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We elaborate on the off-shell superspace construction of curvature-squared invariants in minimal five-
dimensional supergravity. This is described by the standard Weyl multiplet of conformal supergravity
coupled to two compensators being a vector multiplet and a linear multiplet. In this setup, we review the
definition of the off-shell two-derivative gauged supergravity together with the three independent four-
derivative superspace invariants defined in Butter et al. [J. High Energy Phys. 02 (2015) 111]. We provide the
explicit expression for the linear multiplet based on a prepotential given by the logarithm of the vector
multiplet primary superfield. We then present for the first time the primary equations of motion for minimal
gauged off-shell supergravity deformed by an arbitrary combination of these three four-derivative locally
superconformal invariants. We also identify a four-derivative invariant based on the linear multiplet
compensator and the kinetic superfield of a vector multiplet, which can be used to engineer an alternative
supersymmetric completion of the scalar curvature squared.
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I. INTRODUCTION

Almost five decades after the first (two-derivative) super-
gravity was constructed (for N ¼ 1 supersymmetry in four
dimensions), higher-order locally supersymmetric invariants
are still largely unknown. Higher-order curvature terms play,
however, a significant role in string theory, where quantum
corrections take the form of an infinite series potentially
constrained by supersymmetry order by order in the string
tension α0 and the string coupling gs. Many open problems
in string theory, for example, its vacua structure, are
unresolved due to the lack of information about the full
quantum corrected supergravity effective action. The com-
plexity of such an effective theory is even made worse by the
fact that the purely gravitational higher-curvature terms
are related by supersymmetry to contributions depending
on p-forms, which describe part of the string spectrum.
These terms, which have not yet been systematically under-
stood, play an important role in studying, for example, the
moduli in compactified string theory and the low-energy

description of string dualities; see, e.g., [1–3]. In the
context of string-inspired holographic dualities, such as
the AdS=CFT, higher-order 1=N corrections in quantum
field theories translate into higher-curvature terms on the
gravity side, making these contributions fundamental for
precision tests in AdS=CFT. New interesting analyses on
this topic have been performed in the last few years—see, for
example, [4–12] and references therein.
One obstacle to constructing locally supersymmetric

higher-order invariants is that often supersymmetry is only
realized on-shell, meaning the symmetry algebra closes by
using equations of motion. In on-shell approaches—which
are, e.g., typically used in 10- and 11-dimensional theories—
one needs to intertwine the construction of higher-order
invariant terms in the Lagrangian of interest with a system-
atic and consistent deformation of the supersymmetry trans-
formations, making the problem remarkably involved. This
obstacle is simplified by using “off-shell supersymmetry,”
where one introduces extra (auxiliary) degrees of freedom to
obtain supersymmetric multiplets possessing model-inde-
pendent transformation rules. In a low number of space-time
dimensions (D), in particular, D ≤ 6, off-shell techniques
are by now well developed and understood for up to eight
real supercharges—see [13–19] for reviews of off-shell
approaches to supersymmetry and supergravity. In these
cases, the construction of supergravity higher-derivative
invariants can, in principle, be systematically approached.
A restricted list of references using off-shell approaches to
construct locally supersymmetric higher-derivative invari-
ants includes [20–46].
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The scope of our paper is to enhance the classification of
off-shell curvature-squared invariants of minimal five-
dimensional (5D) supergravity. Minimal on-shell 5D super-
gravity was introduced four decades ago in [47,48], and the
first off-shell description was given in [49] by the use of
superspace techniques. Since then, 5Dminimal supergravity
and its matter couplings have been extensively studied at the
component level, both in on- [50–53] and off-shell [54–63]
settings. The superspace approach to general off-shell 5D
N ¼ 1 supergravity-matter systems has then been devel-
oped in [20,64–66]; see also [67] for a recent local super-
twistor description of 5D conformal supergravity.
In our paper, we will specifically use the 5D N ¼ 1

conformal superspace approach of [20].1 This approach
merges advantages of the 5D superconformal tensor calculus
of [57–63] with the superspace approaches of [49,64–66]. In
the superconformal setup (both in components and super-
space), one enlarges the supergravity gauge group to be
described by local superconformal transformations, plus
potentially internal symmetries. Local Poincaré supersym-
metry is then recovered by using an appropriate choice of
compensating multiplets that are used to gauge fix extra
nonphysical symmetries within the conformal algebra. For
instance, in this setup, the off-shell formulation of minimal
5D supergravity is achieved by coupling the standard Weyl
multiplet of 5D conformal supergravity to two off-shell
conformal compensators: a vector multiplet and a hyper-
multiplet, the latter conveniently described by a linear
multiplet. These will be the off-shell multiplets used in
our paper. Within this setup, locally supersymmetric com-
pletions of the Weyl tensor squared and the scalar curvature
squared were constructed for the first time, respectively,
in [25] and [32] by using component fields techniques. Up to
total derivatives, a generic combination of curvature-squared
terms in five dimensions should include also a Ricci tensor-
squared invariant. A third independent locally superconfor-
mal invariant that includes Ricci squared was indeed
constructed in superspace in [20] by using a 5D analog
of the “log multiplet” construction in 4D N ¼ 2 super-
gravity of [33]. However, due to the computational complex-
ity of the log multiplet in five dimensions, the component
analysis of this invariant has not appeared so far—in a
follow-up paper, we will report on the component structure
of this invariant, which has been computed by making use of
the computer algebra program Cadabra [72,73].
Note that the conformal approach described above is not

unique. In five dimensions it is known that an efficient
setup to describe general supergravity-matter couplings
make use of a vector-dilaton Weyl multiplet as a multiplet

of conformal supergravity in place of the standard Weyl
one [59,61].2 A remarkable property of systems based on
the use of a 5D vector-dilaton Weyl multiplet, which is
related to the Poincaré supergravity first introduced in [76],
is the simplicity to define a third locally supersymmetric
curvature-squared invariant. In fact, by employing a map
between fields of the vector-dilaton Weyl multiplet and an
off-shell vector multiplet, in [27] a locally supersymmetric
extension of the Riemann tensor squared was constructed (a
construction that, however, is not applicable for a standard
Weyl multiplet). This, together with the Weyl-squared
invariant of [25], was sufficient for Ozkan and Pang to
construct in [30,32] a locally supersymmetric extension of
the Gauss-Bonnet combination, which is expected to play a
key role in the description of the first α0 corrections to
compactified string theory [77,78].
Despite the remarkable features mentioned above, two

important disadvantages of the use of a vector-dilaton Weyl
multiplet are that (i) the spectrum of the on-shell theory does
not precisely match the one of minimal Poincaré super-
gravity as, in fact, it leads to an extra on-shell physical
multiplet that includes a scalar (dilaton) field; and (ii) it is not
possible to describe gauged supergravity and then anti–de
Sitter (AdS) supergravity.3 This second limitation has a clear
impact if one is interested in using off-shell supergravity in
the study of AdS=CFT. Indeed, the authors of [8,11,12]
employed a formulation of minimal gauged supergravity in
five dimensions based on the standard Weyl multiplet, for
which, however, they could only use two of the three
independent invariants, the ones of [25,30,32], explicitly
known in terms of the component fields. To this regard, it
is worth explaining that, as first discussed in [4], see
also [5,8,11,12], the use of two invariants might suffice in
five dimensions since a curvature-dependent redefinition
of the metric can reabsorb one of the three curvature-
squared terms. It remains, however, a nontrivial open
problem to prove this statement for whole locally super-
symmetric invariants (e.g., including fermions) and to have
clear control of the supersymmetry transformations under

1Conformal superspace was originally introduced by D. Butter
for 4D N ¼ 1 supergravity in [68] and then extended to other
space-time dimensions 2 ≤ D ≤ 6 for various amounts of super-
symmetry in [20,38,41,69–71]—see also [18,19] for recent
reviews.

2The vector-dilaton Weyl multiplet terminology is used here
to stress that the variant multiplet of conformal supergravity
in [59,61] is defined as an on-shell vector multiplet coupled to
the standard Weyl multiplet. It was recently shown in [74,75]
that an on-shell hypermultiplet in a standard Weyl multiplet
background can be reinterpreted as yet another new variant Weyl
multiplet of off-shell conformal supergravity, which was re-
ferred to as hyperdilaton Weyl.

