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Motivated by exploring the thermalization process in relativistic and nonrelativistic holographic field
theories after a nonlocal quench, we investigate some features in the time evolution of the entanglement
wedge cross section (EWCS). This quantity is a possible holographic dual to some nonlocal information
measures such as entanglement of purification. In particular, we focus on the time dependence of the
EWCS during black hole formation in (Dþ 2)-dimensional anti–de Sitter spacetime as well as geometries
with Lifshitz and hyperscaling-violating exponents. A combination of analytic and numerical results for
large symmetric strip shaped boundary subregions shows that the scaling of the EWCS at early times only
depends on the Lifshitz exponent. In addition, this early-growth regime is followed by a linear-growth
regime whose velocity depends on the dimensions of spacetime, the Lifshitz exponent, and the
hyperscaling parameter. This velocity is the same as the entanglement velocity and for nontrivial
dynamical exponent depends on the temperature of the final equilibrium state.
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I. INTRODUCTION

The gauge/gravity duality allows us to quantitatively
study surprising new connections between quantum infor-
mation theory and quantum gravity in recent years, e.g., see
reviews [1–3]. In particular, it is now evident that certain
geometric quantities in the bulk geometry can be related to
the information-theoretic measures of the boundary field
theory. In this context, the entanglement entropy (EE)
associated with a spatial boundary subregion A is deter-
mined by the Ryu-Takayanagi (RT) formula [4]

SA ¼ min
AreaðΓAÞ
4GN

; ð1:1Þ

where ΓA is a bulk minimal hypersurface homologous
to A, i.e., ∂ΓA ¼ ∂A. Moreover, the Hubeny-Rangamani-
Takayanagi (HRT) proposal [5] extends this prescription
to time-dependent situations by considering extremal

hypersurfaces with the same boundary condition. These
proposals have stimulated a wide variety of research
efforts investigating the properties of entanglement and
information measures holographically. An interesting
suggestion in this research program is that the entangle-
ment of mixed states in the boundary theory is encoded in
a certain codimension-two bulk hypersurface which is
called the entanglement wedge cross section (EWCS).
Considering a spatial region A in the boundary theory, the
entanglement wedge is the bulk region corresponding to
the reduced density matrix ρA and whose boundary is
A ∪ ΓA. In particular, when the boundary region is the
union of two disjoint subregions A1 and A2 the boundary
of the entanglement wedge is A1 ∪ A2 ∪ ΓA1∪A2

. For small
separations where the connected configuration is favored,
the EWCS is defined to be the minimal cross sectional
area of the entanglement wedge and is given as follows
[6,7] (see e.g., Fig. 1):

EWðA1; A2Þ ¼ ext
AreaðΣA1∪A2

Þ
4GN

: ð1:2Þ

On the other hand, for large separations, the disconnected
configuration is favored and the EWCS vanishes.
Considering the above definition, different proposals that
make connections between the EWCS and boundary
correlation measures can be recapped as follows [6–9]:
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EWðA1; A2Þ ¼ EPðA1; A2Þ ¼
SRðA1; A2Þ

2

¼ SOðA1; A2Þ − SðA1 ∪ A2Þ;

where EP, SR, and SO are entanglement of purification,
reflected entropy, and odd entropy respectively.1 One may
note that although they are not necessarily equivalent for a
generic state, it seems they are the same for holographic
states. Indeed, the EWCS may probe spacetime properties
that are inaccessible from the perspective of holographic
entanglement entropy (HEE). In particular, HEE is not a
measure of quantum entanglement for a mixed state. This
progress has motivated some interesting and extensive
discussions of holographic correlation measures which
have led to a remarkably rich and varied range of new
insights in both holography and field theory, e.g., [12–42].
At the same time, there has been a great deal of interest in

studying quantum quenches to understand whether and how
quantum matter equilibrates. A prime arena for discussions
of holographic quantum quench has been the Vaidya
spacetime and this will also be the case in the present
paper. This bulk geometry describes the gravitational
collapse of a thin shell of matter to form a black hole
which is dual to the evolution of a far from equilibrium
initial state to a steady state in the boundary theory. Such
shock-wave geometries have already been extensively
studied in the context of holographic entanglement mea-
sures, e.g., [43–51]. It was argued in [46] that the evolution
of EE can be captured by the picture of an entanglement
tsunami, i.e., a wave propagating inward from the boundary
of the entangled region. In this setup, one can derive in
detail several universal features in the evolution of nonlocal
measures in quenched holographic systems. In particular,
for large entangling regions, the evolution of EE experi-
ences different regimes of an early-time quadratic growth,

an intermediate linear growth, and a late-time saturation.
Further, employing the same picture, the nonequilibrium
evolution of other measures such as mutual and tripartite
information has been considered in [50,51]. Related studies
attempting to better understand the evolution of entangle-
ment measures in more general time-dependent bulk geom-
etries have also appeared in [48,49].
In [52], we investigated the holographic proposals con-

