PHYSICAL REVIEW D 107, 106015 (2023)

Entanglement entropy and Page curve from the M-theory dual of thermal
QCD above T, at intermediate coupling

Gopal Yadav®™ and Aalok Misra®'
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India

® (Received 28 February 2023; accepted 9 May 2023; published 26 May 2023)

Exploration of entanglement entropy (EE) and obtaining the Page curve in the context of eternal black
holes associated with top-down nonconformal holographic thermal duals at intermediate coupling has been
entirely unexplored in the literature. We fill this gap by obtaining the Page curve of an eternal neutral black
hole from a doubly holographic setup relevant to the M-theory dual of thermal QCD-like theories at high
temperatures (i.e., above T'.) and intermediate coupling (effected by inclusion of terms quartic in curvature
in M theory). Remarkably, excluding the higher derivative terms, the EE of the Hawking radiation from the
on-shell Wald entanglement entropy integral (for appropriate choices of constants of integration appearing

in the embeddings) increases almost linearly due to dominance of entanglement entropy contribution from

the Hartman-Maldacena (HM)-like surface Spp. 4

Sgg[ ” effecting a “Large N scenario” (LNS). Then after the Page time, the EE contribution from the island

P~ l?,. This imparts a “Swiss-cheese” structure to

surface (IS) S};ﬁ/ﬁ dominates and saturates the linear time growth of the entanglement entropy of Hawking
radiation and leads to the Page curve. The same is also obtained via the areas of the Hartman-Maldacena-

like/island surfaces. Requiring the (IS) EE (Sséﬂ l)) per unit Hawking-Beckenstein entropy (Sgy) post the
Page time to be around 2, and positivity of the Page time, set respectively a lower and upper bound on the
horizon radius r, (the nonextremality parameter). Further, with the inclusion of the O(R*) terms in
M theory, the fact the turning point associated with the HM-like surface is in the deep IR, requires a

relationship between [, and r, along with a conjectural y = e

1540

~OMN _suppression (motivated by the

aforementioned requirement Somier 2 up to leading order). We obtain a hierarchy with respect to y in

0 0
SEIEVI 7, SESE’/;( and Sggl ’, Sggl 7 [at O(p)]. This is due to the existence of massless graviton corresponding to
a null mass eigenvalue of the Laplace-Beltrami equation in the internal space.

DOI: 10.1103/PhysRevD.107.106015

I. INTRODUCTION AND MOTIVATION

According to Hawking, black holes evolve from the pure
state to a mixed state, i.e., Hawking radiation is thermal
radiation. Evaporation of the black holes has no informa-
tion about the initial state of the black hole which
means information is lost in the black hole evaporation
process [1]. But it has to respect the fundamental principle
of quantum mechanics which is unitarity. Entanglement
entropy of the Hawking radiation starts decreasing after the
Page time [2] of the evaporating black hole and for eternal
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black holes it reaches a constant value. Unitary evolution of
black holes thus for has been understood via AdS/CFT
correspondence [3]. In gauge-gravity duality, on gravity
dual side, we have black hole and on the gauge theory side
we have conformal field theory which respects unitarity.
Therefore, we can study the unitary evolution of the black
holes on the CFT side via gauge-gravity duality. A similar
construction for QCD-like theories (equivalence class of
theories which are IR confining, UV conformality and
quarks transforms in the fundamental representation) at
intermediate coupling was done in [4] where M-theory dual
O(R*) corrections were considered. We are studying the
black hole information paradox via gauge-gravity duality in
M-theory dual of [4]. For a review on the black hole
information paradox, see [5,6].

There is a prescription to calculate entanglement entropy
in field theories which have a gravity dual. For conformal
field theories it was given in [7] that entanglement entropy
will be given by the area of the codimension two minimal
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surface in the bulk gravity dual. Generalization of the Ryu-
Takayanagi formula for nonconformal theories was given
in [8] and used made in [9] to discuss deconfinement phase
transition in thermal QCD-like theories from entanglement
entropy point of view. Further, if we consider higher
derivative gravity theories then we can calculate entangle-
ment entropy using [10]. Authors in [11] included quantum
corrections to the Ryu-Takayanagi formula at all order in 7%
and entanglement entropy which is known as generalized
entropy. At leading order in A in generalized entropy
formula, we recover the Ryu-Takayanagi formula [7]. In
Englehardt-Wall prescription one is required to extremize
the generalized entropy, and surfaces which extremize the
generalized entropy are known as quantum extremal
surfaces (QES). The island proposal was first introduced
in [12], where the authors discussed that at late times
islands come into the picture which contribute to the
entanglement entropy. In this case, one is required to
extremize the generalized entropylike functional over all
islands which include contribution from the island
surfaces, and then minimize over all possible extrema.
Islands which extremize the aforementioned generalized
entropy-like functional are known as quantum extremal
islands (QED).

In doubly holographic models we consider a black hole
in the gravitational dual is coupled to an external conformal
field theory (CFT) bath [13]. For example, gravity (which
contains the black hole) in d-dimensions is coupled to
external bath in d-dimensions, where d-dimensional
external bath has its own holographic dual in (d + 1)-
dimensions. In these kinds of models we consider two
copies of the setup described earlier. We consider two kinds
of surfaces. First is the Hartman-Maldacena-like surface
[14], which starts from the point where gravity is coupled to
external bath, i.e., defect and crosses the black hole horizon
and reaches up to the defect of thermofield double of
doubly holographic models, and entanglement entropy
contribution from this surface has linear time dependence
which leads to information paradox at late times. Second, is
the island surface, which start from the external bath and hit
the Karch-Randall brane [15,16]. Entanglement entropy
contribution from the island surface is independent of time
and dominates after the Page time. After combining the
entanglement entropy contributions from both surfaces we
obtain the Page curve. Doubly holographic model with
gravitating bath was discussed in [17] and with non-
gravitating baths models were discussed in [18-21].
Page curve calculation for the neutral Gauss-Bonnet black
hole was done in [22].1

There is one more way via which information paradox
was resolved. In this approach, initially we calculate the
entanglement entropy contribution without the island

'One of us (GY), thanks R. X. Miao to bring their work to our
attention.

surface using Cardy’s formula [23] which depends on time
and is responsible for the appearance of information para-
dox. Later, island surfaces emerge which contribute to the
entanglement entropy and this contribution is independent
of time which dominates after the Page time. Combining
these two contributions we obtain the Page curve. Based on
this approach some examples were discussed in [24-28].
Since there is no known Cardy-like formula for non-
conformal theories therefore we are following the doubly
holographic models approach discussed earlier in our
calculations. Islands and Page curves were studied in type
IIB string theory in [29-31] and for flat space black holes,
see [32]. Page curves of the Reissner-Nordstrom black
hole in the presence of higher derivative terms was studied
in [33].

To study thermal QCD-like theories via gauge-gravity
duality in the UV complete type IIB holographic dual, the
authors started in [34] where they constructed type IIB
string dual of large-N thermal QCD-like theories in the
strong coupling limit. To study the finite coupling regime of
thermal QCD-like theories authors constructed type IIA
mirror of the aforementioned type IIB setup then uplifted it
to the M-theory in [35,36]. Applications of the same were
studied in [37-40]. Further, to have analytical control on
the intermediate coupling regime of thermal QCD-like
theories, the authors in [4] incorporated HD terms
on the gravity dual side. We are working with [4] too in
this paper to obtain the Page curve of a neutral black hole in
the presence of higher derivative terms. The model [4] has
been reviewed in [9,41] and the latter references are
applications of the same. One of us (GY) studied the effect
of rotation on the deconfinement temperature of thermal
QCD-like theories at intermediate coupling from M-theory
in [42].

In this paper we are calculating the Page curve of a
neutral black hole where we have a nonconformal bath. In
our case, on the gravity dual side we have M-theory dual
inclusive of higher derivative terms and on the gauge
theory side we have thermal QCD-like theories at inter-
mediate coupling which is a nonconformal theory. In this
paper we are considering a doubly holographic setup
similar to [18,19] where on the gauge theory side authors
have a conformal theory but the story is different in our
setup because we have a nonconformal theory. Similar to
[18,19], we consider two kinds of candidate surfaces:
Hartman-Maldacena-like surface and island surface.
Hartman-Maldacena-like surface is responsible for the
linear time growth of the entanglement entropy of
Hawking radiation [14]. After the Page time, the entan-
glement entropy contribution from the island surface
dominates which is independent of time and we obtain
the Page curve from M-theory dual inclusive of O(R*)
corrections.

We have organized the paper in the following way. In
Sec. II via two subsections II A and II B, we have described
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the holographic dual of thermal QCD-like theories from
top-down approach in subsection Il A and construction
of doubly holographic setup in M-theory dual in
subsection II B. Section III is devoted to discussion of
end-of-the-world (ETW) “brane” embedding in the
M-theory dual. First, we have discussed that ETW-"“brane”
has constant embedding at the level of Einstein gravity in
III A and then we have shown in III B that when restricted
to the aforementioned constant ETW-“brane” embedding,
there are no boundary terms generated from the most
dominant J,, terms at O(R*) in the “MQGP limit” in the
eleven dimensional supergravity action that would have
covariant derivatives of the metric variation, and hence
would have required suitable boundary terms to be con-
structed to cancel the same (much like the GHY boundary
terms to cancel off similar terms in the EH action in
Einstein gravity). Section IV is divided into three sub-
sections. Subsections IV A and IV B involve calculations of
the entanglement entropy of the Hawking radiation from
the areas of Hartman-Maldacena-like and island surfaces,
and in subsection IV C we have obtained the Page curve of
eternal neutral black hole in the absence of higher deriva-
tive terms in eleven dimensional supergravity action. We do
the Page curve calculation of the neutral black hole in the
presence of higher derivative terms in Sec. V via four
subsections VA, VB, VC and VD. In Secs. VA and VC
we obtain the entanglement entropies of the Hawking
radiation for the Hartman-Maldacena-like and island sur-
faces in the presence of higher derivative terms, and then
we obtain the Page curve in Sec. VD. In Sec. VB we
discuss the ‘“Swiss-cheese” structure of entanglement
entropy contribution from the Hartman-Maldacena-like
surface. Section VI has a discussion on showing the
existence of massless graviton by showing the existence
of a null eigenvalue of the Laplace-Beltrami differential
equation for the graviton wave function along the internal
coordinates and hence provide a physical reason for the
exponential-in-N suppression of entanglement entropies in
particular for the Island Surface. We discuss our results and
conclusion in Sec. VIL

Additionally there are four appendices. By dividing the
appendix A into two parts, we have computed angular
integrals used in this paper in A 1 and turning point of the
island surface in A 2. In appendix B we have listed various r
dependent functions in entanglement entropy expression of
the HM-like surface at O($°) and O(p), apart from that we
have also computed EOM of the HM-like surface embedding
in the same appendix. In appendix C we have listed r
dependent functions appearing in the O(f) term of the
entanglement entropy of island surface and then computed
the derivatives of the Lagrangian with respect to embedding
function and derivatives of the embedding function. In
appendix D, we have listed all the possible terms that we
obtain in the holographic entanglement entropy for Hartman-
Maldacena-like and island surfaces in D 1 and D 2.

II. SETUP

In this section we will first summarize (in II A) the type
IIB/ITA mirror dual of thermal QCD-like theories (i.e.,
IR-confining, UV-conformal with quarks in the fundamen-
tal representation of flavor and color) and its no-braner
M-theory uplift worked out in [4,34,36]. We will then
discuss (in IIB) the doubly holographic setup in the
M-theory uplift.

A. Top-down UV-complete holographic dual of thermal
QCD-like theories

From the point of view of construction of a string/
M-theory holographic dual truly close to realistic thermal
QCD-like theories, one needs to consider finite gauge
coupling (g,) and finite number of colors (N). From the
point of view of gauge-gravity duality, this entails
looking at the strong-coupling limit of string theory—M
theory—the same was dubbed as the “MQGP limit”
in [36] wherein g, < 1,N; = O(1), (N, M) > 1 such that
WM 1.

(1) Brane configuration of [34]: Brane setup of [34] has
N D3-branes, M D5-branes and M D5-branes, N [
D77-branes N ¢ D7-branes. World volume coordinates
are the aforementioned D-branes are summarized in
Table I. M D5-branes and M D5-branes are wrapping
the same vanishing two cycle $?(6,, ¢,) but located
at antipodal points (average separation is R ;5 /E) of
resolving 85(65.¢2). Rps /55 is the boundary be-
tween UV (r > Rus/ﬁ) and IR (r < RDs/E) on the
gravity dual side in terms of radial coordinate. Flavor
D7-branes were embedded holomorphically [43] in
the resolved conifold geometry (1):

1 i . 9 . 9
(r6 + 9azr4>Zef(W_¢l_¢2) Sin <?1> Sin (;) = ﬂOuyangv
(1)

where pouyang 18 the Ouyang embedding parameter. N
D7-branes are present only in the UV and UV-IR
interpolating region whereas N y D7-branes are present
in the UV, UV-IR interpolating region and in the IR
too. This provides a realization of chiral symmetry
breaking in the setup and UV conformality in the
theory which we will explain in the next point.

(2) Based on earlier discussion, we can see that product
color and flavor gauge groups are SU(N + M) x
SU(N + M) and SU(N ;) x SU(N;) when we are in
the UV, ie., r > RDS/E' When one is going from
UV (r > RDS/E) toIR (r < RDs/B) via RG group
flow then SU(N ) x SU(N) changes into SU(N)
(because there are no Ny D7-branes in the IR). This
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process can be interpreted as chiral symmetry break-
ing in the setup. Effect of transition from UV to IR at
r=7TRps /b5 on the product color gauge group is that

it changes SU(N + M) x SU(N + M) to SU(N +
M) x SU(N) (because no M D5-branes in the IR).
This triggers Sieberg-like duality in the setup and if
we perform repeated Sieberg-like dualities then in
the IR we will be left with SU(M) gauge theory
where M can be identified with number of colors in
the theory and M can be set to 3 [44] in the “MQGP”
limit discussed later in this subsection.

(3) Now let us see how we can say that the theory is
nonconformal. This can be seen from the following
RG-flow equations of the gauge couplings of the
product gauge group:

1 1
4n? ( 5 + > et ~m;
Isu(N+Mm) 9§U(N)

1 1 1
4712( - )e¢~ /Bz. (2)
géU(NJrM) 9§U(N) 2rd Js2

If [, ¢ B, = 0, then we will have a conformal theory
and this is true in the UV in this setup because of
presence of M D5-branes in the UV. In the IR,
Jq By # 0, which implies nonconformality in the
theory from (2). Ny D7-branes cancels the net N,
flavor D7-branes charges in the UV which corre-
sponds to constancy of dilaton in the UV.

FSECZC4+B2/\F3:.’F5+*]:5;

Mg(r) = /93 Fs,

where F3(EF3—TH3)O(Meff(I")EMW,

a>1 with R being the D5 — D5 separation along

D5/D5
the blown-up S? which in turn is estimated to be v/3a in the
type IIB dual with the same therefore acting as
the outer boundary of the UV-IR interpolating region in
same as well as its type IIA mirror gravity dual and its
M-theory uplift, and S* is dual to ey, A (sin 0,d6, A
d¢y — By sin0, A deg,), where e, = dy + cosO,dp,+
cos 6,d¢,) and B; is an “asymmetry factor” defined in
[34]. Since Nt € [Nyv,Or] and M € [Oyy, M),
therefore N. = Mg, where Mz implies that in the IR,
number of colors is equal to M and this can be set to 3 in the

MQGP limit. Further we can also take N, = 2(u/d)+
1(s). Therefore we can see that % is fixed in the IR
(Veneziano-like limit [45]; but Ny and N, remain finite

themselves).
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(4) String dual of thermal QCD-like theories [34]: On
the gauge theory side we want to have finite temper-
ature QCD. As we know that there are two phases of
QCD: confining phase (T < T.) and the deconfined
phase (T > T,). In the deconfined phase, finite
temperature can be introduced by a black hole in
the holographic dual side and in the confining phase,
finite temperature can be introduced by a thermal
background in the holographic dual side. In addition
to finite temperature there is finite separation be-
tween the M D5-branes and M D3, this corresponds
to nontrivial resolution of the conifold geometry.
Further, we need IR confinement in thermal QCD
and it will be obtained on the gauge theory side by
deforming the three cycle in the gravity dual side.
From the aforementioned discussion it is clear that
gravity dual of type IIB setup is a resolved warped
deformed conifold. Further, we have fluxes [which
contains the backreaction (also in the warp factor)]
in the IR which are coming from D3-branes and the
D5-branes.

(5) Number of colors, i.e., N. = 3: Number of colors
N, can be identified with M when Seiberg-like
duality cascade ends in the IR [44], and M can be set
to 3 in the MQGP limit. The idea is as follows: we
can write N as the sum of effective number of D3-
branes and D5-branes, i.e., N, = Nz (r) + Mg (7),
where Ny (r) and My (r) are defined from Fj
and Fi:

Fs = N x Vol(Base of Resolved Warped Deformed Conifold),

(3)

(6) The MQGP limit, type IIA Strominger-Yau-Zaslow
(SYZ) mirror of [34] and its M-theory uplift at
intermediate gauge coupling:

(a) The MQGP limit is defined as below [35,36]:

1

9s~mv M,N;=0(1),

N> 1,

M? M) g,N
g‘sN < 1’ (gs )gs f <

MQGTP limit (4) involves finite string coupling
(intermediate gauge coupling on gauge theory
side) and finite M which is number of colors in
the IR, i.e., N. = M. Therefore M theory dual is
holographic dual of thermal QCD-like theories
at intermediate gauge coupling [4].
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TABLE I. Brane configuration of [34].

Serial number Branes World Volume

1. N D3 R (¢, x123) x {r = 0}

2 M D5 R'3(2,x'23) x {r =0} x $*(0. 1) X NPg2p, 4,

3. M D5 R (2, x'23) x {r = 0} x §*(6;. 1) X SPg2(4, 4)

4. Ny D7 RY3 (7, x12%) X R (r € [|[Houyang - rov]) X S2 (01, 1. wr) x NP g, 4,)
5 Ny D7 R'3(¢,x'23) x R_(r € [RDs/ﬁ —e,ruy]) X S2(01, 1, w) x SPg2(9,.4)

(b) One can obtain the M-theory uplift of type IIB
setup by constructing the type IIA Strominger-
Yau-Zaslow (SYZ) mirror (which is obtained by
implementing triple 7-duality along the three
isometry directions) setup of type IIB setup and
then uplift the type IIA mirror to M-theory.
Three isometry directions produces a local
special Lagrangian (sLag) T3-which could be
identified with the T?-invariant sLag of [46] with
a large base B(r,0,,0,) [of a T3(¢y,ps,y)-
fibration over B(r, 0;,6,)] [35,47]* Three isom-
etry directions are x, y, z which are toroidal
analogue of ¢y, ¢», z,//.3 From Table I we see that
T duality along the y direction converts the N
D3-branes, M fractional D3-branes and Ny
flavor D7-branes into N D4-branes wrapping
the y circle, M D4-branes straddling a pair of
orthogonal N S5-branes and N, flavor D6-
branes. Now, from second and third 7 duality
along the ¢b; and ¢, directions, we obtain N D6-
branes, M D6-branes and N f D6-branes “wrap-
ping” a noncompact three-cycle ) (r, 6, ¢,).
Now if we uplift the type IIA mirror to M-theory

’In [44] it was discussed in a footnote that to implement SYZ
mirror symmetry idea is similar to [48], we need to replace the
pair of §%s by pair of T?s from which we can get the correct
T-duality coordinates. After getting the type IIA mirror, similar to
the [48] pertaining to D5-branes wrapping a vanishing S2, uplift it
to M-theory with a bonafide G,-structure that is free of the
angular delocalization. One can descend back to type IIA which
will therefore be free of delocalization now.