3It has been proposed in [79], and successively described also
in superspace in [20], how to gauge a system based on the vector-
dilaton Weyl multiplet by appropriately deforming the constraint
of the on-shell vector multiplet. However, so far, this construction
has not been systematically studied as for gauged supergravities
based on the standard Weyl multiplet, including curvature-
squared invariants. Interestingly, the hyperdilaton Weyl multiplet
of [74,75] has no apparent issues concerning gauging, at least for
matter systems not including extra physical hypermultiplets.
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this redefinition. All three invariants might also play a role
to construct general higher-derivative invariants beyond
four derivatives. It is also worth mentioning that the related
recent analysis of [9] was based on the three independent
curvature-squared invariants of [25,27,30,32] defined
using a vector-dilaton Weyl multiplet. However, it remains
unclear to us whether the analysis of [9] might have some
issues with supersymmetry, due to the constraints in
defining the gauging (or, equivalently, the cosmological
constant term) in a vector-dilaton Weyl formulation.
Considering the potential subtleties in the recent studies

in [5,8,9,11,12] it is natural to look back at [20] and
elaborate on properties of the three independent curva-
ture-squared invariants for minimal supergravity con-
structed in superspace. A fundamental property of these
locally superconformal invariants is that they can all be
constructed by using a standard Weyl multiplet, making
straightforward their addition to the 5D minimal off-shell
two-derivative gauged supergravity theory. In this paper, we
then start to report on new results based on these invariants.
More specifically, we will present here detailed expressions
of all the composite primary superfields associated with
each invariant—including a new expression for the log
multiplet—which can be readily used for component
analyses. We will then describe the primary equations of
motion in superspace that describe minimal 5D gauged
supergravity deformed by an arbitrary combination of three
curvature-squared invariants. Our results are defined in
superspace, but they can be straightforwardly translated in
components by using the analysis of [20]. In particular, since
all the expressions are fully covariant and described explic-
itly in terms of composites of descendants of the various
multiplets, one could, for example, straightforwardly obtain
the whole set of deformed supergravity equations of motion
by the successive action ofQ supersymmetry. This will then
be a new step toward several applications of the three locally
superconformal invariants of [20]. Moreover, we also
introduce an alternative four-derivative invariant based on
the linear multiplet compensator and the kinetic superfield of
the vector multiplet compensator. This can be used to
engineer a scalar curvature-squared invariant also in alter-
native off-shell supergravities as, for example, the formu-
lation based on the recently introduced 5D hyperdilaton
Weyl multiplet [75].
Our paper is organized as follows. In Sec. II, we describe

the structure of 5D N ¼ 1 superconformal multiplets that
will be used in this work. In Sec. III we give the salient
details of [20] concerning the superspace construction of
various locally superconformal invariants (including cur-
vature-squared ones), which will play the role of action
principles. One of our new results in Sec. III includes the
expression of a composite primary multiplet, which defines
the log multiplet curvature-squared invariant. Section IV
contains the main results of our paper: the superconformal
primary equations of motion of all the curvature-squared

terms for the minimal 5D gauged off-shell supergravity
based on the standard Weyl multiplet. An alternative
construction of a scalar curvature-squared invariant is
presented in Sec. V. Our notation and conventions corre-
spond to that of [20] (see also [75], where a handful of
typos from [20] were fixed).

II. SUPERCONFORMAL MULTIPLETS IN 5D
N = 1 SUPERSPACE

In this section, we review several superconformal mul-
tiplets that will serve as building blocks for the various
curvature-squared invariants presented in this work. After
describing the standard Weyl multiplet of conformal super-
gravity in 5DN ¼ 1 conformal superspace, we move on to
the discussion of the Abelian vector and off-shell linear
multiplets. Here we make use of the approach and results
given in [20]. We refer the reader to [49,64–66,80–83] for
other works on flat and curved superspace and off-shell
multiplets in five dimensions.

A. The standard Weyl multiplet

The standard Weyl multiplet of 5D N ¼ 1 conformal
supergravity [61] is associated with the gauging of the
superconformal algebra F2ð4Þ. The multiplet contains 32þ
32 physical components described by a set of independent
gauge fields: the vielbein ema, the gravitino ψm

i
α, the SUð2ÞR

gauge field ϕm
ij, and a dilatation gauge field bm. The other

gauge fields associated with the remaining gauge sym-
metries—the spin connection ωm

ab, the S-supersymmetry
connection ϕm

i
α, and the special conformal connection

fma—are composite fields, i.e., they are algebraically deter-
mined in terms of the other fields by imposing constraints on
some of the curvature tensors. The standard Weyl multiplet
also comprises a set of covariant auxiliary fields: a real
antisymmetric tensor wab, a fermion χiα, and a real auxiliary
scalar D.
The 5D N ¼ 1 conformal superspace is parametrized

by local bosonic ðxmÞ and fermionic ðθiÞ coordinates
zM ¼ ðxm; θμi Þ, where m ¼ 0, 1, 2, 3, 4, μ ¼ 1;…; 4,
and i ¼ 1, 2. To perform the gauging of the supercon-
formal algebra, one introduces covariant derivatives
∇A ¼ ð∇a;∇i

αÞ, which have the form

∇A ¼ EA − ωA
bXb ¼ EA −

1

2
ΩA

abMab −ΦA
ijJij

− BAD −FA
BKB; ð2:1aÞ

¼ EA −
1

2
ΩA

abMab −ΦA
ijJij − BAD −FA

αiSαi −FA
aKa:

ð2:1bÞ

Here EA ¼ EA
M
∂M is the inverse supervielbein, Mab

are the Lorentz generators, Jij are generators of the SUð2ÞR

CURVATURE-SQUARED INVARIANTS OF MINIMAL FIVE- … PHYS. REV. D 107, 106013 (2023)

106013-3



R-symmetry group, D is the dilatation generator, and
KA ¼ ðKa; SαiÞ are the special superconformal generators.
The supervielbein 1-form is EA ¼ dzMEM

A with
EM

AEA
N ¼ δNM and EA

MEM
B ¼ δBA. We associate with each

generator Xa¼ðMab;Jij;D;Sαi;KaÞ a connection super
1-form ωa ¼ ðΩab;Φij; B;Fαi;FaÞ ¼ dzMωM

a ¼ EAωA
a.

The algebra of covariant derivatives,

½∇A;∇Bg ¼ −T AB
C∇C −

1

2
RðMÞABcdMcd −RðJÞABklJkl

−RðDÞABD −RðSÞABγkSγk −RðKÞABcKc;

ð2:2Þ
is constrained to be expressed in terms of a single primary
superfield, the super-Weyl tensorWαβ.

4 It has the following
properties:

Wαβ ¼ Wβα; KAWαβ ¼ 0; DWαβ ¼ Wαβ; ð2:3Þ
and satisfies the Bianchi identity

∇k
γWαβ ¼ ∇k

ðαWβγÞ þ
2

5
εγðα∇δkWβÞδ: ð2:4Þ

In (2.2) T AB
C is the torsion, and RðMÞABcd, RðJÞABkl,

RðDÞAB, RðSÞABγk, and RðKÞABc are the curvatures
associated with Lorentz, SUð2ÞR, dilatation, S supersym-
metry, and special conformal boosts, respectively.
The full algebra of covariant derivatives (2.2) (including

the explicit expressions for the torsion and curvature
components in terms of the descendant superfields) are
given in Refs. [20,75]. To make use of the results of [20], it
is important to note that in this paper we make use of the
“traceless” frame conventional constraints for the conformal
superspace algebra employed in Appendix C of [20], as well
as in [75]. We also refer the reader to these papers for the
description of how to reduce superspace results to standard
component fields.
It is useful to introduce the dimension-3=2 superfields

Wαβγ
k ≔ ∇k

ðαWβγÞ; Xi
α ≔

2

5
∇βiWβα; ð2:5aÞ

and the dimension-2 descendant superfields constructed
from spinor covariant derivatives of Wαβ,

Wαβγδ ≔∇k
ðαWβγδÞk; Xαβ

ij ≔ ∇ði
ðαX

jÞ
βÞ; Y ≔ i∇γkXγk:

ð2:5bÞ

It can be checked that only the superfields (2.5) and their
vector derivatives appear upon taking successive spinor

derivatives ofWαβ. The following relations define the tower
of covariant fields in the standard Weyl multiplet and are
particularly useful for analyzing the structure of curvature-
squared invariants:

∇k
γWαβ ¼ Wαβγ

k þ εγðαXk
βÞ; ð2:6aÞ

∇i
αX

j
β ¼ Xαβ

ij þ i
8
εijεαβY −

3i
2
εijðΓaÞαρ∇aWβρ

− 2iεijWα
ρWβρ þ

i
2
εijεαβWγδWγδ

−
i
2
εijðΓaÞβρ∇aWαρ; ð2:6bÞ

∇i
αW

j
βγλ ¼ −

1

2
εijðWαβγλ þ 3iðΓaÞαðβ∇aWγλÞ

þ 3iεαðβðΓaÞγτ∇aWλÞτÞ −
3

2
ϵαðβXγλÞij; ð2:6cÞ

∇i
αWβγλρ ¼ −4iðΓaÞαðβ∇aWγλρÞi − 6iWαðβγ iWλρÞ

þ 6iWαðβWγλρÞi þ 6iεαðβðWγλXi
ρÞ

− 2ðΓaÞγτ∇aWλρÞτi −Wγ
τWλρÞτiÞ; ð2:6dÞ

∇i
αXβγ

jk ¼ iεiðjð−3WðβλWγÞαλkÞ − εαðβWρτWγÞρτkÞ

−WαλWβγ
λkÞ −

3

2
WβγX

kÞ
α þ 1

2
WαðβX

kÞ
γÞ

þ 3

2
εαðβWγÞλXkÞλ þ 2ðΓaÞαρ∇aWβγρ

kÞ

þ 2ðΓaÞðβρ∇aWγÞαρkÞ − ðΓaÞαðβ∇aX
kÞ
γÞ

þ εαðβðΓaÞγÞλ∇aXkÞλÞ; ð2:6eÞ

∇i
αY ¼ 8ðΓaÞαβ∇aXi

β þ 8Wα
βXi

β: ð2:6fÞ

Because of (2.4), the Xαβ
ij and Wαβγδ dimension-2

superfields of the standard Weyl multiplet obey the follow-
ing Bianchi identities:

∇ðαγXβÞγ ij ¼ −
1

2
XγðiWαβγ

jÞ; ð2:7aÞ

∇ðαλWβγτÞλ ¼ 3i∇ðαλðWβγWτÞλÞ: ð2:7bÞ

The independent descendant superfields of Wαβ are all
annihilated by Ka. However, under S supersymmetry, they
transform as follows:

SαiWβγδ
j ¼ 6δjiεαðβWγδÞ; SαiX

j
β ¼ 4δjiWαβ; ð2:8aÞ

SαiWβγδρ ¼ 24εαðβWγδρÞi; SαiY ¼ 8iXαi; ð2:8bÞ

SαiXβγ
jk ¼ −4δðji Wαβγ

kÞ þ 4δðji εαðβX
kÞ
γÞ: ð2:8cÞ

4Here and in what follows, an antisymmetric rank-2 tensor
Tab ¼ −Tba can equivalently be written as Tab ¼ ðΣabÞαβTαβ and
Tαβ ¼ 1=2ðΣabÞαβTab.
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The conformal supergravity gauge group G is generated
by covariant general coordinate transformations δcgct,
associated with a local superdiffeomorphism parameter
ξA, and standard superconformal transformations δH, asso-
ciated with the local superfield parameters: the dilatation σ,
Lorentz Λab ¼ −Λba, SUð2ÞR Λij ¼ Λji, and special con-
formal transformations ΛA ¼ ðηαi;Λa

KÞ. The covariant
derivatives transform as

δG∇A ¼ ½K;∇A�; ð2:9aÞ

where

K ¼ ξC∇C þ 1

2
ΛabMab þ ΛijJij þ σDþ ΛAKA: ð2:9bÞ

A covariant (or tensor) superfield U transforms as

δGU ¼ ðδcgct þ δHÞU ¼ KU: ð2:10Þ

The superfield U is a “superconformal primary” of dimen-
sion Δ if KAU ¼ 0 (it suffices to require that SαiU ¼ 0)
and DU ¼ ΔU.

B. The Abelian vector multiplet

In conformal superspace [20], a 5D N ¼ 1 Abelian
vector multiplet [83,84] is described by a real primary
superfield W of dimension 1,

ðWÞ� ¼ W; KAW ¼ 0; DW ¼ W: ð2:11aÞ

The superfield W obeys the Bianchi identity

∇ði
α∇jÞ

β W ¼ 1

4
εαβ∇γði∇jÞ

γ W: ð2:11bÞ

Let us introduce the following descendants constructed
from spinor derivatives of W:

λiα ≔−i∇i
αW; Xij ≔

i
4
∇αði∇jÞ

α W ¼−
1

4
∇αðiλjÞα : ð2:12aÞ

These superfields, along with

Fαβ ≔ −
i
4
∇k

ðα∇βÞkW −WαβW ¼ 1

4
∇k

ðαλβÞk −WαβW;

ð2:12bÞ

satisfy the following identities:

∇i
αλ

j
β¼−2εijðFαβþWαβWÞ−εαβXij−εij∇αβW; ð2:13aÞ

∇i
αFβγ ¼ −i∇αðβλiγÞ − iεαðβ∇γÞδλiδ −

3i
2
Wβγλ

i
α −Wαβγ

iW

þ i
2
WαðβλiγÞ −

3i
2
εαðβWγÞδλiδ; ð2:13bÞ

∇i
αXjk ¼ 2iεiðj

�
∇α

βλkÞβ −
1

2
Wαβλ

βkÞ þ 3i
4
XkÞ
α W

�
: ð2:13cÞ

Wealso note thatFαβ ¼ 1
2
ðΣabÞαβFab. Because of (2.11b),

a dimension-2 superfield of a vectormultiplet in the traceless
frame obeys the following Bianchi identity:

∇ðαγFβÞγ ¼
1

2
λγkWαβγk: ð2:14Þ

The actions of the S-supersymmetry generator on the
descendants are given by

Siαλ
j
β ¼ −2iεαβεijW; SiαFβγ ¼ 4εαðβλiγÞ;

SiαXjk ¼ −2εiðjλkÞα ; ð2:15Þ

while all the fields are annihilated by the Ka generators.
In 5D N ¼ 1 conformal superspace, there exists a

prepotential formulation for the Abelian vector multiplet,
which was developed in [20], see also [64,66,80,81] for
earlier related analyses in other superspaces. The authors
of [20] introduced a real primary superfield Vij of dimen-
sion −2, DVij ¼ −2Vij. It was also shown that Vij trans-
forms as an isovector under SUð2ÞR transformations and is
the 5D analog of Mezincescu’s prepotential [85–87] for the
4D N ¼ 2 Abelian vector multiplet. This then allows us to
represent the field strength W as

W ¼ −
3i
40

∇ijΔijklVkl; ð2:16Þ

where we have defined the operators

Δijkl ≔ −
1

96
εαβγδ∇ði

α∇j
β∇k

γ∇lÞ
δ ¼ −

1

32
∇ðij∇klÞ ¼ ΔðijklÞ;

ð2:17aÞ

∇ij ≔ ∇αði∇jÞ
α : ð2:17bÞ

It should be noted that Vij in (2.16) is defined modulo
gauge transformations of the form

δVkl ¼ ∇p
αΛα

klp; Λα
klp ¼ ΛαðklpÞ; ð2:18Þ

with the gauge parameter Λα
klp being a primary superfield,

SiαΛβ
jkl ¼ 0; DΛβ

jkl ¼ −
5

2
Λβ

jkl: ð2:19Þ
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C. The linear multiplet

The linear multiplet [88–98], or Oð2Þ multiplet, can be
described in terms of the primary superfield Gij ¼ Gji,
which is characterized by the properties

∇ði
αGjkÞ ¼ 0; ð2:20aÞ

KAGij ¼ 0; DGij ¼ 3Gij: ð2:20bÞ

We assume Gij to be real, ðGijÞ� ¼ εikεjlGkl.
The component structure of Gij is characterized by the

following tower of identities:

∇i
αGjk ¼ 2εiðjφkÞ

α ; ð2:21aÞ

∇i
αφ

j
β ¼ −

i
2
εijεαβF þ i

2
εijHαβ þ i∇αβGij; ð2:21bÞ

∇i
αF ¼ −2∇α

βφi
β − 3Wαβφ

βi −
3

2
XαjGij; ð2:21cÞ

∇i
αHa¼4ðΣabÞαβ∇bφi

β−
3

2
ðΓaÞαβWβγφ

γi−
1

2
ðΓaÞγβWβαφ

γi;

ð2:21dÞ

where we have defined the independent descendant super-
fields

φi
α ≔

1

3
∇αjGij; ð2:22aÞ

F ≔
i
12

∇γi∇j
γGij ¼ −

i
4
∇γkφγk; ð2:22bÞ

Habcd ≔
i
12

εabcdeðΓeÞαβ∇i
α∇j

βGij ≡ εabcdeHe: ð2:22cÞ

Here Ha obeys the differential condition

∇aHa ¼ 0; Ha ≔ −
1

4!
εabcdeHbcde: ð2:23Þ

The descendants (2.22) are all annihilated by Ka. Under the
action of S supersymmetry, they transform as follows:

Siαφ
j
β ¼−6εαβGij; SiαF¼ 6iφi

α; SiαHb ¼−8iðΓbÞαβφi
β:

ð2:24Þ

We refer the reader to [20] for a superform description of
the linear multiplet.
As described in [20], the linear multiplet constraints

(2.20) may be solved in terms of an arbitrary primary real
dimensionless scalar prepotential Ω,

SiαΩ ¼ 0; DΩ ¼ 0; ð2:25Þ

and the solution is

Gij ¼ −
3i
40

Δijkl∇klΩ: ð2:26Þ

A crucial property of Gij defined by (2.26) is that it is
invariant under gauge transformations of Ω of the form

δΩ ¼ −
i
2
ðΓaÞαβ∇i

α∇j
βBaij; ð2:27Þ

where the gauge parameter is assumed to have the
properties

Ba
ij ¼ Ba

ji; SiαBa
jk ¼ 0; DBa

ij ¼ −Ba
ij; ð2:28Þ

and is otherwise arbitrary.
To conclude this section, we introduce another result that

will be used in the rest of the paper. Given a system of n
Abelian vector multiplets WI , with I ¼ 1; 2;…n, all
satisfying (2.11), we can construct the following composite
linear multiplet and its descendants [20]:

Hij ¼ CJKf2WJXijK − iλαJðiλjÞKα g; ð2:29aÞ

φi
α ¼ CJK

�
iXijJλKαj − 2iFJ

αβλ
βiK −

3

2
Xi
αWJWK

− 2iWJ∇αβλ
βiK − ið∇αβWJÞλβiK − 3iWαβWJλβiK

�
;

ð2:29bÞ

F ¼ CJK

�
XijJXK

ij − FabJFK
ab þ 4WJ

□WK

þ 2ð∇aWJÞ∇aWK þ 2ið∇α
βλiJβ ÞλαKi − 6WabFJ

abW
K

−
39

8
WabWabWJWK þ 3

8
YWJWK þ 6XαiλJαiW

K

− 3iWαβλ
αiJλβKi

�
; ð2:29cÞ

Ha ¼ CJK

�
−
1

2
εabcdeFbcJFdeK

þ 4∇b

�
WJFK

ba þ
3

2
WbaWJWK

�

þ 2iðΣbaÞαβ∇bðλiJα λKβiÞ
�
; ð2:29dÞ

where □ ≔ ∇a∇a and CJK ¼ CðJKÞ is a constant symmet-
ric in J and K. Equation (2.29) is the superspace analog of
the composite linear multiplet constructed in [61].
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III. SUPERCONFORMAL ACTIONS

In this section, we review a main action principle that
was used in [20] to construct various locally superconfor-
mally invariants (including curvature-squared ones) in
superspace. A simple way to define it is based on a full
superspace integral

S½L� ¼
Z

d5j8zEL; d5j8z≔ d5xd8θ; E≔BerðEM
AÞ;

ð3:1Þ

where the Lagrangian L is a conformal primary superfield
of dimension þ1, DL ¼ L. This invariant can be proven to
be locally superconformal invariant, that is, invariant under
the supergravity gauge transformations (2.9).

A. BF action

The action involving the product of a linear multiplet
with an Abelian vector multiplet is referred to as the BF
action. Analogous to the component superconformal tensor
calculus, this plays a fundamental role in the construction
of general supergravity-matter couplings, see [57–63] for
the 5D case, and it was a main building block for the
invariants introduced in [20] that we focus on. In super-
space, the BF action may be described by

SBF ¼
Z

d5j8z EΩW ¼
Z

d5j8z EGijVij: ð3:2aÞ

As implied by the equation above, the BF action can be
written in different ways, see [20] for even more variants. In
the first form in (3.2a), it involves the field strength of the
vector multiplet W and the prepotential of the linear
multiplet Ω. By using (2.26) and (2.16), and then integrat-
ing by parts, one may obtain the equivalent form of the BF
action involving Mezincescu’s prepotential Vij and the
field strengthGij described by the right-hand side of (3.2a).
One may also prove that the functionals

R
d5j8z EΩW andR

d5j8z EGijVij are, respectively, invariant under the gauge
transformations (2.27) and (2.18), thanks to the defining
differential constraints satisfied byW and Gij, Eqs. (2.11b)
and (2.20a).
In components, and in our notation, the BF action takes

the form [20]

SBF ¼ −
Z

d5xeðvaHa þWF þ XijGij þ 2λαkφαk

− ψa
α
i ðΓaÞαβφi

βW − iψa
α
i ðΓaÞαβλβjGij

þ iψa
α
i ðΣabÞαβψbβjWGijÞ: ð3:2bÞ

In (3.2b), we have defined the usual component projection
to θ ¼ 0, i.e., UðzÞj ≔ UðzÞjθ¼0. We associate the same
symbol for the covariant component fields and the

corresponding superfields, when the interpretation is
clear from the context. Here vm ≔ Vmj denotes a real
Abelian gauge connection. Its real field strength is
fmn ≔ Fmnj ¼ 2∂½mvn�. Note that the field strength fmn

may be expressed in terms of the bar-projected, covariant
field strength Fab ≔ Fabj via the relation

Fab ¼ fab þ iðΓ½aÞαβψb�αkλ
k
β þ

i
2
Wψ ½a

γ
kψb�kγ ;

fab ≔ eamebnfmn: ð3:3Þ

When projected to components, the lowest component
of the covariant superfield Ha satisfies the constraint
∇aHa ¼ 0, where Ha ≔ Haj. It holds that

Ha ¼ ha þ 2ðΣabÞαβψb
α
i φ

i
β −

i
2
εabcdeðΣbcÞαβψd

α
i ψe

β
jG

ij:

ð3:4Þ

The constraint ∇aHa ¼ 0 implies the existence of a gauge
3-form potential bmnp and its exterior derivative hmnpq ≔
4∂½mbnpq�. See [20,75] for more details.

B. Vector multiplet compensator

The two-derivative invariant for the vector multiplet
compensator can be constructed using the above BF action
principle (3.2a), but with the linear multiplet being a
composite superfield. We denote by Hij

VM the composite
linear multiplet (2.29), which is built out of a single Abelian
vector multiplet,

Hij
VM ¼ ið∇αðiWÞ∇jÞ

α W þ i
2
W∇αði∇jÞ

α W

¼ −iλαiλjα þ 2WXij: ð3:5Þ

One can check that Hij
VM is a dimension-3 primary super-

field, SkαH
ij
VM ¼ 0. Thanks to the Bianchi identity (2.11b)

obeyed by the field strength W, the composite superfield
Hij

VM satisfies the analyticity constraint

∇ði
αH

jkÞ
VM ¼ 0: ð3:6Þ

The vector multiplet action may then be rewritten as an
integral over the full superspace,

SVM ¼ 1

4

Z
d5j8z EVij H

ij
VM: ð3:7Þ

It is also possible to write the action as

SVM ¼ 1

4

Z
d5j8z EΩVMW; ð3:8Þ
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where we have introduced the primary superfield ΩVM
defined by [20]

ΩVM ¼ i
4
ðW∇ijVij − 2ð∇αiVijÞ∇j

αW − 2Vij∇ijWÞ: ð3:9Þ

This is a prepotential for Hij
VM in the sense of (2.26).

