordering, based on the average time of attraction,
is not obeyed. We also point out that these attractor times
cannot be trusted below a two percent threshold, as
visualized in the bottom plot in Fig. 12. That bottom plot
shows the dependence of the average time on the choice of
% difference, i.e. the threshold we choose. The average
attraction time shows a mild dependence on the choice of
acceptance percentage. It is interesting to note that the
entropy approaches the hydrodynamic expectation but never
truly makes it to the thermal expectation, it always stays a
distance away from its local thermal equilibrium value. i.e.
there is never a local thermal equilibrium (with the entropy
given by the horizon area) despite hydrodynamics being a
good description.

V. CONCLUSIONS

In this work, we have proposed a method to compute a
well-behaved speed of sound out of equilibrium, Eq. (39),
in a conformal fluid, enumerated in Sec. IV B. Merely in
the pathological cases for fluids disobeying the weak-
energy condition, see for example the blue curve in Fig. 14,
would our method yield superluminal speeds of sound.
This method computes the speeds, Eq. (37) by varying the
pressure and energy density. Results we obtain include:

(i) The hydrodynamic expectation for out-of-equilibrium
speed of sound was computed to second order in
viscous derivative corrections. An analytic form for
the speed of sound along the Bjorken expansion is
given in Eq. (35), and transverse to it in Eq. (36).

(ii) The out-of-equilibrium speed of sound was com-
puted within a holographic model, namely Bjorken-
expanding N ¼ 4 SYM plasma. Note, that the

FIG. 12. Attractor Behavior: Top: The times at which the
relative difference between the various quantities computed in
this work and their attractor is within 5% are displayed. Bottom:
The dependence of the average time on the choice of %
difference.

CARTWRIGHT, KAMINSKI, and KNIPFER PHYS. REV. D 107, 106016 (2023)

106016-14



holographic time-evolution is well approximated
by the second-order hydrodynamic prediction,
Fig. 2. The deviation from the conformal value
1=3 is dominated by the shear stress, πL, see Fig. 3.

(iii) The out-of-equilibrium speed of sound attractors for
sound propagation longitudinal and transverse to the
beamline were computed analytically, see Eqs. (58b)
and (58a), respectively.

(iv) Entropy density of the field theory computed from
the apparent horizon area, Eq. (44), normalized to the
temperature defined through the fourth root of the
energy density, as displayed in Fig. 4. This dimen-
sionless entropy density reaches an attractor, see
Fig. 4 (in contrast to the entropy density normalized
to T ideal [17,63]). In fact, this entropy density is the
first of all quantities to reach an attractor as seen by
the average lines in Fig. 12.

(v) Local thermodynamic consistency, ϵðxÞ þ PðxÞ ¼
sðxÞTðxÞ, was used to define local thermal equilib-
rium. The time scale at which this condition is
satisfied was compared at a 5% threshold to the
times at which different initial conditions reach the
hydrodynamic entropy attractor, the anisotropy at-
tractor, and the two sound attractors, see Fig. 12. On
average, the apparent horizon entropy density
reaches the attractor first (τT ≈ 0.43), followed by
the transverse speed of sound simultaneously with
the establishment of local thermal equilibrium
(τT ≈ 0.71), then the pressure anisotropy reaches
its attractor (τT ≈ 0.74) and finally the longitudinal
speed of sound (τT ≈ 0.85). However, as seen from
the bottom plot in Fig. 12, it is not clear that local
thermal equilibrium is ever reached below the 2%-
threshold.

(vi) Out of our 25 initial conditions, six are violating the
DEC, three of which are also violating the WEC.
Within this limited set we observe that a violation of
theWEC implies causality violation by the speeds of
sound c2k;⊥ > 1.

Our results confirm the statement [2] that in strongly
coupled systems hydrodynamic attractors are reached after
the system follows hydrodynamic time-evolution equations,
i.e. after hydrodynamization. Furthermore, we confirm that
local thermal equilibrium is neither required for, nor implied
by reaching a hydrodynamic attractor, see Fig. 12.
Because the entropy reaches the attractor at much earlier

times than the other quantities like pressure anisotropy or f,
one wonders about the reason. We have defined the entropy
through the area of the apparent horizon [50–53]. One
potential resolution is that the information of the change of
the apparent horizon area has to propagate to the boundary.
This could lead to a delay before the field theory learns
about the corresponding change in entropy. For this reason,
in order to get an estimate for the time it takes to propagate
information, we calculated lightlike geodesics from the

apparent horizon to the boundary. It turns out that the delay
is of the right order of magnitude Oð1Þ, but taking into
account the appropriate time delay for each apparent
horizon area destroys the attractor behavior in the resulting
putative entropy measure, leaving the appropriate field
theory entropy measure as an open question.
As a next step and rigorous check of our proposal, we

intend to compute the speed of sound directly from the
scalar fluctuations (spin-0 under rotations), including the
sound channel fluctuations around the time-dependent
background metric (16), which we have analyzed here.
By comparison to the result of that in situ computation of
the (true) speed of sound to the out-of-equilibrium speed of
sound we propose here based on energy density, diagonal
components of the energy-momentum tensor and entropy,
this will reveal the validity of this method. However, this is
a challenging distinct computation, which is why we defer
it to later work.
It should be noted that the simple idea of a sound wave