3As explained in [49], the T3-valued (x,y.z) (used for
effecting SYZ mirror in [35,36]) are defined via:

X

d1=dio+ - ,
\/h_z[h("oﬁlo,zo)]% sin g ro

y

dr =y + :

\/E[h(rm 910,20)]41 sin 6y ro
z
v =yy+ s

Vi [h(ro. 010.20) )70

hy 5.4 defined in [34], and one works up to linear order in (x, y, z).
In the IR, it can be shown [50] that 6,(,, can be promoted to
global coordinates 6, , in all the results in the paper.

then it was found that D6-branes are converted
into KK monopoles (variants of Taub-NUT
spaces). Therefore we have no branes in the
M-theory and we will be left with M-theory with
a G,-structure manifold—a no-braner uplift.
(7) M-theory uplift including O(R*) and G-structure
torsion classes:

One of us (AM) along with V. Yadav, worked out
O(I5) corrections to the M-theory M-theory metric
in the “MQGP” limit in [4] and using the afore-
mentioned M-theory metric, G-structure torsion
classes were worked out for the six-, seven- and
eight-folds of the M-theory uplift and summarized in
Table II. The eleven-fold M, in the M theory uplift
obtained in [36] turns out to be a warped product of
Sl (XO) X Rconformal and M7(V, 91,27 ¢1,2’ v, xlO)’ the
latter being a cone over M4(6, 5, ¢y5,w, x'°) with
Mg (0, .. 12,

w,x'%) possessing the following nested fibration
structure:

M6(91,27¢1,27va10) < s (xlo)
\
M5(91.27¢1,2,‘I/) — Ms(h1. 2. y) - (5)
\J
BZ<61’62)

As shown in [36], p}(M ;) = p(M,;) =0 up to
O(p°) where p,, is the a-th Pontryagin class of M.
This hence implied that Xg = 0 in (14) up to O(A°).

From the above discussions we find that the type IIB
setup has the following properties: IR confinement, UV
conformality, quarks transform in the fundamental repre-
sentation of flavor and color groups and well defined in the
confining and deconfined phases. Therefore it is an ideal
holographic dual of thermal QCD-like theories.

The type IIB setup of [34], its Strominger-Yau-Zaslow
type IIA mirror and its M-theory uplift as constructed in
[35,36] as well as [4] (M-theory uplift at intermediate
‘t Hooft coupling effected by inclusion of O(R*) terms) are
summarized in Fig. 1.
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TABLE II.

IR G-structure classification of six-/seven-/eight-folds in the type IIA/M-theory duals of thermal

QCD-like theories (at high temperatures) and for r € IR; X, denotes a warped product.

Serial number

Manifold

G-Structure

Nontrivial Torsion Classes

1.
2.

M = non-Kahler conifold
M; = S,l/\/l Xy Mg

Mg = S} x,, M,
Mg

SU(3) TISIS<3)=W1€BW2®W3®W4@W53 Wy~ Ws

Gy

SU(4)
Spin(7)

TH =W, @W, @ W, & Wy,
lr~1+a,)a, a, ~0.1-0.3
W] = O(Nu+,]), (IWI > 1,
therefore disregarded up to O(ﬁ);
W, =0
=STH =W, @ Wy

M _
TSpm(7) =W, eWw,

B. Doubly holographic setup

(1) A bath which is a boundary CFT(BCFT) living at

Let us first review the doubly holographic setup [13].
There are three equivalent descriptions of doubly holo-
graphic models which are summarized below:

FIG. 1.

M-theory on G,-Structure
seven-fold

M-theory uplift

Gravity dual

the boundary of AdS,,; whose boundary is (d-1)
dimensional defect [51,52], to collect the Hawking
radiation.

M-theory on G,-Structure seven-
fold M. Dhuria, A.Misra [2013]; A.
Misra, K.Sil[2015]; V.Yadav, A.
Misra [2020] (inclusive of O(R?%)
corrections)

gravity

Type lIA brane construct: (anti-
)D6-branes in a deformed
conifold at finite temperature
(deformed conifold more non-

trivial to handle computationally)

dual

-

A
Strominger-

Yau-Zaslow
Mirror (using
ideas of
Dasgupta et al
[2004], Knauf
[2007])

Type IIB brane construct: D3-
branes, (anti-)D5-branes and
flavor (anti-) D7 branes in a
resolved conifold at high
temperature (Dasgupta et al
[2009])

I M-theory uplift

Type IIA supergravity: (anti-
)D6-branes in a a (non-Kahler)
warped resolved conifold with
a Black Hole (resolved conifold
easier to handly
computationally); M. Dhuria, A.
Misra [2013]); A. Misra, K.Sil
[2015]

Strominger-Yau-
Zaslow Mirror

gravity

dual

Type IIB supergravity: anti-D5-
branes and flavor (anti-)D7-
branes in a (non-Kahler)
resolved (since D5- D5 are
separated + high
temperature) warped
deformed (since IR
confinement) conifold with a
Black Hole (Dasgupta et al
[2009])
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(2) Conformal field theory in d dimensions is coupled to
gravity on an “end-of-the-world” (ETW) brane in an
asymptotically AdS, space M, with a half-space
bath CFT coupled to M, via “transparent boundary
conditions” at the defect (the intersection of the
ETW-brane and the bath).

(3) Einstein gravity in M, asymptotic to AdS,,, the
holographic dual of d-dimensional BCFT, contain-
ing M, as an ETW brane [15,16,53].

Let S(R) be the von Neumann entropy of subregion R
defined on constant time slice in description 1. In the second
description it will be given by the island-rule (Z) [12] as,

S(R) = mingext; Sy, (R U ), (6)
where generalized entropy functional is defined as [11]:

A(0T)

S 1) =

+ Smaer(RUI),  (7)

where the first term in the above equation is the area of the
boundary of the island surface and second term is the matter
contribution from bath as well as island regions. In the third
description, generalized entropy functional defined in semi-
classical geometry can be computed classically using the
Ryu-Takayanagi formulain (d + 1) dimensions [7] from the
area of the codimension two minimal surface:

A
=i ®

N

Seen(RUZ) =
4

where y is the codimension two surface in the M )
dimensional bulk space-time. Therefore one can calculate
very easily entanglement entropy of the Hawking radiation
in doubly holographic models using the classical Ryu-
Takayanagi formula in third description.

There is also a similar setup available in the literature as
constructed in [19]. In [19], authors constructed a similar
setup as discussed earlier but in this setup bath is a warped
conformal field theory(WCFT) [54] instead of CFT. This
setup has also three equivalent descriptions which are
summarized below:

(1) Boundary warped conformal field theory(BWCFT)

in two dimensions with one dimensional boundary.

(2) Two dimensional JT gravity coupled to WCFT in

two dimensions at the interface point via transparent
boundary conditions.

(3) Einstein gravity on Mj asymptote to AdS; space

containing M, as a Planck brane [12].

Similar to earlier discussion one can calculate the entan-
glement entropy of the Hawking radiation classically in the
third description when one has warped conformal field
theory in two dimensions as a bath using Ryu-Takayanagi
formula [7]. Doubly holographic models have been studied
in the literature mentioned in Sec. I and also in [55-66].

Motivated by these constructions we are generalizing
these kinds of setups to our case. After a double Wick-
rotation, we have QCD,_; at r = 0, along x'? and Wick-
rotated x>. One can think of a fluxed ETW-hypersurface or
“brane” M, = R?(x*?) x,, Mg where My is the (non-
compact) SU(4)/Spin(7)-structure ([4], Table II) eight-
fold MU “SPD (11 0, 5 1 .. x10) at x! =0 which
has a black hole. The ETW-hypersurface can be interpreted
as R?(x%?) x,, M;U<4)/Spm(7)(t, 7,014, $12,w,x'%) contain-
ing black M5-brane at x' = 0 with world volume X(®) =
S (1) X,y Rsg(r) x Z®  where =) = n,83(0,, ¢y, ) x
[0, 1], + 1n25%(01, @) x S?*(05,x'°) with n; determined
by [s3xj01) G4 and ny by [, Gu; the QCD,y; can be
thought of as living on M2-branes with world volume
() (x123). QCD,.; at r = 0 would interact gravitationally
via the pull-back of the ambient M, = R!?3 x,, Mg =
R(x') x,, M, metric used to contract the non-Abelian field
strength in the gauge kinetic term obtained as part of the
M?2-brane(x">3) world-volume action. This has some
similarity with points 2. and 3. of the first paragraph of
this section as regards the doubly holographic setup as
described in [13]. Let us be more specific and briefly
describe the three equivalent descriptions alluded to toward
the beginning of this subsection. The doubly holographic
setup constructed from the bottom-up approach (usually
followed in the literature) as described at the beginning
of this subsection, has the following M-theory description
(the one we follow) of top-down double holography with
QCD, . bath with the numbering matches the one used in
the aforementioned three equivalent description:

(1) Boundarylike description: QCD,_, (could be thought
of as supported on an M2-brane with world volume
G)(x123), and) is living at the tip (r =0) of a
noncompact seven-fold of G, structure which is a
cone over a warped non-Kéhler resolved conifold. The
two-dimensional “defect” =(?) =~ £0) (x23; x! = 0)
R2(x%3).

(2) Nonconformal bath-ETW interv ¢ maction description:
Fluxed end-of-the-world (ETW) hypersurface M, =

R2(x23) wagU(4>/Spin(7) (£.7.01 5.1 2.w.x'0)  con-

taining black MS5-brane at x' =0 coupled to
QCD,,, bath living on M2 brane with world
volume X()(x'23) along the defect ) =~ M,y n
()(x123)|.1_, via exchange of massless graviton.

(3) Bulk description: QCD,,;(x"*3) has holographic
dual which is eleven dimensional [M;=R(x!)x,,
MlOESI(I)XwR3<x1'2’3)XwMgz(r’91,2,¢1,2,1//7x10)]
M-theory background (compactified on a seven-fold
with G, structure) containing the fluxed ETW-

hypersurface M o(x' = 0).
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Fluxed ETW-hypersurface «——— )

r=r1r

X
x=0 Thermal Bath (Effectively QCD in (2 + 1)dimensions) r=0
1
1
| Black Hole Horizon
r=7T
r
Island surfaces r=7 Hartman-Maldacena surface
/—W r
r=7mT
| Black Hole Horizon
1
1
L r=20
x=0 Thermal Bath(Effectively QCD in (2 + 1) dimensions) X

FIG. 2. Doubly holographic setup in M-theory dual. ETW-black “brane” is coupled the thermal bath (at the tip of seven-fold of G,-
structure which is a cone over a warped non-Kéhler resolved conifold), where the Hawking radiation is collected, which effectively is

thermal QCD,,, along x'?23

corresponds to the Hartman-Maldacena-like surface.

The pictorial representation of the aforementioned ETW-
brane(containing a black M5-brane)/M2-brane(supporting
the nonconformal “bath”—QCD,,)-setup focusing
only on the x'— r-plane, along with the Hartmann-
Maldacena-like surface and island surface, is given in
Fig. 2. Unlike [12,13,17], the (nonconformal) bath is at
r =0 instead of the UV cutoff r = rUV.4 In the high
temperature (7" > T,) M-theory dual (15), evidently r > r,
[the metric component g}y being proportional to a warp

factor e® where B~ log( —:—E—l- O(gTMz» from the

solutions to the supergravity EOM implies that for
BER, r>r, in the MQGP limit (4)].

If S(R) be the von Neumann entropy of subregion R
defined on constant time slice in description 1 then

*The cutoff, unlike most references in the literature is not at
infinity but is such that ryy < L = (47g,N)'/* thereby justifying
dropping the “1” in the 10-dimensional warp factor 4 in [4,34,36]
[that appears in (15)], which otherwise would have been
L4t o(s0)].

>Further, as will be shown later, the area/entanglement entropy
(inclusive of O(R*) contributions) of the HM surface [see (48),
(52), (86), (89) and (129)] as well as the IS [see (64), (65), (118),
and (132)] are proportional to a positive power of M—the number
of fractional D3-branes in the parent type IIB dual [34]. Now,
the contribution to r integral from r € UV, ie., r > V3an~

[1+0(#) +O(%)]rh~(1+e)rh, ¢l <1 [41] will in-

volve replacing M by MY = M 4(r € UV & r > \/3a)—the
UV-valued effective number of fractional D3-branes in the
aforementioned parent type IIB dual—which is vanishing small
[see the discussion beneath (3)] ensuring UV conformality.
Therefore all integrals friUgrrT of integrands relevant to the

HM/IS areas or entanglement entropies, will vanish as r, ; >
r;, though being nearer to r;, than v/3a.

after Wick-rotation along x> at r = 0. Blue curves correspond to the island surfaces and red curve

in the second description it will be given by the island-
rule [12] as:

S(R) = minzext;Sge,(R U Z), 9)

where 7 is the island surface and generalized entropy
functional is defined as [11]:

A(0T)
4Gy

Sgen(R U I) = + Smatter(R U I) (10)

As discussed earlier that in doubly holographic models we
can calculate the generalized entropy functional defined in
semiclassical geometry using classical Ryu-Takayanagi
formula [7] in eleven dimensions in the third description
as below:

A
Sen(RUT) = —((yl)l) ,
4G\

(11)

where A(y) is the area of the minimal surface, y, which is a
codimension two surface in the eleven dimensional bulk
space-time. By following [18] we obtain the Page curve of a
neutral black hole using (11) without higher derivative
terms in Sec. [V from M-theory dual.

For higher derivative gravity theories we can calculate
the entanglement entropy in the holographic dual theories
from the results of [10]. Since we are working with
M-theory dual therefore we can write the analogue of
the generalized entropy functional defined in Eq. (11) using
[10] as below:

Sgen(R U I) = Sgravity’ (12)

where
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SEE
Soravity = — (13)
gravity mn°

465\/ )

where Sgg can be calculated using [10]. We will use
Eq. (12) to obtain the Page curve from M-theory dual in
the presence of higher derivative terms in Sec. V. The idea
is that we need to calculate Eq. (12) for the Hartman-
Maldacena-like surface which may produce a linear time
growth of entanglement entropy of the Hawking radiation
and for the island surface which dominates after the Page
time. Combining these two contributions will generate the
analog of the Page curve.

III. ETW-“BRANE” EMBEDDING

In the doubly-holographic approach, end of the
world (ETW)-“brane” embedding is an important issue
|

1
S:—
2K%l My,

related to the existence of islands. The issue is well
understood at the level of Einstein gravity at LO (i.e.,
Einstein-Hilbert(EH) action and the boundary Gibbons-
Hawking-York surface terms), but not much is known for
higher derivative gravity, e.g., D = 11 supergravity at
O(R*); in top-down models such as the one considered
by us, the ETW-“brane” would be a fluxed hyper-
surface W.° We will now address this issue in this section
as two subsections—in the first we will obtain the
ETW embedding at the level of EH + GHY action, and
in the second we will show that in the MQGP
limit (4), the aforementioned LO embedding receives
no corrections.

The N/ =1, D = 11 supergravity action without higher
derivative terms is given by:

1 1 1 1
V —GM |:R*11 Al —§G4 N *11G4 _EC NG A G:| +T/ leX\/EK-f—T/ dlox\/?(lC—9T).
r=ryy w

K11 K11

(14)

y, KL and T in (14) are the induced metric, trace of extrinsic curvature (K,,,) and tension of the ETW brane (WV:
oM, = {r = ryv} UW). Metric for the M-theory dual when 7 > T, on gauge theory side is given by:

2lIA 1
ds%l = e‘dT [4
h(rvel.Z)

(—g(r)a’t2 + (dx")? + (dx*)? + (dx3)2>

dr? 4glIA B plB_, pliB \ 2
+ 4/ h(r.0:2) (g(:)+ ds%A(r,91,2,¢1,271//)>] e (dx” +Aﬁg T > , (15)
B
where A" are the type IIA RR 1-forms obtained from o m -
the triple T/SYZ-dual of the type IIB F|5 5 fluxes in the Vine = I;Idx VI (17)
type IIB holographic dual of [34], and g(r) = 1 — :—% Near . .
they = 2nz, n = 0, 1, 2-coordinate patch, we can write the On comparing Egs. (15) and (16), we obtain:
metric (15) in the following form (explicit form of the
metric in terms of the parameters of the model can be read e—ﬁ
off from the appendix A of [9]): a(r, 91,2) = T
PP A% h(r, 91,2)
h(r,0
o(r.0,5) = 1L02) (18)
ds* = a(r)[-g(r)df* + o(r)dr* + dx,dx"] + g,,,dx"dx", g(r)

(16)

where x, (u = 1, 2, 3) represent spatial coordinates, r is the
radial coordinate and x™ (m =5, 6, 7, 8, 9, 10) represent
six angular coordinates (05, ¢ ,,w, x'°) in the conifold
geometry. The volume of the compact six-fold can be
obtained by the following equation:

One of us (GY) would like to thank C. F. Uhlemann for a brief
clarification on this point.

where ¢ is the type IIA dilaton profile and can be defined

4glIA .
as G)/‘\I/éxl , = € 3. For M-theory dual, the expressions for

a(r,01,),0(r,01,),H(r,012) = Vi, (r.015)a(r,0,,)* can
be easily read off from (15) and (18).
The ETW-“brane” W: AdSP x,, Mg with G, fluxes

threading a homologous sum of four-cycles S* x [0, 1]
and  §*xS8* in Mg=M;s(0,,$12.y) x S'(x'?) &
MEUIST (4 65 o, x10) (in the large-N MQGP
limit) implies: OM || = {r=ryy } UW. Assuming the ETW-
“brane” embedding,
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xt = x!(r), (19)
and substituting the same into (16) yields:

dﬁ-_a0){1ﬂﬂdﬂ4—<a@)+—(%§>2>dﬂ

3
+ z dxﬂdx"] + Gndx™dx". (20)
n=2

K(N,ggr) ~—

A. At O(p%)

Assuming T to be the tension of the ETW-*“brane,” and if
IC and KCj, 5, 71, t = 1, t, p, m are respectively the extrinsic
curvature scalar and tensor on the ETW-brane, then [67],

Kmn - ]Chmn = _9Thmnv (21)
where £,,, is the induced metric on the ETW-brane. Let
us look at the rr-component of (21) in the IR. One can
argue that in the IR, the embedding function x!(r) = x(r)

always appears as x'(r), x”(r) in (21), and writing a =

(b+ O(%))rh [47], the terms LO and NLO in N and

(3b* — 1)/r(log N —9log(r;))

Ko (N M, gy ris X (1) 6 (7)) ~ =k

K
K G /N JT=T3((30* = 1) log N + 91log(r,)) /N, (log N = 31og(r,))
1 \/gsNZ(Vh;N,Nf)+

2 gs>M?N ;log(ry)(log N — 121og(ry))E(ry; N, Ny)

hop (N, ML N, g 7 (7)) ~ =26

Krr

wherein  X(r;,; N,N;) = (6log NN — 3N log (9ar,*+

K
" ra(r—rp)? Kor V9N (r —ry)?
3) TaX (NZ(risN.Ny) gy ry®x"(r)Z ( ;N,Ny)
+KK + K )
1) VIsNZ(rps N, Ny) e X ( )Z( r;N,Ny)
nr=n) N VGN
_ (2) 39‘ M Nflog(rh)(logN— 1210 (rh)) (rh,N,Nf)
2K , (22)
'n\ 9Gs (r_rh)
|
r~L (24)
r'p

r,%))?3 the numerical pre-factors are respectively
collected in kg, K gli=1234). As b= % +e€, (e.g., in the
w =2nz,n=0, 1, 2-coordinate patches,
(|log r),|)?/>?N=9/10=% o, > 0 [4]), one can approximate
(21) by K,, ~—-9Th,,. Looking then at m=n=r
component of the same, one notes that unlike C,.(N
M’ Nfﬂ 9ss rh;x’(r);x”(r)), hrr(N’ M7 Nf" 9ss rh;x’(r))
does not have an x”(r) term. Therefore,

el ~ 13

X'(r) = 0. (23)

Further, we note that the LO-in-N terms in the IR
(r=O(1)r, of) K,,(N.M,Ny, gs; rp; X'(r); x"(r)) are pro-
portional to /,,(N,M, Ny, g r,; x'(r)) with a proportion-
ality constant -2 resulting in the ETW-brane tension

|

But, at NLO in N, the coefficients of the same are
proportional to each other but with a proportionality
constant that is —1. These two can be reconciled by
x(r) =0, ie.,

x!(r) = constant, (25)
and we take the constant to be zero.
B. No boundary terms generated at O(R*)

Eleven dimensional supergravity action including O(R*)
terms is given by:

1 1 1
S = /\/—GM[R*HI— G4/\*11G4—C/\G/\G] / d"xvhK
2Kll My, 2 6 Kll r=ryy

1 2 3 1
b (%) / A" x\/-GM <J0 — K
K11 My, 2

(2”)432213

where:

>+<2%)/c3/\x8+L
K11 11

d"x\/y(K-9T), (26)

106015-10



ENTANGLEMENT ENTROPY AND PAGE CURVE FROM THE ...