The representations (3.7) and (3.8) allow us to compute
the variation of SVM with respect to the Mezincescu’s
prepotential,

δSVM ¼ 3

4

Z
d5j8zE δVij H

ij
VM: ð3:10Þ

Note that the above variation vanishes when δVij is a gauge
transformation (2.18). This implies that

Z
d5j8z EΛα

ijk∇ðk
α H

ijÞ
VM ¼ 0; ð3:11Þ

that is, ∇ði
αH

jkÞ
VM ¼ 0. This result is true for any dynamical

system involving an Abelian vector multiplet [20]. The
variation with respect to the prepotential Vij couples to a
composite linear multiplet that depends on the specific form
of the associated action principle—let us call this, in general,
Hij, which satisfies by construction the constraints (2.20).
The equation of motion (EOM) for a vector multiplet is then
Hij ¼ 0. In the case of Eq. (3.7), the EOM for the vector
multiplet compensator is Hij

VM ¼ 0.
The superspace action SVM can be reduced to compo-

nents. The bosonic part of the component action reads [20]

SVM¼
Z

d5xe

�
−
1

8
W3Rþ3

2
WðDaWÞDaW

−
3

4
WXijXijþ

1

8
εabcdevafbcfdeþ

3

4
Wfabfab

þ9

4
W2Wabfabþ

39

32
W3WabWab−

3

32
W3Y

�
; ð3:12Þ

where R denotes the scalar curvature. In the above, we
have introduced the spin, dilatation, and SUð2ÞR covariant
derivative Da,

Da ¼ eamDm ¼ eam
�
∂m −

1

2
ωm

bcMbc − bmD−ϕm
ijJij

�
:

ð3:13Þ

The action is two-derivative and, upon gauge fixing
dilatation by imposing W ¼ 1, the first term gives a scalar
curvature termR. The gauge fixingW ¼ 1 can be achieved
by requiring W ≠ 0, meaning that the vector multiplet is a
conformal compensator.

C. Linear multiplet compensator

The action for the linear multiplet compensator can also
be constructed using the BF action principle (3.2a). In this
case, the dynamical part of the action is described by a
vector multiplet built out of the linear multiplet. We denote
by W the composite vector multiplet field strength,

W ≔
i
16

G∇αi∇j
α

�
Gij

G2

�
¼ 1

4
FG−1 −

i
8
Gijφ

iαφj
αG−3;

ð3:14Þ

with

G ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
GijGij

r
ð3:15Þ

being nowhere vanishing, G ≠ 0. At the component
level, the vector multiplet (3.14) was first derived by
Zucker [99] as a 5D analog of the improved 4D N ¼ 2
tensor multiplet [96]. The field strength W obeys the
constraints (2.11).
The action for the linear multiplet compensator may then

be rewritten as

SL ¼
Z

d5j8zEΩW: ð3:16Þ

Varying the prepotential Ω leads to

δSL ¼
Z

d5j8zE δΩW: ð3:17Þ

Similar to what we discussed for the vector multiplet case,
the previous form holds for the first-order variation of a
matter system that includes a linear multiplet with respect
to its prepotentialΩ. In particular, the variation must vanish
if δΩ is the gauge transformation (2.27). This holds if W
obeys the Bianchi identity (2.11b). In general, any dynami-
cal system involving a linear multiplet then possesses a
composite vector multiplet W. The EOM for the linear
multiplet is W ¼ 0 and for the specific case of the linear
multiplet action of Eq. (3.16) this is given by W defined
in (3.14).
The bosonic part of SL is given by [20]

SL ¼
Z

d5xe

�
−
3

8
GRþ 3

32
GY −

1

8G
F2 −

3

32
WabWabG

þ 1

4
G−1ðDaGijÞDaGij −

1

2
G−1HaHa

þ 1

12
εabcdebcde

�
1

2
G−3ðDaGikÞðDbGj

kÞGij

þ G−1RðJÞijabGij

��
: ð3:18Þ
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The action is two-derivative, and, with G ¼ 1, the first term gives an R term.
For later use, it is useful to provide the explicit expressions of the composite descendant superfields of W. These are

given by

λiα ¼ −i∇i
αW

¼ G−1
�
−
i
2
∇αβφ

βi þ 3i
4
Wαβφ

βi þ 3i
8
GijXαj

�

þ G−3
�
−
i
8
FGijφαj −

i
8
GijHαβφ

β
j þ

i
4
Gjkφ

βk∇αβGij þ 1

4
φβiφj

βφαj

�

þ G−5
�
−
3

8
GijGklφ

βkφl
βφαj

�
; ð3:19aÞ

Xij ¼ i
4
∇αði∇jÞ

α W

¼ G−1
�
1

2
□Gij þ 3

64
WabWabGij −

3

64
YGij þ 3i

4
XαðiφjÞ

α

�

þ G−3
�
−

1

16
F2Gij −

1

16
HaHaGij þ 1

4
HaGkði∇aGk

jÞ −
1

4
Gklð∇aGkðiÞ∇aGjÞl

−
3i
8
GijGklXαkφl

α −
i
8
FφαðiφjÞ

α þ 3i
8
WαβGijφk

αφβk

þ i
16

ðΓaÞαβðHaφ
ði
α φ

jÞ
β þ 8Gkðið∇aφ

jÞ
α Þφβk þ 2φði

α ð∇aGjÞkÞφβkÞ
�

þ G−5
�
3i
16

FGijGklφ
αkφl

α þ
3i
16

GkðiGjÞlðΓaÞαβHaφ
α
kφ

β
l −

3i
8
GmnGkðið∇αβGm

jÞÞφα
kφ

β
n

þ 3

8
GkðiφjÞ

α φαlφβ
kφβl −

3

8
GklφαðiφjÞ

α φ
β
kφβl

�

þ G−7
�
15

32
GijGklGmnφ

αkφl
αφ

βmφn
β

�
; ð3:19bÞ

Fab ¼
1

4
ðΣabÞαβ∇k

ðαλβÞk −WabW

¼ G−1
�
1

2
∇½aHb� −

3i
8
GijXab

ij þ i
4
Wabα

iφα
i

�

þ G−3
�
1

4
GijH½a∇b�Gij −

1

4
Gijð∇½aGikÞ∇b�Gk

j þ i
2
GijðΓ½aÞαβð∇b�φi

αÞφj
β

−
i
8
ðΓ½aÞαβð∇b�GijÞφi

αφ
j
β

�
þ G−5

�
−
3i
8
GkðiGl

jÞðΓ½aÞαβð∇b�GklÞφi
αφ

j
β

�
: ð3:19cÞ

D. Gauged supergravity action

An off-shell formulation for 5D minimal supergravity can be obtained by coupling the standard Weyl multiplet to two off-
shell compensators: vector and linear multiplets [20,54–63]. This is the 5D analog of the off-shell formulation for 4DN ¼ 2
supergravity [96,100]. The complete (gauged) supergravity action SgSG is given by the following two-derivative action:

SgSG ¼ SVM þ SL þ κSBF ¼
Z

d5j8zE
�
1

4
VijH

ij
VM þ ΩW þ κVijGij

�
ð3:20aÞ

¼
Z

d5j8z E
�
1

4
VijH

ij
VM þΩW þ κΩW

�
: ð3:20bÞ
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The BF action κSBF describes a supersymmetric cosmo-
logical term. The case κ ¼ 0 case corresponds to Poincaré
supergravity, while κ ≠ 0 leads to gauged or anti–de Sitter
supergravity.
Upon gauge fixing dilatation and superconformal sym-

metries (dilatation, S, andK) and integrating out the various
auxiliary fields, one obtains the on-shell Poincaré super-
gravity action of [47,48]. The contributions from the scalar
curvature terms in Eqs. (3.12) and (3.18) combine to give
the normalized Einstein-Hilbert term − 1

2
R plus a cosmo-

logical constant, see, e.g., [20] for details.
In the remaining subsections, we elaborate on the

structure of three independent curvature-squared invari-
ants [20,25,27,30,32]. These invariants were constructed
in superspace [20] in the standard Weyl multiplet back-
ground. In particular, we present the full expressions of all
the composite primary multiplets that generate these
invariants with the log multiplet appearing for the first
time in its expanded form in terms of the descendants ofW
and Wαβ.