cerning the EWCS for Vaidya geometries describing a thin
shell of null matter collapsing into the (dþ 1)-anti–de Sitter
(AdSdþ1) vacuum to form a one-sided black brane. We
considered a symmetric configuration consisting of two
disjoint strips with equal width. A surprising result we
found was that for large entangling regions, the evolution of
the EWCS experiences the same scaling regimes as EE and
the rate of growth ofEW is equal to SA. In 2þ 1 dimensions,
we presented a combination of numerical and analytic
results which support this behavior. Moreover, in higher-
dimensional cases we provided a numerical treatment and
examine the various regimes in the growth of the EWCS.
Despite numerical results for the time dependence of this
quantity, the question of full time evolution and in particular
the rate of growth at intermediate times has not been
thoroughly investigated. Hence, in the present paper, we
employ an analytic treatment to study the full time evolution
of EWCS in higher-dimensional Vaidya geometries. While
this analysis can be done for a generic asymptotically AdS
spacetime, in order to gain better insight into the properties
of EW , we generalize our study to specific nonrelativistic
boundary theories, in particular, those with Lifshitz and
hyperscaling violating exponents.
It is worthwhile to mention that as previously noted

in [48,49], a nontrivial dynamical exponent can affect the
rate of entanglement growth and hence the corresponding
saturation time. We will confirm that (up to a time shift) the
qualitative behavior of HEE and boundary measures dual to
the EWCS is similar even in these nonconformal theories.
Nevertheless, there are some challenges associated with
studying holographic duality in nonrelativistic back-
grounds, see e.g., [53,54]. In particular, the validity of
HRT prescription and the ability to construct a well-defined

FIG. 1. Schematic configuration for computing HMI (left) and the EWCS (right). Here we just demonstrate the connected
configuration where both the HMI and the EWCS are nonzero.

1Recently in [10] it was shown that SR is not monotonically
decreasing under partial trace, and so in general is not a measure
of physical correlations. However, it seems that it is a valid
correlation measure for holographic states as entanglement
wedge nesting suggests [8,11].
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entanglement wedge in the Lifshitz background is ques-
tionable [54]. In the present paper, we naively assume that
the standard prescriptions for computing holographic
entanglement entropy and the definition of the entangle-
ment wedge are valid even in Lifshitz geometry.
This paper is structured as follows: In Sec. II we introduce

the required preliminaries. We briefly review the Vaidya
background with Lifshitz and hyperscaling violating expo-
nents and then we carefully examine the general form of the
EWCS functional in this geometry. Then, in Sec. III we
study in detail the evolution of the EWCS in the formation
of a black brane modeled by the time-dependent geometry
for a null shell collapsing into the AdS vacuum spacetime.
Throughout this section, we consider the large subregion
limit, where analytic formulas for different information
measures can be found. Afterwards, in Sec. IV we focus
on the case where the boundary theory is nonrelativistic and
we apply the same prescription to compute the evolution of
the EWCS. We present an analytic derivation of the effect of
Lifshitz and hyperscaling-violating exponents on entangle-
ment velocity and the early and late-time behavior of the
EWCS. Finally, we discuss some implications of our results,
as well as possible future directions, in Sec. V.

II. SETUP

We are interested in the time evolution of the EWCS in
the presence of an infalling thin null shell in a background
with Lifshitz and hyperscaling-violating exponents. In this
section, we review the background metric and then obtain
the EWCS profile for two disjoint strip regions in the
connected phase (see Fig. 1).

A. Vaidya geometry with Lifshitz and hyperscaling
exponents

In this paper, we consider the following metric which
describes collapsing of a null shell and the formation of a
black brane in the vacuum background with Lifshitz scaling
z and hyperscaling-violating exponent θ

ds2 ¼ r−2
D−θ
D

�
−
fðr;vÞ
r2z−2

dv2 −
2

rz−1
dvdrþ dx2

D

�
;

fðr;vÞ ¼
�
1 v < 0

gðrÞ v > 0
; gðrÞ ¼ 1−

�
r
r0

�
D−θþz

; ð2:1Þ

where we employ the Eddington-Finkelstein-like coordi-
nate, i.e., dv ¼ dt − rz−1 dr

f . One may note that inside the
shell (v < 0) the spacetime is given by hyperscaling-
violation Lifshitz (HSL) metric while the outside region
(v > 0) is an asymptotically HSL black brane. As we
mentioned it may model a sort of global quench in the dual
boundary theory. This metric reduces to the relativistic
AdS-Vaidya geometry for z ¼ 1 and θ ¼ 0. We assume
that this Vaidya-type metric is a solution to Einstein’s

theory with some suitable matter fields. For example,
it was shown that the Einstein-Maxwell-dilaton theory
admits such solution [55]

I ¼ −
1

16πGN

Z
dDþ2x

�
R −

1

2
ð∂ϕÞ2 þ V0eγϕ

−
1

4

X2
i

eλiϕF2
i

�
: ð2:2Þ

It is appropriate to define an effective dimension

d ≔ D − θ þ 1

that for θ ¼ 0 reduces to the dimension of dual boun-
dary QFTd.
At late times, the bulk metric (2.1) describes a black

brane with a horizon at r0. The temperature, thermal
entropy density associated with the horizon, and energy
density [56] are

T ¼ dþ z− 1

4πrz0
; Sth ¼

1

4GN

1

rd−10

; E ¼ d− 1

16πGN

1

rdþz−1
0

:

ð2:3Þ

In what follows we assume that z ≥ 1 and d > 1. It ensures
that the null energy condition is satisfied and the black-
brane solution is thermodynamically stable. Also in this
case the zero-temperature entanglement entropy is consis-
tent with the previous results [57].