propagating through a time-dependent medium may be
made rigorous in the context of the Schwinger-Keldysh
formulation of hydrodynamics and its stochastic correc-
tions on the level of a generating functional [23–26].
Within this formulation, interactions between hydrody-
namic fluctuations are taken into account, and it may be
possible to derive corrected eigenmode equations for
fluctuations around Bjorken flow within this framework.
These may assume the form of wave equations and the
speed of the wave may be determined by variations of the
generating functional with respect to hydrodynamic fields,
similar to ∂P=∂ϵ, where P should be viewed as the relevant
generating functional [64,65]. One strong indication that
this realization within then Schwinger-Keldysh formulation
(or in a more general far-from-equilibrium fluid description
[3]) must be possible, is the fact that the dual gravitational
action does exactly that: it serves to derive fluctuation
equations around any given metric background, including
the Bjorken-expanding five-dimensional metric we worked
with in this paper. This time-dependent metric background
is dual to the Bjorken-expanding plasma and a subset of the
gravitational fluctuations are longitudinal, including those
eigenmodes which turn into the sound modes in the
hydrodynamic regime. When the system is outside the
hydrodynamic regime, far from equilibrium, those modes
should still be eigenmodes and propagate with a speed
which we may consider the out-of-equilibrium speed of
sound. For a very recent holographic study of correlation
functions in this context, see Ref. [66].
Conformal symmetry relates all quantities to the time-

evolution of the energy density in a Bjorken expanding
plasma like the one discussed in this work. Remarkably,
much less symmetric examples of nonconformal systems
(introducing massive particles) still show early-time attrac-
tor behavior in the longitudinal pressure. This behavior
is not matched by hydrodynamics around an isotropic
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equilibrium state, however, it can be matched by an
anisotropic hydrodynamics description [12], underlining
the importance of developing anisotropic descriptions of
heavy-ion collisions [31,41,67–73].
Finally, the obvious question is, what relevance our

work has for the further exploration of the QCD critical
point and the QCD equation of state [74–76]. What
happens to the speed of sound when both conditions are
met, out-of-equilibrium and proximity to the QCD critical
point? These questions are also under investigation in the
beam-energy scan [77–79] and the beam-energy scan
theory initiative [80]. A holographic investigation of this
may be possible by combining our approach in this paper
with techniques from Hydroþ [81] (see also [82]) on the
field theory side, a critical point in the holographic
model [83,84], and most importantly including conserved
charges to our analysis (attractors in a hydrodynamic
model including baryon charge for instance have been
studied in [85]). The possible measurement of the speed of
sound provided through the measurement of baryon
cumulants as proposed in [86] could offer access to
holographic out-of-equilibrium speeds of sound for com-
parison to the expectations of the heavy-ion community.
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APPENDIX A: FURTHER DETAILS
ON THE NUMERICS

Using these new “dotted” derivatives, the Einstein field
equations take the form

S00ðv; rÞ ¼ −
1

2
B0ðv; rÞ2Sðv; rÞ; ðA1aÞ

_S0ðv; rÞ ¼ −
2S0ðv; rÞ _Sðv; rÞ

Sðv; rÞ þ 2Sðv; rÞ; ðA1bÞ

_B0ðv; rÞ ¼ −
3 _Bðv; rÞS0ðv; rÞ

2Sðv; rÞ −
3B0ðv; rÞ _Sðv; rÞ

2Sðv; rÞ þ; ðA1cÞ

A00ðv;rÞ¼−3B0ðv;rÞ _Bðv;rÞþ12S0ðv;rÞ _Sðv;rÞ
Sðv;rÞ2 −4; ðA1dÞ

S̈ðv; rÞ ¼ 1

2
A0ðv; rÞ _Sðv; rÞ − 1

2
_Bðv; rÞ2Sðv; rÞ: ðA1eÞ

The revelation is that this set of differential equations is
nested,23 i.e. for a given v0, one can start from the first DEQ
(A1a), using some Bðv;rÞ as initial condition, and solve
one’s way from equation to equation in order to get
Sðv0; rÞ, _Sðv0; rÞ, _Bðv0; rÞ, and Aðv0; rÞ. Note that we
solve for _S and S independently as well as _B and B. The last
equation, Eq. (A1e) is not needed and can be used as a
constraint equation to check the numerics.