E. Weyl squared

We first consider a composite primary superfield that
may be used to generate a supersymmetric completion of a
Weyl-squared term. In superspace, it was described in [20]
in terms of the super-Weyl tensor,

Hij
Weyl ≔−

i
2
WαβγiWαβγ

jþ 3i
2
WαβXαβ

ij−
3i
4
XαiXj

α: ð3:21Þ

It can be checked that Hij
Weyl satisfies the constraints (2.20).

The superfield Hij
Weyl corresponds to the composite linear

multiplet first constructed in components by Hanaki et al.
in [25].
With the aid of the relations (2.6), the component fields

of the composite linear multiplet are straightforward to
compute. They include the θ ¼ 0 projection (or the “bar
projection”) of Hij

Weyl, together with the bar projection of

the following descendant superfields of Hij
Weyl:

φαi
Weyl ¼

1

3
∇α

jH
ij
Weyl; ð3:22aÞ

FWeyl ¼
i
12

∇α
i∇αjH

ij
Weyl; ð3:22bÞ

Ha
Weyl ¼

i
12

ðΓaÞαβ∇αi∇βjH
ij
Weyl: ð3:22cÞ

Equation (3.22) play an important role in analyzing
superconformal primary equations of motion in the next
section. The resulting expression coincides, up to notations,
to the results of [25]. We will give the full component
expressions (3.22) in a follow-up paper.

By inserting the components of the composite linear
multiplet (3.21) and (3.22) into the BF action (3.2), one
may construct the following higher-derivative invariant in a
standard Weyl multiplet background [20]:

SWeyl ¼
Z

d5j8zEVijH
ij
Weyl ð3:23aÞ

¼ −
Z

d5xeðvaHa
Weyl þWFWeyl þ XijH

ij
Weyl

þ 2λkφkWeyl − ψaiΓaφi
WeylW − iψaiΓaλjH

ij
Weyl

þ iψaiΣabψbjWHij
WeylÞ; ð3:23bÞ

where the spinor indices here are suppressed. This defines
a locally supersymmetric extension of the Weyl-squared
term [25,27,30,32].

F. logW

We now consider a composite linear superfield that
includes a supersymmetric Ricci tensor-squared term. In
superspace, it was described for the first time in [20] in
analogy with the construction of a higher-derivative chiral
invariant in 4D N ¼ 2 supergravity [33]. The composite
superfield makes use of the standard Weyl multiplet
coupled to the off-shell vector multiplet compensator. It
takes the form5

Hij
logW ¼ −

3i
40

Δijkl∇kl logW ¼ 3i
1280

∇ðij∇klÞ∇kl logW:

ð3:24Þ

In general, such a linear multiplet could be defined by
replacingW with any primary scalar superfield of weight q
for which it is possible to prove that (3.24) satisfies all the
linear multiplet constraints, Eq. (2.20), see [20]. However,
for various applications, we choose to construct it in terms
of the vector multiplet superfield strength W. Because of
the complexity in computing the action of six spinor
derivatives on the log multiplet, the component analysis
of Hij

logW has not appeared so far. This calculation can be
performed with the aid of the Cadabra software. Here we
find that the full expression of Hij

logW in terms of the
descendant superfields of the vector and standard Weyl
multiplets is given by

5Note that there is an overall minus sign difference between the
definition of the logW invariant in this paper and the one of [20].
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Hij
logW ¼ −

3i
8
WabXabij þ 51i

64
XαiXj

α þW−1
�
9

64
XijY −

3i
8
FabXabij −

1

2
□Xij −

9

64
XijWabWab

þ 1

4
WabWab

αðiλjÞα −
3

4
ðΓaÞαβXði

α∇aλ
jÞ
β þ 3

4
ðΓaÞαβλðiα∇aX

jÞ
β

�

þW−2
�
1

2
Xij

□W þ 1

2
ð∇aWÞ∇aXij þ 1

4
FabWab

αðiλjÞα −
i
2
λαðj□λiÞα

−
i
4
ð∇aλαiÞ∇aλ

j
α −

3i
16

ϵabcdeðΣabÞαβWdeλ
ði
α∇cλ

jÞ
β −

3i
8
ðΓaÞαβλiαλjβ∇cWac

þ 3i
64

Yλαiλjα þ 3

8
ðΣabÞαβFabXði

α λ
jÞ
β þ 3i

128
WabWabλ

αiλjα þ 9i
256

ϵabcdeðΓaÞαβWbcWdeλ
i
αλ

j
β −

3

8
XijXαkλαk

�

þW−3
�
1

8
XijFabFab −

1

8
XijXklXkl −

1

4
Xijð∇aWÞ∇aW −

i
8
ϵabcdeðΣabÞαβFdeλ

ði
α∇cλ

jÞ
β −

i
4
ðΓaÞαβFabλ

ði
α∇bλjÞβ

−
i
4
ðΓaÞαβλiαλjβ∇cFac þ

i
4
ðΓaÞαβXijλkα∇aλβk þ

i
4
ðΓaÞαβXkðiλjÞα ∇aλβk

−
i
4
ðΓaÞαβλðiα ð∇aXjÞlÞλβl þ

i
4
λαiλjα□W þ 3i

4
ð∇aWÞλαði∇aλ

jÞ
α

−
i
2
ðΣabÞαβð∇aWÞλðiα∇bλjÞβ −

3i
16

ðΓaÞαβWabλ
i
αλ

j
β∇bW þ 3i

32
WabFabλαiλjα

þ 9i
64

ϵabcdeðΓaÞαβWbcFdeλ
i
αλ

j
β −

3i
32

ðΣabÞαβXijWabλkαλβk −
3i
8
Xαkλðiα λβjÞλβk −

3i
8
Xαkλβiλjβλαk

�

þW−4
�
−
3i
16

λαiλjαð∇aWÞ∇aW −
3i
8
ðΓaÞαβXkðiλjÞα λβk∇aW

þ 3i
8
ðΓaÞαβFabλ

i
αλ

j
β∇bW þ 3i

32
FabFabλ

αiλjα þ 3i
64

ϵabcdeðΓaÞαβFbcFdeλ
i
αλ

j
β −

3i
16

ðΣabÞαβXijFabλkαλβk

−
3i
16

XijXklλαkλαl −
3i
32

XklXklλ
αiλjα −

15

64
ðΓaÞαβλiαλjβλγk∇aλγk −

9

32
ðΓaÞαβλðiα λρjÞλkβ∇aλρk

−
15

32
ðΓaÞαβλðiα λρjÞλkρ∇aλβk −

15

64
ðΓaÞαβλρiλjρλkα∇aλβk

þ 9

32
ðΣabÞαβWabλðiα λρjÞλkβλρk þ

9

64
ðΣabÞαβWabλρiλjρλkαλβk

�

þW−5
�
3

8
ðΓaÞαβλðiα λρjÞλkβλρk∇aW þ 3

8
ðΣabÞαβFabλρiλjρλkαλβk þ

3

8
Xklλαiλjαλ

β
kλβl

�

þW−6
�
3i
32

λαiλjαλβkλlβλ
γ
kλγl þ

3i
16

λαiλkαλ
βjλlβλ

γ
kλγl

�
: ð3:25Þ

Using the explicit expression (3.25), together with the
relations (2.6), (2.8c), (2.13), and (2.15), we have shown
that Hij

logW is indeed a primary and linear superfield
satisfying (2.20). Furthermore, we have computed the
descendants of the primary superfield Hij

logW defined as

φαi
logW ¼ 1

3
∇α

jH
ij
logW; ð3:26aÞ

FlogW ¼ i
12

∇α
i∇αjH

ij
log W; ð3:26bÞ

Ha
logW ¼ i

12
ðΓaÞαβ∇αi∇βjH

ij
log W: ð3:26cÞ

By using (3.25) and the BF action, Eqs. (3.2a) and
(3.2b), one may construct the following locally super-
conformal invariant in a standard Weyl multiplet back-
ground:

SlogW ¼
Z

d5j8z EVijH
ij
logW ð3:27aÞ
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¼ −
Z

d5xeðvaHa
logW þWFlogW þ XijH

ij
logW

þ 2λkφk logW − ψaiΓaφi
logWW − iψaiΓaλjH

ij
logW

þ iψaiΣabψbjWHij
logWÞ: ð3:27bÞ

The resulting component action includes, for example, a
ð□□WÞ term which, upon gauge-fixing W ¼ 1, includes a
Ricci tensor-squared combination. A more detailed discus-
sion of the (fairly involved) component structure of (3.26)
will be given elsewhere.