PHYS. REV. D 107, 106015 (2023)

JO =3x 28 <RHMNKRPMNQRHRS

1
PRQRSI( + 5 RHKMNRPQMNRHRSPRQRSK>

BCM|N,...M,N M) N, M,N,
Eg = 3,€A vt e qpom vy N Ry v RTS
27)810),
. _ 22l
n=—">H (27)

k7, being related to the eleven-dimensional Newtonian coupling constant, and G = dC with C being the M-theory three-
form potential with the four-form G being the associated four-form field strength. Givent the hierarchy |2G?R3| < |Eg| <
|[Jo| [4] in the MQGP limit (4), we will only work with Jy; y, K and T in (26) are defined earlier.

From [4],
8o ~ =5 MN[ MM RHNNK + gNN RHMMK + gKM RHMNN:| THMNK
5 { ( (DK1]59M,H + DM,(SQ\KI]H - Dﬁ@mm))lﬁﬂ/[lml{l} ) (28)
where, ( de 0 G\ G 0)
Ny = (”r’ Hys 77M;f':r,x) = 1 > .
G 2 G'r Z(dx (r))
. —R R.RSPRO —lR R.RSPRO . \/( )+ (G (7o
XHMNK = KpynolNH RSK ~ 5 [PQKNIH RSM>
MiN\Ky — p M\N, R RSPRO K (31)
XH = Kp olXH RS
1 Therefore,
_ ERPQM]NI RHRSPRQRSKI . (29)
nM‘xl (r)=constant — (0’ G)_/C\)/(t’ 0) . (32)

We thus see that a typical boundary term involving
covariant derivatives of the metric variations that one
would need to cancel out by an appropriate boundary term
(using Stokes theorem) is

/ D[Kl\éngfi)(HMl[
w

N /WD 1189, ™ g V= Cy. - (30)

NlKl]dZ\Nl]

What we will now show that the ETW embedding (25)
continues to hold even with the inclusion of O(I5)
corrections. From (32), one sees that one will be required
to consider y#M'N. Using that the only linearly indepen-
dent nonvanishing Riemann curvature tensor for the metric
(16) with one index along x! is R, and (29), one
obtains:

et %(gxlxl) (Rtxlx't)ZRtx'x't. (33)
7 1 10,1
The (dual to the) unit normal vector to W given by: We therefore see from (30) (™' =,***"=0):
"Using
Rxlxl[ (9a2+rh2) .
t )
Nfr,, (6a2+ r,2)(logN —3log(r,) \/12”+310gNNf—9Nflog(rh)
szltxlN(ga (9sJog NN +4m) —3g,N ;(9a* +r,?)log(ry,) + gsJog NN ;r;,?)

VN2 (6a* +r,%) (r—ry) (logN —3log(ry))?

We therefore see that up to LO in N and log N, |log r,|, and in the IR (near r = ry,)

B 1
N\/_N25/ ra(r—r;)(log N — 3|log r;,[)!%/?

1,1
ﬁ)(fx > |x‘:c0nstant
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M HM,[N\K
/WD[KI‘SQMIM gy
X' =constant

~ / D,sgy Wy o v/=hd'0y. (34)
w

Now, gj:,/’t = 0. We therefore see that restricted to x' =
constant, there is no surface term generated if one chooses
59?(‘{ = 0—we will assume to do so in the rest of the paper.

IV. PAGE CURVE WITHOUT HIGHER
DERIVATIVE TERMS

To obtain the page curve we are required to calculate
the entanglement entropy contribution from Hartman-
Maldacena-like surface and island surface and then we
have to see behavior of these entropies as function of time.

In this section we are going to perform this analysis in a
M-theory uplift of type IIB setup [34] without inclusion of
higher derivative terms in eleven dimensional supergravity
action, i.e., up to O(f°) term (14), which is holographic
dual of thermal QCD-like theories in four dimensions at
finite coupling. We are following [18] to obtain the Page
curve of an eternal black hole by computing areas of the
Hartman-Maldacena-like and Island surfaces. We are con-
sidering the doubly holographic setup as discussed in
Sec. II. We are collecting the radiation of a black hole
in a bath (which is effectively a thermal QCD-like theories
in 2 + 1D). In this setup we have two kinds of extremal
surfaces- Hartman-Maldacena-like surface and island sur-
face. In Sec. IVA we will calculate entanglement entropy
contribution from Hartman-Maldacena-like surface and in
Sec. IV B we will calculate entanglement entropy contri-
bution from island surface. We will obtain the Page curve of
an eternal neutral black hole in the absence of higher
derivative terms in Sec. IV C by combining the entangle-
ment entropies of Hartman-Maldacena-like and island
surfaces.

A. Entanglement entropy contribution
from Hartman-Maldacena-like surface

In this subsection we are going to compute the entan-
glement entropy of the Hartman-Maldacena-like surface by
computing area of the codimension two surface in the bulk
similar to [18].

To compute the time dependent entanglement entropy of
Hartman-Maldacena-like surface, we consider induced
metric on constant x! slice and can be obtained from
Eq. (16) as below:

ds*|_y, = a(r)[(=g(r)i(r)* 4+ o(r))dr?
+ (dx*)? + (dx*)?] + gpndx™dx".  (35)

Area density functional of Hartman-Maldacena-like
Surface can be obtained from Eq. (35) as:

() = 35 = [ dny/(=g(r)H () + ) H 0

/ aic. (36)
where H(r) = V?

2 a(r)® and V, = [ [dx*dx’. Due to
absence of explicit ¢ dependence in the Lagrangian, we
have constant of motion E (which is the energy of the
minimal surface):

E=-"""i1)-L, (37)

where (1) :d:i(tt). Therefore using Eq. (36) we can

simplify the above equation as,

g()H () |
VEIDH) + o HHD?)

On solving the above equation for i(¢), we get:

(1) = i\/(%; <1 +%)) (39)

If there is a surface at r = r* at which,

E= (38)

ip(t)|r:r* =0 (40)

Then Eq. (39) will be simplified as,
k k H k

E2
From the above equation we get:

E? = —g(r")H(r"). (42)

r* is the maximum value of 7 for a surface with energy E. In
the full geometry Hartman-Maldacena-like surface can be
viewed as a surface which starts at x' = x reaches up to r*
and then goes to its thermofield double partner.
Equation (36) can be rewritten as:

Asna(ty) / dr\/ f)’z(” Fo(NH(F). (43)
From Egs. (39) and (43), we get:

Amm(ty) = 2/ r)g(r JH(r . (44)

1+ y(rng (r>)
Let us define time using the following integral:
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™ dr
— 4

where 7, = #(r*) and t, is the boundary time at r = ry,.
From Egs. (39) and (45) we obtain the boundary time in
terms of energy as:

/V* dr

tb — —P .
r (r) (r)H(r)

()

(40)

Aym ~ (27)* /,~ dr(z® EM* /N log? (2)(log(64) — 1)2N;ig?/4 log? (r)(log(N)
n

X (N;gs(r*(21og(N) — 181log(r) +3) —

Assuming |log r;,| > log N [68] in (A4), one obtains:

A ~ O(1) x 105M? V/NN4g. "1

Therefore entanglement entropy of the Hartman-
Maldacena-like surface is
Anm(7p)
SHM(tb) = (11) (47)
Gy

1. Hartman-Maldacena-like surface
analytics/numerics

The area of the Hartman-Maldacena-like surface after
integrating out the angular coordinates and therefore
incorporating a (27)* arising from integration with respect
to ¢y, y,x'%, and is thus given as:

— 3log(r))*
r2(log(N) — 54rlog(r))) + 8xr2)?). (48)
(r, = ry)log* (r,)(log(N) = 3log(ry))*. (49)

Now, ¢, is given by the principal value of the following integral:

2r2(log(N)

por [ (DL T Clont)Shogtr 1)

— 54rlog(r))) + 87:;%)2)

(r* = r}) (N g, ((2r* = 6a%) log(N) + 3r(1084? log(r) + r—6rlog(r))) + 24za®)?

log(r + rh)

=r,

log(r), — )
~ li 4332 2 _
ellgl r \/_\/_ 4rh 4rh

B Ez\/g_s\/ﬁ(log(—e)

“/ZEZ\/g—S\F ),

tan™ ' ]
r=rp+e;

—log(r, —r,
g(ry ))
ry

The principal value requires: r, =r), +€;. Writing

a= (% + 6) r;, up to leading order in €, one obtains:

1;2 33/2\/"N/§?(r _'rh)

Zrh

1, = (51)

Writing €; = &;r;,, one sees that for (i) €, ~ 0.5, one will
. ,.,2 . .o ~ l
have to include terms up to O(€7) in 1, (i) € ~%,|

O((ry = r4)?). (50)

|
one will have to include terms up to O(&}) in 1, (iii) & ~ 1,
one will have to include terms up to O(&}) in t,, and
(iv) & ~ /5, one will have to include terms up to O(&) in
t,. We see that up to the Page time, €; < | and therefore
one is justified in retaining terms only linear in €; asin (51).
From Egs. (49) and (51), one obtains the entanglement
entropy corresponding to Hartman-Maldacena-like sur-
face as:

O(1) x 107*M>NSg; Y748 1og* () (log(N) — 3log(ry))*

S/jo _ AHM -
HM 4G](\}1)

1. 52
G](V )N2/5 b ( )

We therefore obtain a linear growth of the entanglement entropy corresponding to Hartman-Maldacena-like surface
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B. Entanglement entropy contribution from island
surface

In this subsection we compute the entanglement entropy
corresponding to the island surface by computing area of
the codimension two surface in the bulk by following [18].
Embedding for the island surface is x(r).

To compute the entanglement entropy of island surface
we consider constant ¢ slice. Therefore using Eq. (16), we
can write induced metric of the island surface in the
following form:

ds2|constt—time = a(r)[(a(r) + )'C(r)Z)er + (dx2)2

+ (dx*)*] + gupdx™dx", (53)
here we have represented x!(r) by x(r) and x(r) = dfl(rr).
Now we can calculate area density functional of the island
surface as given below:

A = ;‘2 - / dr\/ (H(r)o(r) + H(r)i(r)?) = / drL,

(54)
where,
H(r) = Via(r)*. (55)
Since x(r) is cyclic coordinate therefore conjugate momen-
tum corresponding to x(r), i.€., py(;) = ag(ﬁr) is constant of
motion:
px(r) = Ca (56)

where C is a constant. Using Eq. (54) we simplify the
Eq. (56) as
H(r)x(r)

o= (57)

On solving the above equation for x(r), we obtained:

oy o(r)
x(r) = £C H0) — () (58)

Let us assume that there is a turn around point at » = ry at
which island surface satisfies following condition:

<%) - 0. (59)

From Eqgs. (58) and (59), constant C can be obtained which
is given below:

fi(’T).

C==* o(rr)

(60)

Using the aforementioned value of C, Eq. (57) simplifies to
the following form:

dx(r) N H(rr)o(rr)
& jE\/ H(Fo(rr) - Hrpalr) OV

Now from Eqgs. (54) and (61) area density functional of the
island surface simplifies as,

A = 2/r/zrr \/H(r)a(r) +H(F§i((?§(_rggg>)5(’”)' (62

Therfore entanglement entropy contribution from the island
surface is:

S =25 (63)
1S 4G§\} 1

From the above equation it is clear that entanglement
entropy contribution from island surface is independent of
time. Therefore entropy contribution to the Hawking-
radiation from island surface will be constant all the time.

1. Island surface analytics

The entanglement entropy upon evaluation of (62)
yields:

2v/22MNY1°rN2gi'* log(r) (log(N) — 3log(r))?

rr
Ags = -
rh ro— Vh

X (N g, (r*(21og(N) — 18log(r) + 3) — 2ri(log(N) — 54rlog(r))) + 87rr%)>, (64)

which hence obtains:
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Sis ~
aGy"

1131
MN3/10N}9§9/8 log(r,,)(log(N) = 31og(r,)) (216"h7’T log(ry ), F (_4’2?4;4>
It

-y (log(N) <2log ( 1 —%—i— 1) —log<?i4>> + /7 — 1(181og(r,) — 2log(N) = 3) + 73+/zry, log(rh)>>1 ;

T T

where 77 = :—; > 1; ry is estimated in (A5)—(A7) (and the
text containing the same).

C. Page curve at O(8°) from areas of Hartman-
Maldacena-like and island surfaces

In this subsection we will obtain the Page curve of an
eternal neutral black hole in the absence of higher
derivative terms in the eleven dimensional supergravity
action, explicitly by using the results of previous two
subsections.

From (52), for the aforementioned values of g,, M, Nf,

N, ry, SHM :%, and from Eq. (65) we see that
entanglement entropy contribution of the island surface
is independent of time, and for the aforementioned values,
is given by 421. This contribution dominates after the Page
time. As we saw in Sec. IVA that entanglement entropy
of the Hartman-Maldacena-like surface has linear time
dependence therefore when we combine both the contri-
butions then we will find that initially entanglement
entropy of the Hawking radiation will increase with

See

800|
600 - sHp
I sk
400}
200}
tpage
Il Il Il tb
500000 1.0x108 15x108 2.0x108

FIG. 3. Page curve up to O(4°) of an eternal black hole from

doubly holographic setup in M-theory dual. Blue line in the graph
corresponds to the entanglement entropy contribution from the
Hartman-Maldacena-like surface’s area, and orange line corre-
sponds to the entanglement entropy contribution from the island
surface’s area; E in (52) is set to be 1.1 to get the same order of
magnitude of 7p,. as in Fig. 8.

(65)

|
boundary time then after the Page time it is the island
surface contribution that dominates therefore entanglement
entropy will stop increasing and reach a constant value.
Therefore we will obtain the Page curve of an eternal black
hole in the absence of higher derivative terms from a doubly
holographic setup where gravity dual is M-theory. The
same is plotted in Fig. 3. The Page time is given by:
Ipage = 8.5 X 10°E?. To obtain the same Ipage after inclu-
sion of O(f) “anomaly terms” as will be obtained in V D,
E = 1.1. With this fp,g, one sees that & ~ 1075 < 1, as
stated beneath (51). We have also plotted the Page curve in
Sec. Vin Fig. 7 where we have done our calculations in the
presence of higher derivative terms.

V. PAGE CURVE WITH HIGHER DERIVATIVE
TERMS

In this section we are going to obtain the Page curve of a
neutral black hole in the presence of higher derivative terms
which are quartic in Riemann curvature tensor. We have
divided this section into four subsections. In Sec. VA, we
will compute the entanglement entropy of the HM-like
surface, in Sec. V B, we will discuss the “Swiss-cheese”
structure of the same, in Sec. V C, we will compute the
entanglement entropy of the island surface and then finally
in Sec. VD, we will obtain the Page curve of an eternal
black hole using the results obtained in previous
subsections.

We will perform the same analysis as we did in previous
section. In the presence of higher derivative terms we will
compute entanglement entropy of Hartman-Maldacena-like
surface and island surface using [10].

Holographic entanglement entropy in general higher
derivative gravity theories can be calculated using the
following formulain AdS,,,/CFT,,  correspondence [10]:

oL
_ d,, /=
SEE—/dy\/ QLR__

2222
+ Z ( 62£ ) 8KzinZml
a aRZiZjaRZle a (qa + 1)

| )

106015-15



GOPAL YADAYV and AALOK MISRA

PHYS. REV. D 107, 106015 (2023)

where ¢ is the determinant of the induced metric on codi-
mension two surface, (a, b) are along the normal directions,
(i, ], k., 1) are along tangential directions, K ;; = %GZGU and
its trace is defined as K, = K ;;G". First term in the above
equation is Wald entanglement entropy and to calculate the
second term one is required to go through the following steps:
(i) Label each term as « after differentiating twice the
Lagrangian with respect to Riemann tensor.
(ii) Do the following transformations of the specific
components of Riemann tensors in each term.

_ ml

Rapi; = Tapij + 9" (KajmKpit = KaimKpj1)
_ ml

Raivj = Taivj + 9" KajmKpit — Qubij

Rijmi = Tijmi + 9" (KitK pjm — K K pi) (67)
Where Qabij = aaKb,-j.

In the ath term, let number of Q,,;; and Qy;;; be y
and number of K ;j, Rypci» and R;j; be 6. Then g,
for the ath term is defined as:

(iii)

5
Ga=7+7 (68)

(iv) By using Eq. (67) one can then obtain values of r;;,
Taibj> Tijm: and then substitute back in Eq. (66). By
doing so we will obtain the entanglement entropy
expression in terms of original Riemann tensors, i.e.,
in terms of R;j, Rgipj etc.

|

Let us outline that how we can calculate the holographic
entanglement entropy (66) in general higher derivative gravity
theories:

(1) If holographic dual is (d + 1) dimensional gravita-
tional background then obtain the induced metric for
the codimension two surface, i.e., in (d — 1) dimen-
sions in terms of the embedding function.