1. Residual gauge freedom

It turns out that the Einstein field equations in (A1)
possess a residual gauge freedom related to bulk diffeo-
morphisms, namely

r → rþ λðvÞ: ðA2Þ

One could just randomly set λ to some constant, but there is
actually a better choice by [36] and really well-explained
in [87].
We go from the radial coordinate r to its inverse

z ¼ 1=r. We have not yet specified the grid for the bulk
integration in order to solve Eqs. (A1) numerically.
It is obvious that one end of the interval of integration
should be the boundary, rbdy → ∞ or in practice
zbdy ¼ 1=rbdy ¼ 0. The other end of the interval is not
so trivial. Ideally we should integrate exactly to the event
horizon, but the event horizon is a teleological object, i.e.
in order to know where it is we would need to know
the future evolution [88]. Also, S usually vanishes at
some point, which means there is a caustic. It turns out
that usually this caustic is hidden behind the event
horizon, but it can state a limitation on the initial
conditions. For our metric and coordinates the apparent
horizon is determined by

_Sðv; zhÞ ¼ 0: ðA3Þ

While the event horizon cannot be determined prior to
knowing the whole evolution, the apparent horizon can be
determined for every time slice, lies inside the event
horizon and converges to the event horizon for late times.
Thus, the procedure will be to use the radial shift invariance
(A2) to set the apparent horizon to r ¼ 1 for all times. We
calculate λ for the initial time and Bs profile and from the
subtraction scheme of A (explained in Sec. A 2) we have an
equation for dλ=dv, so we can take λ as another variable in
Φ that is propagated from time slice to time slice.
This way we can always integrate on the interval

z ∈ ½0; 1�. The numerical integration on this interval is

23We also wrote aMathematica package to visualize the structure
of differential equations and see the nested structure, see https://
github.com/BoGGoG/DEQSystemStructureVisualization.
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performed using pseudospectral methods24 following [89].
For the grid size we use 36 points.

2. Obtaining regular functions

One practical problem of the Einstein field equations in
the form above is that the functions A, B, S generally
diverge at the boundary. This problem can be circumvented
by pulling out the divergences from those functions and
only solving for the regular part. This can be achieved with
the following choice of “subtraction scheme” (now written
in terms of z ¼ 1=r):

Aðv; zÞ ¼ z2Asðv; zÞ þ λðvÞ2 þ 2λðvÞ
z

þ 1

z2
; ðA4aÞ

Bðv; zÞ ¼ z4Bsðv; zÞ −
2z3ð3v2λðvÞ2 þ 3vλðvÞ þ 1Þ

9v3

þ z2ð2vλðvÞ þ 1Þ
3v2

−
2z
3v

−
2 logðvÞ

3
; ðA4bÞ

Sðv; zÞ ¼ z3Ssðv; zÞ þ
3vλðvÞ þ 1

3v2=3
þ z2ð9vλðvÞ þ 5Þ

81v8=3

−
z

9v5=3
þ v1=3

z
: ðA4cÞ

We call the functions As, Bs and Ss the subtracted
functions and they are scaled by factors of z because this
will be the first order where they are nonzero. After
plugging Eqs. (A4) into the EFEs (A1), we have a nested
set of differential equations for the functions As, Bs and Ss
that we can solve just the way that has been indicated
below Eqs. (A1).

3. Energy-momentum tensor

From the holographic equation for the energy-
momentum tensor (1) and using our metric (16) we can
get the energy-momentum tensor. It is diagonal and trace-
less with components

κ̄hT0
0i ¼

3

4
a4ðτÞ ðA5Þ

κ̄hT1
1i ¼ κ̄hT2

2i ¼ b4ðτÞ

−
3τ4a4ðτÞ þ 4τλðτÞðτλðτÞð2τλðτÞ þ 3Þ þ 2Þ þ 2

12τ4

ðA6Þ

κ̄τ2hTξ
ξi ¼ −

1

4
τ2ða4ðτÞ þ 8b4ðτÞÞ þ

1

3τ2
þ 4

3
τλðτÞ3

þ 2λðτÞ2 þ 4λðτÞ
3τ

ðA7Þ

with the transverse coordinates x1, x2 and the (longitudinal)
rapidity ξ ¼ 1

2
ln½ðtþ x3Þ=ðt − x3Þ�. κ̄ ¼ 4πGN is a normali-

zation constant. The terms a4 and b4 are the fourth-order
coefficients of the expansion of A and B at the boundary in
terms of r. From the energy-momentum tensor we can read
off the energy density ϵ ¼ hTτ

τi and the transverse and
longitudinal pressures P⊥ ¼ hTx1

x1i ¼ hTx2
x2i, Pk ¼ hTξ

ξi.

4. Initial conditions

For completeness we display the initial conditions
chosen for this work. This is in part a reproduction of
the table in [17].

APPENDIX B: HORIZON FIXING SCHEMES

In this appendix we display three different methods of
running our numerical code, displaying that our evolution
procedure provides identical results to [17]. We begin with
the following proposition,
Proposition: The triple ðBðv0; zÞ; ϵðv0Þ; λðv0ÞÞ is a

representative of a class of initial data. This class of initial
data is gauge equivalent to all other choices of initial data
related by a radial diffeomorphism

z0 ¼ z
1þ λ0z

: ðB1Þ

Any choice related by the above diffeomorphism rep-
resents equivalent initial data.