B. EWCS in Vaidya background

We are interested in the time evolution of the EWCS
associated with two identical long strips (A1 and A2) on the
boundary (see Fig. 1). We will take them to be of width l,
length l and are separated by distant h. The EWCS is given
by Eq. (1.2) and we assume that h ≪ l, ensures the
entanglement wedge is connected and the EWCS does
not vanish. In this configuration, the entanglement wedge
is bounded by two extremal hypersurfaces anchored to
boundary strips with size 2lþ h and h. In Fig. 1 we denote
these hypersurfaces by Γ2lþh and Γh, respectively.
Moreover, we denote the turning points of Γ2lþh and Γh
by ru and rd respectively. The EWCS can be parametrized
as v ¼ vðrÞ and due to the reflection symmetry about x ¼ 0
the induced metric on ΣA1∪A2

simplified as follows:

ds2ind ¼ r
−2ðD−θÞ

D

�
−ðfðr; vÞv02 þ 2rz−1v0Þ dr2

r2z−2
þ dx2

D−1

�
:

ð2:4Þ

Now using Eq. (1.2) the EW which is proportional to the
extremal area of the corresponding codimension-2 hyper-
surface is given by the following functional
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EW ¼ lD−1

4GN

Z
dr

E

rd−1
; E ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2v0

rz−1
−
fðr;vÞv02
r2z−2

r
: ð2:5Þ

Extremizing the above expression yields the equation of
motion for vðrÞ

∂

∂r

�
rz−1 þ fðr; vÞv0

rdþ2z−3E

�
¼ v02

2rdþ2z−3E

∂f
∂v

: ð2:6Þ

To obtain the extremal hypersurface we need to solve the
above equation by assuming certain boundary conditions

vðrdÞ ¼ vd; vðruÞ ¼ vu; ð2:7Þ

where rd and ru are the turning points of hypersurfaces Γh

and Γhþ2l, respectively. Note that for v ≠ 0, ∂f
∂v ¼ 0 and we

have a conserved quantity as follows:

rz−1 þ fðr; vÞv0
rdþ2z−3E

¼ Q

rdþz−2
0

: ð2:8Þ

Using this fact, we can solve Eq. (2.6) for v0ðrÞ to get

v0� ¼ −
rz−1

f

�
1 ∓ Qðr=r0Þdþz−2

A

�
;

A ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þQ2ðr=r0Þ2ðdþz−2Þ

q
: ð2:9Þ

One may note that Q → −Q implies v� → v∓, so in what
follows without loss of generality, we only consider the v−
branch. Discontinuity of fðr; vÞ requires studying Q in the
HSL region (v < 0) and black-brane region (v > 0) sep-
arately and then matching the results at the point where
the null shell and the EWCS intersect. Note that in the
following we will use the subscripts a and b to refer to
quantities on the HSL and black-brane side, respectively.

1. HSL region (v < 0)

In this case fðr; vÞ ¼ 1 and Eq. (2.9) reduces to

v0− ¼ −rz−1
�
1þQ−rdþz−2

A−

�
; ð2:10Þ

where Q−r
dþz−2
0 ≔ Q and A− ≔ AðQ−r

dþz−2
0 ; rÞjf¼1.

Therefore, the profile of the EWCS becomes

v−ðrÞ ¼ c− −
rz

z
− F ðrÞ; ð2:11Þ

where

F ðrÞ ≔
Z

rQ−r0dþ2z−3dr0

A−
¼ rz

z 2F1

�
1

2
;b; 1þ b;−

rz=b

Q2
−

�
;

ð2:12Þ

and b ≔ z
2ð2−d−zÞ. By imposing the boundary condition

v−ðruÞ ¼ vu we can fix the integration constant as

c− ¼ vu þ
rzu
z
þ F ðruÞ: ð2:13Þ

Note that for d ¼ 2 and z ¼ 1 the above expressions
precisely match with the previous results reported in [52].