(i1) Calculate (66) for the aforementioned induced met-
ric. By doing so we will obtain the holographic
entanglement entropy in terms of embedding func-
tion and its derivatives.

Work out the equation of motion of the embedding
function and find its solution.

Substituting the solution obtained in previous step
into the action will give the holographic entangle-
ment entropy in higher derivative gravity theories.
Contribution from J term:

We obtain the four terms from Wald entanglement
aly
aRZfZE

which are listed in appendix D 1 for Hartman-Maldacena-
like surface and in D 2 for the island surface.

oy _ 4x2 < 0Jy )
aRzZzZ aRtxtx

To calculate the second term in Eq. (66), we are required
to calculate the four kinds of differentiations for Hartman-
Maldacena-like and island surfaces as given below:

(iii)
(iv)

for both the extremal surfaces.

entropy formula, i.e.,

(69)

*Jy , 0%

( 0*J, ) KoK < 0*J, n
%o N\g ko .
OR i ;0R=pz1) " \OR 2 jOR st ORyijOR

1 i i
X (_2 Ktintml + Kxinxml - _Ktinxml + _Kxintml> )
X X X

Coefficient appearing in the numerator and denominators
of the above equation is x = xp for Hartman-Maldacena-
like surface and x = x(r) for the island surface. We
have calculated and listed all four kinds of differentiations
appearing in Eq. (70) for Hartman-Maldacena-like
surface in appendix D1 and for the island surface in
appendix D 2.

A. Entanglement entropy contribution from
Hartman-Maldacena-like surface

In this subsection we will be calculating the entangle-
ment entropy corresponding to the Hartman-Maldacena-
like surface using Dong’s formula (66).

In M-theory dual, Hartman-Maldacena-like surface is a
codimension two surface which is located at x! = xg.

+ 4x?

J, )
X
aRtitjaRxmxl aRtixjaRxmtl

(70)

Therefore using Eq. (66) we can write expression for the
entanglement entropy for Hartman-Maldacena-like surface
in the following form:

Spp = /drdxzdx3d01d92dxdydzdx'0

oL *L 8K ;i Kz
VT |:0RZZZZ * Za: <0R 'aRZmzl)a (% + 1) ’

zizj
(71)

where g is the determinant of the induced metric (35) on the
codimension two surface.

Contribution from O(f°) action: For the metric (35) first
term in Eq. (71) simplifies to the following form for the
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O(p°) term in action (26):

/ de——g(a;iz) - / VLM ~ / dr x%gxl(r)\/a(r) <6(r) —< —’;—E)z/(ry) , (72)

where xp is constant and a(r), o(r), A(r) are given in (B1).
Contribution from O(f) term: At O(p), one is required to calculate two type of terms, first one is Wald entanglement

entropy term and the second one is the anomaly term.

. aly .
Wald entanglement entropy term, i.e., ( aRZ;).

For a Hartman-Maldacena-like surface, we obtain:

% _ —4x% % (73)
aRzZzZ aRtxtx
Out of four terms that we have listed for a?e{i in appendix D 1, most dominant terms that contribute to the Lagrangian in the

large N limit are given below [which have been calculated for the metric (35)].

[ i = [avegy= [ar —4x%<zl<r>Hz(r))\/a(r)(a(r)—( D)) | o

f4444

where 4, ,(r) are given in (B2).
Anomaly term: Using Eq. (70) and appendix D 1, we find that following are the possible most dominant terms in the
large-N limit that contribute the Lagrangian from second term in Eq. (71):

9*J PJy KK
d EHM — /d /_ 701( K- _ /d — 0 tij B tm 7
/ V9 A V9 g aRzizjaRZmZI yamt V9 g aRzizjaRszl x%
1
/dvgﬁjM = /drg(Z(r)Cl + Xk W(r)Ly = 2x3U(r) L3 + 4x5(U(r) + 2V(r))Ly), (75)
where £, 5 are given in (B3), Z(r), W(r), U(r), V(r) are N3O (r = ry)32 py (ry)1g (1)
given in (B7), and use has been made of (B4). 5
From Egs. (72), (74), (75), and (B3), total holographic + §N3/10(r — )2 pi(r)ty(r) = 0. (77)

entanglement entropy corresponding to Hartman-Maldacena-

like surface can be written as: The solution to (77) will be given by:

SloulHM _ / drCh = [ dr(CM+ L3+ L5M)  (76) to(r) = 2¢y (78)
o\r) =2 3(r—ry)3?

Using (B8)—(B11), and writing #(r) = ty(r) + pt,(r), the

EOM up to O(f°) is: Substituting (78) into (B11), one obtains:

B Zr?/z\/Ka(llr/(pﬁ(rh) + ph(rn)) = 3(r = )T (Pa(ra) + Ph(r)) = 1ledeapy (r4))
n(r)=cs+ 3 gnS/3 773 32 5/6° (79)
33¢* MNP g5 (r = 1) Y2\ /Kax; log (ry) (log(N) — 9log(ry,)) (log(N) — 3log(r,))*/
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Retaining the term up to leading order in N we can write
embedding function #(r) as

2C| 2C2
e G e

where it is understood that #(r = r;,) = 1,, is evaluated as
([l + 5t5]). 1y, = (’)( ), in the large-N limit. Since (in
Rps /b5 = 1-units) implying

_ . 6 3/2 /4 .
a=3/2,ie, [, ~r)/ orl,~r/"ie,

V)
I, ~ (g‘au(ih)) . (81)
! RDS/D_S

To determine the turning point i.e., r, of the Hartman-
Maldacena-like surface we need to impose the following
condition:

t(r)=c,—

ﬁ~ Cy, 1e., c¢;~ric

(I”* - rh)S/Z ﬁCZ(r* - rh)5/2

<ﬁ> r=r, - cy - ;2 =0, (82)

9log(r,))(log(N)

Since 55 ~ ¢, therefore (82) can be approximated by the
Ty

following equation for the purpose of estimating r,:

(r. = r)¥2 = s, = 0, (83)
whose solution is

o=+ R (84

Now we can calculate the entanglement entropy of the
Hawking radiation for the Hartman-Maldacena-like surface

as follow:
ra<r>2)) ,

SN — / dr (xl(r)\/a(r) (a(r) - (1 —;—z)
(85)

using Eqgs. (B1) and (78) above equation can be rewritten as

s [ <\/<r = r1)rlog(r) log(N) -
EE . E \/>

—310g(rh))5/6>

( 25/5MN'Y/1 log(2) (log(64) ~ 1) f/3g£°/3ﬁmf)
X —

81 32/371.11/12
2(r, = r4)**log(r,,) (log(N) —

~

91og(ry))(log(N) —

3log(r;))*/°

3 7/2

. (_25/6MN'3/'0log(2)(log(64) DN g e, \/—)

8132/3 11/12

2B (0)*) Y 1og(ry) (log(N) = 9log(ry)) (log (N) — 3log(r))*/°

3, 7/2

256 MN3/1010g(2) (log(64) —
X <_ 8132/3 11/12

53 10/3
NY gs/ﬁmf)

225/6 39,193 /i K /K, MN'?/ 10 1og (2) (log(64) — 1)N*log(r,) (log(N) — 9log(r;)) (log(N) — 3log(r,))¥/6

243 32/37[11/12,,;/2

If t, = t(r = r;, + €) where € = i, n, = O(1) then

N

tbo =C)—

we obtain the r, from the above equation as below:

2C1N3n”’/2
32

(86)

(87)
h
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rh = _3”/!1 2/3
(co=tpg )N 2
€1

It will be argued when discussing the computation of the entanglement entropy corresponding to the island surface, that
turns out to be related to black hole horizon radius [see the discussion around (123)]. If | log(r;,)| > log(N) then Eq. (86),

PHYS. REV. D 107, 106015 (2023)

using (123), can be approximated by

1 5/3
i MNB/ONG (| log(ry)[) 17/

A° HM
Sgg ~e

o (89)
h

. 1 \4/3 23 (0 1\ 43— 4/3 41,0\ oo
Since &~ (E—T—ﬂ) P N2, — <2> / (l—ﬂ> PN=2m, . For tpy K Cop 5~ (2) / <1 —%)N 2, Therefore,
h h <

€y €1 &)

1
N3
p

3k
SEM e MN1Y 10N (1 -

1
3k, N3 4t
~ e 5 MN'Y/I0NY (1 -
3C2

41,

) o) )
) @log

3C2

Cl

(%) -, 10g(N)>%, (90)

when ¢, ¢; < 0. The Fig. 4 for N = 1033, M = N, =3, g, = 0.1, ¢; = —10°, ¢, = =108, n,, = 1 obtained from (91),
shows the linearization assumed in obtaining the last line of (90), can be approximately justified. In it,

t 2 tp, + 108 0
Spemy ~51.024 (=2 11 ) (Z10g( ") —76)",
EEHMI (7.5 <107 ) <3 Og( 10°

t 4/3
Sprrn ~ 51.024( <2 41

108

Iy
S ~0.0354( ——2—+1).
FEHM? <7.5><107+ )

From Eq. (90) we see that entanglement entropy of the
Hawking radiation coming from the Hartman-Maldacena-
like surface has linear time dependence. Therefore it is
increasing with time and diverges at late times, i.e., when
t by — 00.

SEEHM
0.044 —  SeeHm
[ Seerm2
0.04
04z — SEEHM3
0.040f
0.038}
0036
o e — T P LY - [DO
200000 400000 600000 800000 1% 105

FIG. 4. Hartman-Maldacena-like surface entanglement entropy
as a function of ;.

ty, + 108 0
og <01T -7.6 s

o1

Qi ’ 4" HM
B. “Swiss-cheese” structure of Sy
in a large-N-scenario

In this subsection we discuss the “Swiss-cheese” struc-
ture of entanglement entropy of the Hawking radiation
corresponding to the Hartman-Maldacena-like surface
at O(p°). ,

The expression for SéE’HM in (90) for the values of
constants of integration c;, used beneath the same,
suggests the following hierarchy:

Kt'z‘cl‘lﬂ
’

2| ~ e ley| ~N. (92)

Further, assuming ¢;, < 0, (90) can be rewritten as:

1
PHM Y s 1005/3 4tp,
Sgg ~e T MNPIEN/T 1+ 3]

2 +1 g
X <§log <|c2||7|b°> -n, log(N)> . (93)
i
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We thus see,
°.HM 3 1
OSEE i s;3| Ay, (2 o] + 1 5
~ MNBMONZ I — 2 ( Zlog( ———= | —n, log(N
dlcy c ! 3leaf* \3 o e ", 108(N)
17 2 4tb 2 |C2| + tb %
— 1 ) slog| ————2 ) —n,, log(N . 94
e (1 +a7e) (Gos (™) = mutos .
For N =10, M =N; =3, g, = 0.1, ¢; = —10%, ¢, = —108, n, = 1 as in the previous subsection, as ;, < fp,ee ~ 10°,
aSﬂoyHM 3K’pN% 5/3
aTE e MN'/ON[— < 109710 x O(1) + O(1) x O(1) x 1078 & O(1) x 107
()
3 N%
K1,
~ e MN/ONYO(1) x 1078 > 0. (95)
Similarly, ) PEM ™ 13/10 n/5/3 THM )
defining Sgg = e 2 MN/"N,/"Sgg’, one can think
8 SéoE’HM 3KIPN% of (97) as an open Swiss-cheese surface (in the same

—e 5 MN13/10N,5/ ’ Kl + 4tb°>i] <0.

~
dlc| 3Jeal ) ey

(96)

We also note that in the |c,| > |c|-limit and assuming
1] ~N,

1
3Klp N3

SiE™ ~ e MN3/ONY (log [, ) 11/0
x (12log|c,| — (34 + 51n,,) log|cy|),  (97)

which mimics a Swiss-cheese volume written out in terms
of a single “large divisor” volume log|c,| and a single
“small divisor” volume log|c;| (with 12 and 34 + 51n,,
encoding information about some version of “classical
intersection numbers” of these “divisors”). Alternatively,
ALY
- "8 x 107
‘ L

""" 500

leql

FIG. 5. Plot of SHM as a bifunction of (|cy|.|cy|) at
[= lpyge = 10°.

sense as (96) and (97), i.e., SHM decreases as |c, | increases
and SHM increases as |c,| increases) in Rso(SHM)x
R2 (|cy], |ca|)—see Fig. 5.

Therefore, (92) along with (95), (96) and (97), suggests

. . 0 .
very curiously a “Swiss-cheese” structure of SgE’HM in a
large N scenario (reminiscent of the “large volume sce-
nario” in moduli stabilizations in string theory [69,70]).

C. Entanglement entropy contribution
from island surface

In this subsection we are calculating the entanglement
entropy corresponding to the island surface using Dong’s
formula (66).

Similar to Hartman-Maldacena-like surface, island
surface is also a codimension two surface and located at
constant time slice. Therefore we can write the
expression for the holographic entanglement entropy sim-
ilar to Hartman-Maldacena-like surface in the following
form:

Sgg = / drdx*dx*df,df,dxdydzdx"

oL L 8K ;i Kz
et ) 1)

222% zizj z

(98)

where all the quantities in the above equation are same
as Eq. (71).

Contribution from O(p°) term: Holographic entangle-
ment entropy contribution to the Lagrangian (26) from the
induced metric (53) for the island surface at O($°) turns out
to be
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OR
/dvgw/—g<0R ) = /dvgﬁ%)s :/dr(4/15(r)x(r)2\/a(r)(a(r)+x'(r)2)), (99)
2222
where,
N17/10N4/% 32 r21log(N) log(r)+/log(N) — 3log(r)
)“5(") = Kj4 43
riay a92
MN?"210g(2)(log(64) — 1)N4/3 13/4r%1<,1 log(N) log(r)+/log(N) — 31log(r) 100
~ p » ( )
I
where k;_is the numerical factor. Angular integrations in aly IS
Egs. (106), (C1), and (C2) have been performed using (A2) dVyy/= ()RZZZz = [ Dolyy
and (A3).
Contribution from O(f) term: At O(f) we are required = / dr (4x(r)2(l3(r) + 4(r))
to calculate the two terms to obtain the holographic
entanglement entropy (98). First term is coming from « \/ a(r)(o(r) + x’(r)z)) (102)

a]o . . .
( aRm> and is given below:

oJ oJ
0 — = —dx(r)? o
aRZZZZ aRtxtx

(101)

from appendix D2 we find that following terms are the
most dominant terms in the large-N limit:
|

where A3 4 are given in (C1). We obtain the second term in
Eq. (98) using (70) and appendix D 2. For the island
surface, most dominant terms in the large-N limit that
contribute to the Lagrangian are given below:

0*J *Jy
dVe L' :/dV /- 70K i K —/dV v=gl—"2 KK ,
/ A ’ aRZleaRZle pamt ’ aRZleaRZmZZ Xt

_ / dr(Z,(NLy + x(r Wy (F) Ly — 26(PRUL (AL + 452U (F) £ 2Vy (M) Ly).  (103)
where,
L=1 _ Va(r)(a(r) + X' () (@ (r)(a(r) + X' (r)?) + a(r) (' (r) +2¢' (r)x"(r))* |
o ¥ (1) (o(r) + X' (r)? ’
- \/a(r)(ﬁfr) +(r)?) (104)

x(r)? ’

and various r dependent functions appearing in Eq. (103) are given in (C2). From Egs. (99), (102), and (103), we find that
total holographic entanglement entropy from O(f°) and O(f) terms for the action (26) corresponding to island surface is
given by:

sget = [ drc, = [ ar(ep v+ 2. (105)

: . SL. S
Using appendix C, x(r) EOM T(j‘g" -4 ( de("“}‘) + ;: ( 5x,7(°‘“)‘> = 0, turns out to be,

_ NP ()4 = ) (0 £ 5() R = 1) (1) 4+
N

[ANTOF (1)) (A, = P (72 + 2(7) (67 = 1) () + (7))

(r)) = 2Nf1(r1))

+

b
) ()"
(= nX (P BF () + 3F5(r) + 4Nx(1) Y1 ()| = 0.

ANT/10(y
(106)
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Writing x(r) = xo(r) + fx;(r), and making an ansatz:

as Fy(ry)
Xo(r) =4/ —+ 107
olr) a, Nfi(ra) (107)
. w0y /i .
Defining X(r) = —— 5 one notes that X (r) must satisfy:
2 -2 2 2 -1) = 2
X()2(r = r)X"(F) + X' (7)) + 4(r = rp)X! (2 — 1 = D192 =2) Fa@rlaray = 1) Zaiaar) _ - (1g)
2(ayr + a3)
If aja, = 2, then the left-hand side (Ihs) of (108) becomes proportional to %, which in the deep IR, i.e., r ~ r, becomes
ay
negligible if % > 1. Therefore,
Jas Fy(rn)
Xo(r)=/—+r . 109
o(r) ay  \[Nfi(ry) (169)
One therefore sees,
N3/10 " " !/
01(1) = 5 (AN (7) = Fa) (30(7) 2 = ri) (7)) + 300" (1) 30 ) (1)

+ 20 ( (M) (A(r = 1)) (r) + 31 (1) + 40 = r)xa (D' ()2
_ 2a,N*f1(ry)*x1(r) = Fi(ry)* (01 (r) (Sagr = 4agry, + az) + 2(r = ry) (agr + az)x," (r) 4 axx(r))

20N, (1) 7= -
and,
TG e OV P00 80 = s+ 3060 = r)0) 4 550))
+ (r = r)xp(N)* 3FY (r) +3F5(r) + 4N2x0(r)Y (1))
e+ a3)\/3—;ﬁ(a2(5rh —4r) + a3)Fl(ry) . 4N2\/Z—;?Y1(rh) il 3F () + 3F5(ry) o
) r— P [T T =7 |
Therefore equation of motion corresponding to embedding x;(r) for the island surface is given by:
2a;, N1 () %1 (r) = Fi(rp)* (0t (r) (Sagr = 4agry + az) +2(r = ry)(apr + a3)x,"(r) + apx,(r))
2a;,N"1Of\ (ry)\/T=1)
Wayr + a3)y [+ rlax(Sry —4r) T a)Fi(n)  AN2 [5 rYi(r)y e + 3 (ry) + 375 (r)
+ YT o + W =5 =0, (112)
which near r = r;, simplifies to:
4\/3—;4‘—”;,(612”, +a3)2Fi(r) N (1) £ (r) = F'(r"y“;i,;’},t?%)f)?((::;aﬂ'm) 0 (13)

_|_
Fi(r —
a3(r= )2 Ve
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The solution to (113) is given by, To determine the turning point via r7: 1/x'(r;) = 0, one

therefore obtains:
8,/ + ralazry + as)Fl(r;) log (r = r;)
xi(r) = . (114)

a2N3/10F1(rh)(F1(’h) >3/2

NA ) 328N (ayry + as), [+ ralazr) + as) Fl (ry)
. . INE
implying, a%(rT —rp)Fy(ry) <%>
x( l(rh 2 Z—;—F rr
NAi(r) ~~rrr = o)
1In
3 Nfi(ry)
1 (rh+a )ZF'Z(}"h)IOg (I"—I"h) h
N5 115
o Fi(n) ()" "
fi(ra) whose solution is given by
12832
rr=ry,+ AF (1) <02N17/5(azrh +a3) 1 () FL(r)? + NV £ (r ) Y ()2

+ NS (r) FL(r)? 4 3a3asN B2 1 (7)) FL (r)? + 322NV 57, f (rh)4F{f(rh)2)
289(3)*3x" 3 B2 MANT/5(107 — 54010g(2))g!k5k3, 1og? (N)(3arddry + 3a3asry 4 2a3r; + a3)

50a3 log? (2)(log(64) — 1)*N7* 132 (~log(r;,))*
=r,+5€IR, (117)

th+

in R /D5 = 1-units. One therefore obtains the O(3°) on-shell entanglement entropy:

Sﬂ" IS

/’fi+57%5/mdr(l%10gNMN17/10Nf4/3rh2x( 2log(r) \/logN 3log(r)+\/a(r) (r)2)>
Tn

13
ray 0:62

/thrfir 222/3MN3/1010g(2)(log(64)—1) N3 10/3 log(N)(azrh+‘13)F1(rh)log(rh>\/KaKa(10g<N>_310g(rh)>2/3
i 813571112, /r=rur)* f1(r))
(ﬁMN””N?“gZ”mWloguv)(azrh+a3>1og<rh>|1og<rh>|2/3>

ay /KoKy
PMPNNYg/ log? (N) (ayry + a3) | log ()|
~ PRIENTE \/3a2a3rh+3a2a3rh +2a3r, +a3. (118)

Now, this appears to present a contradiction—S/éoéls ~ . The O(p)-corrections to the MQGP background of [36] as

The resolution, using (81), is that f « r%; . worked out in [4] and as quoted in appendix A, were
The Hawking BH entropy is given by: worked out in the y = 2nz, n = 0, 1, 2-patches, by setting

the O(f3)-corrections to the M-theory three-form potential,

7/4 3.3 4 _ BH _ »BH
g MNyr log(N) log® (ry)(2 - B(Czr” — 2C57)) to zero. This required C2!' = 2C5"}. One therefore sees that

N3/4

SBH

)

(119)

the BH entropy receives no hlgher—denvatlve corrections
at O(R*).