Consider the line element for this setup given in Eq. (16).
Solving the Einstein equations order by order the near the
AdS boundary can be done by making the ansatz

gμν ¼
X∞
n¼0

gðnÞμν ðxiÞr2−n ðB2Þ

and results in the following expansion for the metric
components B

B ¼ b4ðvÞ
r4

−
−2vλðvÞ − 1

3r2v2
−
12v2λðvÞ2 þ 12vλðvÞ þ 4

18r3v3

−
2

3rv
þ log

�
1

v2=3

�
þ � � � ; ðB3Þ

and A

A ¼ a4ðvÞ
r2

þ r2 þ 2rλðvÞ þ λðvÞ2 − 2λ0ðvÞ þ � � � ; ðB4Þ

in a general frame. In this frame one can construct the
energy-momentum tensor following [90–92] to obtain the

24We also wrote a Mathematica package for this, see https://
github.com/BoGGoG/MathematicaChebyshevSolver, even though
many changes have not yet been pulled into this repo.
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result displayed in Eqs. (A5)–(A7) which contains explicit factors of λ, the residual diffeomorhpism left over from the choice
of metric ansatz. Constructing a physical observable, the pressure anisotropy per energy density say, one again sees the
presence of λ

ΔP
ϵ

¼ P⊥ − Pk
ϵ

¼ −
−12τ4b4ðτÞ þ 8τ3λðτÞ3 þ 12τ2λðτÞ2 þ 8τλðτÞ þ 2

3τ4a4ðτÞ
: ðB5Þ

However the conclusion that the expression above containing λ implies the system is gauge dependent is not correct. To see
this lets return to the expansion in Eq. (B3). The energy-momentum tensor was computed in this frame, so b4 in Eq. (B5) is
the same as in Eq. (B3). While it appears that b4 is gauge independent this is not true. This can be seen easily by taking λ ¼ 0
in Eq. (B3) and then performing a transformation back to the λ frame by r → rþ λ

B ¼ −
1

3
ð2 logðτÞÞ − 2

3rτ
þ 2τλðτÞ þ 1

3r2τ2
−
2ð3τ2λðτÞ2 þ 3τλðτÞ þ 1Þ

9r3τ3
þ b4ðτÞ þ λðτÞ2

τ2
þ 2λðτÞ

3τ3
þ 2λðτÞ3

3τ

r4
þ � � � : ðB6Þ

We can now see that the fourth-order coefficient clearly displays gauge dependence. If we do another transformation
r → rþ λ2 we find

b4ðτÞ þ λðτÞ2
τ2

þ 2λðτÞ
3τ3

þ 2λðτÞ3
3τ

r4
→

b4ðτÞ þ ðλðτÞþλ2ðτÞÞðτðλðτÞþλ2ðτÞÞð2τðλðτÞþλ2ðτÞÞþ3Þþ2Þ
3τ3

r4
: ðB7Þ

Clearly the gauge-invariant contribution to the fourth-order coefficient, b4, is the quantity

TABLE I. Initial Conditions: The different values of the parameterization of the initial data given in Eq. (26) are displayed. For each
parameterization we begin the evolution at τ ¼ 0.2 and with initial asymptotic coefficient a4 ¼ −40=3 except for initial conditions 24
and 25 for which a4 ¼ −15.5 and a4 ¼ −14.2 respectively. Note, we do not alter α from the value α ¼ 1. Doing so leads to initial
conditions which do not initially begin as deviations on top of a vacuum AdS solution.

IC No. Ω1 γ1 Ω2 γ2 Ω3 γ3 β0 β1 β2 β3 β4 β5 α

1 0 0 0 0 0 0 0.5 −0.5 0.4 0.2 −0.3 0.1 1
2 0 0 0 0 0 0 0.2 0.1 −0.1 0.1 0.2 0.5 1
3 0 0 0 0 0 0 0.1 −0.5 0.5 0 0 0 1
4 0 0 0 0 0 0 0.1 0.2 −0.5 0 0 0 1
5 0 0 0 0 0 0 −0.1 −0.4 0 0 0 0 1
6 0 0 0 0 0 0 −0.2 −0.5 0.3 0.1 −0.2 0.4 1
7 0 0 0 0 0 0 0.1 −0.4 0.3 0 −0.1 0 1
8 0 0 0 0 0 0 0 0.2 0 0.4 0 0.1 1
9 0 0 0 0 0 0 0.1 −0.2 0.3 0 −0.4 0.2 1
10 0 0 0 0 0 0 0.1 −0.4 0.3 0 −0.1 0 1
11 1 1 0 0 0 0 0 0 0 0 0 0 1
12 0 0 1 1 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0.1 −0.4 0.4 0 −0.1 0 1
14 0 0 0 0 0 0 −0.2 −0.5 0.3 0.1 −0.2 0.3 1
15 0 0 0 0 0 0 −0.2 −0.3 0 0 0 0 1
16 0 0 0 0 0 0 −0.2 −0.5 0 0 0 0 1
17 0 0 0 0 0 0 −0.1 −0.3 0 0 0 0 1
18 0 0 0 0 0 0 −0.1 −0.2 0 0 0 0 1
19 0 0 0 0 0 0 −0.5 0.2 0 0 0 0 1
20 0 0 0 0 0 0 −0.2 −0.4 0 0 0 0 1
21 0 0 0 0 0 0 −0.2 −0.6 0 0 0 0 1
22 0 0 0 0 0 0 −0.3 −0.5 0 0 0 0 1
23 0 0 0 0 1 8. 0 0 0 0 0 0 1
24 1 8 0 0 0 0 −0.2 −0.5 0 0 0 0 1
25 0.5 8 0 0 0 0 −0.2 −0.5 0 0 0 0 1
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B4ðτÞ ¼ b4ðτÞ −
λðτÞ2
τ2