2. Black-brane region (v > 0)

Now, let us consider the profile in the black-brane region
where fðr; vÞ ¼ gðrÞ. In this case using Eq. (2.9), one
derives the profile of EWCS in v > 0 region as follows:

vþðrÞ ¼ cþ − GðrÞ −Qþrz0

Z r
r0

rd
r0

du
udþ2z−3

gðuÞAþ
; u ≔

r
r0
;

ð2:14Þ
where Aþ ¼ AðQþ; rÞjf¼g and G is defined as

GðrÞ ≔
Z

dr
gðrÞ ¼ r2F1

�
1; b̄; 1þ b̄;

� r
r0

	
1=b̄
�
; ð2:15Þ

where b̄ ≔ 1
dþz−1. Once again using the boundary condition

vþðrdÞ ¼ vd one can obtain the integration constant

cþ ¼ vd þ GðrdÞ: ð2:16Þ

3. Matching at v = 0

By integrating Eq. (2.6) across the null shell at
vðrwÞ ¼ 0, we obtain the corresponding matching condition

dr
dv






−
−
dr
dv






þ
¼ −

1

2

�
rdw

rdþz−1
0

�
: ð2:17Þ

Solving the above condition, we get the relation between the
conserved quantities, i.e., Q− and Qþ as follows:

Qþ ¼ �
�
rdþz−1
w − 2rdþz−1

0

	
Q− þ rwA−ðrwÞ

2r0
: ð2:18Þ

Without loss of generality in the rest of the paper, we take
the positive sign. On the other hand, the continuity of the
EWCS profile at the intersection point, i.e., vaðrwÞ ¼ 0 ¼
vbðrwÞ implies

vu þ
rzu
z
þ F ðruÞ −

rzw
z
− F ðrwÞ ¼ 0; ð2:19aÞ
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vd þ GðrdÞ − GðrwÞ −Qþrz0

Z r
r0

rd
r0

du
udþ2z−3

gðuÞAþ
¼ 0: ð2:19bÞ

Note that when rd is located in the black-brane region
where vd > 0 one can use dt ¼ dvþ rz−1 dr

g and t ¼ vd þ
GðrdÞ to express the boundary time in terms of other
parameters as follows:

t ¼ GðrwÞ þQþrz0

Z rw
r0

rd
r0

du
udþ2z−3

gðuÞAþ
: ð2:20Þ

These conditions are sufficient to obtain the EWCS in terms
of vu, vd, as well as rw which are related to the boundary
parameters l, h, and t, respectively. So in principle, by
using them one may obtain the contribution to the EWCS in
both regions

Ẽ−
W ¼

Z
ru

rw

r1−ddr
A−

; ð2:21aÞ

Ẽþ
W ¼ 1

rd−20

Z rw
r0

rd
r0

u1−ddu
Aþ

; ð2:21bÞ

where we have defined EW ≔ lD−1

4GN
ẼW for simplicity. Finally

using these equations we can read EW as

EW ¼ E−
W þ Eþ

W: ð2:22Þ

In the next sections following [58], we will study the time
evolution of EW in three different scaling regimes. Before
we proceed further, let us comment on an assumption that
greatly simplifies the calculation.

C. Notes on Q− and Q+

In what follows we mainly consider a specific limit
where the characteristic size of the boundary entangling
regions is large compared to the inverse temperature, i.e.,
lT1=z ≫ hT1=z ≫ 1. Indeed, we will argue that Q− ≈ 0 in
this limit. It leads to a great simplification in the

semianalytic results for EW. To show this, first, note the
relation between rw and rc. These quantities indicate
positions where the null shell intersects ΣA1∪A2

and
Γ2lþh, respectively (see Fig. 2). It is easy to show that
rzc ¼ zvu þ rzu which simplifies Eq. (2.19a) as follows:

rzw − rzc ¼ zF ðruÞ − zF ðrwÞ:

Note that the null shell intersects the EWCS at rw and in
general rw ≠ rc but one may expect that rc ≈ rw. Indeed,
our numerical results confirm this expectation see, e.g.,
Fig. 3. Based on this figure, when the connected configu-
ration is always favored for any boundary time, these
quantities precisely match at early and intermediate times.
On the other hand, when the disconnected configuration is
favored at late times, although at early times rc matches
with rw, the deviation between them becomes more pro-
nounced as time evolves. Further, by expanding the hyper-
geometric function in Eq. (2.12), it is easy to show that

rzw
z
−
rzc
z
¼
X∞
n¼0

C
−1
2

n
rpn
u − rpn

w

pn
Q2nþ1

− ;

pn ¼ 2nðd − 1Þ þ dþ 2ðz − 1Þðnþ 1Þ; ð2:23Þ

where C
−1
2

n ¼ Γð1=2Þ=Γðnþ 1ÞΓð1=2 − nÞ. So for rc ≈
rw ≪ ru this equation requires Q− → 0. Then from
Eq. (2.18) we get

Q− ≈ 0 and Qþ ≈ −
rw
2r0

; ðrw ≪ ruÞ: ð2:24Þ

In the following sections, we will employ these relations
to study the scaling of EW during the early and inter-
mediate stages of time evolution.
However, when rw ≈ ru, we cannot assume Q− ¼ 0.