From the above equation we see that O(4°) contribution to From (118) and (119), as well as /= ky(g;,N)

3
the black hole thermal entropy scale as S{;UH ~ 3 log* (ry,). (R ’h_)za’ 3 from the discussion beneath (118), one sees,
D5/D5
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S/é(;g’ls K3(9s. N)g /12 1og NMN"V*(ayr), + a3)\/3ax2ayr,® + 2a,°ry> + 3aras’ry, + a3’

If ayr, > as then,

(120)
SBH a25/2Nf5/3rh11|10g(’h)|8/3
|
In particular then,
0 1
Sﬂ IS K N 49/12 1o NMN11/4 3k, N3
EE /J(Qs 5/3)gs17/2 g 7 015 M2e—5 Nj/3g§5/6 logz (N)|10g(l"h)|4/3
Sgn NP2Pr, 2 Tog(ry) [P SEg ~ T2 - (124)
h

(121)

s as n
n—1 arry
where, e.g., A, = %,Az = % etc. Now, one expects:

SﬁOJS GP\n
EE_ =2+ a, (rD—§2> , (122)
n=1

SBH h

for a D-dimensional black-hole (the central charge for
conformal backgrounds is absorbed into the a,’s) [71]; a3
in (121) is the nonconformal analog of the conformal
charge “c” figuring in [71]. It is rather nontrivial to obtain a
somewhat similar expression for the nonconformal back-
grounds considered in this paper in (121). To ensure that
(121)—(122), one needs to cure the large-N and IR (via
small 7,) enhancements in the (121). Utilizing the estimate
in [68] of the r = ro~ Ty Neff(l"() = 0) (Neff being the
effective number of color D3-branes in [34]—the type IIB
dual of thermal QCD-like theories), and in particular the
exponential N-suppression therein,” we therefore propose

kp(ges N) ~ e

3/2

4 _ 1/3 r

B~ <g§a’2e 1N R—h> .
D5/D5

3.
, 1.e.,

(123)

Setting N =10>3,M =N; =3,9,=0.1, one sees
[without worrying about numerical multiplicative constants
in (124) and (119)] from (119), 11.4r;|log ry|* = Sgy.
This is solved to yield,

1
w (0.45‘,;H)
r, =e€ .

From Fig. 6 and using (125), itis evident that (121) ~ (122)
implies there will be a lower bound on r;, the nonextre-
mality parameter in the M-theory dual of large-N ther-
mal QCD.

From Eq. (124) we find that entanglement entropy
contribution from the island surface reaches a constant
value. Now considering both the contribution together, i.e.,
Hartman-Maldacena-like surface and island surface, we
obtain the Page curve as follows. Initially entanglement
entropy of the Hawking radiation is increasing linearly with
time and will diverge at late times. But due to presence of
the island surface entanglement entropy contribution from
this surface dominates after the Page time and stops the
linear time growth of the entanglement entropy of the
Hawking radiation and reaches a constant value. In this way
we obtain the Page curve of an eternal black hole from
M-theory dual where bath is a nonconformal theory.

(125)

¥To find an appropriate r,/r;, it would be easier to work with the type IIB side instead of its type ITA mirror as the mirror a la SYZ
keeps the radial coordinate unchanged. To proceed then, let us define an effective number of three-brane charge as:

Narlr) = [ P+ [ B A,
5 5

where BYB, FIIB and FI® are given in [34]. The five-dimensional internal space Ms, with coordinates (6;, ¢;, w), is basically the base of

the resolved warped-deformed conifold. As shown in [68],

M?1 ! 1 21
Nesr (ro) :N—"_M{lgﬂr(g‘va)zlogNZ(18a2(—1)k10gr—|—rz)( 08a Ogr+r)

1074

k=0

2k +1

2
+5(3a*(g; — 1) + r*) (39N log r + 27)(9g,N s log r + 4x) [9a2gst log (8—3) + 47rr2} },
. . . ,

_ g:M? g;M? >
= N |1+ 6xlogr(3g,Nlogr+ 2x)(9g,N logr + 4x) N +0 (9sNy)*logN|.

N

Note that the assumption of small r, is crucial here as the same implies the dominance of g;N,|log ry| over other constant pieces.

1
Solving for ry: Neg(rg) = 0 yields ro ~ rj, ~ e < MNr9)N?
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A 1s
FIG. 6. “F—versus-Sgy for N = 10, M = Ny = 3,9, = 0.1,
K'[p =0.47.

D. Page curve and an exponential(-in-V) hierarchy
of entanglement entropies up to O(R*) before/after
the Page time

In this subsection we will obtain the Page curve of an
eternal neutral black hole appearing on the gravity dual of

thermal QCD-like theories at intermediate coupling, and

. . —k, N3 .
show that a hierarchy in powers of e N in the

entanglement entropies arising from the EH + GHY terms
and the O(R*) corrections to the same, before and after the
Page time, naturally arises. For this purpose we will use the
results of Secs. VA and V C.

Since we are equipped with all the results therefore
we are going to obtain the Page curve in this subsection.
For this purpose we are plotting the entanglement entropy
contribution from the Hartman-Maldacena-like surface
obtained in Sec. VA and entanglement entropy of the
Hawking radiation coming from the island surface obtained
in Sec. VC.

Entanglement entropy of the Hawking radiation corre-
sponding to the Hartman-Maldacena-like surface is given
in Eq. (90) and for the island surface it is given in Eq. (124).
For the numerical values of the parameters of the model we
obtain the following plot.

0 HM . .

We have plotted §%,™ and 15, in Fig. 7 for N = 10%3,
M= Nf = 3,gs = O'I’Kll, = 0.47,6'2 = —108,C1 = —103

From Fig. 7 it is clear that initially entanglement entropy
of the Hawking radiation is increasing linearly with time.
After the Page time entanglement entropy of the Hawking
radiation coming from the island surface dominates there-
fore entanglement entropy stops increasing and we obtain
the Page curve. The values of Sgg in Fig. 3 and Fig. 7
differ because, e.g., the latter did not include the factor
of (2z)* arising from integrations with respect to

1
b2, x'0, ete.

SEE
0.0362
HM
SEE
0.0360 |
IS
SgEe
0.0358 |
0.0356 |
tPage
Il Il Il tb
500000 1.0x108 1.5x108 2.0x10°

FIG. 7. Page curve of an eternal black hole from doubly
holographic setup in M-theory dual. Blue line in the graph
corresponds to the entanglement entropy contribution from the
Hartman-Maldacena-like surface and orange line corresponds to
the entanglement entropy contribution from the island surface.

tPage
5x107
4x107
3x107
2x107

1x107

SBH

10

FIG. 8. Page time for N =103 M =N;=3,g,=0.1,
Cy = —108,C| = —103

The Page time is obtained by equality of the entangle-
ment entropies for the Hartman-Maldacena-like surface and
island surface (at the Page time). This yields:

L3 (| 937/% I MNT Olog? (N)[log(r) |+
age — ;€ - -
Pag 4 2 3 Nfrhll/z(—:?)nthlog(N)+210g(ﬁ))17/6

(126)

The Page time, implicitly assumes choosing the time
evolution of SHM which is (approximately) linear in time
up to the Page time beyond which, the constant contribu-
tion to the entanglement entropy from the island, takes
over. The behavior of the Page time as a function of the
Black-hole entropy [using (125)] is given in Fig. 8. This
also shows that positivity of the Page time requires an upper
bound on the black-hole entropy and therefore the IR cutoff
rj,. Given that r,, the nonextremality parameter, is essen-
tially a constant of integration [72] and requiring the same
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(in units of R /E) to be less than unity, can be effected, e.g., by noting from (125) that r), is an increasing function of Sgy,

and therefore: r,(Sgy) — Wﬁs)&{»m
1 (Spu)

imply r), — 7, (SpH~8)

Therefore, for the values of N, M, G5+ €11 €2, My, Ky chosen, this would

It appears we have disregarded SgE’HM altogether. Let us now discuss why the same is justified and how a exponential-

large-N-suppression hierarchy is generated in the process.

One can show that:

33398 MAN' log? () (log(N) — 1210g(r,)) (log (N) — 9log(r;,))

sP ~
EE,HM 3
r;(logN —3logry)

A
6

X (—216 (16 + \/E) g5*ky, M*N ;2 log(N)log?(r)) + 9(16 + \/E) g5k, M*N ;2 log® (N) log? (ry,)

+1296<16 v ﬁ) 0,4, MAN 2 log* () + 4096 (4 + fz) 7r41<,12) ,

which in the |log r,| > log N-limit, approximates to:

P¥3g, TS MIN/ 0N 333 1og (2) (~ log ()

(127)

I'p

Using (123), (128) yields,

1
9347/6M7N3/IONfS/BX%e_QKII’N3 (_ log(rll))41/6

(128)

VTn

Similarly,

(129)

ﬁ2g515/2\/1<_ak,,5/21<[]] M?Nlog? (N)(ayry + a3)\/3ax2asry* + 2a,°r),® + 3ara3r, + as°

b
SEE,IS ~

6125/2’% ’”h35/2(— log(rh))2/3

x <6561\6/§<1 + 8\/E)gs17/61913MGNf7/3rh810g6(rh) + 1048576\3/8ﬂ47/61<a2KZ]N2(—log(rh))2/3>

_17p7g,"%1og N>°M*N* (ayr), + a3)\/3ax asr,? + 2a,° 1y + 3ayaytr, + ai’

a2, 5

which in the a,r), > as-limit yields,

ﬂ2gs15/210g N2M2N3
15 '

(131)

I'n

Using (123), (131) yields:

1
g:"*log N*M>N*e 7™ (132)
rhlz .

From (90), (124), (129), and (132), one sees the following
hierarchy:

B IS B IS, 2..3..2.
see’ i Sgd St SE ~ A

: (130)

[
1

where y = e~ »¥*. From the above equation we can see
that O(f) corrections to entanglement entropies for the
Hartman-Maldacena-like and island surfaces are more
exponentially large-N suppressed. Therefore we have
disregarded those contributions for the computation of
Page curve.

Ky

VI. MASSLESS GRAVITON—THE PHYSICAL
REASON FOR EXPONENTIALLY SUPPRESSED
ENTANGLEMENT ENTROPIES

We now aim at presenting a physical reason behind the
exponential suppression of the entanglement entropies of
the HM-like and island surfaces in Sec. V D. The essence of
the discussion is the following. We will show that despite
the coupling of a nongravitational bath to the ETW-brane,

106015-26



ENTANGLEMENT ENTROPY AND PAGE CURVE FROM THE ...

PHYS. REV. D 107, 106015 (2023)

(imposition of Dirichlet boundary condition at the horizon
on the radial profile of the graviton wave function) results
in the quantization of the graviton mass, which (for an
appropriate choice of the quantum number) can therefore
be taken to be massless. Usually in the context of AdS,,
gravity duals of CFT,; on dAdS,,; at zero temperature,
massless graviton implies a vanishing angle between the
ETW/KR-brane and 0dAdS,,, which further implies the
islands cease to contribute [17,30]. However, as shown/
implied in Sec. III, the ETW-brane in our setup,
x! = constant, is orthogonal (in the x! — r-plane) to the
thermal bath/QCD-like theory [after having integrated
out the angular directions of Mq(6,,, 0.y, x10)].
Despite the same, we will show that one obtains a massless
graviton in our setup.9 What is more interesting is that there
is a comparable exponential-in-N suppression in the
HM-like entanglement entropy which is why the two
can be compared at the Page time and one obtains a
Page curve.
As in [74], let us write the D = 11 metric as:

ds? = e0)g,, (x)dx"dx” + Gdy™dy".  (134)
As the resolution parameter a, up to LO in gffy , 1S pro-

portional to r, [47,68,75], strictly speaking (134) is
applicable if one disregards (’)(‘j—:) terms (working in the

IR-UV interpolating region would ensure the same).
The perturbed metric that will be considered is:

s> = 0 (G, 4 By, ) dr + Gy ", I (x.9)=
th,f] (x)y(y) (as ansatz under linear perturbations):
Drhl) = gﬂvh,[,’ﬂ =0, and [74]

—2A

\/Ig

Under the simplifying assumption of localization

around, say, (0;,0,) ~ (ﬁ Nﬁ) near which one can show
5
that  y(r, 05, ¢10.y,x'

%) = y(r.0),
mzclU<—

0, (V 1907 AW,y (v)) =

“w(y). (135)

the eigenvalue
|

8 — 54 —m?r);? 10 2r

2,2
4 —m-ry,

2 \/4
+m2c2L895m< r e —24/4 —m?r, )exp(

\/ 4—m2r,,2

Eq. (135) up to LO in N in the IR-UV interpolating region
reduces to:

Py (r,60,) 16(r* +r;) oy (r.6,)
or? (r4—r2) or
N4/5,6
oo, GM>N3(r* =3a?)*(r* —ry) (logN —9logr)*(logr)*

o azlll(r,91)_zal//(r,91)
967 00,

) —m?y(r,0,)=0, (136)

or, equivalently, using separation of variables y(r,6,) =

R(r)©(6)):

Kr
< " EMAN(r?

1 16(r —l—rh) T
RO (A=) 2 ) )

N4/5,6 1
a®)*(r*—r})(logN —9log r)2(logr)2>

=—(0"(0,)-20'(0,))=4 137
@(91)( (61)—20'(61)) (137)
The solution to ®(#,) equation in (137):

O IEVIHD) (138)

which can be meaningful if 1 =0; we hence obtain:
©(60,) = Constant.

The EOM for the radial profile R from (137), is given as
under:

8 _ 4L o0- rh)> R/(r) — mR(r) =0,

r—ry ry

—R"(r) + <
(139)

As EOM (135) is homogeneous, y — m?y(r) is also a
valid solution which yields:

\/4—m2rh2_2m> exp(( V4 =m?r,? - )—I—9rhlog(rh—r))
T'p

I'n

(140)

(=\/4 = m2r,2 = 2) +9r) log(r), — r))

'

%See [73] in the context of islands in black holes in AdS, coupled to an external bath embedded in type IIB string theory supporting

light gravitons.
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If ¢, =0 then
m2U< 8 —5v/4 —m?r)? 10, 2r\/4 m?r,? s /4 mrh>exp( 4—m2”h2—2>+9”h10g(”h_”)>
V4 —m?r,? "'n
6—2—\/4—m rfl 5
= [14+O((r—ry)?). (141)
Z?:O Cl(mrh)ZIF <_4 - 4_8m2r%)
If one imposes Dirichlet be!’ at r= rp: w(r=r,) =0 then one sees that one would require
A__ 8 _ _ +
4 e n,n €7, ie.,
2 —8) n=
= 2V =8) s (142)
4rh(1 - Vl)
One notes that,
8 —5y4 - 2 2 \/4 /
U( m’r), 10r m’r,? o fa_ mrh>
4 —m?r,?
r(=/A=mn7 =2) + 9r, log(ry = 1)\ meg_ 11T 32 = 4)
X exp e e
h 262144e
315(cyr?)  ei(r—=rp)°
- Yt O((r = rp)'0). 143
2048¢* gt T OUr=r)T) (143)
9 2r\/4=m?r,2 — 2) 1 3
ffey = Otheneol? | (2 Ao )y L {Cl > ay (mr)*! cos(mr)
/e h=0
r(=A/d—m2r2=2)+9r, log(ry—r) . . 4 3
xexp( ; 2 h h ) satisfies Dirichlet/ + (Clzdzz(mr)zlz + ¢, Z(mr)zhﬂ) sin(mr)}

Neumann b.c. V m. In particular for m = 0, the above yields

cre ’h(rh—r)gL(il(ﬂ—4) Interestingly, 4% 1.7, (4’ 4) =

(=4 % LTfl (‘” ), implying hm,_),hL’jgl(“’ 4) =
8 ) _

(n+9) =0.

In the UV, the EOM up to LO in N, N}-JV,MUV, is

_ Pyyy(r.60,) 16 oyyy(r.61)

or? r 00,
N4/5
= 2Ky9, 3757 2 22
gSMUVNfrmUV(logN —9logr)*(logr)*r
al//UV 2
- , 144
X 00, m-yyy (144)

whose solution is given as:

"Neumann b.c., y/(r = r,) = 0, is identically satisfied ¥V m.

1,=0 1,=0
(145)

As the above, for m # 0, is ill-behaved in the UV, one is
required to set m = O for which

Ryy(r) = clljv 17 4 cUV (146)

For w(r) to be normalizable, one has to set ¢f¥ =0
implying, as expected a constant graviton wave function
in the UV.

One thus sees the physical/intuitive reason for the
exponentially suppressed entanglement entropy for island
surface (124) is that the Laplace-Beltrami equation for the
internal coordinates (135) permits a vanishing graviton
mass—this is also related to the fact that our computations
are in the “near-horizon” limit (r < (4zg,N)'/*) wherein
even the UV cutoff ryy<(47g,N)"/* and hence the internal
manifold is not noncompact [74]. This is what is respon-
sible for the very small (involving exponential-in-N sup-
pression) entanglement entropy of the Island surface. What
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is nontrivial and therefore extremely interesting is a
comparable entanglement entropy of the Hartman-
Maldacena-like surface in (90) near the Page time. The
vanishing graviton mass further manifests itself at O(f3) in
the entanglement entropies of the IS-vs-HM-like surfaces
in (133)—the former is suppressed relative to the latter.