−
2λðτÞ
3τ3

−
2λðτÞ3
3τ

: ðB8Þ

In the case of A we find that a4 → a4 and hence is
unaffected by gauge transformations. Inserting the gauge
invariant fourth-order expansion coefficient B4 into the
pressure-anisotropy equation reveals,

ΔP
ϵ

¼ 2ð6B4ðτÞτ4 − 1Þ
3τ4a4ðτÞ

ðB9Þ

which under a radial gauge transformation is invariant. The
energy-momentum tensor written in terms of the invariant
information takes the form,

κ̄hT0
0i ¼

3

4
a4ðτÞ ðB10Þ

κ̄hT1
1i ¼ κ̄hT2

2i ¼ −
a4ðτÞ
4

þ B4ðτÞ −
1

6τ4
ðB11Þ

κ̄τ2hTξ
ξi ¼ −

1

4
τ2a4ðτÞ − 2B4ðτÞτ2 þ

1

3τ2
: ðB12Þ

Hence, we see an under appreciated aspect of this character-
istic evolution procedure

The naïve b4ðtÞ is a gauge dependent quantity and
the presence of the λ in the energy-momentum
tensor is there, precisely, to cancel this gauge
dependence.

It is often the case that the energy-momentum tensors
obtained in terms of asymptotic coefficients displayed in
other manuscripts which use the characteristic formulation
are displayed in the λ ¼ 0. This is no coincidence as the for
of the energy-momentum tensor in the λ ¼ 0 is identical to

the form in the gauge invariant frame. To further prove this
point we have constructed three evolutions, each conducted
withnz ¼ 35 grid points andΔv ¼ 8.33 × 10−5, see Fig. 13:
(1) Colored lines represent λðv0Þ ≠ 0 chosen such that

zh ¼ 1 and is fixed throughout the evolution such
that (within approximately one part in 10−7 which is
one notion of the accuracy of the solution), zh ¼ 1
for the entire evolution.

(2) Black dashed lines represent λðvÞ ¼ 0 ∀ v. Hence
the location of the apparent horizon fluctuates
throughout the evolution.

(3) Yellow dashed lines represent λðv0Þ ≠ 0 for which
the apparent horizon is at zh. λ is then fixed
throughout the evolution such that (within approx-
imately one part in 10−7 which is one notion of the
accuracy of the solution), dzh=dv ¼ 0 for the entire
evolution.

One can note that all three curves are visually identical and
differ from one another on the order of 10−4. This is an
example of the proposition stated above. All three of these
evolutions belong to the same class of initial data, they are all
gauge equivalent to one another.

APPENDIX C: ENERGY CONDITIONS

The work of [17] demonstrated that reasonable AdS
geometries produced field theory energy-momentum ten-
sors which violated the weak, dominant or both energy
conditions. These two energy conditions are summarized
as follows [93,94],

(i) Weak energy condition (WEC): For any timelike
vector ψα (ψαψβgαβ < 0) the WEC states that the
energy-momentum tensor must obey Tαβψ

αψβ ≥ 0.
(ii) Dominant energy condition (DEC): For an timelike

vector ψα the DEC requires that spacetime vector χ
defined as χα ¼ −Tα

βψ
β must be a future directed

null or timelike vector (χαχα ≤ 0). This is equivalent

FIG. 13. Left: equivalent evolution. Right: in P⊥. The difference is at the same order as the accuracy to which the apparent horizon
stayed at the correct location. The numbers correspond to the method as enumerated in the main text.
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to the condition that TαγTα
λψ

γψλ ≤ 0. It is a trivial
exercise to show that matter which obeys the DEC
implies the matter also obeys the WEC.

For a vacuum solution, Tμν ¼ 0 and both of the energy
conditions are trivially satisfied. Hence we pause and note
that an AdS geometry supported by reasonable matter
(vacuum) may produce a state of the field theory, for
which, the energy conditions as applied to the field theory
are violated. As such, the energy conditions as applied to
the state of the field theory may be used to place bounds on
the initial gravitational data.

APPENDIX D: DISCARDED DEFINITIONS OF AN
OUT-OF-EQUILIBRIUM SPEED OF SOUND

We initially tested four ways to do numerically realize
the speed of sound [Eq. (28) using only the energy-
momentum tensor] which is given in terms of our numerical
data:
(1) The naïve way, making use of a chain rule, varying

the energy and pressure separately as functions
of time.

(2) Direct variation of the pressure and energy in the
holographic model on fixed entropy slices.

(3) Direct variation of the pressure and energy in the
holographic model on fixed apparent horizon area
slices.

(4) Direct variation of the pressure and energy in the
holographic model on fixed time slices.