Indeed, in this situation, Qþ ≈ 0 and Q− ≠ 0. To see this,
note that as rw → ru the Γ2lþh settles down to its final static
configuration as it lies in the black-brane geometry and
hence t ≈ vu þ GðruÞ. On the other hand, the latter should
be consistent with Eq. (2.20) upon substituting rw ≈ ru

FIG. 2. Schematic configurations for HRT and EWCS hypersurfaces corresponding to the connected phase where the separation
between the boundary entangling regions is small. Outside the collapsing shell (indicated in dashed purple), i.e., v > 0, the
hypersurfaces propagate in an AdS black-brane spacetime. On the other hand, in v < 0 region, they propagate in a pure AdS geometry.
Left: At early times the null shell lies near the boundary of the spacetime and Σ does not intersect the shell.Middle: During intermediate
stages of evolution Σ crosses the null shell. Right: At the late-time Σ lies entirely in black-brane geometry.
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vu þ GðruÞ ¼ GðruÞ þQþrz0

Z ru
r0

rd
r0

du
udþ2z−3

gðuÞAþ
: ð2:25Þ

Now, we note that vu ¼ vðru → rwÞ ≈ 0 and then the above
equation implies Qþ → 0. In this situation, by solving
Eq. (2.18) for Qþ ¼ 0 one obtains

Q2
− ≈

r2u

4rdþz−1
0

�
rdþz−1
0 − rdþz−1

u

	 ; and

Qþ ≈ 0; ðrw ≈ ruÞ: ð2:26Þ

As we will argue, this result allows us to explore the
saturation of EW as the EWCS lies entirely in the black-
brane region.

III. EWCS INAdS BLACKBRANE (z = 1, θ = 0, d > 2)

We shall now discuss the time evolution of the EWCS in
the various regimes with a collapsing shell of matter in
asymptotic AdS spacetime which describes a relativistic
quantum quench. As we explained in the previous section,
we are interested in the connected configuration where
EWCS is nontrivial. We also focus on the regime where
the null shell intersects the EWCS (see Fig. 2). In such
circumstances, we investigate three different regimes:
(i) Early growth describes the behavior of EW immediately
after the null shell passes through the rd. So in this regime,
we should assume rd ≲ rw; (ii) Linear growth characterizes
situation where ru ≫ rw ≫ rd; (iii) Saturation which
shows how the EW reaches to its equilibrium value.
We remind the reader that a similar study for d ¼ 2 has

been done in [52], thus here we just focus on d ≥ 3.
Moreover, in the next section, we discuss the effects of z
and θ on the EWCS evolution by exploring the HSL
background.

A. Early growth

As we just mentioned, the collapsing shell does not
intersect Σ at very early time (see Fig. 2). Although, the
entanglement entropy starts its early growth during this
period of time [58], the EWCS does not change and is given
by E−

W. So here, by early growth, we mean the time
evolution of the EWCS right after the null shell intersects
Σ. To compute the time dependence of EW at early time, we
suppose rd ≲ rw and rd ≪ r0 ≪ ru. It allows us to consider
rw ¼ rd þ δ where δ ≪ rd ≪ r0. Moreover, the large
interval r0 ≪ ru lets to use Eq. (2.24) in order to expand
Eq. (2.21b) up to the first order that depends on r0

Ẽþ
W ¼ δ

rd−1d

−
ðd − 1Þ

2

δ2

rdd
þ δ2 þ 2rdδ

4rd0
þO

�
δ3

rdþ1
d

;
δrdþ1

d

r2d0

�
:

ð3:1Þ

On the other hand, we may obtain E−
W piece by applying

Q− ¼ 0 in Eq. (2.21a)

Ẽ−
W ¼ 1

ðd − 2Þrd−2w
−

1

ðd − 2Þrd−2u
þO

�
Q

d−2
d−1−
	
: ð3:2Þ

Further, Eq. (3.1) suggests that one should expand E−
W

around rw ¼ rd þ δ up to Oðδ3Þ

Ẽ−
W ¼ 1

ðd − 2Þrd−2d

−
1

ðd − 2Þrd−2u
−

δ

rd−1d

þ ðd − 1Þ
2

δ2

rdd

þOðδ3Þ þO
�
Q

d−2
d−1−
	
: ð3:3Þ

Nowwe are equipped with all we need to calculate the early
growth of the EWCS in terms of δ as follows:

ẼW ¼ 1

ðd − 2Þrd−2d

−
1

ðd − 2Þrd−2u
þ δ2 þ 2rdδ

4rd0
þOðδ3; rddÞ:

ð3:4Þ

FIG. 3. Time evolution of rd, ru, rw, and rc for z ¼ 1. Clearly, at the early time we have rw ≈ rc and the deviation between
them becomes more pronounced near the saturation time. Left: d ¼ 2, h ¼ 1, and l ¼ 4.5. Right: d ¼ 3, h ¼ 0.4, and l ¼ 1.18. Here
we set r0 ¼ 1.
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However, we are interested in the explicit dependence of
the EWCS on boundary time. Therefore we expand
Eq. (2.20) to get δ in the terms of t

t ¼ δþ rd þOðrdd; rd−1d δ2Þ: ð3:5Þ

Substituting the above result into Eq. (3.4) we obtain the
time scaling of EW in this regime as