Now using r = r,e%,"" we can convert Eq. (137) into the
following Schrodinger-like equation

—R"(Z) + V(Z)R(Z) = 0, (147)

(148)
and,
V(Z)= _eri((m?—64)e™ —42(m2 +64)e*” +m? —64)
(e**—1)?
57
(2267—1”)12% (149)

The above potential for massless graviton (m = 0) is
plotted in Fig. 9; this potential is “volcano”-like with the
massless graviton localized near the horizon on the ETW
brane. This is similar to [15] wherein one can localize
gravity on ETW brane for nonzero brane tension due to
appearance of “crater” in ““volcano” potential appearing in
Schrodinger-like equation of motion of graviton wave
function.

In our setup, the ETW-brane has nonzero “tension” (24)
and therefore it is possible to localize gravity on
ETW-brane. Using (143), one sees that in the massless-
limit of the graviton, the graviton wave function is indeed
localized near the horizon as shown in Fig. 10.
Alternatively, expanding V(Z) of (149) around the horizon

Z =0 and obtaining: V(Z~0)~ 4"’(;4"’) + 4rh(lz+gr") -
5 (=3 +40r), —896r7) + O(Z), one obtains:

89672 — 40 3z
R(Z)=e\M sy , +l<\/ r; — 40, + >
A /896ri—40rh+37 " \/§

<\/896r§, —40r, + 32)
7 :

+ C2W 4V3r),(8r),+1) 1
_24’4r”+E

/89612 ~40r +3

(150)

" Advantage of using redefined radial coordinate is that r €
(0,00) maps to Z € (—o0,00) so that we can see a nice
volcanolike potential on both sides of Z = 0.

L z
1 2

FIG. 9. Volcano potential for massless graviton from (149).

R(2)

Il Il Il Il Z
-0.5 0.5 1 1.5

FIG. 10. Localization of the graviton wave function near the
horizon from the m = 0-limit of the solution (143) of (139).

R(2)

Il Il Il Z
0.5 1 1.5 2

FIG. 11. Localization of the graviton wave function near the
horizon from the solution of the Schrodinger-like radial wave
Eq. (147).

Now, both Whittaker functions are complex for
Z <0, ie., r<r, Setting c; =0, one obtains

_z /89617 —40r;,+3Z
R(Z) =e 2W_ 43y (8r),+1) Ay (T , and hence
/89617 ~40r, +3 2
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the following plot which indicates a decay of the graviton
wave function away from the horizon.

VII. SUMMARY

Following is the summary of the key steps and results
that were obtained in this paper.

6]

2

We discussed the doubly holographic setup in the

context of M theory background in II B summa-

rized in Fig. 1. The main idea is that we consider an

ETW-brane at x = 0 in Fig. 2, which contains the

black hole and then we couple the ETW-brane to a

nonconformal bath (QCD in 3 dimensions after

integrating out the angular coordinates and wick
rotation along x3). We then discussed how we can
calculate the entanglement entropy of Hawking
radiation using the prescription of [10] for higher
derivative gravity theories. We derived the ETW-
brane embedding in M-theory background in

Sec. III. First we considered the Einstein Hilbert

term and the GHY term along with the tension of

the ETW-brane and obtained the embedding (21).

By using the induced metric (20) on the ETW, we

computed various terms appearing in Eq. (21) and

found that at O(p°) the embedding of the ETW-
brane will be given by constant x [Eq. (25)]. Given
that in the MQGP limit of (4), the J, dominates
over the Eg and $3G*R terms in the O(R*) terms in

(14), we work with only the J,, term. We found that

the ETW-brane embedding obtained with just

EH-GHY terms, continues to hold even with the

inclusion of the J, term as restricted to the same

(embedding) the boundary term involving covariant

derivative of the metric variation (that one would

have had to cancel by construction of an appro-
priate boundary term relevant to the J, term),
vanishes.

Given the robustness of the islands picture, the

M-theory dual of large-N thermal QCD at high

temperature constructed in [4,36] (based on [34])

too is thus expected to generate a Page curve.

The aforementioned top-down M-theory dual how-

ever offers the following additional conceptual

insights:

(a) There are very few papers (e.g., [22]) wherein the
authors discuss doubly holographic setup in higher
derivative theory of gravity because of absence of
the knowledge of explicit forms of boundary
terms on the ETW-brane with the inclusion of
higher derivative terms. As we explicitly show in
Sec. III B, no boundary terms are generated from
the inclusion of the O(R*) terms.

(b) To the best of our knowledge, our model/
(aforementioned) M-theory dual is either the
only one (from M theory) or one of the very

3
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few top-down models that obtain(s) the Page
curve for massless graviton12 in VL.

(c) In our top-down M-theory dual, we find that
ETW-brane to be a fluxed hypersurface VV that is
a warped product of an asymptotic AdS, and a
six-fold M where M is a warped product of the
M-theory circle and a non-Einstenian generali-
zation of T'!; the hypersurface WV, can also be
thought of as an effective ETW-brane corre-
sponding to fluxed intersecting M5-brane wrap-
ping a homologous sum of $*x[0,1] and
$% x 8% in a warped product of R? and an
SU(4)/Spin(7)-structure eight-fold. The ETW-
brane, YV, then has nonzero “tension” and a
massless graviton localized near the horizon by a
volcanolike potential.

(d) Further, unlike almost all the papers in the
literature wherein the Page curve computation
is done for a CFT bath, in our model, the external
bath is a non-CFT bath (thermal QCD).

(e) Entanglement entropy contribution from
Hartman-Maldacena (HM)-like surface which
is responsible for increase of FEinstein-Rosen
bridge in time, also exhibits a Swiss-cheese
structure in the large-N scenario (V B).

(f) With the inclusion of O(R*) terms in the action,
our aforementioned M-theory dual yields a
hierarchy in the entanglement entropies of
the HM-like and island surface (IS) with respect
to a large-N exponential suppression factor,
physically arising from the existence of
massless graviton mode on the ETW-brane.
This suppression further implies that the Page
curve is unaffected by the inclusion of higher
derivative—O(R*) in particular—terms.

(g) To tame the IR- and large-N enhancement in the
IS entanglement entropy per unit BH entropy to
ensure the same is around 2 in Sec. [IVA, along
with dimensional considerations of Sec. IVA, a
connection between the Planckian length and the
nonextremality parameter (the horizon radius) is
shown to arise in Sec. I[VA.

In Secs. IVA and IV B, using the Ryu-Takayanagi

formula (since we are not considering higher

derivative terms in the gravitational action in this
part), we calculated the entanglement entropies of

HM-like and islands surfaces (IS) by computing the

areas of the codimension two surfaces for the HM-

like and island surfaces. The entanglement entropy
for HM-like surface was calculated in (52) using

(47), which shows linear time dependence. If one

12See [59] in which author has discussed that one can get Page
curve for massless graviton in critical Randall-Sundrum II model
from a bottom-up approach.
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does not consider the island surface then (52)
implies that at late times [i.e., beyond the Page
time) we have infinite amount of Hawking radia-
tion. The entanglement entropy of the island sur-
face (65) was calculated using (63)]. If we are
below the Page time then entanglement entropy of
HM-like surface dominates which shows linear
time dependence and after the Page time the

|

O(l) % 10—4]‘421\[]609;5/4]\]34/1Se—lSlcrth/3

entanglement entropy of island surface, which is
constant, dominates. Therefore combination of the
two produces the Page curve of an eternal black
hole in Fig. 3.

In R = l-units, using (52), (65), (A7)

1
and rj, ~ e~V [68], the aforementioned is suc-

cinctly captured by:

D5/D5

A
HM __ HM
S "~

4Gy Gy

T

Iy, tp < tPage;

S]S = SIS <;T Ez = (1 +62);rh>9 Iy 2 tPagev (151)

where 0, in the turning point ry is as given in (A7).
(4) In Sec. V, we obtained the Page curve of an eternal

black hole in the presence of O(R*) terms in eleven
dimensional supergravity action. For this purpose
use the prescription of [10] as given in (66) to
calculate the entanglement entropies of HM-like and
island surfaces with the inclusion of O(R*) terms.
Since in the working action (26) only J, term is
considered (as it is the most dominant in the MQGP
limit) therefore we need to calculate two type of
terms appearing in (66). These two type of terms are
given in (69) and (70) where we have used z = xe'’.
In Sec. VA, the entanglement entropy for HM-like
surface is calculated and it turns out that for
Einstein-Hilbert term Dong’s prescription [10] pro-
duces (72). For the J, term there are two types of
terms mentioned earlier and these terms are given in
(74) and (75). Now if we combine the Einstein-
Hilbert and J,, terms’s contribution then we obtain
the total entanglement entropy (76) in terms of the
embedding function of HM-like surface #(r) and its
derivatives. We obtained the on-shell entanglement
entropy (91) for HM-like surface at O(f°) by
computing the solution to the EOM for the HM-
like surface embedding #(r) (80) and substituting
back into (76). Interestingly (91) also has linear time
dependence similar to (52).

In V B, with ¢; and ¢, being two parameters in the
family of HM-like surface embeddings, curiously,

HM 0 HM 50
58, EE 58, EE
S > 0 b
dlcal

dley]

<0, which along with |c;|~

1
¢291P |/ | ~ N, provides a perfect “Swiss-cheese”
(of the “single-big-divisor-single-small-divisor” va-

0
riety) structure to SEY(|¢y],|co|) (which essen-
tially is a codimension-two volume) wherein log |¢, |
plays the role of the “big divisor” volume and
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log |c;| plays the role of a solitary “small divisor”
volume, realizing what could be dubbed as a “Large
N scenario”(LNS). Alternatively, the entanglement
entropy for the Hartman-Maldacena-like surface can
be viewed as a Swiss-cheese-like open surface in the
two-dimensional (in the IR) space of family
of HM-like embeddings R2(|c;], |c,|) augmented
by the entanglement entropy that coordinatizes
HM,4°

Roo(SER").

In Sec. V C, we found that entanglement entropy
contributions from Einstein-Hilbert and J, terms as
given in (99), (102), and (103). Combining all these
contributions we obtained the total entanglement
entropy in (105) in terms of embedding function of
island surface and its derivatives. We solved the
embedding EOM for the island surface similar to
HM-like surface and the solution is given in (115).
Now, using the solution we obtained the entangle-
ment entropy for island surface at the level of
EH-GHY terms by substituting back in (105). This
yields that the entanglement entropy will be of the
form given in (118). Given that the turning point
lies deep in the IR, the entanglement entropy for
HM-like and island surfaces at O(f3°) came out to be
proportional to f, an obvious but apparent contra-
diction. This was resolved by proposing a /1, —r,
relation as discussed above (120) and its explicit
form as given in (123). The on-shell entanglement
entropy for island surface turns out to be (124).
Upon plotting the entanglement entropy contribu-
tions from HM-like (91) and island surfaces (124)
we obtained the Page curve shown in Fig. 7.

The aforementioned is neatly summarized below.
Using the HM-like embedding (80), and (89) and
(90), the on-shell entanglement entropy (EE) for
HM-like surface is given by:
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1
Kl N3

/}O,HM _3 13/10 5/3 4tb0 2 C2 % 1
Sgg - ~e T MNPEN/T(1—-—](log ) A log(N) | , K| =———

3C2

L 1/3
c12 <0, a2,

2] > Jey[s |ep] ~ e

t< tPage7

and using the embedding (115), and (124), (126), (128),
and (132), the on-shell EE for island surface is given by:

1
N 43 35/6
gris  MreE N g log? () log(r) |
EE ~ 11/2 ’
Ty

12> tpyge- (153)
The above can be shown to be consistent with the RT
computation summarized carlier."

(5) Positivity of the Page time—worked out in (126)—is
shown to provide an upper bound on the non-
extremality parameter—the black-hole horizon ra-
dius ry.

(6) We computed the O(/3) contributions to the HM-like
and island surfaces as given in (128) and (131)
and we show in (133) that there is hierarchy between
the O(°) and O(p) contributions. To be a bit more
specific, as the turning point for the Hartman-
Maldacena-like surface r,:r, —ry Nﬂ»%, and that
for Island surface ry:ry — r, ~ 8°, one obtains the
following exponential hierarchy: SEN . gi5/".

g ©xp Yo Opg EE
Sl iSEl ~yiipiiyti, where  y=e 0V,
Therefore we can neglect the O(ff) contributions
to the entanglement entropy for both extremal

1

surfaces. The exponentially suppressed Sgséﬂ " and

the suppression of S}iséﬁ relative to Sgg[ 7 is argued in
Sec. VI to be due to the existence of a massless
graviton. It is also rather nontrivial to have a similar
exponential suppression in SHY so that the same
could be matched with S§; at the Page time, and a
Page curve obtained.
(7) Motivated by the

S/;“.ls
requirement —E-~e
BH

F(M,N,Ngry) [1 +> %A, (&) n] [as obtained

arry

_K]le/3

in (122)] to be less than or equal to 2 up to leading
order in the dimensionless “GSU /r;” [71], which

]3C0mpatibility of (151) and (152) (using footnote &)
requires Ky Kl Koy MZNJGCgiS/4N34/158—6K,.71Nl/3 N MN]3/10N;/3
o N1/3

3
2 [k, N'3 = log |¢,[] - n,, log(N))#e"—

of Sg;éHM obtained from computation of the area of the HM-
like surface and from Wald entanglement entropy) and 11x,, <

(for compatibility

3k, (for Sg;z’ls to be well defined in the large-N limit).

(152)

for us is parametrizing  the

% [as3
IS-surface embedding (115)], one needs to cure
the large-N and IR(via small r;,) enhancements in
50.15
S [68] of the
r=rg~r,:Ng(rg =0), and in particular the ex-
ponential N-suppression therein we therefore pro-
" xa)”. This further
D5/D5
requires (see Fig. 6) a lower bound on the non-
extremality parameter—the black-hole horizon.
With the inclusion of the O(R*) terms in M
theory, the fact the turning point associated
with the xHartman-Maldacena-like surface is in
the deep IR, also require the aforementioned /- or
l,, — ry, relation.
Some open questions related to our work are
(i) How the holographic complexity will be modified in
the presence of O(R*) terms in the gravitational
action [76]?
(i) What will be the effect of higher derivative [O(R*)]
terms on the reflected entropy [77]?
We will return to these issues in our future work.

Utilizing the estimate in

4 _
pose f~ (gia’ze ki, N
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APPENDIX A: HM-LIKE/IS ANALYTICS/
NUMERICS

In this appendix, we discuss (i) the angular integrations
which have been used in the paper and have written the
expression for the area of Hartman-Maldacena-like sur-
face, and (ii) how to obtain an estimate on the turning
point in the context of island surface entanglement
entropy.
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1. HM-like surface area

The angular integrations, in promoting the delocalized results around (6,, 0,) = &I N—j) to global results, disregarding

all contributions of 0(%

P) ,a > 1, have been performed as under. Promoting (x,y,z) —

1
N5

(¢1, ¢, y) via [36]:

dx = M(gsN)i _1 + C’)(g\TW) + 0<4(9‘YM2])\§gst)) sin@,d¢,,
@sz@wﬁ1+06f3+oéﬁ%%@@)mwﬂ@,

5 . Z
&—VE@M%H%(%$>+OG%E%@@)Wu (A1)

where 7y = §+ (’)(9%2),112 =14 (’)(9511\‘,4

).y = Iy 44 [34.36),

: e : e |logea|
———— > lim v/ gsNdb, sin 0 do, sin0 ~ lim A2
azlaf)z €120 Je, 9 2 2/6 1 I(Ns §in0,) (NHsingy)?  c1=0 Nie, (A2)
logP +loge, = —¢, or €, = %, P > 1. Similarly,
7= 1 5401og(2) — 107 ‘
> lim [ \/g.Ndb, sm92/ d0, sin 0, _ 63”( e(2) - WO (ag)
g, @2=0 Je, (N3 sin@,)(N sin 6,) 720N

Assuming r, € IR, approximating log r ~ log r, for r =vr, V r € IR, v = O(1), one obtains the following expression

after radial integration of Eq. (48):

Aum [EMZ ]\/_Nﬁ ;/*log? (r;,) (log(N) — 3log(r,))*

x (33 (10g(V) ~ 910g(r,))? ~ 107212 log(N)(log(N) ~ Y log(r,))

+ 15r,7} log? (N) — r3 (36 log(N) log(ry,) + 243 log? (r;) + 8log? (N)))}

2. IS turning point
In the context of IS entanglement entropy (65) to get an
estimate of the turning point 77, one notes that =,
up to LO in N, that obtains:

14589s5/4M2N2/5Nf6r‘}(r‘} — M log” (rp)
x (7log Nr2 —3a’1log N)
— 65619, /*M>N?*/5N ;r§.(r}

Writing 77 = 1 4 8,, upon substitution into (AS), and
assuming 0 <, <1 and thereby approximating
log r ~ log r,, yields the following:

—ry*) log® (ry)
(A5)

(Ad)
[
14585,r,'° log’” (r),)(4(478, + 6)log N
—9(156, + 2) log(ry))
— 58321/35,(118, + 2)elog Nr,'0 log” ()
M?N?/5N 5C?
B -

Assuming again |log r;,| > log N, the relevant solution to
(A6) 1is:

M2N?5N 5C 2

8y~ -
7 262449,54r,10 log® (r,) 15

(A7)

Guided by the estimate of r=rg~r,: Ng(rg) =0
obtained in [68],
32 — oV, Numerically, for M = Ny =3, g, = 0.1,N =
10°3 and assuming k¢ = 1.37,x,, = 0.1,C =3 x 1078 one
obtains §, = 5.6 x 1074,

1
.. — 3 .
writing 7, ~e ™"’ and assuming
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APPENDIX B: HARTMAN-MALDACENA-LIKE SURFACE MISCELLANIA

In this appendix we have listed various r dependent functions appearing in the entanglement entropy expression for the
Hartman-Maldacena-like surface at O(°) and O(f). Additionally we have also worked out the equation of motion for the
embedding function of the Hartman-Maldacena-like surface.

(i) The r dependent functions appearing in Eq. (72) are,

r*(N;g,(21og(N) — 6log(r)))*

a(r) = Ka \/Ng’j/z ’
o(r) = Ngs —3M*N ;g3 log(r)(log(N) — 61og(r))
4 (r4 _ rh4) ,
) =k _MN17/10N}1-/3g§/2(r2 — r;2) log(r)(log(N) — 9log(r))+/log(N) — 3log(r)
=K A

_MN?VONTE g (2 — )i, log(r) (log(N) = 9 log(r)) /log(N) = 3log(r)

34 ’

~

(B1)

where k,, k, and k; are numerical pre-factors.
(i) In Wald entanglement entropy term (74) for HM-like surface, we have the following r dependent functions:

MINT/PN] gl log! (1) (log(N) — 12 log(r))* (log(N) ~ 9 mgm))
i, (10g(N) — 3 log(1))"

A(r) =Ky, <

_MTYNNT" g iy, log! (r) log(N) ~ 121og(r))? (log (V) — 9 log(r))
37 (log(N) — 3log(r))*" |

i B M3NT03/N g3 log? (r)(log(N) — 121og(r)) (log(N) — 9log(r))
)= a3, log(V) — 3 log(r))" )
M VN /N9y, log? (r)(log(N) — 121og(r))(log(N) — 9 log(r)) (82)
3r2(log(N) — 31og(r))>/3 ’
k;, and k,, in the above equation are numerical pre-factors.
(iii) In the anomaly term (75) following are the r dependent functions: 6
Jaiet = (1-4)70p) 4
Ly =Ly = S o (r)(o(r) — —Q’r2
L Pt - (1) ey (et~ (12
4 A
et (01t (he0r42(1- e )V
a(r)(o(r) = (1 =2%)7(r)?