Method 4 is what is used in the main text. Each of the other
three methods suffers from its own deficiencies. In par-
ticular, methods 2 and 3 suffer from an overdetermination
of the system when considered in equilibrium. Further
deficiencies are pointed out below.
The simplest of these methods of calculating the speed of

sound is method 1, based on the chain rule

c2s ∼
∂P
∂τ

�
∂ϵ

∂τ

�
−1
: ðD1Þ

Methods 2 and 3 are numerically very similar to method 4
discussed in Sec. IV, however, as discussed above, they
make the crucial mistake of holding a notion of the entropy
density fixed, which should not be. These methods make
use of direct differences in the pressure and energy at fixed
values of either the field theory entropy sðτÞ or the apparent
horizon area σ (where one notes σ is indeed the horizon area
modulo a numerical factor).
To facilitate the calculation of the speed of sound using

method 2 or 3 in our list we begin by noting that both τ and
σðsÞ are monotonic functions, hence we can switch from
using τ to σðsÞ as our temporal coordinate. From our time
evolution we have ϵðτÞ, P⊥ðτÞ ¼ T1

1 ¼ T2
2, PkðτÞ ¼ Tξ

ξ as
well as σðτÞ and hencewe can construct ϵðσÞ andP⊥;kðσÞ. To
facilitate the derivativewe now compute an array ofN curves
with initial energies in the interval ðϵ0 − Δϵ; ϵ0 þ ΔϵÞ with
the variation in energy Δϵ small.
With our family curves computed we denote by

ϵðσi; ϵ0 − Δϵþ jδϵÞ the energy density at entropy σi ¼
σðτiÞ (recall τ is a member of an evenly spaced grid
constructed during the time evolution) whose initial energy
density was ϵ0 − Δϵþ jδϵ with 0 < δϵ ≤ Δϵ. Since the
evolution of the entropy depends also on the initial energy
not every curve has the same dimensionless entropy σi. We
then interpolate each curve in the family to obtain smooth
functions ϵðσ; ϵ0 − Δϵþ jδϵÞ of the dimensionless entropy.
We are now free to construct a uniform grid of dimension-
less entropy σ ∈ ½σinitial; σfinal� on which we can evaluate
our smooth functions. This ensures that now at each instant
of entropy, σi, we have N values for ϵ, one value for each
member of the family.
For each instant in entropy σi, we may use the family of

curves ϵjðσiÞ ≔ ϵðσi; ϵ0 − Δϵþ jδϵÞ to construct a finite

FIG. 14. Left: ΔP=ϵ and as a function of τT. Right: Pk=ϵ and as a function of τT. The dashed curves are the first and second-order
solutions from Bjorken flow [17]. The red and gray areas indicate the regions where WEC and DEC are violated (red) and where only
the DEC is violated (gray) [17]. In some works not ΔP=ϵ is investigated, but Pk=ϵ, so we also give a plot here.
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difference representation of the derivative.25 given the
pressures P⊥ðσi; ϵ0 − Δϵþ jδϵÞ and Pkðσi;ϵ0−ΔϵþjδϵÞ.
We use the centered differences rule

dPjðσiÞ
dϵjðσiÞ

¼ ðPjþ1ðσiÞ − Pj−1ðσiÞÞ
ðϵjþ1ðσiÞ − ϵj−1ðσiÞÞ

: ðD2Þ

The final step of the procedure is to transform back to τ as
time variable. This requires that we invert σðτÞ to get τðσÞ.
We do this by interpolating ðσi; τiÞ noting that this must be

done for each curve separately. We can use this procedure to
construct the speed of sound for each curve j at time τi,

c⊥;jðτiÞ2 ¼
dP⊥;jðτiÞ
dϵjðτiÞ

: ck;jðτiÞ2 ¼
dPk;jðτiÞ
dϵjðτiÞ

: ðD3Þ

Having described all four methods we can compare the
result of these as is shown in Fig. 15. The worst faring of the
four methods is the one at fixed-field theory entropy sðτÞ.
This method can be seen growing/decreasing over time past
τT > 1 linearly in τT. While the remaining three methods
roughly behave in a similar manner beyond τT > 1. Shown
in the inset graphic of the left image of Fig. 15 is a closer
look at the region 1 < τT < 2 of c2⊥. Here, it can be seen
that although all three behave in a similar manner there is an
offset between each of these three curves. Given the flaws in
methods 1–3, we have discarded them in favor of method 4,
which we use in the main text.
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[47] G. ’t Hooft, Conf. Proc. C 930308, 284 (1993).
[48] L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).
[49] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M.

Rangamani, J. High Energy Phys. 02 (2008) 045.
[50] S. Bhattacharyya, V. E. Hubeny, R. Loganayagam, G.

Mandal, S. Minwalla, T. Morita, M. Rangamani, and
H. S. Reall, J. High Energy Phys. 06 (2008) 055.

[51] I. Booth, M. P. Heller, and M. Spalinski, Phys. Rev. D 83,
061901 (2011).

[52] I. Booth, M. P. Heller, G. Plewa, and M. Spalinski, Phys.
Rev. D 83, 106005 (2011).

[53] N. Engelhardt and A. C. Wall, Phys. Rev. Lett. 121, 211301
(2018).