ẼW ≈ Ẽ−
Wðrd; ruÞ þ

t2 − r2d
4rd0

: ð3:6Þ

The first term describes the ẼW in the static AdS space and
so one may call it the vacuum contribution. By subtracting
it we obtain one of our main results

ΔEW ≈
πld−2E
d − 1

�
t2 −

h2

c2

�
; ð3:7Þ

where the energy density of the boundary state E is defined
in Eq. (2.3). We also use h ≈ crd to fully express the final
result in terms of the boundary quantities.2 The above result
shows that the early growth of EW starts at t ∼ h, in contrast
to entanglement entropy where its early growth begins at
t ¼ 0. Moreover, as one may expect, for h → 0 this result
matches with the early growth of entanglement entropy [58].

B. Linear growth and saturation

Here we survey regime corresponds to h ≪ r0 ≪ t ≪ l
where rw ≪ ru. First, let us recall Eqs. (2.21b) and (2.20) as

Ẽþ
W ¼ 1

rd−20

Z rw
r0

rd
r0

u1−ddu
Aþðu; uwÞ

;

t ¼ GðrwÞ þQþr0

Z rw
r0

rd
r0

ud−1du
gðuÞAþðu; uwÞ

; ð3:9Þ

whereAþ depends on uw via Eq. (2.18). Now let us suppose
that there is a minimum for Aþ at um and so
∂uAþðuÞjum

¼ 0. Moreover, we also assume that at u ¼
um there is a uw ¼ u⋆ such thatAþðum;u⋆Þ ¼ 0. Indeed,
our numerical results confirm these assumptions see e.g.,
Fig. 4. Based on this figure, we see that during the evolution,
rw approaches r⋆w corresponds to the linear-growth regime.

In this plot, we consider the values of l and h such that
the disconnected configuration is favored at late times.
Hence the saturation is discontinuous and the corresponding
extremal hypersurface jumps at some saturation time where
each curve stops. Moreover, it is clear that, as l increases,
also the linear regime increases. Based on these observa-
tions the dominant part of the integrals in Eq. (3.9) comes
from the region near um and u⋆. It is similar to what
happens in the time evolution of HEE as discussed in [58].
Existence ofu⋆ impliesQ⋆þ ¼ Qþju⋆ . Thus, by expanding
Aþ about u ¼ um and u⋆ (or Qþ), we get

Aþ ≈ c1ðu −umÞ2 þ c2ðQ⋆þ −QþÞ; ð3:10Þ

where

c1 ≔
1

2
∂
2
uAþjum;u⋆ ; c2 ≔ −∂QþAþjum;u⋆ ;

Q⋆þ ≔ um

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 2Þdp
2ðd − 1Þ ; um ≔

�
2ðd − 1Þ
d − 2

�
1=d

:

Using Eq. (3.10) we estimate the integral of EW as

Ẽþ
W ¼ um

1−d

rd−20

Z rw
r0

rd
r0

du
Aþ

: ð3:11Þ

On the other hand, inserting Eq. (3.10) in Eq. (3.9) and
simplify the resultant equation yields

t − t⋆ ≈
Q⋆þr0um

d−1

gðumÞ
Z rw

r0

rd
r0

du
Aþ

; ð3:12Þ

where t⋆ ≔ Gðr⋆wÞ. The above results imply the linear
growth of EW in this regime

ΔEW ≈ ld−2SthVWðt − t⋆Þ; ð3:13Þ

where ΔEW ¼ EW − E−
Wðr⋆w; ruÞ and then the velocity VW

is given by

VW ≔
gðumÞ

Q⋆þum
2d−2 ¼

�
d − 2

2ðd − 1Þ
�d−1

d

ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r
: ð3:14Þ

One may note that the linear behavior is similar to the
growth of entanglement entropy. In addition, the expression
for VW is the same as the entanglement velocity defined
in [58].
As the null shell approaches the turning point ru, the

EWCS falls into the balk brane region. So the value of EW
should reduce to that in the static black-brane geometry. In
other words, the EWCS saturates its equilibrium value
which is the same as EW at the thermal state. To see this,
note that Eq. (2.21a) shows E−

W → 0 as rw → ru. In
addition, we recall Eq. (2.26) in this regime and by

2For rd ≪ r0 (low temperature limit hT1=z ≪ 1)

rd ≈
h
c

 
1 −

ffiffiffi
π

p
ðdþ zÞcdþz

Γ
�
2dþz−1
2ðd−1Þ

	
Γ
�

dþz
2ðd−1Þ

	 �h
r0

�
dþz−1

!
;

c ¼
2
ffiffiffi
π

p
Γ
�

d
2ðd−1Þ

	
Γ
�

1
2ðd−1Þ

	 : ð3:8Þ
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employing Qþ ¼ 0 in Eq. (2.21b) we get the EW for the
black-brane geometry [13]

EW ¼ lD−1

4GN

Z
ru

rd

r1−ddrffiffiffiffiffiffiffiffiffi
gðrÞp : ð3:15Þ

It is worthwhile mentioning that the above analysis works
when the connected configuration is always favored for any
boundary time during the thermalization and the resultant
EW continuously saturates to the final equilibrium value
given by Eq. (3.15). However, we should also remark that
when the disconnected configuration is favored, the late-
time behavior of the EWCS changes such that it displays a
discontinuous transition and immediately saturates to zero.