(iv) Use has been made of the following for the computation of first and second term in entanglement entropy
computation in the presence of higher derivative terms:
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8l

5RM1N1P1Q1

1
— GM1M1GN1N1GP1PlGQ1Q1 (RPNIPIQRQRSQI +§RPQP]Q1RQRSNI>RM]RSP

1
+ <581RHN1P1K + 551(\2/1R1L11<P1Q1>RHRSMIRQRSK
1
+ GNMMI GG (RQIMNQRMIMNK + 2RQ]QWRMIWN> RO p x

+ GM]MI (RPMNM]RHMNQI + %RPMIMNRHQ]MN>RHN1P1P’

and

52J0
5RM2N2P2Q25RM1N1P1Q1

:Al +A2+A3 +A4,

where

1
M
Al = GMMGNNIGPPI GO |:5MTGN2N2GP2P2GQ2Q2 (RQ2N|P|QRQN2P2Q1 + _RQZQP|Q|RQN2P2N|)

2

1
(0008 R, Ru 7+ 015508 R R

1
N, oP5 <0, N, <P
+ (GM2M25R2552581RM1 RSPRPN]PIMZ + E GM2M25R2 Szél%RMl RSPRPMZPI 0 > }

1
M
= GM1M1 GNlNlGP1P1 GQlQl |:5M?GN2N2GP2P2GQ2Q2 <RQ2N1P1QRQN2P2Q] + _RQZQPIQIRQszle)

2

+ (5%?51;?RQ2RSQ1RM1RSMZ + %5§758?RN2RSN1RM1RSMZ>
+ (GMZMZ(sngM, NP2 PRy b, + % GMZMZéz%TRM, N2P2PRou,p 0, )] ,
A, = |:<GM2M2GQ2Q2 GN2N1 GP2P1 RQ‘RSQ2 + % GMaM> GN2N> PPy (G20 RN‘RSN2> RMZRSMI
+ (GQZM, GN2N2GP2P2 RMoN PIK %GQZMIGNZNZ GPZPZRMZKP]QI)RN,NZPZKH
+ <GM2Q]RHN1P1Q2 + %GMZNIRHQ2P1Q1>RHN2P2M11| ’
As = |:GN|N, GPP GO |:<5glzéngM|NzP2K + GM2M, GNzNzGPszGQzKRQINZPZQ
+ %5’5}25’521?%”292 + %GMZMI GNKGPPGR0:R, QPZQZ) ROy p x
+ GMMa 5252 <RQ1MNM2RM1MNQZ + %RQIMZMNRM'QQMN> } } :
Ay = GMiM, [(5112425%1 RHN:P20v GMZHGNZNZGPszGQZQIRPNZPZMI
+ %5/1‘;125% RHQ1P,Q> % GM2H GN2Q) GPZPZGQ2Q2RPM1PZQ2> Ry NiPiP

1
+ GN2N1 GP2PL G200 (RQZMNMIRMZMNQI + ERQZM,MNRMZQIMN>:| .
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(v) The r-dependent functions appearing in Eq. (75) are given below:
MN37/10635/8 160 (1) (log(N) — 9log(r))
rl ae|ag N4/3 (log(N) - 3log(r))7/3
- aBIOMNO20 g2 Jog(r) (log(N) — 9 log(r))
r14N4/3(10g(N) —3log(r))"? 7
MN3/163/10g(r) (log(N) — 9 log(r))
e o N7 (log(N) — 31og(r)) 77
MNSY/2051 2 Tog(r) (log(N) — 9log(r))
r14Nj/3 (log(N) — 3log(r))"/?
M2NN g3 1og(r)(log(N) — 45 log(r))
ray, agz (log(N) —31log(r))?

Z(r) = —ky

B4 1og(r) (log(N) — 451og(r))

(
V/Nr*(log(N) — 3log(r))?
Vi) =y NNR N0 ey (87)

r) =
v rtag, af) log? (r) VNr*log? (r)’

_M’Nyg

9

where k, ky, ky and ky are the numerical factors including (q +1>
(vi) To obtain the EOM for #(r) we need to calculate the following derivatives from Egs. (72), (74)—(76):

Total

o ﬁ<(r_r”)3/2”£<rh>(““l”<’>+Azf”<r>> AP () + A () | (r= )V 2ph(ny)

5t( ) N7/10t/(r)2 N7/10t’(r)2 N57/10 ( )
Pelry) (r=r)2p(r) | NY1pl(r,) | N10ph(r;) Ph(rs)
(r— rh)N7/10t’(r) N5/4t’(r) r=rpt'(r)? r=rpt'(r)? r=rpt'(r)?
Pﬁ(rh)
L N0 = RY () (7)) N = ) (1)), (B3)
=t (r)
and
5£¥(1J\i[a] ﬂ]:ﬁ(rh)(r - ’,.h)5/2 (Bg)
5t”( ) - N7/10t/(r)
where

’

MN?/SQZ/S\/K_(M log(r;)(log(N) — 9log(ry))(log(N) — 3log(ry,))*/
p (rh)_Kp|< 7”3/2\/@ )
o) — 1<M2€/1VX%N4“ g1 Jay log(ry) (log(N) — 4510g(rh)>>
P =5, 72 Ji;(10g(N) — 31og (1)) |
MNP g7k log(ry) v Rak, (log(N) — 4510g(rh))>

r/*(log(N) - 3log(r;))%? ’

2x3(54010g(2) — 107)N g7/ Jro,

i) = ( 77 log? () (log(N) — 3 log(r,))*"

(28 (0g(N) - 3log(r))? = 2Txy1og(ry) lg(N) = 4 10g(r1) ).

P =
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Pi(n) = K, F (9.1 Ny M),
plsj(rh) = Kng(gm T'ps va M),
(MX?e o/N g2y 1og(ry) (kak,)*/? (log(N) — 9log(ry,)) v/log(N) — 310g(rh))

Pe(ra) = —x 52,5 ’
rh K5
5 M /N1 k7 10g(ry) (kx,)%/ (log(N) — 9log(ry)) 4/log(N) — 31og(r,)
pr(ry) = Ky k10 ’
s, (Mxpy/Nigicylog(ry)(kax,)* (log(N) = 9log(r,)) +/log(N) — 3log(r)
ps(rn) = Ky 9/2 4 ’
rh Ks
5 M /N ygikzlog(ry)(kak,)**(log(N) — 9log(r,))v/log(N) — 3log(r)
Polrn) =Ky o2 4 :
}"h Ks
s o (MST s93Kal* log(r;) (log(N) — 9log(r)){/10g(N) — 3log(ry) (vhww + 2x7)
F S/ , (B10)
h o

» and ks are the numerical factors. From Eq. (76) and using Egs. (B8) and (BY), the EOM
i=1,...9

d (zll d2 oL
corresponding to the embedding #(r), given by ) = g

where &, , K

turns out to be

(= NP N0 3N (R 3N (1))
2(r—rh)3/2t'(r)3 2(r—rh)3/2t’(r)3 r—rht/(r)4 r—rht(r)

5
£ N = 1) py (1) () + SN0 = 1y () ()

_ PMYNsgi\r= Fakel * log(ry)(log(N) — 9log(ry,)) ¢/1og(N) = 31og(ry) (xhrw + 2x7)
4N7/10r2/21<f/2t’(r)3

X (8(r — 1) 21" ()2 = 4(r — 1) 2 () ((r = 1)1 (r) + 5¢°(r)) + 15¢(r)?). (BI1)

APPENDIX C: ISLAND SURFACE MISCELLANIA

In this appendix we are listing the various functions appearing in the entanglement entropy of the island surface at O().
We have also computed the derivatives of the Lagrangian of the island surface here which have been used in obtaining the

equation of motion of the embedding function of the island surface.
(i) A34(r) appearing in the Wald entanglement entropy term (102) of the island surface are given below:

() =x M7N7/10N7/3gsrh log(N)log’ (r)(5log(N) — 1210g(r))?
3 s r16a2 % (log(N) =3 log(r))14/3
M7 /N log(2) (log(64) = DNY g2 *rtt, log(N)log! (r) S Tog(N) = 1210g(r))}
r'%(log(N) — 3log(r))'4/3
A(r) =k M3N7/10 3 N gsrh *log(N)log3(r)(51log(N) — 121og(r))
4 P r'Sag, o (log(N) — 31og(r))®3
M YN log(2) (l0g(64) — 1) /N7 rtx,, Tog(V)log? (1) (5 log(N) — 121og(r) (c1)
16(10g( ) — 310g(r))8/3

s

where k;, and «;, are the numerical factors.
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(ii) In the anomaly term (103) following are the r dependent functions:

. MN3/10g357612 166(N) log(r)
4 r% af Ny (log(N) — 3log(r))7/3
_ MN®/log(2)(log(64) - 1)g P22 10g(N) log(r)iy,
r1®NY (log(N) - 3log(r))7/3
. N”/ 10637/ log(N) log(r)
" ey Ny 6<log< ) —3log(r))"/?
NMNﬁ‘/mlog( )(log( 4) = 1)gs” Py, log(N) log(r)
PN} 1§ (log(N) = 31og(r))"”
M?NNgir)*log” (N )10g (r)(log(N) — 171log(r))(log(N) — 9log(r))
rPag, af (log(N) —3log(r))* ’
_MPN g 2y, og? (N)log* (r) (log(N) — 17 log(r)) (log(N) — 9log(r))
VNr'3(log(N) - 31og(r))*
M*NN ;g3rilog’ (N)log?(r)(log(N) — 6log(r))
"1 gy, af, (log(N) = 9log(r))? (log(N) — 3log(r))?
Mszg‘S/“r%KV]log (N)log*(r)(log(N) — 61og(r))

"IN (log(N) — 9log(r)*(log(N) — 3log(r)* “

Zy(r) =

’

Wi(r) =

’

Uy(r) = ky,

s

Vi(r) = —xy

where k7 , ky,,ky, and ky, are the numerical prefactors which also includes (%H)
(iii) Using Egs. (99), (102)—(105) we obtain:

SCha (Wt (Bln) | Ao ) ) V) N1 ()

Sx(r) N V=T, NV /r=Tr,) x(r)? =7 (r)? NG
+N13/10]:1_<r:3)€(r) ’ (C3)
oLk ﬂ{F’f(rh), /= rpx(r)2x (r) +F’f0(rh),/—r— Frx(r)* +F/fl(rh),/—r— " +N3/10Fﬂ (rp)x(r)*
ox'(r) N7/10 N7/10x/(r) N7/10x/(r) =X (r)?
+N3/10Ff3(rh) +Fg(rh),/—r—rhx(r)2+F§(rh)./—r—rhx(r)2+ Fi(r)x(r)? N FE(rp)x(r)?
Vr=rx'(r)? Nx'(r) N34X(r) V=X (r)? - NVA =X (r)?
n Fi(ry) (r = r)¥2x(r)* (22 (r) + rx"(r)) n FO(ry) (r = r)¥2(22 (r) + rx (1))
N7/10x'(r)2 N7/10x’(r)2
/}r ,/r—rxr4 ﬂr VIE—r
+F8( ?37/1%,(:) ) +F9A(,7ﬁfox,(,) LN ‘OX(r)zYs(rm’(r)] + NYOF (ry)fr = rpx(r)2X (1),
(C4)
and,
Elstd fﬁir r—r,)3? ]:gr r—r,)3?
M,Tg;—ﬁ( - ) (c3)

where we have defined F(r}), Ff-jzl 4(rp), and Y, 3(r;) for the island surface as:

yenes PR
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kp, Mlog(2)(log(64) = 1)N} g1 \/Fik i, Jog(N) log(r,) (log(N) — 3log(r,))*/3

Fi(ry)= m )
) :KF¢M3 log(2)(log(64) = 1)N77 g/ /i Jog(N)log* () (Slog(N) — 121og(r,))
e Ve, (log(N) —3log(ry)) /3
x (81(16+ V2)M*N2gtx;, log* (r,) (Slog(N) — 121og(r;,))? +4096(4 +v/2)n*;, (log(N) —3log(r,,))?),
P _KF/;Mzg& Kok, log? (N)log® (r) (log(N) — 171og(r;,)) (log(N) = 9log(r,)) (N yg, (log(N) = 3log(ry)))*/>
2 VTi/Kakq(log(N) =3log(ry))° ’
5 KF/;M4N7/3 1712 log* (N)logb ()
F3(rh)_rl/2\/m(log( N)—9log(ry))®(log(N) —3log(r;))*/?
X ((xy, log?(N)(=9log(N)log(r;) + 18log® (r;) +log* (N))
—6ky, (log(N) = 17log(ry)) (log(N) =9log(ry))*)?),
L MNP gk, log? (N)log* (ry) &k (log(N) — 17log(r)) (log(N) ~9log(ry))
o 7% (log(N) —3log(ry))' /3 ’
s KkpMig M ogt (N) &Ko (N g, (log(N) — 3log (1))
Fs(rh) = 1372 6 10
ry " (log(N)—9log(ry))°(log(N) —3log(ry))
x (ky,log®(N)log®(r,)(—9log(N)log(ry) + 18log? (r;) + log* (N))
—6xy,log*(r)(log(N) —17log(r;)) (log(N) —9log(r4))*)*;
P ):_KFgM V/Nygixw, log(N)log(ry) (kak,)*?
o 1K (log(N) = 3log(ry)*
L KuMlog(2)(log(64) 1) /Ny iz, log(N)log(ry) (k)%
== 1773 (10g(N) = 3log(r;))? ’
h h
iy IR 10B(64) 1) /N ity g log(rs) o5,
ri/*k3(log(N) = 3log(r;))?/3 ’
() :KFgM log(2)(log(64) —1){/N s g%z, 10g(N)10g(ry) (Kek,)* 2’

r/ i3 (log(N) = 3log(r4))?/?

kpy Mlog(2)(log(64) = 1) N gixw, 1og(N) log(ry) (kak,)>/?

Fﬁ ry) = —
to(72) I"z/ZKS (log(N) — 3log(r,))*?

)
Ky M10g(2) (10g(64) — 1) /Ny, Tog(N) og(r,) (k)9
)

F/} r,) = —
u(r) I"Z/ZKS(lOg(N) —3log(ry))*?

ks Mlog(2)(log(64) — 1)3/Nsgiky, log(N) log(r; ) (kuk,)>/?

F(r) = -
1272 r 4 (log(N) — 3log(ry))*/3

)
KF/123M10g(2)(10g(64) - ]) Y NfgsKZI 10g( )]Og(}’h)(KaKﬁ)S/z
P2kt (log(N) — 31og(ry))?

’

3
F/13(rh) ==

>
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k7, M log(2)(log(64) — )N} g, x;, log(N) log(ry)/Kak, (log(N) — 3log(r;))*3

fi(rn) = <73 ’
T
p kpMN; N7 63¥% log(N) 1og? (1)) \/Kaky(5 log(N) — 121og(r,))
f1(”h) = rs/z(log(N) _ 310g(rh))13/3
y (M3 log(2)(log(64) — 1)N7g:® log(N)log* (1) /Ko, (5 log(N) — 1210g(rh))>
1572864v/23%/6277/ 127317 (log(N) — 31og(ry)) ¥/ ’
p M2N4/3 9%ky, log? (N)log? (r),)/Kak, (log(N) — 171og(r;)) (log(N) — 9log(r4))
= ri/*(log(N) = 3log(r,))"'/? ’
) — M9 08" (V) RN 9,108 (N) = 31og(r))1

13/2(10g( N) = 91log(ry))° (log(N) — 3log(r;))"°
% (ky, log*(N) log*(r;,) (=9 log(N) log(r4) + 181og? (r4) + log® (N))
— 6k, log’(r) (log(N) — 171og(r,)) (log(N) — 9log(r4))*)?,
kM log(2)(log(64) — 1) /N g3k, log(N) log(ry) (kex,)*/?

Y : c6
filrn) = r ki (log(N) — 3log(ry))*3 (€0
o koM log(2 )(log( 4) = 1)/N g2k xw, log(N) log(ry,)
r,) = — ,
e 3 (log(N) - 3log<rh>>2/3
5 ks M log(2 )(log( 4) = 1){/Nyg2xi! >z, 1og(N) log(ry)
Forp) == 3/2 5/2 2/3 ’ (€7)
(log(N) = 3log(ry))*?
and,
ky,Co, MN g 1og? (1) \JRak, (log(N) — 3 log(ry))?/3
Y, (rh> = 3/2 g
rh
y ky,CopMNY g1 1}k 1og? (ry) (log(N) — 3log(ry))*? 8
s(rh) \/’?(17; , ( )

where kr,, Kpp KK o Kpp Ky, are numerical factors and Cy,, is the constant of integration appearing in

the solution to O({§) correction to the metric component along the toroidal analog 72(6;, x) of the vanishing two-
cycle S2(6,, ¢,).

APPENDIX D: POSSIBLE TERMS APPEARING IN HOLOGRAPHIC ENTANGLEMENT ENTROPIES

In this appendix we have listed all the possible terms that we obtain from differentiating Lagrangian of the M-theory dual
inclusive of O(R*) corrections. In appendix D 1, we have listed all the terms for Hartman-Maldacena-like surface and in
appendix D 2 we have listed all the possible terms for the island surface.

1. Hartman-Maldacena-like surface

Square root of the determinant of the induced metric (35) for the Hartman-Maldacena-like surface scale as N7/1° and is
given below:
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4
— _h

MN7/10\/gT(Nf(log(N)—310g(r)))5/3\/“(”)("(’”)_( 4) 1))

<

V=g~ e (N7g,(r*(log(N)(2log(r) + 1)
+3(1 —6log(r))log(r)) — r7(log(N)(2log(r) + 1) — 18(6r + 1) log? (r))) + 8z(r; — r*)log(r)) |. (D1)
9Jg .
Ry

) [ 207316262 (Rru+ R | RIS R,

8 (=91og? (V) (log(N) — 6log(r))> — 13(1
N/dvgﬁ<_ 3(=91og? (N) (log( )\/Tv’(r)igvjlf)’”\/g;((lzz

—~

N)—3log(r))* =21 (log(N) —3log(r))2)>.
N)—3log(r))®/3 |

—~

— 1 - 1
i dV —g <RthKR RStRx +_RHKIXR RStRQ > ~/dV _g< ) :
( ) / 9 H RSK 2 H RSK 9 \/N712N§~2/3\/§r2 (log(N) —3]0g(r))22/3

(iii) / dVo\/=g <(G"")2G” <RPX,Q +%RPQ,X> R,RSPRQRSX> ~ / dV, </11 (r) ¢ a(r) <a(r) —~ (1 —Z—E) t’(r)2> > ;
(iv) / dvg\/—_g<G” <RHMNxRPMNt+;RHxMNRP,MN> RH’”P> ~ / dVy <ﬂz(r) \/ a(r) <0(r) - ( —ﬁ) t’(r)2> > (D2)

From Eq. (B2) it is clear that (iii) and (iv) terms scale as N7/!0 whereas from Eqs. (D1) and (D2) we can see that (i) and
(ii) terms scale as N'/3. Therefore (iii) and (iv) terms are the most dominant terms in the large-N limit.