G. Scalar curvature squared

Given a composite vector multiplet (3.14) and its
corresponding descendants (3.19), we can then construct
a composite linear multiplet defined by [20]

Hij
R2 ≔ Hij

VM½W� ¼ ið∇αðiWÞ∇jÞ
α W þ i

2
W∇αði∇jÞ

α W

¼ −iλαiλjα þ 2WXij: ð3:28Þ

Inserting the composite field Hij
R2 and its independent

descendants (φαi
R2 ; FR2 , andHa

R2) into the BF action principle
(3.2) leads to the following supersymmetric invariant:

SR2 ¼
Z

d5j8z EVijH
ij
R2 ð3:29aÞ

¼ −
Z

d5xe

�
vaHa

R2 þWFR2 þ XijH
ij
R2 þ 2λkφkR2

− ψaiΓaφi
R2W − iψaiΓaλjH

ij
R2 þ iψaiΣabψbjWHij

R2

�
:

ð3:29bÞ
At the component level, the above action generates the

scalar curvature-squared invariant constructed in [30,32].

IV. SUPERCONFORMAL EQUATIONS
OF MOTION

Let us now combine the gauged supergravity action SgSG
with the three independent curvature-squared invariants
described by Eqs. (3.23), (3.27), and (3.29) to form a
higher-derivative action

SHD ¼ SgSG þ αSWeyl þ βSlogW þ γSR2 : ð4:1Þ
The goal of this section is to obtain superconformal primary
equations of motion in superspace that describe minimal
5D gauged supergravity deformed by an arbitrary combi-
nation of the three curvature-squared invariants described
by the action above.
We can obtain these equations of motion by varying the

superspace action (4.1) with respect to the superfield
prepotentials of the standard Weyl multiplet (U), the vector

multiplet compensator (Vij), and the linear multiplet com-
pensator (Ω). Such variations lead to the supercurrent
superfield J , the linear multiplet of the EOM of Vij, and
the vector multiplet of the EOM of Ω, respectively.
Alternatively, we can reduce (4.1) to components and vary
it with respect to the highest dimension independent fields
(Y,Xij, andF) of the correspondingmultiplets. The resulting
equations of motion then describe the primary fields, i.e., the
bottom components, of the multiplets of the equations of
motion that arise from thevariationof the full superfields. It is
then straightforward to reinterpret them as the primary
superfields of the equations of motion. By making use
of code developed in Cadabra, the full higher-derivative
action in components has been obtained by substituting the
explicit form of composite primary multiplets described in
Secs. III E–III G together with their descendants. These
results, and details of the derivation of the equations of
motion that we derived by using a combination of both
superspace and components arguments, will be presented in
an upcoming paper. The important point to stress is that the
equations of motion are fully locally superconformal covar-
iant. From them, successively acting with spinor derivatives
(which is equivalent to taking successive Q supersymmetry
transformations), one can obtain the whole tower of inde-
pendent equations ofmotion. Note that the component action
computed from (4.1) includes thousands of terms when
fermions are considered, and it is not manifestly covariant
due to the presence of naked gravitini and Chern-Simons
terms. These would become covariant only after taking field
variations and several integration by parts. An efficient
alternative, and algorithmic, way to attack this problem is
then by analyzing the multiplets of the equations of motion
starting from their primaries. Moreover, one could extract as
much information as possible about the structure of the on-
shell action (including all fermionic contributions) by
directly working with the equations of motion in superspace.
In the next subsections, we will simply state the final

results and show that the three primary equations of motion
satisfy all necessary consistency checks dictated by their
general structures. From this point of view, the results of
this section stand on their own.

A. Vector multiplet

The vector multiplet equation of motion is obtained by
varying (4.1) with respect to the superfield Vij or, equiv-
alently, the field Xij. The resulting EOM is

0 ¼ 3

4
Hij

VM þ κGij þ αHij
Weyl þ βHij

logW þ γHij
R2 : ð4:2Þ

Note that the first two terms correspond to the EOM for
the vector multiplet in the two-derivative supergravity
theory SgSG, while the remaining three terms describe
the contribution coming from the three curvature-squared
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invariants. It is clear that, as expected, the right-hand side of
(4.2) is a linear multiplet satisfying (2.20).

B. Linear multiplet

The linear multiplet equation of motion is obtained
by varying (4.1) with respect to the superfield Ω or,

equivalently, the auxiliary field F. The resulting
EOM is

0 ¼ W þ κW þ γWR2 ; ð4:3Þ

with

WR2 ¼ G−1
�
1

2
XijXij −

1

2
FabFab þW□W þW□W þ ð∇aWÞ∇aW

þ 3

16
YWW −

3

2
WabðFabW þ FabWÞ − 39

16
WabWabWW

þ i
2
λαi∇α

βλ βi þ
i
2
λ αi∇α

βλβi þ
3

2
XαiðWλ αi þW λαiÞ −

3i
2
Wαβλiαλ βi

�

þ G−3
�
1

4
Gijφβiðλαj∇αβW þ λ αj∇αβWÞ þ 1

2
GijφβiðW∇αβλ αj þW∇αβλαjÞ

−
1

2
GijφαiðFαβλ βj þ FαβλβjÞ −

1

4
GijFðWXij þWXijÞ

−
3

4
GijWαβφαiðWλβj þWλ βjÞ þ

i
4
FGijλαi λ αj þ

3i
4
GijXαiφj

αWW

þ 1

4
Gijφ

αiðXjkλ αk þXjkλαkÞ −
i
4
φαiφj

αðXijW þXijWÞ − 1

4
φαiφj

αλ
β
i λ βj

�

þ G−5
�
3i
8
GijGklφα

kφαlðXijW þXijW − iλβi λ βjÞ
�
: ð4:4Þ

It is possible to check explicitly that WR2 is primary,
SiαWR2 ¼ 0. Moreover, we find that WR2 can be expressed
as

WR2 ¼ i
32

G∇ijR
ij
1 ; ð4:5aÞ

where

Rij
1 ¼ G−2

�
δikδ

j
l −

1

2G2
GijGkl

�
Hkl

bilinear; ð4:5bÞ

and

Hkl
bilinear ¼ 2WXkl þ 2WXkl − 2iλαðkλ lÞ

α : ð4:5cÞ

This is exactly the structure of the composite vector
multiplets Wn in (5.1) with n ¼ 1 and with a precise
choice of composite linear multiplet Hkl ≔ Hkl

bilinear. See
Sec. V for more detail on these composite vector multiplets.
In addition to the remarkably simple form of (4.5), this
result guarantees that the right-hand side of Eq. (4.3), and in

particular (4.4), is a primary superfield satisfying the vector
multiplet constraints (2.11), as expected. This is a very
nontrivial consistency check of Eq. (4.4).