IV. EWCS IN HLS BLACK BRANE (z ≠ 1, θ ≠ 0)

In this section, we generalize our studies to holographic
theories with general dynamical critical exponent z and
hyperscaling violation exponent θ. Employing the analysis

we have outlined in the previous section we will be able to
explore a variety of scaling regimes in the time evolution of
EWCS. As we will see its behavior is qualitatively similar
to HEE previously discussed in [48,49].

A. Early growth

As we explain in the previous section for z ¼ 1, at early
times we expect that rw ≈ rc. Indeed, our numerical results
show that this behavior holds even in the nonrelativistic
case, see e.g., Fig. 5. In this case, rw always coincides with
rc for any boundary time. Interestingly, comparing these
results with the results depicted in Fig. 3, we see that rw and
rc will be in complete agreement if we choose larger values
of z. Recall that at early times, i.e., t ≪ rz0, the shell does
not reach Σ which lies entirely in HLS geometry, and thus
the EWCS is a fixed constant given by the vacuum value.
Let us start from Eq. (2.21a) and expand it up to the first
term that depends on r0

Ẽþ
W ≈

1

ðd− 2Þrd−2d

−
Xzþ1

n¼0

C2−dn

d− 2

δn

rdþn−2
d

þ ðrd þ δÞzþ1 − rzþ1
d

2ðzþ 1Þrdþz−1
0

;

ð4:1Þ

where Cmn denotes the binomial coefficient. It suggests that
one should expand Eq. (2.21b) around rw ¼ rd þ δ up to
Oðδzþ2Þ

Ẽ−
W ≈

Xzþ1

n¼0

C2−d
n

d − 2

δn

rdþn−2
d

−
1

ðd − 2Þrd−2u
: ð4:2Þ

Now, using ẼW ¼ Ẽ−
W þ Ẽþ

W we get

ẼW ≈ Ẽ−
Wðrd; ruÞ þ

ðrd þ δÞzþ1 − rzþ1
d

2ðzþ 1Þrdþz−1
0

: ð4:3Þ

To obtain δ as a function of time we employ Eq. (2.20) for
frd; rwg ≪ fru; r0g and assume rw ¼ rd þ δ to read

FIG. 4. ðrwðtÞ; ruðtÞÞ for different values of l with h ¼ 2.1 and
z ¼ 1. During the evolution, rw approaches r⋆w corresponds to the
linear-growth regime. For these values of l and h the discon-
nected configuration is favored at late times and the extremal
hypersurface jumps at some saturation time where each curve
stops. Here we set r0 ¼ 1.

FIG. 5. Evolution of rd, ru, rw and rc for z ¼ 2. Clearly, rw always coincides with rc for any boundary time. Left: d ¼ 2, h ¼ 1, and
l ¼ 4.5. Right: d ¼ 3, h ¼ 0.4, and l ¼ 1.18. Here we set r0 ¼ 1.
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δ ≈ ðztÞ1z − rd: ð4:4Þ

It allows us to express the time evolution as

ΔEW ≈
2πlD−1E

ðd − 1Þðzþ 1Þ
�
ðztÞ1þ1

z −
�
h
c

�
zþ1
�
; ð4:5Þ

wherec is defined in Eq. (3.8). For z ¼ 1, this result reduces
to that for Vaidya-AdS Eq. (3.7). Moreover, one may note
that the scaling at the early time just depends on the Lifshitz
exponent z and is independent of the hyperscaling-violating
exponent θ. It is worth noting that in h → 0 limit, it reduces
to HEE [48,49].

B. Linear growth and saturation

Here we follow the same steps as in Sec. III B to
figure out time scaling of EWCS for h ≪ r0 ≪ t1=z ≪ l
where frw; rcg ≪ ru. Again, in the presence of θ and z
we consider Aþ that has a minimum at um and
Aðum;u⋆Þ ¼ 0. Our numerical results confirm these
assumptions see e.g., Fig. 6. We see that during the
evolution, rw approaches r⋆w in the linear-growth regime.
Using the same expansion as Eq. (3.10) one finds

um ¼
�ðdþ z − 2Þ

dþ z − 3

� 1
dþz−1

;

Q⋆þ ¼ −um

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdþ z − 3Þðdþ z − 1Þp
2ðdþ z − 2Þ : ð4:6Þ