[54] M. Natsuume, Lect. Notes Phys. 903, 1 (2015).
[55] I. Muller, Z. Phys. 198, 329 (1967).
[56] W. Israel, Gen. Relativ. Gravit. 9, 451 (1978).
[57] I. Aniceto and M. Spaliński, Phys. Rev. D 93, 085008

(2016).
[58] W. Florkowski, M. P. Heller, and M. Spalinski, Rep. Prog.

Phys. 81, 046001 (2018).
[59] A. Jansen and J. M. Magan, Phys. Rev. D 94, 104007

(2016).
[60] A. Jansen and B. Meiring, Phys. Rev. D 101, 126012

(2020).
[61] L. Alberte, M. Baggioli, V. C. Castillo, and O. Pujolas,

Phys. Rev. D 100, 065015 (2019); 102, 069901(E) (2020).
[62] D. Pan, T. Ji, M. Baggioli, L. Li, and Y. Jin, Sci. Adv. 8,

abm8028 (2022).
[63] R. Rougemont, W. Barreto, and J. Noronha, Phys. Rev. D

105, 046009 (2022).
[64] P. Kovtun, J. High Energy Phys. 07 (2016) 028.
[65] J. Hernandez and P. Kovtun, J. High Energy Phys. 05 (2017)

001.
[66] A. Banerjee, T. Mitra, and A. Mukhopadhyay, arXiv:2207

.00013.
[67] P. Romatschke and M. Strickland, Phys. Rev. D 68, 036004

(2003).
[68] R. Ryblewski and W. Florkowski, Phys. Rev. C 82, 024903

(2010).
[69] M. Strickland, Acta Phys. Pol. B 45, 2355 (2014).
[70] W. Florkowski, M. Martinez, R. Ryblewski, and M.

Strickland, Proc. Sci., ConfinementX (2012) 221.
[71] M. Ammon, M. Kaminski, R. Koirala, J. Leiber, and J. Wu,

J. High Energy Phys. 04 (2017) 067.
[72] M. Ammon, S. Grieninger, J. Hernandez, M. Kaminski, R.

Koirala, J. Leiber, and J. Wu, J. High Energy Phys. 04
(2021) 078.

[73] M. Garbiso and M. Kaminski, J. High Energy Phys. 12
(2020) 112.

[74] P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J.
Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schäfer, and
M. Stephanov, Phys. Rev. C 101, 034901 (2020).

[75] P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J.
Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schaefer, and
M. Stephanov, Phys. Rev. C 101, 034901 (2020).

[76] M. Martinez, T. Schäfer, and V. Skokov, Phys. Rev. D 100,
074017 (2019).

[77] G. Odyniec (STAR Collaboration), Proc. Sci. CORFU2018
(2019) 151.

CARTWRIGHT, KAMINSKI, and KNIPFER PHYS. REV. D 107, 106016 (2023)

106016-22

https://arXiv.org/abs/2206.00653
https://arXiv.org/abs/2206.00653
https://doi.org/10.1103/PhysRevC.99.034910
https://doi.org/10.1103/PhysRevD.102.056003
https://doi.org/10.1103/PhysRevD.104.126012
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1016/j.physletb.2017.11.059
https://doi.org/10.1103/PhysRevLett.109.101601
https://doi.org/10.1007/JHEP09(2012)046
https://doi.org/10.1007/JHEP09(2012)046
https://doi.org/10.1007/JHEP05(2012)102
https://doi.org/10.1007/JHEP05(2015)060
https://doi.org/10.1007/JHEP05(2015)060
https://doi.org/10.1007/JHEP01(2016)184
https://doi.org/10.1007/JHEP01(2016)184
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.22323/1.305.0008
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1016/j.physletb.2018.08.038
https://doi.org/10.1016/j.physletb.2018.08.038
https://doi.org/10.1007/JHEP12(2020)112
https://doi.org/10.1007/JHEP12(2020)112
https://arXiv.org/abs/2112.10781
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1007/JHEP07(2014)086
https://doi.org/10.1007/JHEP07(2014)086
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevLett.106.021601
https://doi.org/10.1103/PhysRevLett.106.021601
https://doi.org/10.1007/JHEP09(2019)072
https://doi.org/10.1007/JHEP09(2019)072
https://doi.org/10.1007/JHEP01(2021)041
https://doi.org/10.1103/PhysRevC.105.034903
https://doi.org/10.1103/PhysRevC.105.034903
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1070/RM1970v025n02ABEH003794
https://doi.org/10.1007/BF01197884
https://doi.org/10.1007/s00023-004-0166-8
https://doi.org/10.1007/s00023-004-0166-8
https://doi.org/10.1063/1.531249
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/1126-6708/2008/06/055
https://doi.org/10.1103/PhysRevD.83.061901
https://doi.org/10.1103/PhysRevD.83.061901
https://doi.org/10.1103/PhysRevD.83.106005
https://doi.org/10.1103/PhysRevD.83.106005
https://doi.org/10.1103/PhysRevLett.121.211301
https://doi.org/10.1103/PhysRevLett.121.211301
https://doi.org/10.1007/978-4-431-55441-7
https://doi.org/10.1007/BF01326412
https://doi.org/10.1007/BF00759845
https://doi.org/10.1103/PhysRevD.93.085008
https://doi.org/10.1103/PhysRevD.93.085008
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1103/PhysRevD.94.104007
https://doi.org/10.1103/PhysRevD.94.104007
https://doi.org/10.1103/PhysRevD.101.126012
https://doi.org/10.1103/PhysRevD.101.126012
https://doi.org/10.1103/PhysRevD.100.065015
https://doi.org/10.1103/PhysRevD.102.069901
https://doi.org/10.1126/sciadv.abm8028
https://doi.org/10.1126/sciadv.abm8028
https://doi.org/10.1103/PhysRevD.105.046009
https://doi.org/10.1103/PhysRevD.105.046009
https://doi.org/10.1007/JHEP07(2016)028
https://doi.org/10.1007/JHEP05(2017)001
https://doi.org/10.1007/JHEP05(2017)001
https://arXiv.org/abs/2207.00013
https://arXiv.org/abs/2207.00013
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1103/PhysRevC.82.024903
https://doi.org/10.1103/PhysRevC.82.024903
https://doi.org/10.5506/APhysPolB.45.2355
https://doi.org/10.1103/PhysRevC.88.024903
https://doi.org/10.1007/JHEP04(2017)067
https://doi.org/10.1007/JHEP04(2021)078
https://doi.org/10.1007/JHEP04(2021)078
https://doi.org/10.1007/JHEP12(2020)112
https://doi.org/10.1007/JHEP12(2020)112
https://doi.org/10.1103/PhysRevC.101.034901
https://doi.org/10.1103/PhysRevC.101.034901
https://doi.org/10.1103/PhysRevD.100.074017
https://doi.org/10.1103/PhysRevD.100.074017
https://doi.org/10.22323/1.347.0151
https://doi.org/10.22323/1.347.0151