C. Standard Weyl multiplet

The conformal supergravity equation of motion is
obtained by varying (4.1) with respect to the standard
Weyl multiplet prepotential superfield U or, equivalently,
the field Y. The resulting EOM is

0 ¼ J ¼ JEH þ αJWeyl þ βJlogW þ γJR2 ; ð4:6aÞ

with

JEH ¼ 3

32
ðG −W3Þ; ð4:6bÞ

JWeyl ¼ −
3

64
WY þ 3

16
WWabWab þ

3

32
FabWab −

3

16
λαi X

i
α;

ð4:6cÞ
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JlogW ¼ −
3

1024
WY −

69

1024
WabWabW þ 3

32
□W −

3

64
FabWab −

3

256
λαjX

j
α

þ 3

128
FabFabW−1 −

9

128
XijXijW−1 þ 3i

32
ðΓaÞαβW−1λiα∇aλβi þ

3

64
W−1ð∇aWÞ∇aW

−
3i
128

ðΣabÞαβFabλ
i
αλβiW−2 −

3i
64

Xijλαi λαjW
−2 −

3i
32

ðΓbÞαβλjαλβjW−2∇bW −
3

256
λαiλβi λ

j
αλβjW−3; ð4:6dÞ

JR2 ¼−
3

8
WW2þ 3

32
G−1ðWGijXijþGijXijW− iGijλαi λ αjÞ.

ð4:6eÞ

Here JEH is the EOM from the gauged supergravity action
SgSG, which does not have any contribution from the
cosmological constant term κ.
Analogous to the case of 4D N ¼ 2 conformal super-

gravity [101,102], the 5DWeyl multiplet may be described
by a single unconstrained real prepotential U [20]. Given a
system of matter superfields φi, one can construct a
Noether coupling between U and the matter supercurrent
J of the form

S½φi� ¼
Z

d5j8 z EUJ ¼
Z

d5xeðYJ þ � � �Þ; ð4:7Þ

where J ¼ J j. The supercurrent J is a dimension-3
primary real scalar superfield. The conformal supergravity
EOM (4.6) is obtained by varying the supergravity action
with respect to U,

δS½φi�
δU

¼ J ¼ 0: ð4:8Þ

The supercurrent multiplet in five dimensions was con-
structed by Howe and Lindström [83]. It satisfies the
conservation equation

∇ijJ ¼ 0; ð4:9Þ

when all matter superfields equations of motion are
satisfied. Thus, as a consistency check, we shall prove
that the expression J in (4.6) satisfies the conservation
constraint (4.9). It has been shown in [20] that this
constraint holds for JEH. For each invariant, we have
indeed verified that the corresponding J is a primary
superfield of dimension 3. It also satisfies ∇ijJ ¼ 0
provided the vector and linear multiplets equations of
motion of Eqs. (4.2) and (4.3), respectively, are imposed.
Using Cadabra, an explicit calculation shows that, off-shell,
it holds

∇ijJWeyl ¼
3i
4
WHij

Weyl; ð4:10aÞ

∇ijJlogW ¼ 3i
4
WHij

logW; ð4:10bÞ

∇ijJR2 ¼ 3i
4
WHij

R2 −
3i
4
GijWR2 : ð4:10cÞ

It is then clear that the right-hand sides of (4.10) are
proportional to the composite vector and linear multiplets
appearing in (4.2) and (4.3). Consequently, the supercurrent
conservation equation (4.9) is satisfied once the equations
of motion for the compensators are used. This represents a
very nontrivial consistency check of (4.6b)–(4.6e).

V. AN ALTERNATIVE SCALAR
CURVATURE-SQUARED INVARIANT

Recall the action defined in terms of a composite vector
multiplet superfield W written in Eqs. (3.16) and (3.14),
respectively. There also exists an infinite number of alter-
native vector multiplets composite of a linear multiplet
compensating superfield Gij and a superfield associated
with a primary realOð2nÞ multipletHi1���i2n ¼ Hði1���i2nÞ, such
that ∇ðj

α Hi1���i2nÞ ¼ 0. In five dimensions, this was con-
structed in [20] by extending the 4DN ¼ 2 analysis of [87].
We refer to [20] for details, including the precise definition
and literature on Oð2nÞ multiplets, and simply state the final
result here. The following superfields

Wn ¼
ið2nÞ!

22nþ3ðnþ 1Þ!ðn − 1Þ!G∇ijR
ij
n ; ð5:1Þ

where

Rij
n ¼ G−2n

�
δikδ

j
l −

1

2G2
GijGkl

�

×Hkli1���i2n−2Gði1i2 � � �Gi2n−3i2n−2Þ; ð5:2Þ

all satisfy the constraints (2.11) for any positive integer n.
In fact, W1 is precisely the structure seen in WR2 of
Eq. (4.5a). By considering n ¼ 2 and choosing Hijkl to
be the square of a linear multiplet Hij (distinguished
from Gij), Hijkl ¼ HðijHklÞ, we can engineer an alterna-
tive scalar curvature-squared invariant. The result is in
spirit similar to the scalar curvature-squared invariant
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engineered for 4D N ¼ 2 in [24] and directly related to
5D N ¼ 1 results in [39].6 Let us show how this works.
Consider the n ¼ 2 composite superfield,

W2 ¼
i
32

G∇ijR
ij
2 ; ð5:3Þ

where

Rij
2 ¼ G−4

�
δikδ

j
l −

1

2G2
GijGkl

�
HðklHmnÞGmn: ð5:4Þ

By explicitly computing (5.3), we may define W2 as a
linear combination of real functions, PA and PAB

ij, which
are themselves composed of descendants of the linear
multiplets,

W2 ¼ 2PAFA þ 2iPAB
ijφαA

i φB
αj: ð5:5Þ

Here the index A ¼ 1, 2 indicates the two linear super-
fields,G1

ij ¼ Gij andG2
ij ¼ Hij. Note that this is analogous

to Eq. (2.5) in [39] with the first A index fixed so that
FAB → PB and with an appropriate normalization factor
added to the second term. All functions, PA and PAB

ij, are
defined as follows:

P1 ¼
1

8
H2G−3 −

3

32
ðGklHklÞ2G−5; ð5:6aÞ

P2 ¼
1

8
ðGklHklÞG−3; ð5:6bÞ

P11
ij ¼ −

3

16
GijH2G−5 −

3

16
ðGklHklÞHijG−5

þ 15

64
ðGklHklÞ2GijG−7; ð5:6cÞ

P12
ij ¼ P21

ij ¼ 1

8
HijG−3 −

3

16
ðGklHklÞGijG−5; ð5:6dÞ

P22
ij ¼ 1

8
GijG−3: ð5:6eÞ

It is then a straightforward exercise to show that
functions with two A indices are derivatives of functions
with one, that is,

PAB
ij ¼ ∂PA

∂GB
ij
: ð5:7Þ

They also satisfy the following constraints:

PAB
ij ¼ PðABÞij; PAB

ijGB
jk ¼ −

1

2
δikPA: ð5:8Þ

Last, we may define functions of two derivatives on PA,

PABC
ijkl ≔

∂PAB
ij

∂GC
kl

¼ ∂
2PA

∂GB
ij∂G

C
kl

; ð5:9Þ

which satisfy

PABC
ijkl ¼ PðABCÞijkl; PABC

ijklϵjk ¼ 0: ð5:10Þ

These are the constraints needed to ensure that W2 in (5.5)
satisfies (2.11), which in our case are satisfied by
construction.
To engineer the alternative scalar curvature-squared

invariant, consider Gij to be a compensator and Hij to
be composite of a vector multiplet, which is built out of a
single Abelian vector multiplet, as in Eq. (3.5),

Hij ≔ Hij
VM: ð5:11Þ

In finding the Xij
2 descendant of W2, we are interested in

squared contributions of FVM being a descendant field of
Hij

VM. This is apparent from the fact that FVM satisfies

FVM ¼ 4W□W þ � � � ; ð5:12Þ

where □W gives rise to an R contribution. Roughly
speaking, by considering (5.5)–(5.6e) with the choice
(5.11), we are squaring the kinetic term of the vector
multiplet compensator which, in turn, leads to a scalar
curvature-squared invariant. In fact, if we look at the
dimension-2 scalar descendant of W2, we obtain

Xij
2 ≔

i
4
∇αði∇jÞ

α W2

¼ 1

8
GijG−3F2

VM þ � � � ¼ P22
ijF2

VM þ � � � ; ð5:13aÞ

GijX
ij
2 ¼ 4G−1W2ð□WÞ2 þ � � � : ð5:13bÞ

Specifically, Eq. (5.13b) is one term in the component
action given by the BF action principle. If one proceeds in
setting to constants G and W, by gauge fixing dilatation
and using (two-derivative) equations of motion, we are left
with an R2 contribution to the four-derivative component
action. Although we have not yet analyzed in detail the
equations of motion and the component structure of this
invariant, we expect it might play a role in studying higher-
derivative invariants in alternative off-shell superspace
settings, as, for example, the recent off-shell supergravity
constructed in [75] by using the variant hyperdilaton Weyl
multiplet of conformal supergravity. We leave for the
future more investigations along this line.

6G. T.-M. is grateful for discussions with M. Ozkan on scalar
curvature-squared invariants.
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