Once again, these assumptions simplify expressions for
Eþ
W and t − t⋆ as follows:

Eþ
W ≈

2lD−1r0
um

d−1 Sth

Z rw
r0

rd
r0

du
Aþ

;

t − t⋆ ≈
Q⋆þrz0um

dþ2z−3

gðumÞ
Z rw

r0

rd
r0

du
Aþ

: ð4:7Þ

Now combining the above two equations yields the
following:

ΔEW ≈ lD−1Sth
2gðumÞ

Q⋆þum
2dþ2z−4rz−10

ðt − t⋆Þ: ð4:8Þ

Expressing this formula in terms of the boundary quan-
tities yields

ΔEW ≈ lD−1SthVWðt − t⋆Þ; ð4:9Þ

where the velocity of the linear growth depends on both z
and θ (via d ¼ D − θ þ 1) as follows:

VW ¼
�

4πT
dþ z − 1

�z−1
z
�

dþ z − 3

2ðdþ z − 2Þ
�dþz−2

dþz−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ z − 1

dþ z − 3

r
:

ð4:10Þ
We note that for z ≠ 1 the above velocity depends on the
temperature of the final equilibrium state. Interestingly it
is just the velocity of the linear growth for entanglement
entropy in the presence of Lifshitz and hyperscaling-
violating exponents [48,49]. Indeed, in these references
the final result for HEE in the linear growth regime was
written in terms of the horizon radius [similar to Eq. (4.8)],
thus the first factor in Eq. (4.10) was neglected.

C. Saturation

As we explained in the previous section for the relativ-
istic case, when the null shell reaches the turning point of
Γ2lþh, the EWCS in the nonrelativistic background also
saturates its equilibrium value. As far as the connected
configuration is favored, the resultant value of EW is given
by Eq. (3.15) while for a disconnected configuration, it
vanishes abruptly. In Fig. 7 we show the evolution of

FIG. 6. ðrwðtÞ; ruðtÞÞ for different values of l with h ¼ 2.1 and
z ¼ 2. Similar to the relativistic case rw coincides with r⋆w in the
linear-growth regime. The saturation at late times is discontinu-
ous. Here we set r0 ¼ 1.

FIG. 7. Evolution of the EWCS for different values of z. Here
we set h ¼ 2.1;l ¼ 4, and r0 ¼ 1.
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EWCS for different values of the dynamical exponent when
Σ becomes trivial at late times.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we have studied the evolution of informa-
tion measures dual to the EWCS after a global quantum
quench in holographic theories. In our investigations, we
have been focused on both relativistic boundary theories as
well as non-relativistic ones which has nontrivial Lifshitz
and hyperscaling-violating exponents. We present a com-
bination of analytic and numerical results for symmetric
strip-shaped boundary subregions which enable us to study
different regimes of evolution during the thermalization
process.
In the limit of large entangling regions, we realize that the

time evolution of EWCS in relativistic theories is charac-
terized by three different scaling regimes; an early time
quadratic growth, an intermediate linear growth and a late-
time saturation. We found that as the width of the boundary
region becomes larger, the region with linear growth
becomes more pronounced. Further, in theories with non-
trivial dynamical and hyperscaling-violating exponents,
the general behavior of the EWCS is very similar to the
relativistic case, but in this case, the scaling of the initial
growth is not quadratic and depends on z. More explicitly, in
this regime we found EW ∝ t1þ

1
z which show that the scaling

of EWCS becomes less pronounced when the dynamical
exponent became large. In particular, in z → ∞ limit we
have a linear growth regime even in early times. On the
other hand, during the intermediate stage of time evolution,
EWCS exhibits a linear scaling whose coefficient depends
on the thermal entropy density of the final equilibrium
state. Motivated by this linear growth and in analogy to the

previous results for HEE and the EWCS [52,58] we define a
rate of growth

RWðtÞ≡ 1

Sthld−2
dEW

dt
: ð5:1Þ

Using Eqs. (4.5) and (4.9) we find that for the HSL
background

RWðtÞ ¼
�

2π
d−1

E
Sth

ðztÞ1z t ≪ r0 ≪ l

VW r0 ≪ t ≪ l
; ð5:2Þ

where the entanglement velocity is given by Eq. (4.10).
Specifically, We have shown that in nonrelativistic theories
i.e., z > 1 this velocity depends on the temperature of the
final equilibrium state. Indeed, we observe that VW ∝ T

z−1
z

and hence the larger the value of the temperature is, the
faster the EWCS grows in time. Moreover, in the asymptotic
limit z → ∞ the rate of growth has a linear dependence on
temperature. An interesting question is if either of these
behaviors can be extracted from field theory calculations of
various boundary information quantifiers dual to the EWCS.
Indeed, the time evolution of EE and some other related
measures for nonrelativistic field theories with nontrivial
Lifshitz exponent has been studied in [59–61]. It would be
interesting to figure out what the universal features of
entanglement and information evolution in these theo-
ries are.
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