[78] S. Collaboration, Studying the phase diagram of qcd matter
at rhic, https://drupal.star.bnl.gov/STAR/files/BES_WPII_
ver6.9_Cover.pdf (2014).

[79] A. Bzdak, V. Koch, and J. Liao, Phys. Rev. C 83, 014905
(2011).

[80] X. An et al., Nucl. Phys. A1017, 122343 (2022).
[81] M. Stephanov and Y. Yin, Phys. Rev. D 98, 036006 (2018).
[82] N. Abbasi and M. Kaminski, Phys. Rev. D 106, 016004

(2022).
[83] O. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 83,

086005 (2011).
[84] R. Critelli, R. Rougemont, and J. Noronha, J. High Energy

Phys. 12 (2017) 029.
[85] T. Dore, J. Noronha-Hostler, and E. McLaughlin, Phys. Rev.

D 102, 074017 (2020).
[86] A. Sorensen, D. Oliinychenko, V. Koch, and L. McLerran,

Phys. Rev. Lett. 127, 042303 (2021).

[87] W. van der Schee, Gravitational collisions and the quark-
gluon plasma, Ph.D. thesis, Utrecht U. (2014).

[88] E. Poisson, A Relativist’s Toolkit: The Mathematics of
Black-Hole Mechanics (Cambridge University Press, Cam-
bridge, England, 2009).

[89] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Sec-
ondEdition, Revised) (Dover Publications,NewYork, 2001).

[90] K. Skenderis and B. C. van Rees, J. High Energy Phys. 05
(2009) 085.

[91] M. Taylor, arXiv:hep-th/0002125.
[92] J. F. Fuini andL. G.Yaffe, J.HighEnergyPhys. 07 (2015) 116.
[93] R. M. Wald, General Relativity (Chicago University Press,

Chicago, USA, 1984).
[94] S. M. Carroll, Spacetime and Geometry (Cambridge Uni-

versity Press, Cambridge, England, 2019).
[95] W. R. Inc., Mathematica, Version 12.1.0, champaign, IL,

2021.

HYDRODYNAMIC ATTRACTORS FOR THE SPEED OF SOUND IN … PHYS. REV. D 107, 106016 (2023)

106016-23

https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf
https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf
https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf
https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf
https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf
https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf
https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf
https://doi.org/10.1103/PhysRevC.83.014905
https://doi.org/10.1103/PhysRevC.83.014905
https://doi.org/10.1016/j.nuclphysa.2021.122343
https://doi.org/10.1103/PhysRevD.98.036006
https://doi.org/10.1103/PhysRevD.106.016004
https://doi.org/10.1103/PhysRevD.106.016004
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1007/JHEP12(2017)029
https://doi.org/10.1007/JHEP12(2017)029
https://doi.org/10.1103/PhysRevD.102.074017
https://doi.org/10.1103/PhysRevD.102.074017
https://doi.org/10.1103/PhysRevLett.127.042303
https://doi.org/10.1088/1126-6708/2009/05/085
https://doi.org/10.1088/1126-6708/2009/05/085
https://arXiv.org/abs/hep-th/0002125
https://doi.org/10.1007/JHEP07(2015)116