We obtain thirteen terms from WK 1ijK i Which are listed below:

(i) / Vo =G(G (G (G151, R, SRy Ky K ot ~ / W=

_M2NNfgflog3(r)(23log(N)—7210g(r))2(2910g(N)—7210g(r))(210g(N —3log(r))y/a(r) '(r)?)
rtap, af, (log(N) —9log(r))* (log(N) - 3log(r))°¢' (r)? ’

(ii) / dVy/=g(G*)*(G")(GP)(G™™)(G")R xR i K 1y K i ~ 0.

(i) [ Vo5 (G (G"") (GRS R Koo ~O,

(iv) / Vo5 (G PG (GRS R 1K Ko

iy (N 00, N "/2log3<N><log<N>—23log<r>>3<1og<N>+1slog2<r>>¢a<r><a<r>—r'<r>2>
<[ P alog” (1) (log(N) ~91og(r)) (log(N) — 31og(r)) 7 (1)? )
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(V) /dVgH (Gxx) (G”)(Gll)(Gmm)(Gu) jQlelemKtletmlN/dV9 (Zgr>'cl>’

. 1 . )
() [ Vo3 (GG (G R R KoK

N o~ MENN2log" (V) 0g() — 51 log(r) Uog(N) =23 og(r) V()T = o) 1))
/ Vov/=g ( Fag, @5 1023 (r) (log(N) — 9log(r))* (log(N) — 3 log(r)) 57 (r)? )

(Vll) / dV9 V _g<GXX)2(Gim)(Gll)RXMN]RZMNxKantml ~0,

(vili) / Vg /GG (G (G)RMNIR K K s ~ .
(ix) / AVor/=G(G) (GH)(GI) (GM) (G )R,y Ry K Kot ~ 0.

) / V=5 (GG (GRT Ry K K

7/10,2 8/3 3/2 r _ _ N3 o(r) —2(r)?
N/dvgﬁ{_MN Ny gs'" log(r)(log(N) 910%( 2)fl(og)§ ) =3log(r))**\/a(r)(e(r) — £'(r)?)

ay, Xy,

29V/6M* g log® (N) log® (r) (log(N) — 12 log(r))* (log(N) — 6 log(r))’
73 r4a(r)2N7 (log(N) = 3log(r)) >3 (a(r) — £(r)?)?

x (a(r)d (r) = (r)f'(r)* + a(r)(e'(r) = 2¢ (r)t"(r)))?) |

x (76800G, (r) —

. 1 A .
() [ Vo= (GG GR™MY Ry K

/ Qv ¢_—g{ MN/102N83 372 Log () (Iog(N) — 9 Tog(r)) (2 Iog(N) — log(r))¥3 \/a(r) (e (r) — 7 (r)?)
’ 129600/23%/57'/0a} a3 1'(r)?

87V3M" g} log” (N) log” (r) (log(N) — 121og(r))* (log(N) — 6log(r))* (log(N) — 3log(r))*

x <45062(r) -
X (o(N) (r) = (N1 (r)? + a(r) (o (r) = 20 (1)1 (r)) 227 a(r 2N (21og(N) = og(r)) /(o (r) ~ r'<r>2>2)} ,

iy 1 Z(r
(i) [ Va3 (666G G R maiaoom~ [ avo(21,)
1
(ci) [ Vo3 (G (G (GRS Ry KK

~/dV9\/—_< M?NN,g3 log( )(510g( ) —2111og(r))(log(N) — 23 1og(r))\/a(r)(o( r)—t’(r)z)),

Pty at, Tog(r) (10g(N) — 9 log(r))* (log(N) — 3log< 0 (P (D3)

where G,(r) and G,(r) are N independent functions. Out of all the terms listed above (v) and (xii) terms are the most
dominant in the large N limit.
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Similarly find that there are thirteen terms arising from WK 1ijKymi Which are listed below:

(i) / AVor/=G(G (G (G5, R, TSR p5yK K

N / Vo3 _M2NNfgf.log5(N)(23 log(N) — 721og(r))*(log(N) — 271log(r))\/a(r)(e(r) — £ (r)?)
A r4a91a27 (log(N) — 91og(r))*(log(N) — 3log(r))°# (r)? ’

(i) / DVor/=5(G") (GT)(GI) (G )(G") R RO K K s ~ 0,
(i) / V=G5 (GG (GIVRTS R K K s ~ 0.

(iv) / V=5 (GG (GI RS R 15Ky Ko

W MPN'3/g, N2g log? (N)(log(N) — 23 log(r))? (log(N) + 18 log? (r))\/a(r)(a(r) — 7 (r)?)
- / oV 1728v/677 2 r* gl log? (r) (log(N) — 9log(r))*(log(N) — 3log(r))>7(r)? ) ’

(v) / dvg\/— (G (GT)(G")(G™™)(GY)Rj0uRC iimK 11K i ~ / dVy (Wér) Ez)» (D4)

() [ aVoya5 (GGG Ry Koo

) _ MZNNfglog( )(SIOg( ) — 211 log(r)) (log(N) — 23 log(r))\/a(r) (o(r) — £ (r)?)
/ Mr( el ot o7 =31 (g g TP )

(vii) / dVoy/=g(G")*(G™)(G")R™MMI Ry K 11K g ~ O,

(viii) / IVor/=G(G")(GI)(G™YRMNIR 1 K K g ~ O,
(ix) / dVor/=G(G"Y(GT)(GP)(G")(G"™) R Ry Koy Kot ~ 0.

() [ V=53 (GGG RN Ry K Ko
MINTION2GI2G (r)logd (N)logh () (log(N) — 24 Tog(r)) log(N) — 9 log(r)) (log(N) — 61og(r))?
-/ "”’9“:?[ 72, & o) (log(N) — 3 log(r))’
VAo~ FD) () () — & (N (r)? + a(r)(o'(r) — 20 (A (r))?
(73 (a(r) — /() ’
(xi) / V=55 (GG (G R Ry K K
MN02N 2 10g () (Iog(N) — 9Tog(r)) (21og(N) — log(r))¥"* /@) (o(r) = 7(1)7)
- [ {‘ 3 B (r)

§ <G (r) _ 32V og? (1) (log(N) ~ 121log(r) 2(o(r)e (1) =/ (11 (1) + ()l
! 73 a(r 2N (log(N) — 3log(r))¥3 (o(r) — £ (r)?)?

X

LRI ]
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(xii) / dvgx/" (G (GH) (G (G")(G™ VR iR K i i K ot ~ / dVy (Wér) Ez),

(xiii) / V=55 (G V(GG R Ry K K

N _ _MZNNfgﬁlogé( )(log(N) — 511og(r))(log(N) — 23 1og(r))\/a(r)(a(r) — £ (r)?)
/ "W_g< P, log (1) (1og(N) 9 log(r))* (log(V) — os Y ) (03

where G5(r) and G4(r) are N independent functions. Out of all the thirteen terms listed above (v) and (xii) terms are the
most dominant terms in the large-N limit.

We find that at O(R*), there are six terms coming from mK 1ij Ky and listed below:

() [ VTG G (GRS R st~ [ dVa(U()E).
(i) [ V=56 (GGG (GG R s R ~ O

(i) [ dVoy=(GP(G™) (G")(G") 61340 R R Koo ~ O,

) [ V=55 (G P (GGG SRR Ko Ko ~ O

() [ VoG GG (G R Ry Ko ~ O

1
() [ AVoy=a3 (GG GG IR R K Ko ~ O, (D6)

From the above terms we can see that it is the only first term which is nonzero. Therefore only this term will contribute to the
Lagrangian.

Similarly we found that at O(R*), there are four terms coming from WK 1ijK i Which are listed below:
tixj Y xmt,

() [ @oy=a(G PG GRS R K o ~ [ V(UL

(i) [ dVo/=a(G) (GG (GG R iR KK s ~ O

i) [ dw——gé<Gxx><fo>2<cfm><G”>R;XPRP,,1KU,KN,1, ~ [ o).

) [ =55 (G PGNGHNG R Ry~ [ aVo(V(rIL), (D7)

From Eq. (B7) it is clear that all the three nonzero terms scale as N. Therefore we will keep all nonzero terms in the
Lagrangian.

2. Island surface

Square root of minus of determinant of the induced metric (53) for the island surface scale as N’/!° is given below:

MN"' /g,(N(log(N) — 31og(r)))*/a(r) x'(r)?)
V=g = S 18N ;g, log? 2 —3p*(6r +1)r2
g 144 65/6 19/66’2[@02 ( r9s 108 (r)(r ( r )rh)
+ log(r)(8z(r* = 3b%r}) — 3r*Nsg,) — N g, log(N)(2log(r) 4 1)(r* — 3b%r3)). (D8)
Similar to Hartman-Maldacena-like surface, there are four terms that we obtain from 0()!,0, :
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) 1
(i) / dVo\/—g <(Gxx)2(G”)2 (RthQ + ERPth> RzRSPRQRSx>

N —(r3(13(log(N) = 3log(r))* + 21 (log(N) — 3log(r))* + 9log(r) (6 log(N) — 9log(r))*)\ |
J s VNN (10g(N) = 3 log(r) 2" )

1
11) / dvg\/_g<RthKR RStRxRS + 2RHKth RStRQRSK)

dV g(r —2g, log (N)(log(N) — 121og(r))? —5(1og(N)—9log(r))2(log(N)—3log(r))2)>,
V=9 VRPN /g (log(N) —9log(r)X(10g(N) ~ 3log(r)) " |

1
(iii) dV9\/ -9 < (G™)*G" <RthQ +5 > RPsz> R RSPRQRSx>
)

/d%(ﬂs(F a(r)(a(r) +x'(r)*)):
(iv) dV9\/_9<G (RHMN’CRPMN +;R x NRP[MN> RH”P>

~ [ 40 alr)(atr) + ¥ (). (D9)

We find that (iii) and (iv) terms are the most dominant terms in the large N limit. There are thirteen terms that obtain from
2 . .
aR.a.—ajzoe,th ;K o1 Which are listed below:
XLXxj) XMXI

(1) /dv9 V _g(Gxx)z(Gmm)(G”)éfnRrTSXRjTSlethxml

M2NNfg3 log? (r)(2310og(N) — 72log(r))?
/ Wov=o ( P, (log(N) — 9log<r>>2<log<zv>—3log<r>>6x/<r>2)’

(11) / dV9 V _g(GXX)3<Gii)(ij) (Gmm) (G”>ijxQRthlequml ~ O,

1 . .
(111) / dV9 V _95 (Gxx)Z(Gmm) (G]l)RrTSXRlTSxKxUmel ~ Ov
(iv) / Voy=0) 5 (G™ (G (GRS R K K

VN1, N3 log(r)(23 log(N) ~ 7210g(r))*(log(N) + 181og* (r))v/a(r)(o(r) + (1)
~ f s Pl 10g(N) ~ 3log(r))*¥ (r)2(4x — N, (log(N) — 9 Tog()) )

() [ o35G P GGG G R R Kiom ~ [ ava( D521,

2
. 1
() [ Vo3 (G (G (G R R KoK

N _ M?NN ;gilog®(N)(5log(N) — 196log(r))(23 log(N) — 72 log(r))\/a(r)(e(r) +x'(r)?)
f s rag 5, (10a(N) ~ 9 log(r)*(0a(N) 3 log(r)*<'(r) )
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(Vll) /dV9\/ _g(Gxx)z(Gim)(GII)RXMNleMNxKXIJmeI 0
(viii) / dVor/=g(G™)*(GI)(G™)R™MNIR 35 K 1K sy ~ O,
(ix) / Vor/=G(G V(G (GI)(GM) (G )R 1 R K i K et ~ 0.

1 . .
(x) / dVor/=g5 (GP(G"™)(GMRIMN Ry K i K i

MN/102 N33 32 160 (1) (Tog (N) — 910 lo 3log(r))33\/a( r)?
N/c%\/__g{ 795" log(r)(log(N) %( )2)(,5)(2 ) —3log(r))*\/a(r x'(r)?)

ay g X
. <M4g? log? (r) (log(N) — 12log(r) *(o(r)a (r) + & (r)x'(r)? + a(r)(¢' (r) + 24/ (r)x"(r)))?
646273 r*a(r)?N7 (1og(N) = 3log(r)*3 (a(r) + 2 (r)?)?
() [ Vo= (G (G GR™ Ry K Ko

MN7/10 2N8/3 3/210g( )(log(N) — 91og(r))(log(N ) 3log(r))>3/a(r) x(r)?)
N/dV9\/—_g{ 14400 67671973 2 %' (r)?

" (29M“g§‘ log? (r) (log(N) — 12log(r) (o (r)a (r) + &' (r)x'(r)? + a(r)(¢/ (r) + 24/ (r)x"(r)))?
64673 ra(r)2N7 (1og(N) = 3log(r)*3(a(r) + 2(r)?)?

- 200G5(r)>} ,

- 200G6(r))] :

(xii) /dVgx/——g%(G”) (G”)(G“)(G”)(Gmm)Rme,R,Qx]KX,]me,~/dV9 <le(r)£1>,

1
(Xlll) /dv9\/_g_(Gxx) (G]])(GII)R mXPRPxX]leJmel

N — M2NN ;gllog*(N)(51og(N) — 196 log(r)) (23 log(N) — 72 log(r))\/a(r)(o(r) + x'(r)?)
f i~ et (08— 1o o) oS )

. (D10)

where Gs(r) and Gg(r) are N independent functions. We find that (v) and (xii) terms are the most dominant terms in the
*J,

large N limit. There are thirteen terms that are obtained from Ryl Koxi Koomi:

(1) /dV9V_g(Gtt)z(Gmm)(Gll)5571RtTStRjTS1Kxinx1nl

N _ _MZNNfgf log* (N) log? (r)(23log(N) — 72 log(r))?(log(N) — 27 log(r))\/a(r)(a(r) + x'(r)?)
f v P g, (log(N) — 9Tog () *(og(N) — 31og(r))*+'(r)? )

(i) / dVor/=5(G") (G7)(GI) (G™™)(G™)R 1RO K s Kt ~ .

(111) /dV‘)V (Gn) (Gmm)(Gjl)RtTStRiTSththxml 0
(iv) / VoG5 (GG GR TR 15K K

M3N'3/0g, N2g?? log(r) (23 log(N) — 72 log(r))*(log(N) + 18 1log? (r))y/a(r) (a(r) + x'(r)?)
~ f (- ) log(N) — 9Tog(r)) (10g(N) — 31og(r)) ¥ (" )

El
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(v) /d]@ﬂ%(G”P(G”)(G”)(Gmm)(ij)RjQleszmequmlN/dv9 <W12(r)£2)’
() [ aVoy=a3 (G (GG R Koo~ [ V=

(MZNNfg§10g3 (N)(5log(N)—1961log(r))(231og(N) —72log(r))(log(N) —3log(r) — 1)>y/a(r)(a(r) —|—x’(r)2)>
rtag, af (log(N)—9log(r))*(log(N) —3log(r))°x'(r)? '

(Vll) /dng/ —g(Gn)z(Gim)(Gll)RtMNjRZMNthzijml ~0,

(Vlll) /dv9\/ _g(Gn)z(ij)(Gim)RtMNleMNththxmlNO?
(ix) / dVy/=g(G")*(G")(GY)(G")(G"™)R? 1 Ryjso K i K i ~ 0

( )/dv9\/ (G”> (Glm)(GH)R”MNRIIMNKXUmel

[MNU](’”N?”g?“log(r)<1og<N>—9log< 1)) (log(N) =3log(r))**+/a(r) (o(r) +3'(r)?)
ag ag x'(r)?

~ [ =

) <13M4g§10g2<r><1og<zv>—1zlog<r>>2<a<r>a’<r>+a< Y (1 +aln)(@ () + 2 ()P @)]
646773 a(r)(log(N) ~ 3log(r) (N log(N) = 31og(1) (o(r) + ' (r)?)? "))

(xi) / V=G5 (GG (GHRDR K K

[ MN1072N% 62 1og(r) (log (N) = 9log(r)) (log(N) = 3log(r))*/* /a(r) (a(r) + ' (r)?)
az aé x'(r)2

~ [ =

) <13M4gﬁlog2<r><log<zv>—1zlog<r>>2<o<r>a'<r>+a< (1) +a(r) (o' (1) +2¢ (¥ (1) . )]
646727 ra(r)? (log(N) ~ 310g(r))*(N (log(N) =~ 3log(r))*(a(r) ¥ (r)?)? )L

(i) [ @056 (GG (GG R i Ko~ [ 03 (F582)

1
(Xlll) /dv9\/_g§(Gn) (G/J)<Gll>R thRPtt]th]mel

M2NNfgﬁlog3 (N)(5log(N)—196log(r))(23log(N)—"72log(r)) \/a(r) (o(r)+x'(r)?)
~ [ o ( Pagds, (log(N) —9log(r))* (log(N) —3log(r)*x (1)’ )

: (D11)

where G;(r) and Gg(r) are N independent functions and (v) and (xii) terms are the most dominant terms in the large-N

limit. Similar to Hartman-Maldacena-like surface, there are six terms that we obtain from WR[K)H K o and only first
titj XMXi

term iS nonzero.

(1) /dVQ\/_g(Gxx)z(Gmm>(G”)5215;’5;?5JQRXTSPRQTS1Kxinme N/dv9(U1<r>£3>7
(11) / dV9 Vv _g(Gxx)2(Gii)(ij)(Gmm)(G”)(Gn)éﬁ‘chmeRQithxinxml ~ 07

(i) / Vg /GGG (G)(G)55 848 Rona Ry TSP K K gt ~ 0,
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(iv) / dvgw/— (G¥)? (Gm’”)(G”)(G”)éiTé’S(S{;lRP,x,RXTS K iiK i ~ 0,

(V) / dv‘) V _g(Gxx) (Gn)z(Gii) (Gﬂ)R;nXPRPzthxz]mel ~ O’

. 1
() [ Vo3 (GG (G G R Ry KoK ~ O

Similar to Hartman-Maldacena-like surface, there are four terms that we obtain from

nonzero and they scale as same power of N.

(D12)

*Jy

Ry K,ijK ,; and three terms are

(1) /dVg\/—g(Gxx)z(Gmm)(G”)5£nRxTSXRjTSIKx11meIN/dV9(U1(r)£4)’

(11) /dVg V _g(Gxx)3(Gii)(ij)(G”)(Gmm)ijxQRthlez]mel ~0,

(i) [ dVoy=a; (GGG GRS Ry ohoms ~ [ aVo(V1(1)4)

(IV) /dV9\/:g‘%<Gxx) (Gtt)(GU)(GIZ)R thRPXXJKxUmelN/dV9<V1(r)£4)'

We have multiplied each term by @ +1)

(D13)
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